Lecture 1: ILP Formulations for the Graph Coloring Problem

Part 1.1: Introduction of Lecturer

Professor Dr. Petra Mutzel

Computational Analytics Computer Science University of Bonn

RHEINISCHE INSTITUT FÜR FRIEDRICH-WILHELMS- INFORMATIK DER UNIVERSITÄT BONN UNIVERSITÄT BONN

Hausdorff School: Computational Combinatorial Optimization, September 12-16, 2022

Overview

CV and ResearchCurrent Projects

- Study at Univ. Augsburg (WiMa/Math), 1983–1990
- Researcher at FU Berlin, 1990/91
- Researcher an Univ. Köln, 1991–1994
- Ph.D. at Univ. Köln (Informatik), 1994

- Study at Univ. Augsburg (WiMa/Math), 1983–1990
- Researcher at FU Berlin, 1990/91
- Researcher an Univ. Köln, 1991–1994
- Ph.D. at Univ. Köln (Informatik), 1994
- PostDoc at Max-Planck-Institut für Informatik, Saarbrücken, 1994–1999
- Habilitation at Max-Planck-Institut für Informatik, Saarbrücken, 1999

- Study at Univ. Augsburg (WiMa/Math), 1983–1990
- Researcher at FU Berlin, 1990/91
- Researcher an Univ. Köln, 1991–1994
- Ph.D. at Univ. Köln (Informatik), 1994
- PostDoc at Max-Planck-Institut für Informatik, Saarbrücken, 1994–1999
- Habilitation at Max-Planck-Institut für Informatik, Saarbrücken, 1999
- Chair for Algorithms and Data Structures, Vienna University of Technology 1999–2004
- Chair for Algorithm Engineering, LS11, TU Dortmund, 2004–2019

- Study at Univ. Augsburg (WiMa/Math), 1983–1990
- Researcher at FU Berlin, 1990/91
- Researcher an Univ. Köln, 1991–1994
- Ph.D. at Univ. Köln (Informatik), 1994
- PostDoc at Max-Planck-Institut für Informatik, Saarbrücken, 1994–1999
- Habilitation at Max-Planck-Institut für Informatik, Saarbrücken, 1999
- Chair for Algorithms and Data Structures, Vienna University of Technology 1999–2004
- Chair for Algorithm Engineering, LS11, TU Dortmund, 2004–2019
- Chair for Computational Analytics (Abt. I), Univ. Bonn, since 2019

Combinatorial Optimization Problems on Graphs

ILP Techniques

Combinatorial Optimization Problems on Graphs

ILP Techniques	Algorithm Engineering			
Combinatorial Optimization Problems on Graphs				

ILP Techniques	Algorithm Engineering	ML / AI		
Combinatorial Optimization Problems on Graphs				

ILP Techniques	Algorithm Engineering	ML / AI		
Combinatorial Optimization Problems on Graphs				

Application oriented, e.g., Physics, Archeology, Chemistry, Bioinformatics, Geodesy

Computational Analytics: Development of data analysis methods based on Algorithm Engineering, ILP, and ML/AI for graph structured data

Overview

- CV and Research
- Current Projects

Maximum Cut Problems

jointly with Jünger, Reinelt, Rinaldi (since 1990) and Charfreitag, Jünger, Mallach (since 2021)

- Ising spin glass instances in statistical Physics
- Adiabatic Quantum Computing (ILP vs. D-Wave)
- McSparse Webserver for solving Maximum Cut and Quadratic Unconstrained Binary Optimization Problems (mcsparse.uni-bonn.de)

 \rightarrow Integer Linear Programming, Algorithm Engineering

Algorithmic Toolbox

Algorithmic Toolbox for Complex Problems

- Analysis of the given practical problem / maybe tweaking it
- Exploitation of the structure of the input instances
- Decomposition
- Approximation
- Randomisation
- Fixed-Parameter Algorithms
- Integer Linear Programming
- Adjust the algorithm to the hardware
- Parallelisation

in red: used for at least one of our max cut codes

Motivation: Rational Drug Design

- Which molecules are active against disease X?
- Which molecules have a similar function/effect? (Reduction of side effects)
- Which molecules may have an increased effectiveness?
- High-throughput screening for promising candidates

- Molecules can be modelled as graphs with attributes
- Direct relationship between structure and effects

 \rightarrow Graph similarity, graph algorithms, ML

Rational Drug Design: GraBaDrug

Project within DFG SPP Algorithms for Big Data

- search for similar molecule structures ← graph similarity, clustering
- creation of virtual molecule data bases for drug design
 ← CHIPMUNK: 95 mio. molecules with ≤ 700 atoms, 90 attributes

Wetzel, Klein, Renner, Rauh, Oprea, Mutzel, Waldmann: Nature Chem. Biol. 2009, Humbeck, Weigang, Schäfer, Mutzel, Koch: ChemMedChem 2018 + Cover Feature, ...

Algorithmic Toolbox

Algorithmic Toolbox for Complex Problems

- Analysis of the given practical problem / maybe tweaking it
- Exploitation of the structure of the input instances
- Decomposition
- Approximation
- Randomisation
- Fixed-Parameter Algorithms
- Integer Linear Programming
- Adjust the algorithm to the hardware
- Parallelisation

in red: used for our drug design project

Routing and Path Problems

BMBF project LEOPLAN jointly with Schürmann, Stiller, Kirches, and companies BASF, Logiball GmbH, 4Flow GmbH (since 2020) and temporal graphs with Lutz Oettershagen (since 2020)

- ILP models for vehicle routing problems with heterogeneous time windows
- hybrid methods combining machine learning and ILP solution methods
- shortest path problems with constraints and/or multi-objectives
- efficient algorithms for centrality measures for temporal graphs

 \rightarrow Integer Linear Programming, ML, Algorithm Engineering

Algorithmic Data Analytics for Geodesy (new DFG project)

Ongoing work

jointly with Anne Driemel, Jan-Henrik Haunert, Christian Sohler, Jürgen Kusche, Heiko Röglin, Melanie Schmidt

Motivation: Geodesy

Observing coastal sea-level change from satellite altimetry

\rightarrow bicriteria shortest path

Joint work with Jürgen Kusche (Univ. Bonn)

Triangulations for Sea Surface Reconstruction

Error for reconstruction of June 2010 and May 2015 from triangulation June 2015 for North Sea Data Set

Idea of approach

- compute a min-error triangulation of the tide gauge stations to approximate the altimetry data
- use that triangulation to interpolate between tide gauge stations at epochs where no altimetry data is available

Nitzke, Niedermann, Fenoglio-Marc, Kursche, Haunert 2021; Arutyunova, Driemel, Haunert, Haverkort, Kusche, Langetepe, Mayer, Mutzel, Röglin 2022

Map Generalization in Cartography

Graph problems, e.g., shortest path, bicriteria optimization, minimum cut Source: Jan-Henrik Haunert (Univ. Bonn)

Map Labelling in Cartography

Multi-page labelling: minimize number of pages \Rightarrow Vertex Coloring Problem

Source: Gedicke, Jabrayilov, Niedermann, Mutzel, Haunert 2021