Approaches to Graph Similarity

Structural
- isomorphism-based
- Frobenius distance
- graph edit distance

Graph embedding
- Weisfeiler-Leman
- fingerprint
Graph Embedding

- Generate a feature vector for each graph in the given graph data set
- Use your favorite (data) classification/clustering method

Recognition of Cuneiform Characters

- 500,000 digitized cuneiform fragments (LS7, TU Dortmund)
- group of wedge signs corresponds to a character
- so far 1000 different characters known
- only a very small set of cuneiform characters have been classified
- Goal: Recognition of cuneiform characters for supporting classic Altphilologists
suggestion similarity measures based on WL algorithm for protein complexes
first run WL, then apply Jaccard similarity coefficient (def. for multisets: size of bag intersection divided by size of bag sum)
evaluation on 500,000 simulated complexes of the human adhesome protein network
→ in agreement with graph edit similarity
1 Weisfeiler-Leman Algorithm and its Properties
 - Original Weisfeiler-Leman Algorithm
 - k-dimensional WL Algorithm on Sets
 - Local k-WL on Sets

2 Connections of WL to other fields
 - Fractional Isomorphism
 - WL and Deep Learning

3 WL for Data Analysis
 - Classification with WL

4 Outlook and Conclusion

M. Grohe: Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, Lecture Notes in Logic, Band 47, 2017 (preprint via lics.rwth-aachen.de)

Weisfeiler-Leman Algorithm

- Color refinement algorithm with the goal of vertex classification

WL-Algorithm

- **Initial**: All vertices v have the same color.
- **Iteration**: Further separation of identically colored vertex sets based on color histograms of neighbors.

![Graphs](image)

G Initialization

H
Weisfeiler-Leman Algorithm

- **Color refinement algorithm** with the goal of vertex classification

WL-Algorithm

- **Initial**: All vertices v have the same color.
- **Iteration**: Further separation of identically colored vertex sets based on color histograms of neighbors.

![Graphs](attachment:image.png)
Weisfeiler-Leman Algorithm

- **Color refinement algorithm** with the goal of vertex classification

WL-Algorithm

- **Initial**: All vertices v have the same color.
- **Iteration**: Further separation of identically colored vertex sets based on color histograms of neighbors.

Initialization

1. G

2. H

Iteration 1

1. G
2. H

Iteration 2

1. G
2. H
Historical Notes

- Vertex coloring algorithms have been re-invented several times
- First mentioned in paper by Boris Weisfeiler and Andrei Leman 1968 (in Russian)
- Andrei Leman spelled himself as Leman (mistake by Springer)
Historical Notes

- Vertex coloring algorithms have been re-invented several times
- First mentioned in paper by Boris Weisfeiler and Andrei Leman 1968 (in Russian)
- Andrei Leman spelled himself as Leman (mistake by Springer)
Vertex coloring algorithms have been re-invented several times

First mentioned in paper by Boris Weisfeiler and Andrei Leman 1968 (in Russian)

Andrei Leman spelled himself as Leman (mistake by Springer)

Shervashidze, Borgwardt 2009: Weisfeiler-Leman based kernels for data analysis
Isomorphism Test using Weisfeiler-Leman

One-Sided Isomorphism Test
- Apply WL to the two graphs G and H simultaneously
- If G and H get different colors $\Rightarrow G \not\cong H$
 \Rightarrow WL distinguishes G and H
- Otherwise: we do not know whether G and H are isomorphic
Isomorphism Test using Weisfeiler-Leman

Properties of WL

- WL can identify all forests, i.e., non-isomorphic forests get different colors
Isomorphism Test using Weisfeiler-Leman

Properties of WL

- WL can identify all forests, i.e., non-isomorphic forests get different colors
- random graphs G will be identified correctly with high probability
Isomorphism Test using Weisfeiler-Leman

Properties of WL

- WL can identify all forests, i.e., non-isomorphic forests get different colors.
- Random graphs G will be identified correctly with high probability.
- Cannot distinguish regular graphs (same degree) \rightarrow same color.
Isomorphism Test using Weisfeiler-Leman

Properties of WL

- WL can identify all forests, i.e., non-isomorphic forests get different colors
- random graphs G will be identified correctly with high probability
- running time: $O((|V| + |E|) \log |V|)$
- cannot distinguish regular graphs (same degree) \rightarrow same color
Equitable Partitions

Definition

- A partition \(\{C_1, C_2, \ldots, C_s\} \) of \(V(G) \) is called \textit{equitable} if for all \(i \) and \(j \) and for all \(u, v \in C_i \) we have: \(|N(u) \cap C_j| = |N(v) \cap C_j| \).
- We call the maximum element of the equitable partition lattice a \textit{coarsest equitable partition} of \(G \).
Equitable Partitions

Definition

- A partition \(\{ C_1, C_2, \ldots, C_s \} \) of \(V(G) \) is called equitable if for all \(i \) and \(j \) and for all \(u, v \in C_i \) we have: \(|N(u) \cap C_j| = |N(v) \cap C_j| \).
- We call the maximum element of the equitable partition lattice a coarsest equitable partition of \(G \).

Lemma (Ramana, Scheinerman, Ullman 1994)

- The Weisfeiler-Leman algorithm applied to graph \(G \) leads to the coarsest equitable partition.
Equitable Partitions

Definition

- A partition \(\{C_1, C_2, \ldots, C_s\}\) of \(V(G)\) is called \textit{equitable} if for all \(i\) and \(j\) and for all \(u, v \in C_i\) we have: \(|N(u) \cap C_j| = |N(v) \cap C_j|\).
- We call the maximum element of the equitable partition lattice a \textit{coarsest equitable partition} of \(G\).

Lemma (Ramana, Scheinerman, Ullman 1994)

- \textit{The Weisfeiler-Leman algorithm applied to graph \(G\) leads to the coarsest equitable partition.}
- \textit{If the Weisfeiler-Leman algorithm is applied to graphs \(G\) and \(H\), and the two stable partitions \(\rho_G\) and \(\rho_H\) are identical, then \(G\) and \(H\) have a common coarsest equitable partition.}
1. Weisfeiler-Leman Algorithm and its Properties
 - Original Weisfeiler-Leman Algorithm
 - k-dimensional WL Algorithm on Sets
 - Local k-WL on Sets

2. Connections of WL to other fields
 - Fractional Isomorphism
 - WL and Deep Learning

3. WL for Data Analysis
 - Classification with WL

4. Outlook and Conclusion
k-dimensional Weisfeiler-Leman Algorithm (Sets)

Two k-vertex sets are neighbors if they differ in only one element.

k-WL Algorithm for k-sets (simplified)

- **Initial**: k-sets U, W get the same color if $G[U] \cong G[W]$.
- **Iteration**: Two identically colored k-sets U and W get different colors if there exists a color c so that U and W have a different cardinality set of neighbors of color c.

![Graph G](image1)

![Initialization 2-WL](image2)
Two k-vertex sets are neighbors if they differ in only one element.

k-WL Algorithm for k-sets (simplified)

- **Initial:** k-sets U, W get the same color if $G[U] \simeq G[W]$.
- **Iteration:** Two identically colored k-sets U and W get different colors if there exists a color c so that U and W have a different cardinality set of neighbors of color c.
k-WL Algorithm

Properties of the k-WL

- k-WL ($k > 2$) is stronger than WL

G

Initialization 2-WL

Iteration 1: 2-WL
k-WL Algorithm

Properties of the k-WL

- k-WL ($k > 2$) is stronger than WL
- exact for large enough k (identifies each graph)

\[G \]

\[\text{Initialization 2-WL} \]

\[\text{Iteration 1: 2-WL} \]
k-WL Algorithm

Properties of the k-WL
- k-WL ($k > 2$) is stronger than WL
- exact for large enough k (identifies each graph)
- graph isomorphism approach by Babai uses $k = O(\log n)$

![Graph](image)

- **G**: Initial graph
- **Initialization 2-WL**: Initialization step
- **Iteration 1: 2-WL**: Iteration step
Properties of the k-WL

- k-WL ($k > 2$) is stronger than WL
- exact for large enough k (identifies each graph)
- graph isomorphism approach by Babai uses $k = O(\log n)$
- there exist graph classes for which $k = \theta(n)$ is necessary
k-WL Algorithm

Properties of the k-WL
- k-WL ($k > 2$) is stronger than WL
- exact for large enough k (identifies each graph)
- graph isomorphism approach by Babai uses $k = O(\log n)$
- there exist graph classes for which $k = \theta(n)$ is necessary
- running time: $O(k^2 |V|^{k+1} \log |V|)$
k-WL Algorithm

k-WL can distinguish regular graphs: $k = 3$

G

H
k-WL Algorithm

k-WL can distinguish regular graphs: $k = 3$

$G \quad H$

→ strong for higher k, but also very slow
1. **Weisfeiler-Leman Algorithm and its Properties**
 - Original Weisfeiler-Leman Algorithm
 - k-dimensional WL Algorithm on Sets
 - Local k-WL on Sets

2. **Connections of WL to other fields**
 - Fractional Isomorphism
 - WL and Deep Learning

3. **WL for Data Analysis**
 - Classification with WL

4. **Outlook and Conclusion**
Local k-WL Algorithm (k-LWL)

Idea: Define neighbors of the k-sets depending on graph structure

- Two k-sets U and W are neighbors, if they differ in only one element and for the exchanged vertices $s \in U$, $t \in W$ there exists an edge from s to a vertex in W and an edge from t to a vertex in U.

- \rightarrow takes sparsity of the original graph into account

- \rightarrow considers local and global graph properties

G

Initialization 2-LWL
Local k-WL Algorithm (k-LWL)

Idea: Define neighbors of the k-sets depending on graph structure

- Two k-sets U and W are neighbors, if they differ in only one element and for the exchanged vertices $s \in U$, $t \in W$ there exists an edge from s to a vertex in W and an edge from t to a vertex in U.
- → takes sparsity of the original graph into account
- → considers local and global graph properties

G

Initialization 2-LWL

1. Iteration 2-LWL
Comparison: Local \(k \)-LWL vs. \(k \)-WL

Running time
- \(k \)-sets of the \(k \)-LWL have much less neighbors
- much faster than \(k \)-WL

\(G \)
\(2 \)-WL
\(2 \)-LWL

Morris, Kersting, Mutzel 2017
Comparison of Distinction Power

2-WL: 2 color classes
2-LWL: 2 color classes

2-WL: 2 color classes
2-LWL: 3 color classes

→ 2-WL cannot distinguish graphs, but 2-LWL
Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)
Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)

- Local k-LWL refines at least as much as k-WL.

2-WL: 5 color classes
12, 6, 6, 3, 1

2-LWL: 10 color classes
4, 4, 4, 4, 2, 4, 2, 2, 1, 1
Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)

- Local k-LWL refines at least as much as k-WL.
- If k-WL can distinguish two graphs, then also k-LWL.

2-WL: 5 color classes
12, 6, 6, 3, 1

2-LWL: 10 color classes
4, 4, 4, 4, 2, 4, 2, 2, 1, 1
Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)

- Local k-LWL refines at least as much as k-WL.
- If k-WL can distinguish two graphs, then also k-LWL.
- Local k-LWL is stronger than k-WL.

2-WL: 5 color classes
12, 6, 6, 3, 1

2-LWL: 10 color classes
4, 4, 4, 4, 2, 4, 2, 2, 1, 1
Comparison: Local k-LWL vs. k-WL

Separation Strength (for connected G)

- Local k-LWL refines at least as much as k-WL.
- If k-WL can distinguish two graphs, then also k-LWL.
- Local k-LWL is stronger than k-WL.
- Sherali-Adams Relaxation of k-LWL is stronger than that of k-WL.

2-WL: 5 color classes
12, 6, 6, 3, 1

2-LWL: 10 color classes
4, 4, 4, 4, 2, 4, 2, 2, 1, 1

Morris, Mutzel
Cai, F"urer, Immerman - Graphs for lower bound bound

→2-WL cannot distinguish graphs, but 2-LWL
Immerman, Grohe - Graphs for lower bound

2-WL: 2 color classes 2-LWL: 15 color classes
Immerman, Grohe - Graphs for lower bound bound

2-WL: 2 color classes 2-LWL: 15 color classes

2-WL: 2 color classes 2-LWL: 15 color classes

→ 2-LWL refines more but unfortunately does not distinguish
Discriminatory Power of k-WL versions (tupel)

So far: k-sets, but k-tupels are stronger

G: global neighborhood, L/G: both neighborhoods, L: local
$A \equiv B$: A is at least as strong as B, $A \succ B$: stronger

Morris, Rattan, Mutzel: NeurIPS 2020
Discriminatory Power of k-WL versions

G: global neighborhood, L/G: both neighborhoods, L: local
$A \equiv B$: A is at least as strong as B, $A \succ B$: stronger

Two different definitions of the k-WL: w: weak, s: strong

Morris, Rattan, Mutzel: NeurIPS 2020
Connections of WL to other fields

Connections to

- descriptive complexity
- k-pebble counting games
- counting homomorphisms
- Gröbner basis
- Sherali-Adams relaxation of the natural ILP
- graph neural networks (deep learning)

for more information: ask Martin Grohe
1 Weisfeiler-Leman Algorithm and its Properties
 - Original Weisfeiler-Leman Algorithm
 - \(k \)-dimensional WL Algorithm on Sets
 - Local \(k \)-WL on Sets

2 Connections of WL to other fields
 - Fractional Isomorphism
 - WL and Deep Learning

3 WL for Data Analysis
 - Classification with WL

4 Outlook and Conclusion
Integer Linear Program for Graph Isomorphism

Observation

Let A and B be the adjacency matrices for graphs G and H. G and H are isomorphic if there is a permutation matrix P so that $AP = PB$.

Binary variables with $X_{ab} = 1$ iff a-th vertex in G will be mapped to b-th vertex in H for $a, b \in [n]$

\[
\sum_{a' \in [n]} A_{aa'} X_{a'b} = \sum_{b' \in [n]} X_{ab'} B_{b'b} \quad \forall \ a, b \in [n]
\]

\[
\sum_{b' \in [n]} X_{ab'} = 1 \quad \forall \ a \in [n]
\]

\[
\sum_{a' \in [n]} X_{a'b} = 1 \quad \forall \ b \in [n]
\]

\[
X_{ab} \geq 0 \quad \forall \ a, b \in [n]
\]

\[
X_{ab} \in \{0, 1\} \quad \forall \ a, b \in [n]
\]

Relaxing the integer requirement leads to doubly stochastic matrix.
Definition

- Relaxing the integer requirement leads to a **doubly stochastic matrix**.
- \(G \) is **fractionally isomorphic** to \(H \) if there exists a doubly stochastic matrix \(S \) so that \(AS = SB \).
- In other words: \(G \) is **fractionally isomorphic** to \(H \) if the polytope defined by (\(rISO \)) is non-empty.

\[
\begin{align*}
\sum_{a' \in [n]} A_{aa'} X_{a'b} &= \sum_{b' \in [n]} X_{ab'} B_{b'b} \quad \forall \ a, b \in [n] \\
\sum_{b' \in [n]} X_{ab'} &= 1 \quad \forall \ a \in [n] \\
\sum_{a' \in [n]} X_{a'b} &= 1 \quad \forall \ b \in [n] \\
X_{ab} &\geq 0 \quad \forall \ a, b \in [n]
\end{align*}
\]

(\(rISO \))
Tinhofer's Theorem

Lemma (Tinhofer 1986)

- G and H are fractionally isomorphic if and only if they have a common coarsest equitable partition.

- In other words: If the WL-algorithm cannot distinguish G and H, then (rISO) has a feasible solution, and vice versa.
Tinhofer's Theorem

Lemma (Tinhofer 1986)
- G and H are *fractionally isomorphic* if and only if they have a common coarsest equitable partition.
- *In other words:* If the WL-algorithm cannot distinguish G and H, then $(rISO)$ has a feasible solution, and vice versa.

When are two *fractionally isomorphic* graphs isomorphic to each other?

Lemma (Tinhofer 1986, Ramana et al. 1994)

Let F and G be fractionally isomorphic graphs and let F be a forest. Then F is isomorphic to G.
WL and Deep Learning

State-of-the-Art Graph Neural Networks (GNNs)

- Graph Convolutional Networks (Kipf, Welling 2017)
- GraphSAGE (Hamilton et al. 2017)
- Graph Isomorphism Networks (Xu et al. 2019)
- Neural Message Parsing (Gilmer et al. 2017), and many others

They only differ in their neighborhood aggregation.

Source: https://www.thegioimaychu.vn/blog/thuat-ngu/deep-learning/
Connections of WL to other fields

WL and Deep Learning

Relations between WL and GNN

General form of Graph Neural Networks

\[H_v^t = f_{\text{merge}}(H_v^{t-1}, f_{\text{aggr}}(\{H_w^{t-1} \mid w \in N(v)\})) \]

Functions \(f_{\text{merge}} \) and \(f_{\text{aggr}} \) can be arbitrary differentiable, permutation-invariant functions. Both methods aggregate features of their neighbors.

WL Algorithmus

\[C_v^t = \text{enc}(C_v^{t-1}, \{C_w^{t-1} \mid w \in N(v)\}) \]

Source: Morris, Fey, Kriege, 2021
Connections of WL to other fields

WL and Deep Learning

Relations between WL and GNN

Discriminatory power of GNNs

- If a GNN distinguishes two graphs, so does the WL.
- There are functions f_{merge} and f_{aggr} so that both methods are equally strong with respect to their discriminatory power.

This result also holds for k-WL and k-GNNs.

Images: Morris, Fey, Kriege, 2021
Connections of WL to other fields

WL and Deep Learning

Relations between WL and GNN

- WL-variants can be transferred to GNN variants
- GNNs better adapt to the learning task because they learn the weights
- **However**: high resource consumption

Image source: Morris, Fey, Kriege, 2021
Weisfeiler-Leman Algorithm and its Properties
- Original Weisfeiler-Leman Algorithm
- k-dimensional WL Algorithm on Sets
- Local k-WL on Sets

Connections of WL to other fields
- Fractional Isomorphism
- WL and Deep Learning

WL for Data Analysis
- Classification with WL

Outlook and Conclusion
Classification (Supervised Learning)

Given: Training set with labelled items (classes).
Goal: Train a classifier so that a new item will be assigned to its correct class.

Sources: towardsdatascience.com/, www.ritchieng.com/logistic-regression/, medium.freecodecamp.org/
Graph (Dataset) Classification

- Generate a feature vector for each graph in the graph data set
- Use your favorite (data) classification method

Classification with Distance-based Approaches

Idea

- compute the distances (e.g. scalar products of the feature vectors) for each pair of graphs in the data set
- compute one or more separating hyperplanes in a high dimensional space (SVM)
Classification with WL, k-WL, k-LWL

Idea: Combination of WL with similarity measures

- Construct feature vector for each graph
- e.g. after each round: sort the vertices according to colors, vector gets information of number of vertices with color c
- append these (possibly weighted) vectors to each other

\[\Phi(G) = (3, 1, 1) \]
\[\Phi(H) = (3, 1, 1) \]
Classification with WL, k-WL, k-LWL

Idea: Combination of WL with similarity measures

- Construct feature vector for each graph
- e.g. after each round: sort the vertices according to colors, vector gets information of number of vertices with color c
- append these (possibly weighted) vectors to each other

$$\Phi(G) = (3, 1, 1) \quad \Phi(H) = (3, 1, 1) \quad \Phi(G) = (3, 1, 1, 2, 0, 0, 1, 1, 1, 0) \quad \Phi(H) = (3, 1, 1, 2, 1, 1, 0, 0, 1)$$
Classification with WL, k-WL, k-LWL

Idea: Combination of WL with similarity measures

- Construct feature vector for each graph
- e.g. after each round: sort the vertices according to colors, vector gets information of number of vertices with color c
- append these (possibly weighted) vectors to each other

$\Phi(G) = (3, 1, 1)$ $\Phi(H) = (3, 1, 1)$ $\Phi(G) = (3, 1, 1, 2, 0, 0, 1, 1, 1, 0)$ $\Phi(H) = (3, 1, 1, 2, 1, 1, 0, 0, 1)$

\rightarrow Similarity measure based on graph kernel, Jaccard-Coefficient, ...
Classification with WL, \(k\)-WL, \(k\)-LWL

Similarity score between each pair of graphs

- Let \(\Phi_t^i(G_i)\) be the feature vector for each graph \(G_i\) of round \(t\)
- We define: \(\Phi_t(G_i) = [\Phi_0(G_i), \ldots, \Phi_t(G_i)]\)
- Weisfeiler-Leman subtree graph kernel for \(t\) rounds:
 \[k_t(G_i, G_j) = \langle \Phi_t(G_i), \Phi_t(G_j) \rangle \]
- \(\Rightarrow\) leads to a (normalized) gram matrix
- Use this as input to a SVM (kernel trick)

\[
\Phi_1(G) = (3, 1, 1) \quad \Phi_1(H) = (3, 1, 1)
\]
Similarity score between each pair of graphs

- Let $\Phi_t^i(G_i)$ be the feature vector for each graph G_i of round t
- we define: $\Phi_t(G_i) = [\Phi_0(G_i), \ldots, \Phi_t(G_i)]$
- Weisfeiler-Leman subtree graph kernel for t rounds:
 $$k_t(G_i, G_j) = \langle \Phi_t(G_i), \Phi_t(G_j) \rangle$$
- ⇒ leads to a (normalized) gram matrix
- use this as input to a SVM (kernel trick)
Scalability: sampling for local k-LWL Algorithm

Idea: Increase scalability by sampling
- Sample a subset of the k-sets
- Explore the t-neighborhood around these sets
- Run the local k-LWL on each of the t-neighborhoods

Lemma (Morris, Kersting, M. 2017)
These k-sets get the same color as the k-LWL after t rounds.
Approximation Result

Theorem (Morris, Kersting, M. 2017)

Let G be a d-bounded degree graph and $\epsilon \in (0, 1]$.

- Then for every number of iterations t of the local k-LWL, there exists an adaptive sampling algorithm which approximates the normalized feature vector of the local k-LWL on t iterations up to ϵ with probability $(1 - \delta)$ for $\delta \in (0, 1)$.

- The running time only depends on d, k, δ, ϵ and t (not on the graph size V).

Such a result is not possible for the k-WL.
Evaluation of the k-LWL (graph kernels, SVM)

- Protein interaction networks ENZYMES
- Social networks IMDB-MULTI, REDDIT-BINARY
- Cancer dataset NCI1

Quality of the classification

Time in seconds

2-6 classes, 600-4000 graphs, 13-430 vertices, partially vertex labels

Morris, Rattan, Mutzel: NeurIPS 2020
Comparison of WL with other graph kernels

Experimental comparison of 13 different graph kernels

- 4 WL variants, one based on message passing
- 4 variants with shortest paths and random walks
- multiscale Laplacian
- subgraph matching, graphlet
- pure histograms (vertices, edges)

41 benchmark data sets from the TU Dataset: Social networks, molecule graphs, bioinformatics, computer vision

Borgwardt et al.: Graph Kernels: State-of-the-Art and future Challenges, Nov. 2020
Selection of Graph Kernels [Borgwardt et al. 2020]

Graph Similarity via Graph Kernels: Playground

Source: farmeramania.de
Outlook

- expressiveness vs. generalizability
- integration of expert knowledge
- integration of uncertainty
- integration to temporal graphs

![Graph Diagram]

![Temporal Graphs]
Outlook and Conclusion

Outlook: Temporal Graphs from fMRI Data

Student project with Dr. Xenia Kobeleva (Universitätsklinikum Bonn, DZNE) and Lutz Oettershagen

Aim

- analysis of temporal graphs constructed from fMRI data
- dynamic processes vs. static graphs with time windows

- motivation to get interested in the area of **Graph Similarity**
- plenty of opportunities for new **theoretical results** as well as **practical impact**

Source: www.whatsnext.com/what-is-motivation