
Introduction to Column Generation

Eduardo Uchoa

Departamento de Engenharia de Produç~ao
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Linear Programming

An LP has the following format:

min z = cx

subject to

Ax = b

x ≥ 0

c: 1× n vector, objective function
coefficients

A: m × n matrix, constraint
coefficients

x : n × 1 vector, decision variables b: m × 1 vector, right-hand
side constants
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Revised Simplex Algorithm for LP (Dantzig, 1953)

More efficient than the original Simplex (Dantzig, 1947)

Takes advantage of the fact that n is usually significantly larger
than m
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Revised Simplex

Definition: Basic solution, basic variables

Let (B N) be a partition of the columns in A, such that B has
dimension m ×m and is invertible. Let x = (xB xN) and
c = (cB cN) be the corresponding partitions of x and c . A feasible
solution x = (xB xN) is said to be basic if xN = 0. Variables in xB
are basic variables, those in xN are non-basic variables.
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Revised Simplex

EXAMPLE

min z = 24x1 + 29x2 + 10x3 + 38x4

s.t. x1 + 4x2 + 5x3 = 60
2x2 + x3 ≤ 12

2x1 + x2 − x3 + 4x4 ≥ 10
x1 , x2 , x3 , x4 ≥ 0
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Revised Simplex

EXAMPLE

min z = 24x1 + 29x2 + 10x3 + 38x4

s.t. x1 + 4x2 + 5x3 = 60
2x2 + x3 ≤ 12

2x1 + x2 − x3 + 4x4 ≥ 10
x1 , x2 , x3 , x4 ≥ 0

Simplex algorithms (both original and revised variants) require
converting all inequalities to equalities, slack/surplus

variables should be added.
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Revised Simplex

EXAMPLE

min z = 24x1 + 29x2 + 10x3 + 38x4

s.t. x1 + 4x2 + 5x3 = 60
2x2 + x3 + x5 = 12

2x1 + x2 − x3 + 4x4 − x6 = 10
x1 , x2 , x3 , x4 , x5 , x6 ≥ 0
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Revised Simplex

EXAMPLE

min z = 24x1 + 29x2 + 10x3 + 38x4

s.t. x1 + 4x2 + 5x3 = 60
2x2 + x3 + x5 = 12

2x1 + x2 − x3 + 4x4 − x6 = 10
x1 , x2 , x3 , x4 , x5 , x6 ≥ 0

c =
[
24 29 10 38 0 0

]

A =

1 4 5 0 0 0
0 2 1 0 1 0
2 1 −1 4 0 −1

 x =


x1

x2

x3

x4

x5

x6

 b =

6012
10

 .
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Revised Simplex Algorithm

Step 1: Find an initial basic feasible solution

Find m×m submatrix B of A such that linear system BxB = b has
solution xB ≥ 0.

Suppose that x1, x3 and x5 are the variables chosen to be basic

B · xB =

1 5 0
0 1 1
2 −1 0

 ·
x1

x3

x5

 =

60
12
10

⇒ xB =

x1

x3

x5

 =

10
10
2


z = 340
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Revised Simplex Algorithm

Step 1: Find an initial basic feasible solution

Find m×m submatrix B of A such that linear system BxB = b has
solution xB ≥ 0.

Suppose that x1, x3 and x5 are the variables chosen to be basic

B · xB = b ⇔


x1 + 5x3 = 60

x3 + x5 = 12
2x1 − x3 = 10

⇒
x1 = 10
x3 = 10
x5 = 2

z = 340
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Revised Simplex

Step 2: Find the dual solution

The reduced cost of a variable xj is given by c j = cj − πAj , where
Aj is the j-th column of A. Basic variables have zero reduced
cost. Dual solution π is the solution of linear system πB = cB .

πB =

π1

π2

π3

ᵀ

·

1 5 0
0 1 1
2 −1 0

 =

24
10
0

ᵀ

⇒

π1

π2

π3

ᵀ

=

 4
0

10

ᵀ
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Revised Simplex

Step 2: Find the dual solution

The reduced cost of a variable xj is given by c j = cj − πAj , where
Aj is the j-th column of A. Basic variables have zero reduced
cost. Dual solution π is the solution of linear system πB = cB .

πB = cB ⇔


π1 + 2π3 = 24

5π1 + π2 − π3 = 10
π2 = 0

⇒
π1 = 4
π2 = 0
π3 = 10
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Revised Simplex

Step 3: Pricing (finding a variable to enter the basis)

Calculate the reduced cost (c j = cj − πAj) of the non-basic
variables. If no variable has negative reduced cost , the current
solution is optimal. Otherwise, one of those variables can be
chosen to enter the basis.

Non-basic variables are x2, x4, and x6

c2 = 29 − 4π1 − 2π2 − π3 = 3
c4 = 38 − 4π3 = −2
c6 = 0 + π3 = 10
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Revised Simplex

Step 3: Pricing (finding a variable to enter the basis)

Calculate the reduced cost (c j = cj − πAj) of the non-basic
variables. If no variable has negative reduced cost (positive
reduced cost for maximization problems), the current solution is
optimal. Otherwise, one of those variables can be chosen to enter
the basis.

Non-basic variables are x2, x4, and x6

c2 = 29 − 4π1 − 2π2 − π3 = 3
c4 = 38 − 4π3 = −2
c6 = 0 + π3 = 10

x4 is the only variable that can enter the basis

Hausdorff School – Bonn 2022 Introduction to Column Generation 9 / 84



Revised Simplex

Passo 4: Finding the direction of improvement

Calculate the direction vector d that leads the current basic
solution into the next basic solution. Solve linear system Bd = Aj ,
where Aj is the column of A corresponding to the entering variable.

Bd =

1 5 0
0 1 1
2 −1 0

 ·
d1

d3

d5

 =

0
0
4

 ⇒ d =

20/11
−4/11
4/11

 .
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Revised Simplex

Step 5: Choose a variable to leave the basis

One would like to walk in direction d as much as possible.
Determine θ∗ = max{θ ≥ 0 : xB − θ · d ≥ 0}. One of the variables
that most limited θ∗ should be chosen to leave the basis. If no
variable limits θ∗, the LP is unbounded.

Variables x1 and x5 are eligible to leave the basis

max θ such that

10
10
2

− θ
20/11
−4/11
4/11

 ≥ 0 =⇒ θ∗ = 11/2 = 5.5

Assume that x1 is chosen.
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Revised Simplex

Step 6: Update B and xB

Basis B is updated by replacing the column of the leaving variable
by the column of the entering variable. Calculate new basic
solution and go to Step 2.

New basis is formed by x4, x3 and x5

B =

0 5 0
0 1 1
4 −1 0

 xB =

x4

x3

x5

 =

5.5
12
0


z = 329

Step 2 in the next RSA iteration would obtain dual variables
π = [ 3.9 0 9.5 ].
Step 3 would calculate the following reduced costs: c1 = 1.1, c2 = 3.9,
and c6 = 9.5.
So, the current solution is optimal.
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Advantage of Revised Simplex

Why Revised Simplex is usually better than original Simplex?

Only Step 3 (pricing) has complexity depending on n

All other steps have complexities that only depend on m

Significant advantage when n is much larger than m
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A fundamental insight

It is possible to solve LPs with not so many constraints but
with a HUGE number of variables, as long as those variables
have a special structure that allows their efficient pricing

Instead of calculating the reduced cost for each individual
variable, the whole pricing step should be solved as another
optimization problem!
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Dantzig-Wolfe Decomposition (1960)

Consider an LP (O) in the following format:

(O) max z = cx

subject to

Ax = b

Dx = d

x ≥ 0

LP (O) has m constraints (not counting the non-negativities)
and n variables; submatrix A has p rows and submatrix D has
q rows
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Dantzig-Wolfe Decomposition

Defining polyhedron P = {Dx = d , x ≥ 0}, (O) is equivalent
to:

(O′) max z = cx

subject to

Ax = b

x ∈ P

Assuming that P is limited, any solution x ∈ P can be represented
as a convex combination of points in the set R of the extreme
points of P.
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Dantzig-Wolfe Decomposition

Any x ∈ P can be represented by vectors of |R| variables λ
that correspond to convex combinations of its extreme points:

x =
∑
r∈R

rλr∑
r∈R

λr = 1

λ ≥ 0
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Dantzig-Wolfe Decomposition

Replacing x variables in LP (O′) by their equivalent
representations in λ variables, one gets:

(MP) max z =
∑
r∈R

(cr)λr

subject to ∑
r∈R

(Ar)λr = b (π)∑
r∈R

λr = 1 (ν)

λ ≥ 0

New LP (MP) is called a Master Problem and is equivalent to LP
(O). Vector π and scalar ν are the dual variables of the
corresponding constraints.
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Dantzig-Wolfe Decomposition

Consequences of the reformulation

(MP) has p + 1 constraints, less than the p + q constraints
of (O)

(MP) has many more variables (columns) than (O)

The number of columns in (MP) is |R|, the number of
extreme points of P. That number can be exponentially large
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Solving the Master Problem by Column Generation

No matter how large is |R|, the pricing step can be efficiently
performed by solving the following LP:

(SP) max c = (c − πA)x − ν
s.t. Dx = d

x ≥ 0
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Solving the Master Problem by Column Generation

Step 1: Initialize the Restricted Master Problem (RMP)

Use a small subset of the variables in (MP), only enough to
provide a feasible basis, for creating (RMP). If necessary, use
artificial variables.

Step 2: Solve the current (RMP)

Besides the primal solution, also get the dual variables π and ν.
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Solving the Master Problem by Column Generation

Step 3: Pricing

Solve the pricing subproblem (SP), its objective function depends
on the dual solution found in Step 2. The optimal solution x∗ of
(SP) is a point r ∈ R. If c∗ ≥ 0, no variable in (MP) is suitable
to enter in the current basis of (RMP), so the current solution
of (RMP) is also an optimal solution for (MP) and the
column generation stops.

Step 4: Update the RMP

Add the variable λr (and its corresponding column in the
matrices), associated to x∗, to (RMP). Go to Step 2.
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Solving the Master Problem by Column Generation

Even if the number of variables in (MP) is huge, only a very
small subset of its variables is likely to be added to (RMP).

So, Column Generation can solve (MP)
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Is it worthy to use DW decomposition for solving an LP?

DW actually believed that it would work for problems with
block-diagonal structure, where the pricing subproblem
decomposes into many independent LPs. Those smaller LPs
would be easier to solve, especially if they have a nice
particular structure (like defining network flows, as in Ford Jr
and Fulkerson (1958)).

A

D1

D2

D3
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Is it worthy to use DW decomposition for solving an LP?

Usually not!

Even when the LP has a block-diagonal structure, it is usually
faster to solve (O) directly than to apply DW decomposition
and solve (MP) by Column Generation

In fact, top solvers like CPLEX, Gurobi and XPRESS do not
even offer DW decomposition for LP
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Dantzig-Wolfe decomposition for Integer Programming

An Integer Program (IP) has the following format:

(IP) max z = cx

s.t. Ax = b

x ∈ Zn
+

An IP is an LP with additional integrality constraints over the
variables.
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Integer Programming

An IP often arises as a formulation for a Combinatorial
Optimization Problem (COP)

Each solution of the COP is mapped into an integer point in
the n-dimensional space

Let X be the set of those points

If it was possible to know all inequalities that define Conv(X ),
the COP could be solved as simple LP
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Set of integer points and its convex hull
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Set of integer points and its convex hull
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Integer Programming for solving COPs

If a COP is NP-hard, there is no efficient way to separate all
inequalities that define Conv(X ) (unless P = NP)

In practice, one defines a formulation, a set of inequalities
that contain all points in X , but no integer point not in X

The same COP can have many different formulations.

Branch-and-Bound algorithm

Work with the linear relaxation of an IP. Better formulations
lead to smaller gaps (difference between the LP value to the
IP value). That integrality gap has an exponential impact on
the size of the B&B tree
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Two possible formulations for the same set X
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Dantzig-Wolfe decomposition for IP

(O) max cx

s.t. Ax = b

Dx = d

x ∈ Zn
+

=⇒
(O′) max cx

s.t. Ax = b

x ∈ P

P = {Dx = d , x ∈ Zn
+}

is assumed to be a finite set of points numbered from p1 to pQ .
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Dantzig-Wolfe decomposition for IP

A point x ∈ P can be (trivially) described as an integer
convex combination of those Q points:

x =
Q∑
j=1

pjλj

Q∑
j=1

λj = 1

λ ∈ {0, 1}Q
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Dantzig-Wolfe decomposition for IP

Replacing x in (O′) by its equivalent, the following Integer
Master Problem is obtained:

(IMP) max z =
Q∑
j=1

(cpj)λj

subject to

Q∑
j=1

(Apj)λj = b

Q∑
j=1

λj = 1

λ ∈ {0, 1}Q
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Dantzig-Wolfe decomposition for IP

The linear relaxation of (IMP) is the following Master LP:

(MP) max z =
Q∑
j=1

(cpj)λj

subject to

Q∑
j=1

(Apj)λj = b (π)

Q∑
j=1

λj = 1 (ν)

λ ≥ 0
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Dantzig-Wolfe decomposition for IP

Consequences of the reformulation

(MP) usually has a huge number of variables. Yet, it can be
solved by column generation

The value of (MP) can be better than the linear
relaxation of (O)!

This may happen because the integrality is not relaxed in the
subproblem:

(SP) max c = (c − πA)x − ν
s.t. Dx = d

x ∈ Zn
+
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Dantzig-Wolfe decomposition for IP

max z =
Q∑
j=1

(cpj)λj

s.t.
Q∑
j=1

(Apj)λj = b

Q∑
j=1

λj = 1

λ ≥ 0

⇔
max cx

s.t. Ax = b

x ∈ Conv{Dx = d , x ∈ Zn
+}

The reformulation is equivalent to convexifying part of the
constraints in (O)
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How DW decompostion for IP improves a formulation

Suppose we partition the set of contraints of an Original
Formulation into two sets: green and orange
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How DW decompostion for IP improves a formulation

The Original Formulation is the intersection of the two sets
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How DW decompostion for IP improves a formulation

Convexifying the orange constraints: obtaining the convex hull of
the integer points in that set
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How DW decompostion for IP improves a formulation
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How DW decompostion for IP improves a formulation

New Improved Formulation
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How DW decompostion for IP improves a formulation

Original formulation vs Improved formulation
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DW decomposition with multiple subproblems

Consider an IP decomposable into K independent
subproblems:

min c1x1 + c2x2 + · · ·+ cKxK

subject to

A1x1 + A2x2 + · · ·+ AKxK = b

Dkxk = dk k = 1, . . . ,K

xk ∈ Znk
+ k = 1, . . . ,K

For each k = 1, . . . ,K , Ak is a p × nk matrix, Dk is a qk × nk

matrix; the remaining vectors have compatible dimensions
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DW decomposition with multiple subproblems

Consider an IP decomposable into K independent
subproblems:

min c1x1 + c2x2 + · · ·+ cKxK

subject to

A1x1 + A2x2 + · · ·+ AKxK = b

Dkxk = dk k = 1, . . . ,K

xk ∈ Znk
+ k = 1, . . . ,K

When K = 1 we have the case already considered

min cx

S.t. Ax = b

Dx = d

x ∈ Zn
+
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DW decomposition with multiple subproblems

Consider an IP decomposable into K independent
subproblems:

min c1x1 + c2x2 + · · ·+ cKxK

subject to

A1x1 + A2x2 + · · ·+ AKxK = b

Dkxk = dk k = 1, . . . ,K

xk ∈ Znk
+ k = 1, . . . ,K

When K > 1 the problem is said to have a block-diagonal structure

A1 A2 A3

D1

D2

D3
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DW with Multiple subproblems

min c1x1 + c2x2 + · · ·+ cKxK

subject to

A1x1 + A2x2 + · · ·+ AKxK = b

xk ∈ Pk k = 1, . . . ,K

Pk = {Dkxk = dk , x ∈ Znk
+ }

is assumed a finite set of points numbered from pk1 to pkQk
.
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DW with Multiple subproblems

min c1x1 + c2x2 + · · ·+ cKxK

subject to

A1x1 + A2x2 + · · ·+ AKxK = b

xk ∈ Pk k = 1, . . . ,K

A point xk ∈ Pk can be described as:

xk =
Qk∑
j=1

pkj λ
k
j

Qk∑
j=1

λkj = 1

λ ∈ {0, 1}Qk
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Dantzig-Wolfe decomposition for IP

Replacing every xk by its equivalent, the following Integer
Master Problem is obtained:

(IMP) min z =
K∑

k=1

Qk∑
j=1

(ckpkj )λkj

subject to

K∑
k=1

Qk∑
j=1

(Akpkj )λkj = b

Qk∑
j=1

λkj = 1 k = 1, . . . ,K

λ ∈ {0, 1}Qk
k = 1, . . . ,K
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Master LP Problem

The linear relaxation of (IMP) is the following Master LP
Problem:

(MP) min z =
K∑

k=1

Qk∑
j=1

(ckpkj )λjk

subject to

K∑
k=1

Qk∑
j=1

(Akpkj )λkj = b (π)

Qk∑
j=1

λkj = 1 k = 1, . . . ,K (νk)

λ ≥ 0 k = 1, . . . ,K
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A remark on the Master LP Problem

For the subproblems where xk = 0 is a solution, it is possible
to relax the corresponding convexity constraint to ≤ 1. If all
subproblems have that property, we can write:

(MP) min z =
K∑

k=1

Qk∑
j=1

(ckpkj )λkj

subject to

K∑
k=1

Qk∑
j=1

(Akpkj )λkj = b (π)

Qk∑
j=1

λkj ≤ 1 k = 1, . . . ,K (νk)

λ ≥ 0 k = 1, . . . ,K
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Pricing subproblems

For each k = 1, . . . ,K , there is a pricing subproblem:

(SPk) min ck = (ck − πAk)xk − νk

s.t. Dkxk = dk

xk ∈ Znk
+

The restricted master LP is optimal when ck ≥ 0, for
k = 1, . . . ,K
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Generalized Assignment Problem (GAP)

Set J of tasks; set K of machines; capacity W k , k ∈ K ;
assignment cost ckj and load wk

j , k ∈ K , j ∈ J

Find an assignment of tasks to machines such that the total
load in each machine does not exceed its capacity, with
minimum total cost
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Example of instance

cost (ckj ) load (wk
j ) Wk

jobs 1 2 3 4 1 2 3 4

machines
1 8 3 2 9 2 3 3 1 5
2 1 7 5 2 5 1 1 3 8

j1 j2 j3 j4 S

w1
j

w2
j

8

1

3

7

2

5

9

2

3

9

1

5

Optimal solution value: 18
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Generalized Assignment Problem (GAP)

Set J of tasks; set K of machines; capacity W k , k ∈ K ;
assignment cost ckj and load wk

j , k ∈ K , j ∈ J

Find an assignment of tasks to machines such that the total
load in each machine does not exceed its capacity, with
minimum total cost

Original formulation (O):

Min z =
∑
k∈K

∑
j∈J

ckj x
k
j (1a)

S.t.
∑
k∈K

xkj = 1, j ∈ J; (1b)∑
j∈J

wk
j x

k
j ≤W k , k ∈ K ; (1c)

xkj ∈ {0, 1}, j ∈ J, k ∈ K . (1d)
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Example: Generalized Assignment Problem (GAP)

cost (ckj ) load (wk
j ) W k

jobs 1 2 3 4 1 2 3 4

machines
1 8 3 2 9 2 3 3 1 5
2 1 7 5 2 5 1 1 3 8
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Example: Generalized Assignment Problem (GAP)

cost (ckj ) load (wk
j ) W k

jobs 1 2 3 4 1 2 3 4

machines
1 8 3 2 9 2 3 3 1 5
2 1 7 5 2 5 1 1 3 8

Original formulation (O):

Min zIP = 8x1
1 + 3x1

2 + 2x1
3 + 9x1

4 + x2
1 + 7x2

2 + 5x2
3 + 2x2

4

S.t. x1
1 + x2

1 = 1
x1

2 + x2
2 = 1

x1
3 + x2

3 = 1
x1

4 + x2
4 = 1

2x1
1 + 3x1

2 + 3x1
3 + x1

4 ≤ 5
5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8

0 ≤ x ≤ 1
x ∈ Z8
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Example: Generalized Assignment Problem (GAP)

Linear relaxation of the original formulation:

Min zIP = 8x1
1 + 3x1

2 + 2x1
3 + 9x1

4 + x2
1 + 7x2

2 + 5x2
3 + 2x2

4

S.t. x1
1 + x2

1 = 1
x1

2 + x2
2 = 1

x1
3 + x2

3 = 1
x1

4 + x2
4 = 1

2x1
1 + 3x1

2 + 3x1
3 + x1

4 ≤ 5
5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8
x ≥ 0
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Example: Generalized Assignment Problem (GAP)

Linear relaxation of the original formulation:

Min zIP = 8x1
1 + 3x1

2 + 2x1
3 + 9x1

4 + x2
1 + 7x2

2 + 5x2
3 + 2x2

4

S.t. x1
1 + x2

1 = 1
x1

2 + x2
2 = 1

x1
3 + x2

3 = 1
x1

4 + x2
4 = 1

2x1
1 + 3x1

2 + 3x1
3 + x1

4 ≤ 5
5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8
x ≥ 0

z = 9.69 x1
1 = 0.077 x1

2 = 1 x1
3 = 0.615 x1

4 = 0

x2
1 = 0.923 x2

2 = 0 x2
3 = 0.385 x2

4 = 1
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Applying DW decomposition to (O)

Let Pk = {pk1 , pk2 , . . . , pkQk} be the set of all possible
allocations of tasks to machine k .

pkq = (pkq1, p
k
q2, . . . , p

k
q|J|) is a feasible solution to:∑

j∈J
wk
j p

k
qj ≤W k (2a)

pkqj ∈ {0, 1}, j ∈ J (2b)

Let λkq , k ∈ K , q = 1, . . . ,Qk , be a binary variable indicating

whether allocation pkq is selected to machine k

Hausdorff School – Bonn 2022 Introduction to Column Generation 49 / 84



Applying DW decomposition to (O)

Resulting Integer Master problem:

Min z =
∑
k∈K

∑
q∈Pk

∑
j∈J

ckj p
k
qj

λkq (3a)

S.t.
∑
k∈K

∑
q∈Pk

pkqjλ
k
q = 1, j ∈ J; (3b)

∑
q∈Pk

λkq ≤ 1, k ∈ K ; (3c)

λkq ∈ {0, 1}, k ∈ K , q = 1, . . . ,Qk(3d)
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Applying DW decomposition to (O)

Master LP:

Min z =
∑
k∈K

∑
q∈Pk

∑
j∈J

ckj p
k
qj

λkq (4a)

S.t.
∑
k∈K

∑
q∈Pk

pkqjλ
k
q = 1, j ∈ J; (4b)

∑
q∈Pk

λkq ≤ 1, k ∈ K ; (4c)

λkq ≥ 0, k ∈ K , q = 1, . . . ,Qk(4d)
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Applying DW decomposition to (O)

The pricing subproblems are, for each machine k, solve the
following binary knapsack problem:

Min ck =
J∑

j=1

(ckj − πj)xkj − νk (5a)

S.t.
∑
j∈J

wk
j x

k
j ≤W k , (5b)

xkj ∈ {0, 1}, j ∈ J, (5c)

where πj and νk are the dual variables associated to Constraints
(4b) and (4c), respectively.

The Binary Knapsack Problem is (weakly) NP-hard, but
extremely well solved in practice (see Pferschy et al. (2004))
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Example: Generalized Assignment Problem (GAP)

cost (ckj ) load (wk
j ) W k

jobs 1 2 3 4 1 2 3 4

machines
1 8 3 2 9 2 3 3 1 5
2 1 7 5 2 5 1 1 3 8

P1 P2

pkq p1
1 p1

2 p1
3 p1

4 p1
5 p1

6 p1
7 p1

8 p1
9 p2

1 p2
2 p2

3 p2
4 p2

5 p2
6 p2

7 p2
8 p2

9 p2
10 p2

11

pkq1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1
pkq2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0
pkq3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0
pkq4 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1

cost 8 3 2 9 11 10 17 12 11 1 7 5 2 8 13 6 12 14 7 3
λkq λ1

1 λ1
2 λ1

3 λ1
4 λ1

5 λ1
6 λ1

7 λ1
8 λ1

9 λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6 λ2
7 λ2

8 λ2
9 λ2

10 λ2
11
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Example: Generalized Assignment Problem (GAP)

cost (ckj ) load (wk
j ) W k

jobs 1 2 3 4 1 2 3 4

machines
1 8 3 2 9 2 3 3 1 5
2 1 7 5 2 5 1 1 3 8

Integer Master Problem

Min z = 8λ1
1+ 3λ1

2+ 2λ1
3+ 9λ1

4 + · · ·+ 13λ2
6+ 6λ2

7+ 12λ2
8+ 14λ2

9+ 7λ2
10

λ1
1 + . . .+ λ2

6+ λ2
7 = 1

λ1
2 + . . .+ λ2

6 + λ2
8+ λ2

9 = 1
λ1

3 + . . .+ λ2
6+ λ2

7+ λ2
8+ λ2

9+ λ2
10 = 1

λ1
4 + . . .+ λ2

9+ λ2
10 = 1

λ1
1 λ1

2 λ1
3 λ1

4 + . . . ≤ 1
. . .+ λ2

6+ λ2
7+ λ2

8+ λ2
9+ λ2

10 ≤ 1
λ ∈ {0, 1}
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Example: Generalized Assignment Problem (GAP)

cost (ckj ) load (wk
j ) W k

jobs 1 2 3 4 1 2 3 4

machines
1 8 3 2 9 2 3 3 1 5
2 1 7 5 2 5 1 1 3 8

Relaxing the integrality ⇒ (MP)

Min z = 8λ1
1+ 3λ1

2+ 2λ1
3+ 9λ1

4 + · · ·+ 13λ2
6+ 6λ2

7+ 12λ2
8+ 14λ2

9+ 7λ2
10

λ1
1 + . . .+ λ2

6+ λ2
7 = 1

λ1
2 + . . .+ λ2

6 + λ2
8+ λ2

9 = 1
λ1

3 + . . .+ λ2
6+ λ2

7+ λ2
8+ λ2

9+ λ2
10 = 1

λ1
4 + . . .+ λ2

9+ λ2
10 = 1

λ1
1 λ1

2 λ1
3 λ1

4 + . . . ≤ 1
. . .+ λ2

6+ λ2
7+ λ2

8+ λ2
9+ λ2

10 ≤ 1
λ ≥ 0
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Solving the (MP) by Column Generation

Iteration 1: (RMP) initialized with artificial variables
Restricted Master Problem

Min z = 99µ1+ 99µ2+ 99µ3+ 99µ4

µ1 = 1 (π1 = 99)
µ2 = 1 (π2 = 99)

µ3 = 1 (π3 = 99)
µ4 = 1 (π4 = 99)
≤ 1 (ν1 = 0)
≤ 1 (ν2 = 0)

λ ≥ 0

z = 396; µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1
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Solving the (MP) by Column Generation

Iteration 1:
Restricted Master Problem

Min z = 99µ1+ 99µ2+ 99µ3+ 99µ4

µ1 = 1 (π1 = 99)
µ2 = 1 (π2 = 99)

µ3 = 1 (π3 = 99)
µ4 = 1 (π4 = 99)
≤ 1 (ν1 = 0)
≤ 1 (ν2 = 0)

λ ≥ 0

z = 396; µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1

Subproblem 1: min
∑
j∈J

(c1
j − πj )x

1
j − ν

1

Min c̄1 = −91x1
1− 96x1

2− 97x1
3− 90x1

4
S.t. 2x1

1 + 3x1
2 + 3x1

3 + x1
4 ≤ 5

x ∈ {0, 1}

S = (1, 0, 1, 0) and c̄1 = −188; S ⇔ λ1
6

Subproblem 2: min
∑
j∈J

(c2
j − πj )x

2
j − ν

2

Min c̄2 = −97x2
1− 92x2

2− 94x2
3− 97x2

4
S.t. 5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8

x ∈ {0, 1}

S = (1, 1, 1, 0) and c̄2 = −284; S ⇔ λ2
6
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Solving the (MP) by Column Generation

Iteration 2:
Restricted Master Problem

Min z = 99µ1+ 99µ2+ 99µ3+ 99µ4+ 10λ1+ 13λ2

µ1 + λ1+ λ2 = 1 (π1 = 0)
µ2 + λ2 = 1 (π2 = 3)

µ3 + λ1+ λ2 = 1 (π3 = 10)
µ4 = 1 (π4 = 99)

λ1 ≤ 1 (ν1 = 0)
λ2 ≤ 1 (ν2 = 0)

λ ≥ 0

z = 112

Subproblem 1: min
∑
j∈J

(c1
j − πj )x

1
j − ν

1

Min c̄1 = 8x1
1 − 8x1

3− 90x1
4

S.t. 2x1
1 + 3x1

2 + 3x1
3 + x1

4 ≤ 5
x ∈ {0, 1}

S = (0, 0, 1, 1) and c̄1 = −98; S ⇔ λ1
9

Subproblem 2: min
∑
j∈J

(c2
j − πj )x

2
j − ν

2

Min c̄2 = x2
1 + 4x2

2− 5x2
3− 97x2

4
S.t. 5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8

x ∈ {0, 1}

S = (0, 0, 1, 1) and c̄2 = −102; S ⇔ λ2
10
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Solving the (MP) by Column Generation

Iteration 3:
Restricted Master Problem

Min z = 99µ1+ 99µ2+ 99µ3+ 99µ4+ 10λ1+ 13λ2+ 11λ3+ 7λ4

µ1 + λ1+ λ2 = 1 (π1 = 10)
µ2 + λ2 = 1 (π2 = 7)

µ3 + λ1+ λ2+ λ3+ λ4 = 1 (π3 = 0)
µ4 + λ3+ λ4 = 1 (π4 = 11)

λ1 + λ3 ≤ 1 (ν1 = 0)
λ2 + λ4 ≤ 1 (ν2 = −4)

λ ≥ 0

z = 24

Subproblem 1: min
∑
j∈J

(c1
j − πj )x

1
j − ν

1

Min c̄1 = −2x1
1− 4x1

2 + 2x1
3− 2x1

4
S.t. 2x1

1 + 3x1
2 + 3x1

3 + x1
4 ≤ 5

x ∈ {0, 1}

S = (1, 1, 0, 0) and c̄1 = −6; S ⇔ λ1
5

Subproblem 2: min
∑
j∈J

(c2
j − πj )x

2
j − ν

2

Min c̄2 = −9x2
1 + 5x2

3− 9x2
4 + 4

S.t. 5x2
1 + x2

2 + x2
3 + 3x2

4 ≤ 8
x ∈ {0, 1}

S = (1, 0, 0, 1) and c̄2 = −14; S ⇔ λ2
11
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Solving the (MP) by Column Generation

Iteration 4:
Restricted Master Problem

Min z = . . . 10λ1+ 13λ2+ 11λ3+ 7λ4+ 11λ5+ 3λ6

. . . λ1+ λ2 + λ5+ λ6 = 1 (π1 = 2)

. . . + λ2 + λ5 = 1 (π2 = 9)

. . . λ1+ λ2+ λ3+ λ4 = 1 (π3 = 6)

. . . + λ3+ λ4 + λ6 = 1 (π4 = 5)

. . . λ1 + λ3 + λ5 ≤ 1 (ν1 = 0)

. . . λ2 + λ4 + λ6 ≤ 1 (ν2 = −4)
λ ≥ 0

z = 18

Subproblem 1: min
∑
j∈J

(c1
j − πj )x

1
j − ν

1

Min c̄1 = 6x1
1− 6x1

2− 4x1
3 + 4x1

4
S.t. 2x1

1 + 3x1
2 + 3x1

3 + x1
4 ≤ 5

x ∈ {0, 1}

S = (0, 1, 0, 0) and c̄1 = −6; S ⇔ λ1
2

Subproblem 2: min
∑
j∈J

(c2
j − πj )x

2
j − ν

2

Min c̄2 = −x2
1− 2x2

2− x2
3− 3x2

4 + 4
S.t. 5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8

x ∈ {0, 1}

S = (0, 1, 1, 1) and c̄2 = −2; S ⇔ λ2
9
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Solving the (MP) by Column Generation

Iteration 5:
Restricted Master Problem

Min z = . . . 10λ1+ 13λ2+ 11λ3+ 7λ4+ 11λ5+ 3λ6+ 3λ7+ 14λ8

. . . λ1+ λ2 + λ5+ λ6 = 1 (π1 = 5)

. . . + λ2 + λ5 + λ7+ λ8 = 1 (π2 = 7)

. . . λ1+ λ2+ λ3+ λ4 + λ8 = 1 (π3 = 9)

. . . + λ3+ λ4 + λ6 + λ8 = 1 (π4 = 6)

. . . λ1 + λ3 + λ5 λ7 ≤ 1 (ν1 = −4)

. . . λ2 + λ4 + λ6 + λ8 ≤ 1 (ν2 = −8)
λ ≥ 0

z = 15

Subproblem 1: min
∑
j∈J

(c1
j − πj )x

1
j − ν

1

Min c̄1 = 3x1
1− 4x1

2− 7x1
3 + 3x1

4 + 4
S.t. 2x1

1 + 3x1
2 + 3x1

3 + x1
4 ≤ 5

x ∈ {0, 1}

S = (0, 0, 1, 0) and c̄1 = −3; S ⇔ λ1
3

Subproblem 2: min
∑
j∈J

(c2
j − πj )x

2
j − ν

2

Min c̄2 = −4x2
1 − 4x2

3− 4x2
4 + 8

S.t. 5x2
1 + x2

2 + x2
3 + 3x2

4 ≤ 8
x ∈ {0, 1}

c̄2 = 0
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Solving the (MP) by Column Generation

Iteration 6:
Restricted Master Problem

Min z = . . . 10λ1+ 13λ2+ 11λ3+ 7λ4+ 11λ5+ 3λ6+ 3λ7+ 14λ8+ 2λ9

. . . λ1+ λ2 + λ5+ λ6 = 1 (π1 = 8)

. . . + λ2 + λ5 + λ7+ λ8 = 1 (π2 = 10)

. . . λ1+ λ2+ λ3+ λ4 + λ8+ λ9 = 1 (π3 = 9)

. . . + λ3+ λ4 + λ6 + λ8 = 1 (π4 = 9)

. . . λ1 + λ3 + λ5 λ7 + λ9 ≤ 1 (ν1 = −7)

. . . λ2 + λ4 + λ6 + λ8 ≤ 1 (ν2 = −14)
λ ≥ 0

z = 15

Subproblem 1: min
∑
j∈J

(c1
j − πj )x

1
j − ν

1

Min c̄1 = − 7x1
2− 7x1

3 + 7
S.t. 2x1

1 + 3x1
2 + 3x1

3 + x1
4 ≤ 5

x ∈ {0, 1}

c̄1 = 0

Subproblem 2: min
∑
j∈J

(c2
j − πj )x

2
j − ν

2

Min c̄2 = −7x2
1− 3x2

3− 4x2
3− 7x2

4 + 14
S.t. 5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8

x ∈ {0, 1}

c̄2 = 0

c̄ ≥ 0 for all subproblems ⇒ Optimal (MP) Solution
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Combining Column Generation with Cutting Planes:
Robust vs Non-Robust

Definition

Robust Cut, Robust Branch-Cut-and-Price Algorithm
(BCPA). A cutting plane in a BCPA is robust if it does not force
any change in the structure of the pricing subproblems in
subsequent calls to the Column Generation algorithm. A cutting
plane that does force changes in the pricing structure is non-robust.
A BCPA that only performs robust branchings and only separates
robust cuts is said to be robust, otherwise, it is non-robust.
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Robust Cuts

A fractional solution λ∗ to (MP) can be converted into a solution
x∗, using:

x∗ =
Q∑
j=1

pjλ
∗
j .

We may separate a valid inequality αx ≥ α0 cutting that point.
Then, it can be translated back to

Q∑
q=1

 n∑
j=1

αjpqj

λq ≥ α0. (6)

The dual variable of the new cut is included in the π vector, its α
coefficients are included as an additional row in matrix A.

Everything happens as if αx ≥ α0 was part of the original IP.
So, there is no change in the pricing structure and the cut is robust.
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Example: Generalized Assignment Problem (GAP)

(RMP) Solution:

λ1 = λ1
[1010]ᵀ = 0.5

λ7 = λ1
[0100]ᵀ = 0.5

λ6 = λ2
[1001]ᵀ = 0.5

λ8 = λ2
[0111]ᵀ = 0.5

=⇒
x1

1 = x2
1 = x1

2 = x2
2 = x1

3 = x2
3 = 0.5

x2
4 = 1
z = 15
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Example: Generalized Assignment Problem (GAP)

(RMP) Solution:

λ1 = λ1
[1010]ᵀ = 0.5

λ7 = λ1
[0100]ᵀ = 0.5

λ6 = λ2
[1001]ᵀ = 0.5

λ8 = λ2
[0111]ᵀ = 0.5

=⇒
x1

1 = x2
1 = x1

2 = x2
2 = x1

3 = x2
3 = 0.5

x2
4 = 1
z = 15

Separate robust cut:

x2
1 + 2x1

2 + 2x1
3 + x2

4 ≤ 3

Translating to λ variables:

2λ1 + λ2 + 2λ3 + λ4 + 2λ5 + 2λ6 + 2λ7 + λ8 + 2λ9 < 3
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Example: Generalized Assignment Problem (GAP)

Restricted Master Problem with the robust cut

Min z = . . . 10λ1+ 13λ2+ 11λ3+ 7λ4+ 11λ5+ 3λ6+ 3λ7+ 14λ8+ 2λ9

. . . λ1+ λ2 + λ5+ λ6 = 1 (π1 = 8)

. . . + λ2 + λ5 + λ7+ λ8 = 1 (π2 = 8.6)

. . . λ1+ λ2+ λ3+ λ4 + λ8+ λ9 = 1 (π3 = 7.6)

. . . + λ3+ λ4 + λ6 + λ8 = 1 (π4 = 9)

. . . 2λ1+ λ2+ 2λ3+ λ4+ 2λ5+ 2λ6+ 2λ7+ λ8+ 2λ9 < 3 (π5 = −2.8)

. . . λ1 + λ3 + λ5 λ7 + λ9 ≤ 1 (ν1 = 0)

. . . λ2 + λ4 + λ6 + λ8 ≤ 1 (ν2 = −8.4)
λ ≥ 0
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Example: Generalized Assignment Problem (GAP)

Restricted Master Problem with the robust cut

Min z = . . . 10λ1+ 13λ2+ 11λ3+ 7λ4+ 11λ5+ 3λ6+ 3λ7+ 14λ8+ 2λ9

. . . λ1+ λ2 + λ5+ λ6 = 1 (π1 = 8)

. . . + λ2 + λ5 + λ7+ λ8 = 1 (π2 = 8.6)

. . . λ1+ λ2+ λ3+ λ4 + λ8+ λ9 = 1 (π3 = 7.6)

. . . + λ3+ λ4 + λ6 + λ8 = 1 (π4 = 9)

. . . 2λ1+ λ2+ 2λ3+ λ4+ 2λ5+ 2λ6+ 2λ7+ λ8+ 2λ9 < 3 (π5 = −2.8)

. . . λ1 + λ3 + λ5 λ7 + λ9 ≤ 1 (ν1 = 0)

. . . λ2 + λ4 + λ6 + λ8 ≤ 1 (ν2 = −8.4)
λ ≥ 0

z = 16.4

Subproblem 1:
min

∑
j∈J

(c1
j −πj )x

1
j −2π5x1

2−2π5x1
3−ν1

Min c̄1 = 0x1
1 + 0x1

2 + 0x1
3 + 0x1

4
S.t. 2x1

1 + 3x1
2 + 3x1

3 + x1
4 ≤ 5

x ∈ {0, 1}

c̄1 = 0

Subproblem 2:
min

∑
j∈J

(c2
j − πj )x

2
j − π5x2

1 − π5x2
4 − ν2

Min c̄2 = −4.2x2
1− 1.6x2

2− 2.6x2
3− 4.2x2

4 + 8.4
S.t. 5x2

1 + x2
2 + x2

3 + 3x2
4 ≤ 8

x ∈ {0, 1}

c̄2 = 0

c̄ ≥ 0 for all subproblems ⇒ Optimal (MP) Solution
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Example: Generalized Assignment Problem (GAP)

New (MP) Solution with the robust cut:

λ1 = λ1
[1010]ᵀ = 0.4

λ5 = λ1
[1100]ᵀ = 0.2

λ7 = λ1
[0100]ᵀ = 0.2

λ6 = λ2
[1001]ᵀ = 0.4

λ8 = λ2
[0111]ᵀ = 0.6

=⇒

x1
1 = 0.6

x2
1 = 0.4

x1
2 = 0.4

x2
2 = 0.6

x1
3 = 0.4

x2
3 = 0.6

x2
4 = 1

z = 16.4

Then, a robust branching over variable x1
3 (implemented by adding

cuts x1
3 ≤ 0 or x1

3 ≥ 1) finds the optimal integer solution with
z = 18 and solves the instance in 3 nodes.
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Non-robust Robust Cuts

A fractional solution λ∗ can be cut directly by a cutting plane

Q∑
q=1

α(pq)λq ≥ α0,

where coeffs α(pq) are given by an arbitrary function. The new
dual variable will be denoted by σ. Now, the new pricing
subproblem is:

min c = (c − πA)x − σα(x)− ν
subject to x ∈ P.

The non-robust cut introduces a non-linear term −σα(x) in the
objective function of the pricing, breaking its original structure and
forcing algorithmic adaptations that may make it much less
efficient.
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Non-robust Chvátal-Gomory Cuts (CGCs)

Given valid inequalities Ax ≤ b and a set of multipliers ρ ≥ 0, the
following GCC is valid:

bρAcx ≤ bρbc.

Relaxing the set partitioning constraints in GAP reformulation, and
applying the CGC procedure we get:

∑
k∈K

∑
q∈Pk

b
J∑

j=1

ρjp
k
qjcλkq ≥ b

J∑
j=1

ρjc. (8)

The cut is non-robust because the floor operator makes the
coefficients non-linear with respect to the points p.
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Example: Generalized Assignment Problem (GAP)

RMP Solution:
λ1 = λ1

[1010]ᵀ = 0.5

λ7 = λ1
[0100]ᵀ = 0.5

λ6 = λ2
[1001]ᵀ = 0.5

λ8 = λ2
[0111]ᵀ = 0.5

Using ρ = [2/3 1/3 1/3 1/3], we obtain the following violated cut:

λ1 + λ2 + λ5 + λ6 + λ8 ≤ 1

By also separating a second CGC with ρ = [1/3 1/3 1/3 2/3], the
instance is solved at the root node.

However, the pricing is not a pure binary knapsack problem
anymore, each added CGC makes it significantly harder to solve.
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The identical subproblems case

min c1x1 + c2x2 + · · ·+ cKxK

subject to

A1x1 + A2x2 + · · ·+ AKxK = b

Dkxk = dk k = 1, . . . ,K

xk ∈ Znk
+ k = 1, . . . ,K

Suppose that there are matrices A′, D ′, c ′ and d ′ such that
Ak = A′, Dk = D ′, ck = c ′ and dk = d ′, for k = 1, . . . ,K . In that
case, the K pricing subproblems would be identical. Assume that
this set has Q solutions.

P ′ = {D ′x ′ = d ′, x ′ ≥ 0 and integer}
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The identical subproblems case

In that case, we can have a simpler Master LP Problem:

(IMP) min z =
Q∑
j=1

(c ′pj)λj

subject to

Q∑
j=1

(A′pj)λj = b (π)

Q∑
j=1

λj = K (ν)

λ ≥ 0
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The identical subproblems case

There is a single pricing subproblem:

(SP) min c = (c ′ − πA′)x ′ − ν
s.t. D ′x ′ = d ′

x ′ ≥ 0 and integer

The restricted master LP is optimal when c ≥ 0
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Cutting Stock Problem

1 Instance
Stocks of length W
Set J of items

Each item j ∈ J has length wj and a demand of bj copies

2 Problem
Obtain the demanded number of copies of each item by
cutting the minimum possible number of stocks

The particular case where all demands bj are unitary is known as
the Bin Packing problem
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IP Formulation

Assumes the existence of a heuristic upper bound M. Number the
potentially used stocks from 1 to M:

Variables

xij : determines how many items j are cut from stock i

yi : indicates whether stock i is used or not

min z =
M∑
i=1

yi (9a)

S.t.
M∑
i=1

xij = bj , j ∈ J; (9b)∑
j∈J

wjxij ≤Wyi , i = 1, . . . ,M; (9c)

xij ∈ ZM×|J|
+ , i = 1, . . . ,M, j ∈ J; (9d)

yi ∈ {0, 1}, i = 1, . . . ,M. (9e)
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IP Formulation

Issues

A not-really compact formulation. The formulation size is
pseudo-polynomial

Even when M is not so large, branch-and-bound algorithms
perform poorly on it

the linear relaxation lower bound is equal to the the trivial

lower bound

∑
j∈J bjwj

W
suffers from symmetry: the same fractional/integer solution
can be represented in many different ways by only permutating
the stock indices
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Example: Cutting Stock Problem

Stock length 100

Length Demand

40

35

31

13

4

5

5

8
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Example: Cutting Stock Problem

Stock length 100

Length Demand

40

35

31

13

4

5

5

8

Trivial lower bound = (4× 40 + 5× 35 + 5× 31 + 8× 13)/100 = 5.94
Rounding up =⇒ Lower Bound: 6 stocks
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Gilmore and Gomory (1961) Formulation

Based on the concept of cutting patterns

A cutting pattern is a possible way of cutting a stock; it is
defined by the number of copies of each item obtained from
that stock
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Example: Cutting Stock Problem

Some Possible Cutting Patterns
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Gilmore and Gomory (1961, 1963) Formulation

min z =
Q∑

q=1

λq (10a)

S.t.
Q∑

q=1

pqjλq = bj j ∈ J (π) (10b)

λq ∈ Z q = 1, . . . ,Q (10c)

Exponential number of λ variables, one for each cutting
pattern (numbered from 1 to Q)

pqj indicates how many copies of item j are obtained in the
q-th cutting pattern

Its linear relaxation can be efficiently solved by column
generation
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Gilmore and Gomory (1961, 1963) Formulation

Pricing subproblem

At each iteration, the following Integer Knapsack Problem is
solved:

min c̄ = 1−
∑
j∈J

πjxj

S.t.
∑
j∈J

wjxj ≤W ,

xj ∈ Z|J|+ ∀j ∈ J.

Each subproblem solution is a cutting pattern

The Integer Knapsack Problem is (weakly) NP-hard, but very
well solved in practice (see Pferschy et al. (2004))
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Relation between formulations

Gilmore-Gomory Formulation can be obtained by a DW
decomposition of the symmetric formulation.

GG Formulation is stronger (its linear relaxation yields better
lower bounds) because knapsack constraints (9c) are

convexified
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Gilmore and Gomory (1961, 1963) Formulation

Remarkably strong linear relaxation bounds

It is very hard to find an instance where the (MP) solution
value rounded up is not equal to the value of an optimal
integer solution!

It is conjectured that the (MP) solution value rounded up is
at most one unit away from the value of an optimal integer
solution!!
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Example: Cutting Stock Problem

Iteration 1:

min z = λ1+ λ2+ λ3+ λ4

2λ1 = 4 (π1 = 0.50)
2λ2 = 5 (π2 = 0.50)

3λ3 = 5 (π3 = 0.33)
7λ4 = 8 (π4 = 0.14)

λ ≥ 0

z = 7.31; λ1 = 2, λ2 = 2.5, λ3 = 1.67, λ4 = 1.14
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Example: Cutting Stock Problem

Iteration 1:

min z = λ1+ λ2+ λ3+ λ4

2λ1 = 4 (π1 = 0.50)
2λ2 = 5 (π2 = 0.50)

3λ3 = 5 (π3 = 0.33)
7λ4 = 8 (π4 = 0.14)

λ ≥ 0

z = 7.31; λ1 = 2, λ2 = 2.5, λ3 = 1.67, λ4 = 1.14

Subproblem: min 1−
∑n

j=1 πjxj

min c̄ =−0.5x1− 0.5x2− 0.33x3− 0.14x4+ 1
S.t. 40x1− 35x2+ 31x3+ 13x4 ≤ 100

x ∈ Z 4
+

S = (0, 2, 0, 2) and c̄ = −0.29
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Example: Cutting Stock Problem

Iteration 2:

min z = λ1+ λ2+ λ3+ λ4+ λ5

2λ1 = 4 (π1 = 0.50)
2λ2 + 2λ5 = 5 (π2 = 0.36)

3λ3 = 5 (π3 = 0.33)
7λ4+ 2λ5 = 8 (π4 = 0.14)

λ ≥ 0

z = 6.59; λ1 = 2, λ3 = 1.67, λ4 = 0.43, λ5 = 2.5

Subproblem: min 1−
∑n

j=1 πjxj

min c̄ =−0.5x1− 0.36x2− 0.33x3− 0.14x4+ 1
S.t. 40x1− 35x2+ 31x3+ 13x4 ≤ 100

x ∈ Z 4
+

S = (2, 0, 0, 1) and c̄ = −0.14
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Example: Cutting Stock Problem

Iteration 3:

min z = λ1+ λ2+ λ3+ λ4+ λ5+ λ6

2λ1 + 2λ6 = 4 (π1 = 0.43)
2λ2 + 2λ5 = 5 (π2 = 0.36)

3λ3 = 5 (π3 = 0.33)
7λ4+ 2λ5+ λ6 = 8 (π4 = 0.14)

λ ≥ 0

z = 6.31; λ3 = 1.67, λ4 = 0.14, λ5 = 2.5, λ6 = 2

Subproblem: min 1−
∑n

j=1 πjxj

min c̄ =−0.43x1− 0.36x2− 0.33x3− 0.14x4+ 1
S.t. 40x1− 35x2+ 31x3+ 13x4 ≤ 100

x ∈ Z 4
+

S = (0, 1, 0, 5) and c̄ = −0.07
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Example: Cutting Stock Problem

Iteration 4:

min z = λ1+ λ2+ λ3+ λ4+ λ5+ λ6+ λ7

2λ1 + 2λ6 = 4 (π1 = 0.44)
2λ2 + 2λ5 + λ7 = 5 (π2 = 0.38)

3λ3 = 5 (π3 = 0.33)
7λ4+ 2λ5+ λ6+ 5λ7 = 8 (π4 = 0.12)

λ ≥ 0

z = 6.29; λ3 = 1.67, λ5 = 2.38, λ6 = 2, λ7 = 0.25

Subproblem: min 1−
∑n

j=1 πjxj

min c̄ =−0.44x1− 0.38x2− 0.33x3− 0.12x4+ 1
S.t. 40x1− 35x2+ 31x3+ 13x4 ≤ 100

x ∈ Z 4
+

S = (0, 1, 2, 0) and c̄ = −0.04
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Example: Cutting Stock Problem

Iteration 5:

min z = λ1+ λ2+ λ3+ λ4+ λ5+ λ6+ λ7+ λ8

2λ1 + 2λ6 = 4 (π1 = 0.44)
2λ2 + 2λ5 + λ7+ λ8 = 5 (π2 = 0.38)

3λ3 + 2λ8 = 5 (π3 = 0.31)
7λ4+ 2λ5+ λ6+ 5λ7 = 8 (π4 = 0.12)

λ ≥ 0

z = 6.19; λ5 = 0.81, λ6 = 2, λ7 = 0.88, λ8 = 2.5

Subproblem: min 1−
∑n

j=1 πjxj

min c̄ =−0.44x1− 0.38x2− 0.31x3− 0.12x4+ 1
S.t. 40x1− 35x2+ 31x3+ 13x4 ≤ 100

x ∈ Z 4
+

S = (2, 0, 0, 1) and c̄ = 0
New lower bound: 7 stocks. But no integer solution. What to do?
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Getting an (heuristic) integer solution

Change constraints to ≥ and solve the restricted master as an IP:

min z = λ1+ λ2+ λ3+ λ4+ λ5+ λ6+ λ7+ λ8

2λ1 + 2λ6 ≥ 4
2λ2 + 2λ5 + λ7+ λ8 ≥ 5

3λ3 + 2λ8 ≥ 5
7λ4+ 2λ5+ λ6+ 5λ7 ≥ 8

λ ∈ Z 8
+

λ5 = 1, λ6 = 2, λ7 = 1, λ8 = 3, z = 7
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Example: Cutting Stock Problem

The obtained optimal solution with 7 stocks (after trimming the
surplus copies)

λ5

{

λ6

{

λ7

{

λ8

{
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Getting an optimal integer solution for CSP

Somehow rounding the (RMP) solution, the idea originally
proposed by Gilmore and Gomory, works reasonably well in
practice, but it is not guaranteed to find an optimal integer

Of course, a solution obtained by any heuristic that matches
the GG lower bound is proved to be optimal

Yet, only much later (mid-1990s) Branch-and-Price algorithms
for the CSP and the BPP were created

The original symmetric variables are useless for branching or
cutting. More complex non-robust schemes should be devised
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When DW decomposition for IP should be tried?

Some guidelines:

When DW decomp improves linear relaxation significantly, but the
subproblems are still tractable

Solving a (MP) by CG is time-consuming. This is usually
only worthy if the resulting bounds are a lot better

This means that the subproblems should not be easy
polynomial problems. The big gains are obtained exactly by
convexifying constraints that define NP-hard problems
“Tractable” NP-hard problems often includes those solvable in
pseudo-polynomial time or those where some exact algorithm
still performs well on instances of reasonable size

A delicate balance
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When DW decomposition for IP should be tried?

When DW decomp leads to many small subproblems, better if
many of them are identical

Gains in pricing time and also in CG convergence

When DW decomp removes the symmetry of a bad formulation

CSP and BPP are good examples
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Robust vs Non-Robust BCPs

Robust BCPAs can improve a lot over BP algorithms:

Robust BCP is easier to implement, if you already know
families of cuts for the problem and have their separation
algorithms

Yet, sometimes even families of facets are useless, because
they are already implied by the column generation!

No worries about destroying the pricing structure

Non-robust BCPAs can possibly do better:

In some problems all robust cuts are useless (due to a
symmetric original formulation)

Each master variable carries much more information
than an original variable. It is much easier to find strong
non-robust cuts over them!

Yet, non-robust cuts are indeed “non-robust”: a few dozen
bad cuts can make your pricing 1000x slower!
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Advanced Branch-Cut-and-Price Algorithms

The most advanced state-of-the-art BCPAs are exactly those where
the non-robust cuts and the pricing algorithm are jointly and
symbiotically designed, in such a way that the pricing can handle a
large number of very tailored non-robust cuts without becoming
too inefficient.

Spoiler: BCPs for Vehicle Routing Problems

Hausdorff School – Bonn 2022 Introduction to Column Generation 83 / 84



Advanced Branch-Cut-and-Price Algorithms

The most advanced state-of-the-art BCPAs are exactly those where
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