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Graph Embedding
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@ Generate a feature vector for each graph in the given graph data set

@ Use your favorite (data) classification/clustering method

Sources: https://www.kdd.org/kdd2019/accepted-papers/view/learning-interpretable-metric-between-graphs-convex-
formulation-and-computa
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Recognition of Cuneiform Characters

@ right vertex
@ left vertex
® tail vertex
@ depth vertex

@ 500.000 digitized cuneiform fragments (LS7, TU Dortmund)

@ group of wedge signs corresponds to a character

@ so far 1000 different characters known

@ only a very small set of cuneiform characters have been classified

@ Goal: Recognition of cuneiform characters for supporting classic
Altphilologists

Kriege, Fey, Fisseler, Mutzel, Weichert: COST, Proc. MLR 2018
DFG SFB 876: Providing Information by Resource-Constrained Data Analysis
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Protein Complex Similarity

@ suggest similarity measures based on WL algorithm for protein
complexes

o first run WL, then apply Jaccard similarity coefficient (def. for
multisets: size of bag intersection divided by size of bag sum)

@ evaluation on 500000 simulated complexes of the human adhesome
protein network

@ — in agreement with graph edit similarity

Stécker, Schifer, Mutzel, Koster, Kriege, Rahmann: SISAP 2019
DFG SFB 876: Providing Information by Resource-Constrained Data Analysis
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Outline

© Weisfeiler-Leman Algorithm and its Properties
@ Original Weisfeiler-Leman Algorithm
@ k-dimensional WL Algorithm on Sets
@ Local k-WL on Sets

© Connections of WL to other fields
@ Fractional Isomorphism
@ WL and Deep Learning

© WL for Data Analysis
@ Classification with WL

@ Outlook and Conclusion
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Weisfeiler-Leman Algorithm

@ Color refinement algorithm with the goal of vertex classification

WL-Algorithm
o Initial: All vertices v have the same color.

o lteration: Further separation of identically colored vertex sets based
on color histograms of neighbors.

G H
Initialization
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Weisfeiler-Leman Algorithm
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Weisfeiler-Leman Algorithm

@ Color refinement algorithm with the goal of vertex classification

WL-Algorithm
o Initial: All vertices v have the same color.

o lteration: Further separation of identically colored vertex sets based
on color histograms of neighbors.

1371904

Initialization Iteration 1 Iteration 2
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Historical Notes

@ Vertex coloring algorithms have been re-invented several times

@ First mentioned in paper by Boris Weisfeiler and Andrei Leman 1968
(in Russian)

@ Andrei Leman spelled himself as Leman (mistake by Springer)
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Historical Notes

@ Vertex coloring algorithms have been re-invented several times

@ First mentioned in paper by Boris Weisfeiler and Andrei Leman 1968
(in Russian)

@ Andrei Leman spelled himself as Leman (mistake by Springer)
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@ Shervashidze, Borgwardt 2009: Weisfeiler-Leman based kernels for
data analysis
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el
Isomorphism Test using Weisfeiler-Leman

One-Sided Isomorphism Test
@ Apply WL to the two graphs G and H simultaneously
o If G and H get different colors = G # H
= WL distinguishes G and H

@ Otherwise: we do not know whether G and H are isomorphic

1371904

Initialization Iteration 1 Iteration 2
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Isomorphism Test using Weisfeiler-Leman

Properties of WL

@ WL can identify all forests, i.e., non-isomorphic forests get different
colors
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Isomorphism Test using Weisfeiler-Leman

AL 4

Properties of WL

@ WL can identify all forests, i.e., non-isomorphic forests get different
colors

@ random graphs G will be identified correctly with high probability
@ running time: O((|V/|+ |E|) log |V])

@ cannot distinguish regular graphs (same degree) — same color
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Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Equitable Partitions

Definition
@ A partition {Cy, Gy, ..., Cs} of V(G) is called equitable if for all j and
J and for all u,v € C; we have: [N(u) N G| = |N(v)n Gl.
@ We call the maximum element of the equitable partition lattice a
coarsest equitable partition of G.
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@ We call the maximum element of the equitable partition lattice a
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Lemma (Ramana, Scheinerman, Ullman 1994)

@ The Weisfeiler-Leman algorithm applied to graph G leads to the
coarsest equitable partition.
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Weisfeiler-Leman Algorithm

Weisfeiler-Leman Algorithm and its Properties

Equitable Partitions

Definition
@ A partition {Cy, Gy, ..., Cs} of V(G) is called equitable if for all j and
J and for all u,v € C; we have: [N(u) N G| = |N(v)n Gl.
@ We call the maximum element of the equitable partition lattice a
coarsest equitable partition of G. )

Lemma (Ramana, Scheinerman, Ullman 1994)
@ The Weisfeiler-Leman algorithm applied to graph G leads to the
coarsest equitable partition.

o If the Weisfeiler-Leman algorithm is applied to graphs G and H, and
the two stable partitions pg and py are identical, then G and H have

a common coarsest equitable partition.
v
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Weisfeiler-Leman Algorithm and its Properties k-dimensional WL Algorithm on Sets

© Weisfeiler-Leman Algorithm and its Properties

@ k-dimensional WL Algorithm on Sets

© Connections of WL to other fields

© WL for Data Analysis

@ Outlook and Conclusion
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Weisfeiler-Leman Algorithm and its Properties k-dimensional WL Algorithm on Sets

k-dimensional Weisfeiler-Leman Algorithm (Sets)

Two k-vertex sets are neighbors if they differ in only one element.

k-WL Algorithm for k-sets (simplified)
o Initial: k-sets U, W get the same color if G[U] ~ G[W].

o lteration: Two identically colored k-sets U und W get different
colors if there exists a color ¢ so that U and W have a different
cardinality set of neighbors of color c.

u,v u,r
u,w rLw
v.\w v,r
G Initialization 2-WL
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Weisfeiler-Leman Algorithm and its Properties k-dimensional WL Algorithm on Sets

k-WL Algorithm

Properties of the k-WL
@ k-WL (k > 2) is stronger than WL

u,v u,r
u,w rLw
W v,r
G Initialization 2-WL

u,v u,r

u,w r,w

V,W v,r

Iteration 1: 2-WL
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k-WL Algorithm

Properties of the k-WL
@ k-WL (k > 2) is stronger than WL

@ exact for large enough k (identifies each graph)

u,v u,r
u,w rLw
W v,r
G Initialization 2-WL
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Iteration 1: 2-WL
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.
k-WL Algorithm

Properties of the k-WL
@ k-WL (k > 2) is stronger than WL
@ exact for large enough k (identifies each graph)

@ graph isomorphism approach by Babai uses k = O(log n)

u,v u,r u,v u,r
u,w rLw u,w rLw
W v,r VW v,r
G Initialization 2-WL Iteration 1: 2-WL
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.
k-WL Algorithm

Properties of the k-WL
@ k-WL (k > 2) is stronger than WL
@ exact for large enough k (identifies each graph)
@ graph isomorphism approach by Babai uses k = O(log n)
@ there exist graph classes for which k = 6(n) is necessary
e running time: O(k?|V|**!log|V|)

u,v u,r u,v u,r
u,w rLw u,w rLw
W v,r v,\w v,r
G Initialization 2-WL Iteration 1: 2-WL
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k-dimensional WL Algorithm on Sets
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

© Weisfeiler-Leman Algorithm and its Properties

@ Local k-WL on Sets

© Connections of WL to other fields

© WL for Data Analysis

@ Outlook and Conclusion
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Local k-WL Algorithm (k-LWL)

Idea: Define neighbors of the k-sets depending on graph structure

@ Two k-sets U und W are neighbors, if they differ in only one element
and for the exchanged vertices s € U, t € W there exists an edge
from s to a vertex in W and an edge from t to a vertex in U.

@ — takes sparsity of the original graph into account

@ — considers local and global graph properties

u,v u,r
u,w rLw
v\w v,r
G Initialization 2-LWL

Morris, Kersting, Mutzel ICDM 2017, DFG SFB 876: Providing Information by Resource-Constrained Data Analysis
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Local k-WL Algorithm (k-LWL)

Idea: Define neighbors of the k-sets depending on graph structure

@ Two k-sets U und W are neighbors, if they differ in only one element

and for the exchanged vertices s € U, t € W there exists an edge

from s to a vertex in W and an edge from t to a vertex in U.
@ — takes sparsity of the original graph into account

@ — considers local and global graph properties

u,v u,r u,v u,r

V,W

v,r v,r

Initialization 2-LWL 1. Iteration 2-LWL

Morris, Kersting, Mutzel ICDM 2017, DFG SFB 876: Providing Information by Resource-Constrained Data Analysis
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Comparison: Local k-LWL vs. k-WL

Running time
@ k-sets of the k-LWL have much less neighbors
@ much faster than k-WL

Morris, Kersting, Mutzel 2017
18 /46



Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Comparison of Distinction Power

2-WL: 2 color classes 2-LWL: 2 color classes

2-WL: 2 color classes 2-LWL: 3 color classes
—2-WL cannot distinguish graphs, but 2-LWL

Morris, Mutzel
19 /46



Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)

Morris, Mutzel
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)
@ Local k-LWL refines at least as much as k-WL.
@ If k-WL can distinguish two graphs, then also k-LWL.
@ Local k-LWL is stronger than k-WL.
@ Sherali-Adams Relaxation of k-LWL is stronger than that of k-WL.

2-WL: 5 color classes 2-LWL: 10 color classes
12,6,6,3,1 4,4.4.4.2.42 21,1

Morris, Mutzel
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Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Cai, Fiirer, Immerman - Graphs for lower bound

2-WL: 4 color classes 2-LWL: 5 color classes

2-WL: 4 color classes 2-LWL: 11 color classes
—2-WL cannot distinguish graphs, but 2-LWL

21/46



Weisfeiler-Leman Algorithm and its Prop Local k-WL on Sets

Immerman, Grohe - Graphs for lower bound

2-WL: 2 color classes 2-LWL: 15 color classes
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Weisfeiler-Leman Algorithm and its Prop Local k-WL on Sets

Immerman, Grohe - Graphs for lower bound

2-WL: 2 color classes 2-LWL: 15 color classes

2-WL: 2 color classes 2-LWL: 15 color classes

— 2-LWL refines more but unfortunately does not distinguish

22 /46



Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Discriminatory Power of k-WL versions (tupel)

So far: k-sets, but k-tupels are stronger

k-G-w

G: global neighborhood, L/G: both neighborhoods, L: local
A= B: A'is at least as strong as B, A 3 B: stronger

Morris, Rattan, Mutzel: NeurlPs 2020
23/46



Weisfeiler-Leman Algorithm and its Properties Local k-WL on Sets

Discriminatory Power of k-WL versions

e S kGw S (e1)U/Gs |

G: global neighborhood, L/G: both neighborhoods, L: local
A= B: Ais at least as strong as B, A 3} B: stronger
Two different definitions of the k-WL: w: weak, s: strong

Morris, Rattan, Mutzel: NeurlPs 2020
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Connections of WL to other fields

Connections of WL to other fields

Connections to
descriptive complexity
k-pebble counting games
counting homomorphisms

°
°
°
o Groébner basis
@ Sherali-Adams relaxation of the natural ILP
°

graph neural networks (deep learning)

for more information: ask Martin Grohe
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Connections of WL to other fields Fractional Isomorphism

© Weisfeiler-Leman Algorithm and its Properties

© Connections of WL to other fields
@ Fractional Isomorphism

© WL for Data Analysis

@ Outlook and Conclusion
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Integer Linear Program for Graph Isomorphism

Observation

Let A and B be the adjacency matrices for graphs G and H. G and H are
isomorphic if there is a permutation matrix P so that AP = PB.

Binary variables with X,, = 1 iff a-th vertex in G will be mapped to b-th
vertex in H for a, b € [n]

Z A Xyp = Z XopByp YV a,be [n]
a'e[n] b’ €[n]
Z Xy = 1 Vace [I‘I]
(I1S0)
> Xap = 1 Y be|n]
a'e[n]
Xop > 0 Va,be [n]
X € {0,1} YV a,b € [n]

Relaxing the integer requirement leads to doubly stochastic matrix.
26 /46



Connections of WL to other fields Fractional Isomorphism

Integer Linear Program for Graph Isomorphism

Definition
@ Relaxing the integer requirement leads to a doubly stochastic matrix.

@ G is fractionally isomorphic to H if there exists a doubly stochastic
matrix S so that AS = SB.

@ In other words: G is fractionally isomorphic to H if the polytope
defined by (rISO) is non-empty.

Z Aa Xyp = Z XopByp Va,be [n]
a'e[n] b'e[n]
Z Xy = 1 Vac [n]
(rISO) b'e[n]
> Xep = 1 V b€ [n]
a’e[n]
Xap > 0 Vabe [n]
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Connections of WL to other fields Fractional Isomorphism

Tinhofers Theorem

Lemma (Tinhofer 1986)

@ G and H are fractionally isomorphic if and only if they have a
common coarsest equitable partition.

@ In other words: If the WL-algorithm cannot distinguish G and H, then
(rISO) has a feasible solution, and vice versa.

28/46



Fractional Isomorphism
Tinhofers Theorem

Lemma (Tinhofer 1986)

@ G and H are fractionally isomorphic if and only if they have a
common coarsest equitable partition.

@ In other words: If the WL-algorithm cannot distinguish G and H, then
(rISO) has a feasible solution, and vice versa.

When are two fractionally isomorphic graphs isomorphic to each other?

Lemma (Tinhofer 1986, Ramana et al. 1994)

Let F and G be fractionally isomorphic graphs and let F be a forest. Then
F is isomorphic to G.

28/ 46



WL and Deep Learning

Lo e | 3.

State-of-the-Art Graph Neural Networks (GNNs)
@ Graph Convolutional Networks (Kipf, Welling 2017)
@ GraphSAGE (Hamilton et al. 2017)
@ Graph Isomorphism Networks (Xu et al. 2019)

@ Neural Message Parsing (Gilmer et al. 2017), and many others

They only differ in their neighborhood aggregation.

Source: https://www.thegioimaychu.vn/blog/thuat-ngu/deep-learning/
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WL and Deep Learning
Relations between WL and GNN

Lo Lo

$o(G)=(1,1,3) 6(@G)=0,,2%)

General form of Graph Neural Networks
H, = frerge(HY 7, fager({HL 1 | w € N(v)})) J

Functions fperge and f,g5- can be arbitrary differentiable,
permutation-invariant functions. Both methods aggregate features of their
neighbors.

WL Algorithmus
Ct = enc(C5, €5 | w € N(v)}) J

Source: Morris, Fey, Kriege, 2021
30/46



WL and Deep Learning
Relations between WL and GNN

$o(G)=(1,1,3) d@=0,,2%)

Discriminatory power of GNNs
o If a GNN distinguishes two graphs, so does the WL.

@ There are functions fierge UNd foger S0 that both methods are equally
strong with respect to their discriminatory power.

This result also holds for k-WL and k-GNNss.

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe 2019, Xu, Hu, Leskovec, and Jegelka 2019, Maron, Ben-Hamu,
Serviansky, Lipman 2019
Images: Morris, Fey, Kriege, 2021
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WL and Deep Learning
Relations between WL and GNN

L o Lo oW

$o(G)=(1,1,3) d@=(0,,2%)

@ WL-variants can be transferred to GNN variants
@ GNNs better adapt to the learning task because they learn the weights

@ However: high resource consumption

Image source: Morris, Fey, Kriege, 2021
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WL for Data Analysis Classification with WL

© WL for Data Analysis
o Classification with WL
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WL for Data Analysis Classification with WL

Classification (Supervised Learning)

Binary classification: Multi-class classification:
X x VA
w0 \ ¥ o | SLBX " x %
[e)Le] o X
o OpOo

X % 0 5 10 15 2

Given: Training set with labelled items (classes).
Goal: Train a classifier so that a new item will be assigned to its correct
class.

Sources: towardsdatascience.com/, www.ritchieng.com/logistic-regression/, medium.freecodecamp.org/
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Classiication with WL
Graph (Dataset) Classification

test data
Y 1 y=+1

y=—1

feature

y=+1

Subgraph feature space ¢

4 v 000§38333°8

*‘901110011100

1|®g®/1110100111 - —_— feature |
, 4 . Ob 7 = (02 0)

Initial metric

feature vector feature space

@ Generate a feature vector for each graph in the graph data set

@ Use your favorite (data) classification method

Sources: https://www.kdd.org/kdd2019/accepted-papers/view/learning-interpretable-metric-between-graphs-convex-
formulation-and-computa
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WL for Data Analysis Classification with WL

Classification with Distance-based Approaches

Binary classification: Multi-class classification:
X A P%
)>(< X AN x X
@ Positive (Hospitalized) Xy 0o Xy
.Nelanve(:::pim.zed}/ o O D X
(0] O[O
\e ® / \o 0@ / a
XY, \..o
\o o/ \@ &/
oot Tegatie X, X,

Idea

@ compute the distances (e.g. scalar products of the feature vectors) for
each pair of graphs in the data set

@ compute one or more separating hyperplanes in a high dimensional
space (SVM)
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Classification with WL, k-WL, k-LWL

Idea: Combination of WL with similarity measures
@ Construct feature vector for each graph

@ e.g. after each round: sort the vertices according to colors, vector gets
information of number of vertices with color ¢

@ append these (possibly weighted) vectors to each other

®(G) = (3,1,1) ®(H) = (3,1,1)
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Classification with WL, k-WL, k-LWL

Idea: Combination of WL with similarity measures
@ Construct feature vector for each graph

@ e.g. after each round: sort the vertices according to colors, vector gets
information of number of vertices with color ¢

@ append these (possibly weighted) vectors to each other

Ha 9

=(3,1,1) ®(H) = (3,1,1) &(G) =(3,1,1,2,0,0,1,1,1,0) &(H) =(3,1,1,2,1,1,0,0,0,1)
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Classification with WL, k-WL, k-LWL

Idea: Combination of WL with similarity measures
@ Construct feature vector for each graph

@ e.g. after each round: sort the vertices according to colors, vector gets
information of number of vertices with color ¢

@ append these (possibly weighted) vectors to each other

Ha 99

=(3,1,1) ®(H) = (3,1,1) &(G) =(3,1,1,2,0,0,1,1,1,0) &(H) =(3,1,1,2,1,1,0,0,0,1)

— Similarity measure based on graph kernel, Jaccard-Coefficient, ...
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Classification with WL, k-WL, k-LWL

Similarity score between each pair of graphs

Let ®i(G;) be the feature vector for each graph G; of round t
we define: (Dt(G,') = [(D(J(G,'), ey (Dt(G,')]

Weisfeiler-Leman subtree graph kernel for t rounds:

ke(Gi, Gj) = (®e(Gi), P2(G)))

= leads to a (normalized) gram matrix

use this as input to a SVM (kernel trick)

*1(6) = (3,1,1) O1(H) = (3,1,1) 37 /46



Classification with WL, k-WL, k-LWL

Similarity score between each pair of graphs
@ Let ®i(G;) be the feature vector for each graph G; of round t
o we define: ®4(G;) = [®o(G)),. .., D:(G))]

@ Weisfeiler-Leman subtree graph kernel for t rounds:
kt(Gi, GJ) = <¢t(Gi)7 (Dt(G])>
@ = leads to a (normalized) gram matrix

@ use this as input to a SVM (kernel trick)

4444

®1(G) = (3,1,1) ®1(H) = (3,1,1) =(2,0,0,1.1,1,0) @a(H) = (2,1,1,0.0.0,1) 3744




Qs ezl 1D T
Scalability: sampling for local k-LWL Algorithm

Idea: Increase scalability by sampling
@ Sample a subset of the k-sets
@ Explore the t-neighborhood around these sets
@ Run the local k-LWL on each of the t-neighborhoods

Lemma (Morris, Kersting, M. 2017)

These k-sets get the same color as the k-LWL after t rounds.
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WL for Data Analysis Classification with WL

Approximation Result

Theorem (Morris, Kersting, M. 2017)

Let G be a d-bounded degree graph and € € (0, 1].

@ Then for every number of iterations t of the local k-LWL, there exists
an adaptive sampling algorithm which approximates the normalized
feature vector of the local k-LWL on t iterations up to € with
probability (1 — 6) for § € (0,1).

@ The running time only depends on d, k, §, € and t (not on the graph
size V).

Such a result is not possible for the k-WL.
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Classification with WL
Evaluation of the k-LWL (graph kernels, SVM)

@ Protein interaction networks ENZYMES
@ social networks IMDB-MULTI, REDDIT-BINARY

@ cancer dataset NCI1

Quality of the classification Time in seconds
100 100000
10000
80
70 1000 I I
60 I 100

10

30 1
20 O Q & A
= © Q>
w0 & > T
0 < N &
ENZYMES IMDB-MULTI NCI1 REDDIT-BINARY A &L
TWL  2-WL ©3-WL = 2-LWL+ m3-LWL+ 1-WL - 2-WL =3-WL ©2-LWL+ m3-LWL+

2-6 classes, 600-4000 graphs, 13-430 vertices, partially vertex labels

Morris, Rattan, Mutzel: NeurlPs 2020
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G =TT
Comparison of WL with other graph kernels

Experimental comparison of 13 different graph kernels
@ 4 WL variants, one based on message passing
@ 4 variants with shortest paths and random walks
@ multiscale Laplacian
@ subgraph matching, graphlet
°

pure histograms (vertices, edges)

41 benchmark data sets from the TU Dataset: Social networks, molecule
graphs, bioinformatics, computer vision

Borgwardt et al.: Graph Kernels: State-of-the-Art and future Challenges, Nov. 2020
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Classification with WL
Selection of Graph Kernels [Borgwardt et al. 2020]

Yes No

Check graph type according to

‘ H(V), HGK-SP, H () Section 4.3.1.

‘ WL-OA, MP, CSM ‘ ‘ SP, VH, WL-OA ‘

Type iv,
v, or vi?

Yes Edge No

attributes?

HGK-SP WL, MP

Source: Borgwardt et al.: Graph Kernels: State-of-the-Art and future Challenges, S. 124, Nov. 2020
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WL for Data Analysis Classification with WL

Graph Similarity via Graph Kernels: Playground

Source: farmeramania.de




Outlook

expressiveness vs. generalizability
integration of expert knowledge
integration of uncertainty

integration to temporal graphs
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Outlook and Conclusion

Outlook: Temporal Graphs from fMRI Data

-_ - &
Consistently Consistently 5 6 1
Static Dynamic 1 2 3 4 Scan t-graphlets

Student project with Dr. Xenia Kobeleva (Universititsklinikum Bonn, DZNE) and
Lutz Oettershagen

Aim
@ analysis of temporal graphs constructed from fMRI data

@ dynamic processes vs. static graphs with time windows

Source: Zalesky et al.: PNAS 2014; Thompson, Fransson: Scientific Reports 2016
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Outlook and Conclusion

@ motivation to get interested in the area of Graph Similarity

@ plenty of opportunities for new theoretical results as well as practical
impact

Motivation

Source: www.whatsnext.com/what-is-motivation
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