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Graph Embedding

feature vector feature space

Generate a feature vector for each graph in the given graph data set

Use your favorite (data) classification/clustering method

Sources: https://www.kdd.org/kdd2019/accepted-papers/view/learning-interpretable-metric-between-graphs-convex-
formulation-and-computa
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Recognition of Cuneiform Characters

right vertex

left vertex
tail vertex
depth vertex

500.000 digitized cuneiform fragments (LS7, TU Dortmund)

group of wedge signs corresponds to a character

so far 1000 different characters known

only a very small set of cuneiform characters have been classified

Goal: Recognition of cuneiform characters for supporting classic
Altphilologists

Kriege, Fey, Fisseler, Mutzel, Weichert: COST, Proc. MLR 2018
DFG SFB 876: Providing Information by Resource-Constrained Data Analysis
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Protein Complex Similarity

suggest similarity measures based on WL algorithm for protein
complexes

first run WL, then apply Jaccard similarity coefficient (def. for
multisets: size of bag intersection divided by size of bag sum)

evaluation on 500 000 simulated complexes of the human adhesome
protein network

→ in agreement with graph edit similarity

Stöcker, Schäfer, Mutzel, Köster, Kriege, Rahmann: SISAP 2019
DFG SFB 876: Providing Information by Resource-Constrained Data Analysis
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Weisfeiler-Leman Algorithm

Color refinement algorithm with the goal of vertex classification

WL-Algorithm

Initial: All vertices v have the same color.

Iteration: Further separation of identically colored vertex sets based
on color histograms of neighbors.

G H

G H G H

Initialization

Iteration 1 Iteration 2

9 / 46



Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Weisfeiler-Leman Algorithm

Color refinement algorithm with the goal of vertex classification

WL-Algorithm

Initial: All vertices v have the same color.

Iteration: Further separation of identically colored vertex sets based
on color histograms of neighbors.

G H G H

G H

Initialization Iteration 1

Iteration 2

9 / 46



Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Weisfeiler-Leman Algorithm

Color refinement algorithm with the goal of vertex classification

WL-Algorithm

Initial: All vertices v have the same color.

Iteration: Further separation of identically colored vertex sets based
on color histograms of neighbors.

G H G H G H
Initialization Iteration 1 Iteration 2

9 / 46



Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Historical Notes

Vertex coloring algorithms have been re-invented several times

First mentioned in paper by Boris Weisfeiler and Andrei Leman 1968
(in Russian)

Andrei Leman spelled himself as Leman (mistake by Springer)

Shervashidze, Borgwardt 2009: Weisfeiler-Leman based kernels for
data analysis
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Isomorphism Test using Weisfeiler-Leman

One-Sided Isomorphism Test

Apply WL to the two graphs G and H simultaneously

If G and H get different colors =⇒ G 6' H

⇒ WL distinguishes G and H

Otherwise: we do not know whether G and H are isomorphic

G H G H G H
Initialization Iteration 1 Iteration 2
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Isomorphism Test using Weisfeiler-Leman

G H

Properties of WL

WL can identify all forests, i.e., non-isomorphic forests get different
colors

random graphs G will be identified correctly with high probability

running time: O((|V |+ |E |) log |V |)
cannot distinguish regular graphs (same degree) → same color
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Equitable Partitions

Definition

A partition {C1,C2, . . . ,Cs} of V (G ) is called equitable if for all i and
j and for all u, v ∈ Ci we have: |N(u) ∩ Cj | = |N(v) ∩ Cj |.
We call the maximum element of the equitable partition lattice a
coarsest equitable partition of G .

Lemma (Ramana, Scheinerman, Ullman 1994)

The Weisfeiler-Leman algorithm applied to graph G leads to the
coarsest equitable partition.

If the Weisfeiler-Leman algorithm is applied to graphs G and H, and
the two stable partitions ρG and ρH are identical, then G and H have
a common coarsest equitable partition.
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Weisfeiler-Leman Algorithm and its Properties k-dimensional WL Algorithm on Sets

k-dimensional Weisfeiler-Leman Algorithm (Sets)

Two k-vertex sets are neighbors if they differ in only one element.

k-WL Algorithm for k-sets (simplified)

Initial: k-sets U,W get the same color if G [U] ' G [W ].

Iteration: Two identically colored k-sets U und W get different
colors if there exists a color c so that U and W have a different
cardinality set of neighbors of color c .

G Initialization 2-WL

Iteration 1: 2-WL
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Weisfeiler-Leman Algorithm and its Properties k-dimensional WL Algorithm on Sets

k-WL Algorithm

Properties of the k-WL

k-WL (k > 2) is stronger than WL

exact for large enough k (identifies each graph)

graph isomorphism approach by Babai uses k = O(log n)

there exist graph classes for which k = θ(n) is necessary

running time: O(k2|V |k+1 log |V |)

G Initialization 2-WL Iteration 1: 2-WL
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Weisfeiler-Leman Algorithm and its Properties k-dimensional WL Algorithm on Sets

k-WL Algorithm

k-WL can distinguish regular graphs: k = 3

G H

→ strong for higher k , but also very slow
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Local k-WL Algorithm (k-LWL)

Idea: Define neighbors of the k-sets depending on graph structure

Two k-sets U und W are neighbors, if they differ in only one element
and for the exchanged vertices s ∈ U, t ∈W there exists an edge
from s to a vertex in W and an edge from t to a vertex in U.

→ takes sparsity of the original graph into account

→ considers local and global graph properties

G Initialization 2-LWL

1. Iteration 2-LWL

Morris, Kersting, Mutzel ICDM 2017, DFG SFB 876: Providing Information by Resource-Constrained Data Analysis
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Comparison: Local k-LWL vs. k-WL

Running time

k-sets of the k-LWL have much less neighbors

much faster than k-WL

G 2-WL 2-LWL

Morris, Kersting, Mutzel 2017
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Comparison of Distinction Power

2-WL: 2 color classes 2-LWL: 2 color classes

2-WL: 2 color classes 2-LWL: 3 color classes

→2-WL cannot distinguish graphs, but 2-LWL

Morris, Mutzel
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)

Local k-LWL refines at least as much as k-WL.

If k-WL can distinguish two graphs, then also k-LWL.

Local k-LWL is stronger than k-WL.

Sherali-Adams Relaxation of k-LWL is stronger than that of k-WL.

2-WL: 5 color classes 2-LWL: 10 color classes
12, 6, 6, 3, 1 4, 4, 4, 4, 2, 4, 2, 2, 1, 1

Morris, Mutzel
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Cai, Fürer, Immerman - Graphs for lower bound

2-WL: 4 color classes 2-LWL: 5 color classes

2-WL: 4 color classes 2-LWL: 11 color classes

→2-WL cannot distinguish graphs, but 2-LWL
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Immerman, Grohe - Graphs for lower bound

2-WL: 2 color classes 2-LWL: 15 color classes

2-WL: 2 color classes 2-LWL: 15 color classes

→ 2-LWL refines more but unfortunately does not distinguish
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Discriminatory Power of k-WL versions (tupel)

So far: k-sets, but k-tupels are stronger

G: global neighborhood, L/G: both neighborhoods, L: local

A ≡ B: A is at least as strong as B, A � B: stronger

Morris, Rattan, Mutzel: NeurIPs 2020
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Discriminatory Power of k-WL versions

G: global neighborhood, L/G: both neighborhoods, L: local

A ≡ B: A is at least as strong as B, A � B: stronger

Two different definitions of the k-WL: w: weak, s: strong

Morris, Rattan, Mutzel: NeurIPs 2020
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Connections of WL to other fields

Connections of WL to other fields

Connections to

descriptive complexity

k-pebble counting games

counting homomorphisms

Gröbner basis

Sherali-Adams relaxation of the natural ILP

graph neural networks (deep learning)

for more information: ask Martin Grohe
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Connections of WL to other fields Fractional Isomorphism
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Connections of WL to other fields Fractional Isomorphism

Integer Linear Program for Graph Isomorphism

Observation

Let A and B be the adjacency matrices for graphs G and H. G and H are
isomorphic if there is a permutation matrix P so that AP = PB.

Binary variables with Xab = 1 iff a-th vertex in G will be mapped to b-th
vertex in H for a, b ∈ [n]

(ISO)

∑
a′∈[n]

Aaa′Xa′b =
∑
b′∈[n]

Xab′Bb′b ∀ a, b ∈ [n]∑
b′∈[n]

Xab′ = 1 ∀ a ∈ [n]∑
a′∈[n]

Xa′b = 1 ∀ b ∈ [n]

Xab ≥ 0 ∀ a, b ∈ [n]
Xab ∈ {0, 1} ∀ a, b ∈ [n]

Relaxing the integer requirement leads to doubly stochastic matrix.
26 / 46



Connections of WL to other fields Fractional Isomorphism

Integer Linear Program for Graph Isomorphism

Definition

Relaxing the integer requirement leads to a doubly stochastic matrix.

G is fractionally isomorphic to H if there exists a doubly stochastic
matrix S so that AS = SB.

In other words: G is fractionally isomorphic to H if the polytope
defined by (rISO) is non-empty.

(rISO)

∑
a′∈[n]

Aaa′Xa′b =
∑
b′∈[n]

Xab′Bb′b ∀ a, b ∈ [n]∑
b′∈[n]

Xab′ = 1 ∀ a ∈ [n]∑
a′∈[n]

Xa′b = 1 ∀ b ∈ [n]

Xab ≥ 0 ∀ a, b ∈ [n]
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Connections of WL to other fields Fractional Isomorphism

Tinhofers Theorem

Lemma (Tinhofer 1986)

G and H are fractionally isomorphic if and only if they have a
common coarsest equitable partition.

In other words: If the WL-algorithm cannot distinguish G and H, then
(rISO) has a feasible solution, and vice versa.

When are two fractionally isomorphic graphs isomorphic to each other?

Lemma (Tinhofer 1986, Ramana et al. 1994)

Let F and G be fractionally isomorphic graphs and let F be a forest. Then
F is isomorphic to G.
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Connections of WL to other fields WL and Deep Learning

WL and Deep Learning

State-of-the-Art Graph Neural Networks (GNNs)

Graph Convolutional Networks (Kipf, Welling 2017)

GraphSAGE (Hamilton et al. 2017)

Graph Isomorphism Networks (Xu et al. 2019)

Neural Message Parsing (Gilmer et al. 2017), and many others

They only differ in their neighborhood aggregation.

Source: https://www.thegioimaychu.vn/blog/thuat-ngu/deep-learning/
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Connections of WL to other fields WL and Deep Learning

Relations between WL and GNN

General form of Graph Neural Networks

Ht
v = fmerge(Ht−1

v , faggr ({{Ht−1
w | w ∈ N(v)}}))

Functions fmerge and faggr can be arbitrary differentiable,
permutation-invariant functions. Both methods aggregate features of their
neighbors.

WL Algorithmus

Ct
v = enc(Ct−1

v , {{Ct−1
w | w ∈ N(v)}})

Source: Morris, Fey, Kriege, 2021
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Connections of WL to other fields WL and Deep Learning

Relations between WL and GNN

Discriminatory power of GNNs

If a GNN distinguishes two graphs, so does the WL.

There are functions fmerge und faggr so that both methods are equally
strong with respect to their discriminatory power.

This result also holds for k-WL and k-GNNs.

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe 2019, Xu, Hu, Leskovec, and Jegelka 2019, Maron, Ben-Hamu,
Serviansky, Lipman 2019
Images: Morris, Fey, Kriege, 2021
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Connections of WL to other fields WL and Deep Learning

Relations between WL and GNN

WL-variants can be transferred to GNN variants

GNNs better adapt to the learning task because they learn the weights

However: high resource consumption

Image source: Morris, Fey, Kriege, 2021
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WL for Data Analysis Classification with WL
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WL for Data Analysis Classification with WL

Classification (Supervised Learning)

Given: Training set with labelled items (classes).
Goal: Train a classifier so that a new item will be assigned to its correct
class.

Sources: towardsdatascience.com/, www.ritchieng.com/logistic-regression/, medium.freecodecamp.org/
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WL for Data Analysis Classification with WL

Graph (Dataset) Classification

feature vector feature space

Generate a feature vector for each graph in the graph data set

Use your favorite (data) classification method

Sources: https://www.kdd.org/kdd2019/accepted-papers/view/learning-interpretable-metric-between-graphs-convex-
formulation-and-computa
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WL for Data Analysis Classification with WL

Classification with Distance-based Approaches

Idea

compute the distances (e.g. scalar products of the feature vectors) for
each pair of graphs in the data set

compute one or more separating hyperplanes in a high dimensional
space (SVM)

35 / 46



WL for Data Analysis Classification with WL

Classification with WL, k-WL, k-LWL

Idea: Combination of WL with similarity measures

Construct feature vector for each graph

e.g. after each round: sort the vertices according to colors, vector gets
information of number of vertices with color c

append these (possibly weighted) vectors to each other

Φ(G) = (3, 1, 1) Φ(H) = (3, 1, 1)

Φ(G) = (3, 1, 1, 2, 0, 0, 1, 1, 1, 0) Φ(H) = (3, 1, 1, 2, 1, 1, 0, 0, 0, 1)

→ Similarity measure based on graph kernel, Jaccard-Coefficient, ...
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WL for Data Analysis Classification with WL

Classification with WL, k-WL, k-LWL

Similarity score between each pair of graphs

Let Φi
t(Gi ) be the feature vector for each graph Gi of round t

we define: Φt(Gi ) = [Φ0(Gi ), . . . ,Φt(Gi )]

Weisfeiler-Leman subtree graph kernel for t rounds:
kt(Gi ,Gj) = 〈Φt(Gi ),Φt(Gj)〉
⇒ leads to a (normalized) gram matrix

use this as input to a SVM (kernel trick)

Φ1(G) = (3, 1, 1) Φ1(H) = (3, 1, 1)

Φ2(G) = (2, 0, 0, 1, 1, 1, 0) Φ2(H) = (2, 1, 1, 0, 0, 0, 1)
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WL for Data Analysis Classification with WL

Scalability: sampling for local k-LWL Algorithm

Idea: Increase scalability by sampling

Sample a subset of the k-sets

Explore the t-neighborhood around these sets

Run the local k-LWL on each of the t-neighborhoods

Lemma (Morris, Kersting, M. 2017)

These k-sets get the same color as the k-LWL after t rounds.
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WL for Data Analysis Classification with WL

Approximation Result

Theorem (Morris, Kersting, M. 2017)

Let G be a d-bounded degree graph and ε ∈ (0, 1].

Then for every number of iterations t of the local k-LWL, there exists
an adaptive sampling algorithm which approximates the normalized
feature vector of the local k-LWL on t iterations up to ε with
probability (1− δ) for δ ∈ (0, 1).

The running time only depends on d, k, δ, ε and t (not on the graph
size V ).

Such a result is not possible for the k-WL.
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WL for Data Analysis Classification with WL

Evaluation of the k-LWL (graph kernels, SVM)

Protein interaction networks ENZYMES

social networks IMDB-MULTI, REDDIT-BINARY

cancer dataset NCI1

2-6 classes, 600-4000 graphs, 13-430 vertices, partially vertex labels

Morris, Rattan, Mutzel: NeurIPs 2020
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WL for Data Analysis Classification with WL

Comparison of WL with other graph kernels

Experimental comparison of 13 different graph kernels

4 WL variants, one based on message passing

4 variants with shortest paths and random walks

multiscale Laplacian

subgraph matching, graphlet

pure histograms (vertices, edges)

41 benchmark data sets from the TU Dataset: Social networks, molecule
graphs, bioinformatics, computer vision

Borgwardt et al.: Graph Kernels: State-of-the-Art and future Challenges, Nov. 2020
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WL for Data Analysis Classification with WL

Selection of Graph Kernels [Borgwardt et al. 2020]

Source: Borgwardt et al.: Graph Kernels: State-of-the-Art and future Challenges, S. 124, Nov. 2020
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WL for Data Analysis Classification with WL

Graph Similarity via Graph Kernels: Playground

Source: farmeramania.de
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Outlook and Conclusion

Outlook

expressiveness vs. generalizability

integration of expert knowledge

integration of uncertainty

integration to temporal graphs
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Outlook and Conclusion

Outlook: Temporal Graphs from fMRI Data

Student project with Dr. Xenia Kobeleva (Universitätsklinikum Bonn, DZNE) and
Lutz Oettershagen

Aim

analysis of temporal graphs constructed from fMRI data

dynamic processes vs. static graphs with time windows

Source: Zalesky et al.: PNAS 2014; Thompson, Fransson: Scientific Reports 2016
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Outlook and Conclusion

motivation to get interested in the area of Graph Similarity

plenty of opportunities for new theoretical results as well as practical
impact

Source: www.whatsnext.com/what-is-motivation
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