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Vehicle Routing Problem (VRP)

One of the most widely studied in Combinatorial Optimization:

+6,000 works published only in 2021 (Google Scholar), mostly
heuristics

Direct application in the real systems that distribute goods
and provide services
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Vehicle Routing Problem (VRP)

Reflecting the variety of real transportation systems, VRP
literature is spread into hundreds of variants. For example, there
are variants that consider:

Vehicle capacities,

Time windows,

Heterogeneous fleets,

Multiple depots,

Split delivery, pickup and delivery, backhauling,

Arc routing (Ex: garbage collection),

etc, etc.
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Traveling Salesman Problem (TSP)
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Traveling Salesman Problem (TSP)
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Traveling Salesman Problem (TSP)

Simplest routing problem: single vehicle, no constraints to the
route

Largest solved instance (Concorde): 85,900 points!! Instances with
one thousand points often solved in one minute
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Capacitated Vehicle Routing Problem (CVRP)
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VRP with Time Windows (VRPTW)
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Heterogeneous Fleet VRP (HFVRP)
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Multi-Depot VRP (MDVRP)
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Pickup and Delivery VRP (PDVRP)
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“Emerging” variants

Routing of electrical vehicles:

Limited autonomy. Recharge is only available at a few points
and is slow

Dynamic Routing:

New demands appear during the day, ongoing routes may
have to be changed due to unexpected events...
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Outline of the presentation

Part I - Advances on Exact CVRP algorithms

Review of the advances in the last 15 years

A key advance: cuts with limited memory

Part II - From CVRP to other classic VRP variants

Part III - A Generic Exact VRP Solver

A generic VRP model

Computational results

Downloading and using the code

Conclusion: perspectives on the use of exact algorithms in practice
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Part I - Advances on Exact

CVRP Algorithms
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Capacitated Vehicle Routing Problem (CVRP)

First (Dantzig and Ramser [1959]) and most basic variant:

Instance: Complete graph G = (V ,E ) with V = {0, . . . , n}; 0 is
the depot, N = {1, . . . , n} is the set of customers. Each edge
e ∈ E costs ce . Each i ∈ N demands di units. Homogeneous fleet
of vehicles with capacity Q.

Solution: Routes from the depot, respecting the capacities and
visiting all customers once; minimizing the total cost.
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Edge Formulation (Laporte and Nobert [1983])

Variable xe indicates how many times e is used.

min
∑
e∈E

cexe (1)

S.t.
∑
e∈δ(i)

xe = 2 ∀ i ∈ N, (2)

∑
e∈δ(S)

xe ≥ 2d
∑
i∈S

di/Qe ∀ S ⊆ N, (3)

xe ∈ {0, 1} ∀ e ∈ E \ δ(0), (4)

xe ∈ {0, 1, 2} ∀ e ∈ δ(0). (5)

Constraints (3) are Rounded Capacity Cuts
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Branch-and-Cut (BC) Algorithms for CVRP

Extensive research on families of cuts:

Framed Capacity, Strengthened Comb, Multistar, Extended
Hypotour, etc.

Dominant approach (Naddef and Rinaldi [2002]) until early 2000’s:

Araque, Kudva, Morin, and Pekny [1994]

Augerat, Belenguer, Benavent, Corberán, Naddef, and Rinaldi
[1995]

Blasum and Hochstättler [2000]

Ralphs, Kopman, Pulleyblank, and Trotter Jr. [2003]

Achuthan, Caccetta, and Hill [2003]

Ralphs [2003]

Wenger [2004]

Lysgaard, Letchford, and Eglese [2004]
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Best BC results

LLE04
Class Size #Ins #Unsolved Root gap Avg. Time(s)
A 36-79 22 7 2.06 6638
B 36-79 20 1 0.61 8178
E-M 50-199 12 9 2.10 39592
F 44-134 3 0 0.06 1016
P 14-100 24 8 2.26 11219

Total 81 25

Processor Intel Celeron 700MHz

Smallest unsolved instance: 49 customers

J. Lysgaard, A. Letchford, and R. Eglese. A new branch-and-cut

algorithm for the capacitated vehicle routing problem. Mathematical

Programming, 100:423–445, 2004

Why BC is so much better on TSP than on CVRP? One reason may be

that the original Dantzig et al. [1954] formulation is much stronger than

the original Laporte and Nobert [1983] formulation
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Set Partitioning Formulation – SPF (Balinski and Quandt
[1964])

Ω is the set of routes, route r costs cr , coefficient air indicates how
many times r visits customer i

min
∑
r∈Ω

crλr (6)

S.t.
∑
r∈Ω

airλr = 1 ∀ i ∈ N, (7)

λr ∈ {0, 1} ∀ r ∈ Ω. (8)

Exponential number of variables =⇒ Column generation /
Branch-and-Price (BP) algorithms

Pricing elementary routes is strongly NP-hard =⇒ Relax Ω
including non-elementary q-routes (Christofides et al. [1979])
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Combining Column Generation and Cut Separation

SPF linear relaxation is very good for VRPTW with tight windows
(Desrosiers et al. [1984]) but is quite weak for CVRP:

Typical root gaps >3% (even if only elementary routes are
priced!), worse than 2% of BC root gap

Fukasawa et al. [2006] combined both methods. A cut over edge
variables ∑

e∈E
αexe ≥ b,

is translated to ∑
r∈Ω

(
∑
e∈E

αeaer )λr ≥ b,

where aer is the number of times that e is used in route r .

The combination of column generation with robust cuts defined
over edges yields root gaps around 1%.
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Robust Branch-Cut-and-Price (BCP)

A crucial point in combining column generation with cuts is the
effect of the new dual variables in the pricing:

A cut is robust when its dual variable can be translated into
costs in the pricing. The subproblem structure does not
change.

non-robust cuts change the pricing, each additional cut
makes it harder.
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Robust BCP results in FLL+06

LLE04 FLL+06
Class #Ins NS Gap T(s) NS Gap T(s)
A 22 7 2.06 6638 0 0.81 1961
B 20 1 0.61 8178 0 0.47 4763
E-M 12 9 2.10 39592 3 1.19 126987
F 3 0 0.06 1016 0 0.06 2398
P 24 8 2.26 11219 0 0.76 2892

Total 81 25 3

Processor Intel Celeron 700MHz Pentium 4 2.4GHz

Robust BCP solved all literature instances with up to 134
customers. Three larger instances remained open: M-n151-k12,
M-n200-k16 e M-n200-k17.

R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis,

Uchoa. E., and R.F. Werneck. Robust branch-and-cut-and-price for the

capacitated vehicle routing problem. Mathematical Programming, 106:

491–511, 2006

Hausdorff School – Bonn 2022 Advances in Exact Algorithms for Vehicle Routing 27 / 109



New exact CVRP methods

After Fukasawa et al. [2006], all the proposed exact CVRP
algorithms combine column generation and cuts. Two surveys are:

M. Poggi and Uchoa. E. New exact approaches for the capacitated VRP.

In P. Toth and D. Vigo, editors, Vehicle Routing: Problems, Methods,

and Applications, chapter 3, pages 59–86. SIAM, second edition, 2014

L. Costa, C. Contardo, and G. Desaulniers. Exact branch-price-and-cut

algorithms for vehicle routing. Transportation Science, 53:946–985, 2019
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Baldacci, Christofides and Mingozzi [2008]

Uses non-robust cuts: Strengthened Capacity and Clique.

Root gaps were significantly reduced. Several tricks to keep pricing
reasonably tractable.

Important new idea:

Instead of branching, algorithm finishes by enumerating all
routes with reduced cost smaller than the gap. The SPF with
only those routes was solved by CPLEX. This saves a lot of
time in some instances

R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the

vehicle routing problem based on the set partitioning formulation with

additional cuts. Mathematical Programming, 115(2):351–385, 2008
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Baldacci, Mingozzi and Roberti [2011]

Introduces ng-routes, an effective elementarity relaxation better
than q-routes:

For each i ∈ N, NG (i) ⊆ N contains the ng closest
customers. An ng -route can only revisit i if it passes first by a
customer j such that i /∈ NG (j)

ng = 8 does not make pricing too hard and, in practice,
eliminates most cycles

Non-robust Subset Row Cuts (Chvátal-Gomory Cuts of Rank 1
over the set partitioning constraints [Jepsen et al., 2008]) replace
Cliques, smaller impact on pricing

R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and

pricing strategies for the vehicle routing problem. Operations Research,

59:1269–1283, 2011a
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Røpke [2012]

Back to Robust BCP, but already using ng -routes.

Proposes a sophisticated and aggressive strong branching,
reducing a lot the branch-and-bound trees

Before this work, BCP algorithms only applied SB in a timid
way, wrongly believing that aggressive SB would not pay in
that context

M-n151-k12 solved in 5 days!

S. Røpke. Branching decisions in branch-and-cut-and-price algorithms for

vehicle routing problems. Presentation in Column Generation 2012, 2012
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Contardo and Martinelli [2014]

Uses Subset Row Cuts and ng -routes

Enumeration to a pool with up to several million routes can
be performed. After that, pricing is done by inspection in the
pool.

Non-robusts cuts can be freely separated
As lower bounds improve, fixing by reduced costs reduce pool
size
The problem is finished by a MIP solver only when pool size is
much reduced

M-n151-k12 solved in less than 3 hours!

C. Contardo and R. Martinelli. A new exact algorithm for the multi-depot

vehicle routing problem under capacity and route length constraints.

Discrete Optimization, 12:129–146, 2014a
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Pecin et al. [2014]

A complex BCP algorithm incorporating elements from all
previously mentioned works and presenting some new ideas.

D. Pecin, A. Pessoa, M. Poggi, and Uchoa. E. Improved

branch-cut-and-price for capacitated vehicle routing. In Proceedings of

the 17th IPCO, pages 393–403. Springer, 2014
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Pecin et al. [2014]: Cuts

Robust Cuts (separation using code by J.Lysgaard [2004])

Rounded Capacity
Strengthened Comb

Non-Robust Cuts

Subset Row

Post-Enumeration Cuts

Cliques (separation using code by H.Santos [2012])
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Pecin et al. [2014]: Pricing

Most critical part of the BCP: dynamic programming label setting
algorithm, handling:

ng -routes

The modifications induced by Subset Row Cuts

Features:

Bi-directional search (Righini and Salani [2006]), using
balanced mid-point

Completion Bounds with under-evaluation (Contardo [2012])

Fixing by reduced cost considering arc accumulated load
(Pessoa et al. [2010])
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Pecin et al. [2014]: Non-Robustness Control

Even with all care, non-robust cuts are indeed “non-robust”:

Pricing may be handling hundreds of Subset Row Cuts well.
Then, the separation of a few dozen additional cuts makes the
pricing 100x or even 1000x slower!

When such a situation is detected, the algorithm rolls back,
removing the “bad” cuts.
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Pecin et al. [2014]: Miscellanea

Hybrid search strategy, combining branching and enumeration:

Strong Branching (SB):

Hierarchical, 3 levels
Keeps full history to guide future decisions
Up to 200 candidates per node.

Route enumeration:

Generates pool with up to 20M routes
Branching can be done over enumerated node
Uses MIP solver (CPLEX) only when pool is reduced to less
than 20K routes

Dual stabilization by smoothing (Wentges [1997])
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Results in PPPU14

BMR11 Rop12 CM14
Class #Ins US Gap T(s) US Gap T(s) US Gap T(s)
A 22 0 0.13 30 0 0.57 53 0 0.09 59
B 20 0 0.06 67 0 0.25 208 0 0.08 34
E-M 12 3 0.49 303 2 0.96 44295 2 0.27 1548
F 3 1 0.11 164 0 0.25 2163 0 0.03 27772
P 24 0 0.23 85 0 0.69 280 0 0.18 240
Total 81 4 2 2
Processor Xeon X7350 2.93GHz Core i7-2620M 2.7GHz Xeon E5462 2.8GHz

PPPU14
Class #Ins UnSolved Gap T(s)
A 22 0 0.03 5.6
B 20 0 0.04 6.2
E-M 12 0 0.19 3669
F 3 0 0.00 3679
P 24 0 0.07 33

Total 81 0

Processor Core i7-3770 3.4GHz
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Detailed Results: M-n200-k16

Algo Root LB Final LB Total Time (s)

BMR11 1256.6 1256.6 319
Ropke12 1253.0 1258.2 7200

CM14 1266.9 1266.9 432000
PPPU14 1266.5 1274 39869

Previous best known solution: 1278.
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Optimal solution M-n200-k16, cost: 1274
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Golden Instances

Golden, Wasil, Kelly and Chao [1998] proposed 12 CVRP
instances, having from 240 to 483 customers.

Frequent in the heuristic literature

Considered “out of reach” of exact algorithms

6 instances could be solved, with 240, 252, 300, 320, 360 and 420
customers.
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Optimal solution Golden 20 (420 customers), 7 days CPU
time, cost 1817.59; best heuristic 1817.86
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The breakthrough in Pecin et al.[2014]: Limited Memory
Cuts

The concept of limited memory cuts was pivotal for those
improvements.

In order to understand the concept, it is necessary to see how
non-robust cuts interfere with the pricing.
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The Labeling Algorithm

The pricing is done by a labeling dynamic programming algorithm.

B(i , q), i ∈ V , q ∈ {di , . . . ,Q} are buckets

A label L(P) represents a partial path P, with cost c̄(P). All
labels corresponding to paths ending in i with load q are kept
in bucket B(i , q).

An initial label representing a null path is put in B(0, 0).

Labels are expanded producing other labels.

Dominated labels should be removed along the algorithm.

Hausdorff School – Bonn 2022 Advances in Exact Algorithms for Vehicle Routing 44 / 109



The Labeling Algorithm

Hausdorff School – Bonn 2022 Advances in Exact Algorithms for Vehicle Routing 45 / 109



The Labeling Algorithm
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The Labeling Algorithm
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The Labeling Algorithm
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The Labeling Algorithm
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The Labeling Algorithm
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Domination in the Labeling Algorithm

Dominance Rule

A label L(P1) dominates another label L(P2) in the same bucket if
c̄(P1) ≤ c̄(P2) and every valid completion of P2 is also a valid
completion for P1.

Ω allows cycles: at most one non-dominated label per bucket.
Labeling runs in O(n2.Q) time (pseudo-polynomial).

Only elementary routes in Ω: In the worst case, exponential
number of non-dominated labels per bucket.

ng -routes: Maximum of 2ng−1 labels per bucket. ng = 8 is a
safe choice to avoid combinatorial explosion.

Hausdorff School – Bonn 2022 Advances in Exact Algorithms for Vehicle Routing 51 / 109



Subset Row Cuts (SRCs)

Let C ⊆ N be a set of 3 customers. At most one route that passes
by 2 or more customers in C can be used. So, the following 3-SRC
is valid: ∑

r∈Ω:|r∩C |≥2

λr ≤ 1

3-SRCs (and other SRCs) can reduce gaps a lot. However, they
can also make the pricing intractable.

M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row

inequalities applied to the vehicle-routing problem with time windows.

Operations Research, 56(2):497–511, 2008
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How 3-SRCs interfere with the Labeling Algorithm?

Suppose that m 3-SRCs are added, σs < 0 is the dual variable
of 3-SRC s, C (s) its base set.

Each label needs m additional binary dimensions, S(P)[s] is
the parity of the number of times that P visited customers in
C (s).

When a label L(P) with S(P)[s] = 1 is expanded to a vertex
in C (s), new label L(P ′) has its reduced cost penalized by σs .
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How 3-SRCs interfere with the Labeling Algorithm?

Dominance Rule with 3-SRCs

A label L(P1) dominates another label L(P2) in the same bucket if
c̄(P1) ≤ c̄(P2) +

∑
1≤s≤m:S(P1)[s]>S(P2)[s] σs and every valid

completion of P2 is also a valid completion for P1.

More 3-SRCs, weaker dominance

In many instances, 100 3-SRCs are enough for a combinatorial
explosion in the number of non-dominated labels
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Limited Memory 3-Subset Row Cuts (lm-3-SRCs)

The 3-SRC with base-set C ⊆ N is assigned to a memory-set M,
C ⊆ M ⊆ N. The lm-3-SRC is:∑

r∈Ω

α(C ,M, r)λr ≤ 1, (9)

where coefficient of route r is given by:
1: function α(C , M r)
2: coeff ← 0, state ← 0
3: for every vertex i ∈ r (in order) do
4: if i /∈ M then
5: state ← 0
6: else if i ∈ C then
7: state ← state + 1/2
8: if state ≥ 1 then
9: coeff ← coeff + 1, state ← state − 1

10: return coeff
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Limited Memory 3-Subset Row Cuts (lm-3-SRCs)

1: function α(C , M, r)
2: coeff ← 0, state ← 0
3: for every vertex i ∈ r (in order) do
4: if i /∈ M then
5: state ← 0
6: else if i ∈ C then
7: state ← state + 1/2
8: if state ≥ 1 then
9: coeff ← coeff + 1, state ← state − 1

10: return coeff

If memory-set M is equal to N, the lm-3-SRC is equivalent to an 3-SRC.
Otherwise, it is weaker.

However, by adjusting dynamically the memory-sets M, it is possible to
obtain exactly the same bounds obtainable by regular 3-SRCs.

If the final M is small, as usually happens, the gains in pricing time are
large.

Hausdorff School – Bonn 2022 Advances in Exact Algorithms for Vehicle Routing 56 / 109



Why limited memory reduces impact in the pricing?

Dominance Rule with lm-3-SRCs

A label L(P1) dominates another label L(P2) in the same bucket if
c̄(P1) ≤ c̄(P2) +

∑
1≤s≤m:S(P1)[s]>S(P2)[s] σs and every valid

completion of P2 is also a valid completion for P1.

Suppose a lm-3-SRC s with memory set M(s) and dual variable σs .
The dimension S(P)[s] is set to zero whenever P visits a vertex
not in M(s) (so, the previous visits to C (s) are “forgotten”).

Many more SRCs can be separated before pricing becomes
intractable
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Separation of lm-SRCs

0 

2 

1 

3 

Route r1,  λr1=0.5 

λr1 has coefficient 1 in the 3-SRC with C = {1, 2, 3}
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Separation of lm-SRCs

0 

2 

1 

3 

Route r1,  λr1=0.5 

Included in the memory set 

λr1 still has coefficient 1 in the lm 3-SRC
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Separation of lm-SRCs

0 

2 

1 

3 

Route r2,  λr2=0.5 

λr2 has coefficient 1 in the 3-SRC with C = {1, 2, 3}
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Separation of lm-SRCs

0 

2 

1 

3 

Route r2,  λr2=0.5 

Included   in the memory set 

λr2 still has coefficient 1 in the lm 3-SRC
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Separation of lm-SRCs

0 

2 

1 

3 

Route r3,  λr3=0.5 

λr3 has coefficient 1 in the 3-SRC with C = {1, 2, 3}
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Separation of lm-SRCs

0 

2 

1 

3 

Route r3,  λr3=0.5 

Included in the memory set 

λr3 still has coefficient 1 in the lm 3-SRC
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Separation of lm-SRCs

0 

2 

1 

3 

Final memory set 
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Separation of lm-SRCs

0 

2 

1 

3 

The next pricing iteration may generate routes that dodge the
memory!
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Separation of lm-SRCs

0 

2 

1 

3 

Possibly included in the memory set 
of C in the next cut round 

No problem, memory will be adjusted in the next cut round!
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Why it is good to reduce the set M as much as possible?

0

2

i

1

3

Solid path may only dominate the dashed path because the lm
3-SRC {1, 2, 3} is already forgotten at i .
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Advanced Branch-Cut-and-Price Algorithms

The advanced state-of-the-art BCPAs are those where the
non-robust cuts and the pricing algorithm are jointly and
symbiotically designed, in such a way that the pricing can handle a
large number of very tailored non-robust cuts without becoming
too inefficient.

The presented limited memory technique is good for the
labeling algorithm. If the pricing was being solved by
another method (for example, by MIP), they would actually
make the pricing harder!
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MPC Best Paper in 2017
The editorial board of MPC has chosen

Improved Branch-Cut-and-Price for 
Capacitated Vehicle Routing

by Diego Pecin, Artur Pessoa, Marcus Poggi 
and Eduardo Uchoa
MPC, volume 9, pp. 61-100, March 2017

as the best paper published by MPC in 2017

This certi� cate is awarded at the 
23rd International Symposium 
on Mathematical Programming, 
Bordeaux, France, July 2018

springer.com
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Part II - From CVRP

to other classic variants
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Conceptual advance: Limited Memory Rank-1 Cuts

Facets of the Set Partitioning polyhedron with Chvátal-Gomory
rank 1.
Generalize and strengthen Subset Row Cuts.

D. Pecin, A. Pessoa, M. Poggi, Uchoa. E., and Haroldo Santos. Limited

memory rank-1 cuts for vehicle routing problems. Operations Research

Letters, 45(3):206–209, 2017b

T. Bulhoes, A. Pessoa, F. Protti, and Uchoa. E. On the complete set

packing and set partitioning polytopes: Properties and rank 1 facets.

Operations Research Letters, 46(4):389–392, 2018a
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VRP with Time Windows (VRPTW)

Presents the concept of memory cut over arcs

Results on the classic Solomon instances (100 customers)

All solved, 55/56 at the root node

Results on Gehring-Homberger instances (200 customers)

51/60 solved, 27 for the first time

D. Pecin, C. Contardo, G. Desaulniers, and Uchoa. E. New enhancements

for exactly solving the vehicle routing problem with time windows.

INFORMS Journal on Computing, 29:489–502, 2017a
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Heterogeneous Fleet VRP (HFVRP)

Presents the concept of memory cut depending on subproblem

Solves most instances with up to 200 clientes, two times more
than previous methods

A. Pessoa, R. Sadykov, and Uchoa. E. Enhanced branch-cut-and-price

algorithm for heterogeneous fleet vehicle routing problems. European

Journal of Operational Research, 270:530–543, 2018
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Capacitated Arc Routing (CARP)

The classic multi-vehicle arc routing

Solves instances two times larger than previous methods.

23/24 Eglese instances, 11 for the first time

134/135 other instances from the literature

Diego Pecin and Eduardo Uchoa. Comparative analysis of capacitated arc

routing formulations for designing a new branch-cut-and-price algorithm.

Transportation Science, 53(6):1673–1694, 2019
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Generic Exact VRPSolver
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The difficulty of creating state-of-the-art algorithms for
new VRP variants

Those BCP algorithms are very complex:

Each of the previously mentioned algorithms took a lot of
time to be coded, even when they adapt an already existing
code for another variant

There are intricate conceptual issues for adapting some
techniques for more complex variants

One would like to have a generic algorithm that could be easily
customized to many variants
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Previous work (Desaulniers et al. [1998])

The SPF is quite generic, by changing the definition of Ω several
classic variants can be modeled. Desaulniers et al. [1998] proposed
a framework where many VRPs could be solved by the same BP
algorithm. The sets Ω were associated to the solutions of
Resource Constrained Shortest Path (RCSP) Problems.

min
∑
r∈Ω

crλr (10)

S.t.
∑
r∈Ω

airλr = 1, ∀ i ∈ N, (11)

λr ∈ {0, 1} ∀ r ∈ Ω. (12)

G. Desaulniers, J. Desrosiers, I. loachim, M. Solomon, F. Soumis, and

D. Villeneuve. A unified framework for deterministic time constrained

vehicle routing and crew scheduling problems. In Fleet management and

logistics, pages 57–93. Springer, 1998
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VRPSolver

A BCP solver for a generic model that encompasses a wide class of
VRPs and even some other kinds of problems

Incorporates almost all advanced elements found in the best recent
VRP algorithms,

A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. A generic exact

solver for vehicle routing and related problems. Mathematical

Programming, 183(1):483–523, 2020
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Computational Experiments

VRPSolver algorithms coded in C++ over BaPCod package
(Vanderbeck et al. [2018])

IBM CPLEX 12.8 used as LP solver

Models are defined using a Julia–JuMP (Dunning et al. [2017])
based interface.

Tests over 13 problems: CVRP, VRPTW, HFVRP, Multi-Depot
VRP (MDVRP), (Capacitated) Team Orienteering Problem
(CTOP/TOP), Capacitated Profitable Tour Problem (CPTP),
VRP with Service Level constraints (VRPSL), GAP, Vector
Packing Problem (VPP), Bin Packing Problem (BPP) and CARP.
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Computational results

Problem Data set # T.L. VRPSolver Best Published 2nd Best Published
CVRP E-M 12 10h 12 (61s) 12 (49s) Pecin et al. [2017c] 10 (432s) Contardo et al. [2014]

X 58 60h 36 (147m) 34 (209m) Uchoa et al. [2017] —

VRPTW Sol Hard 14 1h 14 (5m) 13 (17m) Pecin et al. [2017a] 9 (39m) Baldacci et al. [2011a]
Hom 200 60 30h 56 (21m) 50 (70m) Pecin et al. [2017a] 7 (-) Kallehauge et al. [2006]

HFVRP Golden 40 1h 40 (144s) 39 (287s) Pessoa et al. [2018] 34 (855s) Baldacci et al. [2009]

MDVRP Cordeau 11 1h 11 (6m) 11 (7m) Pessoa et al. [2018] 9 (25m) Contardo et al. [2014]

PDPTW RC 40 1h 40 (5m) 33 (17m) Gschwind et al. [2018] 32 (14m) Baldacci et al. [2011b]
LiLim 30 1h 3 (56m) 23 (20m) Baldacci et al. [2011b] 18 (27m) Gschwind et al. [2018]

TOP Chao 4 60 1h 55 (8m) 39 (15m) Bianchessi et al. [2018] 30 (-) El-Hajj et al. [2016]

CTOP Archetti 14 1h 13 (7m) 7 (34m) Archetti et al. [2013] 6 (35m) Archetti et al. [2009]

CPTP Archetti 28 1h 24 (9m) 0 (1h) Bulhoes et al. [2018b] 0 (1h) Archetti et al. [2013]

VRPSL Bulhoes 180 2h 159 (16m) 49 (90m) Bulhoes et al. [2018b] —

GAP OR-Lib D 6 2h 5 (40m) 5 (30m) Posta et al. [2012] 5 (46m) Avella et al. [2010]
Nauss 30 1h 25 (23m) 1 (58m) Gurobi [2017] 0 (1h) Nauss [2003]

VPP 1,4,5,9 40 1h 38 (8m) 13 (50m) Heßler et al. [2018] 10 (53m) Brandão et al. [2016]

BPP Falk T 80 10m 80 (16s) 80 (1s) Brandão et al. [2016] 80 (24s) Belov et al. [2006,16]
Hard28 28 10m 28 (17s) 28 (7s) Belov et al. [2006,16] 26 (14s) Brandão et al. [2016]
AI 250 1h 160 (25m) 116 (35m) Belov et al. [2006,16] 100 (40m) Brandão et al. [2016]
ANI 250 1h 103 (35m) 97 (40m) Wei et al. [2019] 67 (45m) Belov et al. [2006,16]

CARP Eglese 24 30h 22 (36m) 22 (43m) Pecin et al. [2019] 10 (237m) Bartolini et al. [2013]

Table: VRPSolver vs best specific solvers on 13 problems.
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VRPSolver on CVRP

Class X with 100 instances, ranging between 100 and 1000
customers:

Designed to mimic a wide diversity of characteristics found in
real applications

Available at CVRPLIB
(http://vrp.atd-lab.inf.puc-rio.br/index.php/en/)

E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian.

New benchmark instances for the capacitated vehicle routing problem.

European Journal of Operational Research, 257(3):845–858, 2017
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VRPSolver on CVRP

53 out of 100 instances could be solved, sometimes with very
special parameterization and very long runs (up to one month):

100 ≤ n < 200 : 22/22 (100%)

200 ≤ n < 300: 19/21 (90%)

300 ≤ n < 500: 8/25 (32%)

500 ≤ n ≤ 1000: 4/32 (12%)

Smallest unsolved: X-n280-k17

Largest solved: X-n856-k95
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Optimal solution X-856-k95 (unitary demands), 10 days of
CPU time, cost 88,965
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A new benchmark of 10,000 instances with 100 customers

CVRPLIB did not have any small/medium instances with
> 25 customers/route. Realizing that limitation (after
Amazon Last Mile Routing Challenge!), this recent benchmark
included instances with “ultra-long” routes.

VRPSolver could find all optimal solutions with a median time
of 1 minute. Yet, 10.1% of instances could not be solved in
30 minutes using default settings. Solving them required
special strategies and/or long runs (up to 80 hours).

But we also reimplemented the best BC over CPLEX 20

E. Queiroga, R. Sadykov, Uchoa. E., and T. Vidal. 10,000 optimal CVRP

solutions for testing machine learning based heuristics. AAAI-22

Workshop on Machine Learning for Operations Research (ML4OR), 2022.
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BC vs BCP (VRPSolver) by route size, TL 30 mins
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BCP BC only by BC

BC for CVRP is not dead! However, BCs are hard to generalize.
For example, there is no reasonable BC for VRPTW
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Downloading and

using the VRP Solver
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VRP Solver available over Julia–JuMP

The VRP solver is available for academic use
(vrpsolver.math.u-bordeaux.fr):

Algorithms are bundled in a single pre-compiled docker (runs
in every OS)

There is a no-docker version for Linux

Julia–JuMP user interface for modeling, including several
demos

1 Modeling a typical VRP variant requires around 100 lines of
Julia code (not counting input/output). An experienced user
can build a working solver for a new variant in 1 day

2 Many computer experiments and parameter tuning may be
needed for an improved performance

3 In some cases, separation routines for problem-specific
(robust) cuts are needed for a better performance
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Room for Creative Modeling

We believe users may find original ways (transformations) of fitting
new problems in the proposed model

Not only VRP variants, possibly also problems from
scheduling, network design, etc.

Since VRP solving technology is quite advanced, there is a chance
of obtaining better-than-existing-methods performance
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Some works that used VRPSolver with creative modeling

T. Bulhões, R. Sadykov, A. Subramanian, and E. Uchoa. On the exact

solution of a large class of parallel machine scheduling problems. Journal

of Scheduling, 23(4):411–429, 2020

A. Pessoa, M. Poss, R. Sadykov, and F. Vanderbeck.

Branch-cut-and-price for the robust capacitated vehicle routing problem

with knapsack uncertainty. Operations Research, 69(3):739–754, 2021a

A. Pessoa, R. Sadykov, and E. Uchoa. Solving bin packing problems

using VRPSolver models. Operations Research Forum, 2(2):1–25, 2021b

I. Mohamed, W. Klibi, R. Sadykov, H. Şen, and F. Vanderbeck. The

two-echelon stochastic multi-period capacitated location-routing problem.

European Journal of Operational Research, 2022
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Some works that used VRPSolver with creative modeling

T. Adamo, G. Ghiani, P. Greco, and E. Guerriero. Properties and bounds

for the single-vehicle capacitated routing problem with time-dependent

travel times and multiple trips. In 10th Conference on Operations

Research and Enterprise Systems (ICORES), pages 82–87, 2021

A. Subramanyam, T. Cokyasar, J. Larson, and M. Stinson. Joint routing

of conventional and range-extended electric vehicles in a large

metropolitan network. Transportation Research Part C: Emerging

Technologies, 144:103830, 2022

C. Damião, J.M. Silva, and E. Uchoa. A branch-cut-and-price algorithm

for the cumulative capacitated vehicle routing problem. 4OR, pages

1–25, 2021

G. Volte, E. Bourreaua, R. Giroudeau, and O. Naud. Using VRPSolver to

efficiently solve the differential harvest problem. Computers & Operations

Research, 2022. to appear
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Disclaimer on current VRPSolver

VRPSolver is being maintained by a tiny group of people working
on spare time

Documentation is poor, it is quite difficult to understand how
to change parameters

Docker version is stuck in old Julia and JuMP versions

We would like to have a community of users
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Conclusions
and Perspectives
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Impact of Exact VRP algorithms in practice

Historically, exact solvers were rarely used in practical routing
1 Existing algorithms could not solve realistic-sized instances in

reasonable times

Now many instances of the most classic VRPs with up to 200
customers can be solved
More importantly, instances with up to 100 customers can
often be solved in a few minutes

2 The real problems seldom correspond exactly to one of the
classic variants. Creating a good exact code for a new variant
is a hard task

Highly customizable codes with state-of-the-art performance
are now available

We expect that exact algorithms will be much more used by
practitioners, at least for benchmarking their heuristics
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Thank you
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