Lecture 2: Graph Similarity
Part 2.1: Introduction, Structural Approaches

Professor Dr. Petra Mutzel
Computational Analytics

Computer Science

University of Bonn

UNIVERSITAT

RHEINISCHE  INSTITUT FUR
FRIEDRICH-WILHELMS-  INFORMATIK DER
UNIVERSITAT BONN  UNIVERSITAT BONN

Hausdorff School: Computational Combinatorial Optimization, September 12-16, 2022

1/62



Literature: Subgraph-lsomorphism Approaches

@ N. Kriege, A. Droschinsky, P. Mutzel: A note on block-and-bridge preserving
maximum common subgraph algorithms for outerplanar graphs, J. Graph
Algorithms Appl. 22(4), 2018

@ L. Humbeck, S. Weigang, T. Schéafer, P. Mutzel, O. Koch: CHIPMUNK: A
virtual synthesizable small molecule library for medicinal chemistry
exploitable for protein-protein interaction modulators, MFCS 2018,
ChemMedChem 6/2018, vol. 13 (6), Very Important Paper, 2018

@ A. Droschinsky, N. Kriege, P. Mutzel: Largest Weight Common Subtree
Embeddings with Distance Penalties, MFCS 2018

@ N. Kriege, F. Kurpicz, P. Mutzel: On Maximum Common Subgraph
Problems in Series-Parallel Graphs, European Journal of Combinatorics, vol.
68, 2018

@ A. Droschinsky, N. Kriege, P. Mutzel: Finding Largest Common
Substructures of Molecules in Quadratic Time, SOFSEM-FOCS 1017, LNCS
10139, 2017

2/62



Literature: Graph Edit Distance, Frobenius Distance

Lei Yang and Lei Zou: Noah: Neural-optimized A* Search Algorithm for
Graph Edit Distance Computation, |IEEE 37th Int. Conf. on Data
Engineering (ICDE) 2021, 576-587

Xiaoyang Chen, Hongwei Huo, Jun Huan, Jeffrey Scott Vitter: An efficient
algorithm for graph edit distance computation, Knowledge-Based Systems,
vol. 163, 2019

David B. Blumenthal, Johann Gamper: On the exact computation of the
graph edit distance, Pattern Recognition Letters 134, 46-57, 2020 [A* and
ILP]

Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and
Sébastien Adam: New binary linear programming formulation to compute
the graph edit distance, Pattern Recognition 72, 254-265, 2017 [ILP]

Martin Grohe, Gaurav Rattan, Gerhard J. Woeginger: Graph Similarity and
Approximate Isomorphism, 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS) 2018, LIPlcs 117, 20:1-20:16
[NP-completeness]

3/62



Introduction

Motivation: Four fundamental problems for
analyzing data (Aggarwal 2015)

Clustering Classification

< Min Sup | >Min Sup -~
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Association Pattern Mining Outlier Detection

Sources: www.geeksforgeeks.org/, towardsdatascience.com/, www.researchgate.net/
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Clustering (Unsupervised Learning)
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Clustering is the task of grouping a set of objects such that objects in the
same group (cluster) are more similar to each other than objects in
different groups.

@ many possibilities for formal definition
@ studied for a long time (statistics, data bases, machine learning)
@ recently also in TCS (e.g., data streams)

@ useful for data sparsification and sampling approaches — big data

@ popular approaches: distance-based, centroid-based (k-Means)

Sources: www.geeksforgeeks.org/, www.hipparchus.org/, www.nature.com/
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Introduction

Classification (Supervised Learning)

Population Binary classification: Multi-class classification:
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Given: Training set with labelled items (classes).
Goal: Train a classifier so that a new item will be assigned to its correct
class.

@ many variations (decisions, predictions)
@ discrete labels: mostly studied in ML community
@ continuous labels: regression mostly studied in statistics

@ popular approaches: SVMs (kernel), deep learning, k-NN, logistic
regression, Bayes classifiers, decision tree method, clustering

Sources: towardsdatascience.com/, www.ritchieng.com/logistic-regression/, medium.freecodecamp.org/

6/62



Association Pattern Mining
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Goal: find inherent regularities in the data

Frequent pattern mining: find frequent items (occuring at least minimum
support times)

Association pattern mining: generalization also based on association rules

@ widely studied in data mining
o useful for deriving similarity measures on data sets
@ useful for clustering, classification, outlier detection

Sources: medium.freecodecamp.org/, www.kdnuggets.com/
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Outlier Detection

: : Z-Score
p 3

Find data items that are different from the majority of the given data. J

@ outlier may reflect errors in the data or belong to rare events

@ methods: statistical tests, models based on spatial proximity (k-NN),
density-based methods, ...

@ methods: clustering, classification, association pattern mining

Sources: towardsdatascience.com/, www.kdnuggets.com/
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Introduction

Four fundamental problems for analyzing data
(Aggarwal 2015)

Clustering

< Min Sup | >Min Sup P

Association Pattern Mining Outlier Detection

Important basis for all these: Distances and Similarities

Sources: www.geeksforgeeks.org/, towardsdatascience.com/, www.researchgate.net/
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Introduction

When are two graphs similar?

5
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When are two graphs similar?
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Introduction

When are two graphs similar?

SURVEY
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Approaches to Graph Similarity

Structural

-

[ isomorphism-based

Frobenius dista

|

Graph embedding
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Graph Embedding

test data
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Initial metric

feature vector feature space

@ Generate a feature vector for each graph in the given graph data set

@ Use your favorite (data) classification/clustering method

Sources: https://www.kdd.org/kdd2019/accepted-papers/view/learning-interpretable-metric-between-graphs-convex-
formulation-and-computa
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Introduction

Outline for Structural Similarity Approaches

© Introduction

Q Isomorphism-based Approaches
@ Graph isomorphism
@ Subgraph Isomorphism based Approaches
@ Structural Clustering of Sets of Graphs

© Frobenius Distance

@ Graph Edit Distance
o A* Algorithm for GED
@ Integer Linear Programs for GED
@ Computational Study
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Isomorphism-based Approaches Graph isomorphism

Q Isomorphism-based Approaches
@ Graph isomorphism
@ Subgraph Isomorphism based Approaches
@ Structural Clustering of Sets of Graphs
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Isomorphism-based Approaches Graph isomorphism

When are two graphs identical?

Graph Isomorphism

Let G = (Vg, Eg) and H = (Vy, Ey) be simple graphs. A bijective
mapping 7 : Vg — Vy is called graph isomorphism if the following holds:

Vv,we Vg :(v,w) € Eg <= (m(v),n(w)) € En
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Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism

Graph Isomorphism

Let G = (Vg, Eg) and H = (Vy, Ey) be simple graphs. A bijective
mapping 7 : Vg — Vy is called graph isomorphism if the following holds:

VYv,we Vg :(v,w)
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Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism

Graph Isomorphism

Let G = (Vg, Eg) and H = (Vy, Ey) be simple graphs. A bijective
mapping 7 : Vg — Vy is called graph isomorphism if the following holds

€ Ec < (n(v),m(w)) € Ey

= Natural extension to graphs with labels and attributes
Two graphs are called isomorphic (G; ~ Gy), if a graph isomorphism exists.
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Isomorphism-based Approaches Graph isomorphism

Are these graphs isomorphic to each other?
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Isomorphism-based Approaches Graph isomorphism

Are these graphs isomorphic to each other?

16 /62



Isomorphism-based Approaches Graph isomorphism

Are these graphs isomorphic to each other?

SURVEY
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Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism Problem

Definition (Graph Isomorphism Problem)

Given: simple graphs G and H
Find: Is G isomorphic to H, i.e., G ~ H?
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Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism Problem

Definition (Graph Isomorphism Problem)

Given: simple graphs G and H
Find: Is G isomorphic to H, i.e., G ~ H?

Remarks:

o If graphs have vertex and/or edge labels or attributes, definition will
be extended to the labels (various possibilities)
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Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism Problem

Definition (Graph Isomorphism Problem)

Given: simple graphs G and H
Find: Is G isomorphic to H, i.e., G ~ H?

Remarks:
o If graphs have vertex and/or edge labels or attributes, definition will
be extended to the labels (various possibilities)

@ Complexity: OPEN
e Quasipolynomial algorithm: n(°eM°"” [Babai 2015/17]

@ Practice: mostly solvable very fast

— Weisfeiler-Leman algorithm (Lecture on Friday)

— We want: graph similarity
17/62



Subgraph Isomorphism based Approaches
Maximum Common Subgraph Problem (MCS)

Definition (MCS)

Given: G = (VG, EG) und H = (VH, EH)

Find: Largest vertex sets R C Vi and S C Vy, such that the induced
subgraphs G[R] and H[S] are isomorphic to each other.

Complexity: Decision problem is NP-complete
18/62



Subgraph Isomorphism based Approaches
Maximum Common Subgraph Problem (MCS)

@ many variants: vertex or edge induced subgraphs
@ in practice: consider node/edge labels and attributes
@ complexity: decision problem is NP-complete

@ widely studied in Cheminformatics
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Motivation: Rational Drug Design

@ Which molecules are active against disease X?

@ Which molecules have a similar function/effect? (Reduction of side
effects)

@ Which molecules may have an increased effectiveness?

@ High-throughput screening for promising candidates

e
NN~ #°
¢
/ CH,

@ Molecules can be modelled as graphs with attributes
@ Direct relationship between structure and effects

— Graph similarity

20/ 62



Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Properties of Molecule Graphs
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@ almost always planar, often outerplanar
@ bounded tree width
@ bounded degree

@ have vertex and edge labels (e.g. activity attributes)
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Maximum Common Subgraph Problem (MCS)

@ polynomial time algorithms for trees and outerplanar G J

@ NP-complete for partial k-trees for k = 11 with bounded node degree

Kriege, Kurpicz, Mutzel 2018
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Analysis of the Chemical Problem

CH, ( CHy
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@ Rings and bridges shall be preserved

@ very important in Cheminformatics

— Block-and-bridge preserving MCS — simpler
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Subgraph lsomorphism based Approaches
Block/Bridge MCS
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@ polynomial algorithm for block/bridge MCS for partial 2-trees

@ generalizes results for trees and outerplanar G

@ ldea: BC-tree and SPQR-tree decomposition

@ NP-completeness of MCS for biconnected partial 2-trees with almost

all vertices of degree bounded by 3

Kriege, Kurpicz, Mutzel 2018, Gutwenger, Mutzel 2000, Kriege, Mutzel 2014 24 /62



Subgraph Isomorphism based Approaches
Maximum Common Subgraph Embedding

OH

Cl Cl

OH

Cl Cl

Upper: MCS, Lower: MCS Embedding of Melphalan in Chlorambucil
@ bridges (single edges) maybe mapped to paths of bridges
@ — Largest Weight Common Subtree Embeddings

Droschinsky, Kriege, Mutzel 2018
25 /62



Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Overview of Algorithmic Results

Largest Wei First
algorithms

( Maximum \ BBP-MCS
Common Subtree (outerplana
improved
\

" All-Cavity Maximum | | Biconnected MCS |
Weight Matching ‘ (outerplanar)

Enumeration of all maximum solutions

Droschinsky Dissertation 2021, Droschinsky, Kriege, Mutzel 2016, 2017, 2018, Kriege, Kurpicz,
Mutzel 2017, 2018
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Structural Clustering of Sets of Graphs
Clustering of Graphs with Subgraph-lsomorphism

Clustering of graphs
Given: set of graphs X = {G,..., G}
Goal: find a clustering of X that

@ maximizes cluster homogenity
@ separates cluster from each other
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Structural Clustering of Sets of Graphs
Clustering of Graphs with Subgraph-lsomorphism

Clustering of graphs
Given: set of graphs X = {G,..., G}
Goal: find a clustering of X that

@ maximizes cluster homogenity
@ separates cluster from each other

Setting in drug design
@ small graphs

o huge nur IbEI OI glapl S (>> 10 )
fz x\.

Jr x\ % f“}“ﬁ\ ﬂ"“"xu %
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Structural Clustering of Sets of Graphs
Clustering of Graphs with Subgraph-lsomorphism

Clustering of graphs
Given: set of graphs X = {G,..., G}
Goal: find a clustering of X that

@ maximizes cluster homogenity
@ separates cluster from each other

Setting in drug design
@ small graphs
@ huge number of graphs (>> 10°)
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Isomorphism-based Approaches Structural Clustering of Sets of Graphs

Structural Clustering (StruClus)

g
H%gj‘z ’“‘7;%{ ﬁ* e h/ \;;&f g

S X O

e S S

sets of representatwes for clusters — interpretability
similarity measure based on common subgraphs

new error-bounded sampling strategy for support counting
linear running time — scalable

@ parallelisable — very fast in practice

Mutzel, Schifer, 2017, 2022
29/62



Structural Clustering of Sets of Graphs
Rational Drug Design: GraBaDrug

DFG SPP Algorithms for Big Data

@ explorative analysis of molecule data bases < Scaffold Hunter
@ similarity search on molecular structures <— graph similarity, clustering

@ creation of virtual molecule data bases for drug design
< CHIPMUNK: 95 mio. molecules with < 700 atoms, 90 attributes

Nature Chem. Biol. 2009: Wetzel, Klein, Renner, Rauh, Oprea, Mutzel, Waldmann
ChemMedChem 2018: Humbeck, Weigang, Schifer, Mutzel Koch + Cover Feature, ...
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Isomorphism-based Approaches Structural Clustering of Sets of Graphs

CHIPMUNK: A Virtual Synthesizable
Small-Molecule Library for Medicinal Chemistry

CHEMMEDCHEM

CHEMISTRY ENABLING DRUG DISCOVERY

%‘r

for
WILEY-VCH

Humbeck, Weigang, Schifer, Mutzel, Koch ChemMedChem 2018 + Cover Feature 31/62



Frobenius Distance

© Frobenius Distance
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Frobenius Distance

Motivation: Permutation of Adjacency Matrices

32/62



Frobenius Distance

Motivation: Permutation of Adjacency Matrices

isomorphic graphs, different
drawings,
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Frobenius Distance

Motivation: Permutation of Adjacency Matrices

2 1
2
isomorphic graphs, different
drawings,
3 1
4

0110 0110
1 010 1 011
1101 1100
0 010 0100
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Frobenius Distance

Motivation: Permutation of Adjacency Matrices

2 1
2
isomorphic graphs, different
drawings,
3 1
4

0110 0110

1 010 101 1 different numbering of
110 1 1100 vertices, different adjacency
0 010 0100 matrices
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Frobenius Distance

Motivation: Permutation of Adjacency Matrices

2 1
2
isomorphic graphs, different
drawings,
3 1
4

0110 0110

1 010 101 1 different numbering of
110 1 1100 vertices, different adjacency
0 010 0100 matrices

Aim: Permute the vertex set of one of the graphs in order to minimize the
number of edge mismatches (0 vs. 1) J

32/62



Frobenius Distance

Frobenius Distance

LN
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0
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1
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Idea: Permute vertex set of G in order to minimize the number of
edge mismatches w.r.t. H

Given G and H with their adjacency matrices A and B

Search a permutation of rows and columns of A minimizing the
Frobenius norm of the matrix A, — B:

4~ 61 =23 (a7 — by

NP-hard even if G and H are trees or if G is a path [Grohe et al. 2018]
33/62




Graph Edit Distance

@ Graph Edit Distance
e A* Algorithm for GED
@ Integer Linear Programs for GED
e Computational Study
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Graph Edit Distance

Idea
@ Compute the minimum cost to transform G into H
o allowed operations, e.g.,

@ vertex or edge insertion
o vertex or edge deletion
o vertex or edge substitution

@ graph editing problem is NP-hard

@ used in Cheminformatics and Bioinformatics

34/62



Motivation for Graph Edit Distance

Widely used, since
@ it can precisely capture the structural differences between graphs
it is very flexible due to arbitrary edit costs

error-tolerant

o
o
@ controllable sensitivity to changes
°

can be applied to all types of graphs

Source: gedevo.mpi-inf.mpg.de 35/62



Edit Path for Labelled Graphs

Definition (Cost of an edit path)
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Edit Path for Labelled Graphs

Definition (Cost of an edit path)

@ A labeled graph is denoted as G = (V, E, Ly, Lg), where Ly and Lg
are label functions that assign labels to vertices and edges, resp.
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Edit Path for Labelled Graphs

Definition (Cost of an edit path)
@ A labeled graph is denoted as G = (V, E, Ly, Lg), where Ly and Lg
are label functions that assign labels to vertices and edges, resp.

@ Given are two labeled graphs. An edit path is given by a sequence of
primitive edit operations to transform Gj to Gy, such as
GI=G)— Gl —» - = Gf= G,.
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Edit Path for Labelled Graphs

Definition (Cost of an edit path)

@ A labeled graph is denoted as G = (V, E, Ly, Lg), where Ly and Lg
are label functions that assign labels to vertices and edges, resp.

@ Given are two labeled graphs. An edit path is given by a sequence of
primitive edit operations to transform G; to Go, such as
GI=G)— Gl —» - = Gf= G,.

@ Primitive edit operations are

o deleting u; — € or inserting an a-labeled node (e — u;)
o deleting or inserting an a-labeled edge
e changing a node’s (u; — v;) or an edge’s label from « to 3
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Edit Path for Labelled Graphs

Definition (Cost of an edit path)

@ A labeled graph is denoted as G = (V, E, Ly, Lg), where Ly and Lg
are label functions that assign labels to vertices and edges, resp.

@ Given are two labeled graphs. An edit path is given by a sequence of
primitive edit operations to transform Gj to Gy, such as
GI=G)— Gl —» - = Gf= G,.

@ Primitive edit operations are

o deleting u; — € or inserting an a-labeled node (e — u;)
o deleting or inserting an a-labeled edge
e changing a node’s (u; — v;) or an edge’s label from « to 3

o Edit operations on vertices and edges come with associated
non-negative edit costs cy and cg.
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Edit Path for Labelled Graphs

Definition (Cost of an edit path)

@ A labeled graph is denoted as G = (V, E, Ly, Lg), where Ly and Lg
are label functions that assign labels to vertices and edges, resp.

@ Given are two labeled graphs. An edit path is given by a sequence of
primitive edit operations to transform Gj to Gy, such as
GI=G)— Gl —» - = Gf= G,.

@ Primitive edit operations are

o deleting u; — € or inserting an a-labeled node (e — u;)
o deleting or inserting an a-labeled edge
e changing a node’s (u; — v;) or an edge’s label from « to 3

o Edit operations on vertices and edges come with associated

non-negative edit costs cy and cg.

@ The cost of an edit path is defined as the sum of the costs of its edit
operations.
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Graph Edit Distance

Definition (Graph Edit Distance (GED))

@ The GED(G;, Gy) of two labeled graphs G; and G; is defined as the
minimum cost of an edit path from G; to Go.
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Graph Edit Distance

Definition (Graph Edit Distance (GED))

@ The GED(G;, Gy) of two labeled graphs G; and G; is defined as the
minimum cost of an edit path from G; to Go.

@ GEDs are not unique in general.

@ Algorithms for GED restrict their attention to those edit paths
induced by a node map between G and H.
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Approaches for computing an optimal GED

Approaches for computing an optimal GED
@ A* algorithm for graph edit distance

@ Integer Linear Programming for GEDs
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Approaches for computing an optimal GED
@ A* algorithm for graph edit distance

@ Integer Linear Programming for GEDs

Algorithms for GED restrict their attention to those edit paths induced by
a node map between G and H.
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Graph Edit Distance A* Algorithm for GED

© Introduction

Q Isomorphism-based Approaches

© Frobenius Distance

@ Graph Edit Distance
e A* Algorithm for GED
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GGl enlilcED
A* Algorithm for Graph Edit Distance

Idea of A*
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A Algorithm for GED
A* Algorithm for Graph Edit Distance

Idea of A*

@ compute all possible mappings between the vertices of the given two
graphs by means of an ordered search tree
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A Algorithm for GED
A* Algorithm for Graph Edit Distance

Idea of A*

@ compute all possible mappings between the vertices of the given two
graphs by means of an ordered search tree

e vertices of Gy are processed in the order {u1, ..., upy,}

@ start with vz, and iteratively construct partial edit paths mapping u;
to vertices vj,j = 1,...,|Vo| [source: Chen et al. 2019

Uy u2

® : ® two edge dels ®
@—-0©

a
us Ug

G

Layer 7
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GGl enlilcED
A* Algorithm for Graph Edit Distance

Idea of best-first search paradigm A*
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A Algorithm for GED
A* Algorithm for Graph Edit Distance

Idea of best-first search paradigm A*

@ let p be a partial edit path from Gy to current vertex v
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@ let g(p) be the cost of p from G; to current vertex v,
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A Algorithm for GED
A* Algorithm for Graph Edit Distance

Idea of best-first search paradigm A*
@ let p be a partial edit path from Gj to current vertex v
@ let g(p) be the cost of p from G; to current vertex v,

@ and h(p) be an estimated cost from v to G, (a leaf node in tree)
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A Algorithm for GED
A* Algorithm for Graph Edit Distance

Idea of best-first search paradigm A*
@ let p be a partial edit path from Gj to current vertex v
@ let g(p) be the cost of p from G; to current vertex v,
@ and h(p) be an estimated cost from v to G, (a leaf node in tree)

o for further expansion choose the partial edit path p that minimizes

g(p) + h(p) )
u g uy Uz uy ug v
‘3.9 arir @ D, ® @ @
b -—— al| ---- al ---- a
®—0© ®—© . ®+C+®
uz Uy uz uy uz ug v3 V4 v2
G G1 Q1 Q

Layer 7
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A 5 (27 EED
Estimated cost of edit paths

For ease of notation we assume unit edit costs 1 for all edit operations

Possible approaches for estimating h(p)

@ label set-based lower bound
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A 5 (27 EED
Estimated cost of edit paths

For ease of notation we assume unit edit costs 1 for all edit operations

Possible approaches for estimating h(p)

@ label set-based lower bound
o compare the labels of the remaining vertices and edges
o sum up the difference (e.g. 5 vs. 3 « labels — 2)

@ star match-based lower bound

o build stars of the remaining vertices by adding the direct neighbors
e compare the stars using the Hungarian algorithm (weighted bipartite
matching)
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Graph Edit Distance A* Algorithm for GED

Discussion

Analysis and Improvements

@ the worst case running time is n!

Layer 7

2 up —emememe > (vaf
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i w@O®

Details: see Chen et al. 2019
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Graph Edit Distance A* Algorithm for GED

Discussion

Analysis and Improvements
@ the worst case running time is n!

@ — only very small graph instances can be computed exactly

Layer 7

2 up —emememe > (vaf
3 u4——) @
i w@O®

Details: see Chen et al. 2019
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Graph Edit Distance A* Algorithm for GED

Discussion

Analysis and Improvements
@ the worst case running time is n!

@ — only very small graph instances can be computed exactly
@ reduce the search space
o identify redundant and invalid mappings
@ prune the search space
e heuristic improvement: beam search (only follow a constant number of
most promising partial edit paths)

Layer 7

Details: see Chen et al. 2019

42/62



Graph Edit Distance Integer Linear Programs for GED

© Introduction

Q Isomorphism-based Approaches

© Frobenius Distance

@ Graph Edit Distance

@ Integer Linear Programs for GED
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112527 M2 oz i (e D
Integer Quadratic Program IQP-GED

GED can naturally be written as an integer quadratic program (IQP).

Introducing dummy nodes:
o Let V¢10 denote V@ extended by the dummy node for vertex
insertion.
o Let VH10 denote VH extended by the dummy node for vertex
deletion.
@ A mapping from dummy node ¢ denotes an insertion to V¥, and

@ a mapping to e corresponds to a deletion in V©.
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Introducing dummy nodes:
o Let V¢10 denote V@ extended by the dummy node for vertex
insertion.
o Let VH10 denote VH extended by the dummy node for vertex
deletion.
@ A mapping from dummy node ¢ denotes an insertion to V¥, and

@ a mapping to e corresponds to a deletion in V©.

Binary variables:

e Foralli e VET0 k € VH*0 we introduce variables x; y = 1
< node / is mapped to k
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112527 M2 oz i (e D
Integer Quadratic Program IQP-GED

Binary variables:

e Forall i € VE*0 k € VH+0 we introduce variables x; x = 1
< node 7 is mapped to k

S0 avliskxin+ Y. > celii kxiwxi

JEVEH0 ke vH+0 i, jEVEHO k |e VHHO
> oxiw =1 VieVve© (1)
kevH+0
> ik =1 VkeVH (2)
ieve+o
xik €{0,1} V(i, k) € VETO x vHTO (3)
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112527 M2 oz i (e D
Integer Quadratic Program IQP-GED

Binary variables:

e Forall i € VE*0 k € VH+0 we introduce variables x; x = 1
< node 7 is mapped to k

S0 avliskxin+ Y. > celii kxiwxi

i€ VG0 ke \yH+0 ije Vv G+0 k,le \V/H+0
> oxiw =1 VieVve© (1)
kevH+0
> ik =1 VkeVH (2)
%
xix €40,1} V(i k) e VCet0 x yHFO (3)

Observation

If both graphs have n vertices, then the IQP-GED formulation contains
(n+ 1)2 binary variables and (n + 1)? + 2n constraints.
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112527 M2 oz i (e D
Integer Quadratic Program IQP-GED

Lemma

Let G and H be graphs and (x*) be an optimal solution to the IQP-GED.

© Then (x*) corresponds to a mapping of each vertex in G to either a
vertex in H or to a deletion (V"*0), and vice versa: A mapping to
each vertex in H from either a vertex in G or from an insertion
(VC+9) (whereby a mapping from ¢ denotes an insertion, and a
mapping to e corresponds to a deletion).
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Lemma
Let G and H be graphs and (x*) be an optimal solution to the IQP-GED.

© Then (x*) corresponds to a mapping of each vertex in G to either a
vertex in H or to a deletion (V"*0), and vice versa: A mapping to
each vertex in H from either a vertex in G or from an insertion
(VC+9) (whereby a mapping from ¢ denotes an insertion, and a
mapping to e corresponds to a deletion).

@ Such a mapping induces a set of feasible edit paths from G to H.

© The costs of each edit path induced by the mapping (x*) is equal to
the objective value of the IQP-GED.

@ Every edit path induces a mapping from V610 to VH*0 satisfies
constraints (1) — (3) of IQP-GED, and the costs coincide.

v

Notice: We do not require constraints (1) and (2) for the dummy vertices,

since we introduced exactly one dummy vertex for G and one for H.
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Graph Edit Distance Integer Linear Programs for GED

Linearization of Integer Quadratic Programs

Quadratic programs with linear constraints can be transformed into linear
programs. Example:

min > > "7z, + Y cuz (4)

ueVveVv uevVv
Zzu =1 Yv eV (5)
ueV
Yz, =1 VueV (6)
vev
z, €{0,1} Y(uv)eVxV (7)
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Graph Edit Distance Integer Linear Programs for GED

Linearization of Integer Quadratic Programs

Quadratic programs with linear constraints can be transformed into linear
programs. Example:

min > > "7z, + Y cuz (4)

ueVveVv uevVv
Zzu =1 VYveV (5)
ueV
Yz, =1 VueV (6)
veVv

z, €{0,1} Y(u,v) eV xV (7)
Introduce new binary variables and constraints:

@ For all u,v € V we introduce new variables y, , =1
& zo,=1land z, =1
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Graph Edit Distance Integer Linear Programs for GED

Linearization of Integer Quadratic Programs

Quadratic programs with linear constraints can be transformed into linear
programs. Example:

min > > "7z, + Y cuz (4)

ueVveVv uevVv
Zzu =1 VYveV (5)
ueV
Yz, =1 VueV (6)
veVv

2, €{0,1} Y(uv)eVxV (7)

Introduce new binary variables and constraints:

@ For all u,v € V we introduce new variables y, , =1
& zo,=1land z, =1

@ We need additional constraints that guarantee the above rule during the
optimization process. Here: y, , > z, + z, — 1.
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i (e e 20
Back to: Integer Quadratic Program IQP-GED

GED can naturally be written as an integer quadratic program.

Binary variables:

e Forall i€ VC*0 k € VH*+0 we introduce variables x; x = 1
< node / is mapped to k

ST i kit Yo D> celil kxikxi

jieVEeto ke vH+0 ijEVCHO k |cVHHO
Z Xi k =1 Vi e VG (8)
ke VH+0
Z Xi k =1 Vk € VH (9)
ievG+o
xix €1{0,1} V(i k) € VETO x yHHO (10)



Integer Linear Programs for GED
Standard Linearization of IQP-GED: LIQP-GED

Binary variables:

e Forall i€ V6*0 k € VH*+0 we introduce variables x; x = 1
< node 7 is mapped to k
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Integer Linear Programs for GED
Standard Linearization of IQP-GED: LIQP-GED

Binary variables:
e Forall i€ V6*0 k € VH*+0 we introduce variables x; x = 1
< node 7 is mapped to k
e Forall i,j € VC*0 k 1 € VH*0 we introduce variables y; , ;= 1
< Xjk=1and x;; =1
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Graph Edit Distance Integer Linear Programs for GED

Standard Linearization of IQP-GED: LIQP-GED

Binary variables:

e Forall i€ V6*0 k € VH*+0 we introduce variables x; x = 1
< node 7 is mapped to k

e Forall i,j € VC*0 k 1 € VH*0 we introduce variables y; , ;= 1
< Xjk=1and x;; =1

DI SIIITEED DD SIY:

jeVG+0 ke vH+0

g Xi k

ke VH+0
g Xi k

ie v G+0
Xik + Xj,1 = Yik,j,I
Xi, k

Yisk,j,1

1

<1
e {0,1}
e {0,1}

ijEVEHO K |eyH+O

Vie Ve

vk e vh

Vi,je Ve vk, I e vHTO

V(i k) € VOO x vHTo
Vi,je Vet vk | e vHTO

U,k/ Vi k,j,l

(13)
(14)

(15)
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Integer Linear Programs for GED
Standard Linearization of IQP-GED: LIQP-GED

Lemma

The formulation LIQP-GED is equivalent to IQP-GED, in particular, a
feasible solution of LIQP-GED corresponds to a feasible solution IQP-GED,
and vice versa. The cost of the optimal solution is the same in both cases.

Proof: =
@ Let (x',y’) be a feasible solution to LIQP-GED. From this we take the
first part and claim that x’ is also a feasible solution of IQP-GED,

since it satisfies constraints (8) to (10).
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since it satisfies constraints (8) to (10).

@ The first part of the objective functions is the same in both
formulations, we will concentrate on the second part.
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Integer Linear Programs for GED
Standard Linearization of IQP-GED: LIQP-GED

Lemma

The formulation LIQP-GED is equivalent to IQP-GED, in particular, a
feasible solution of LIQP-GED corresponds to a feasible solution IQP-GED,
and vice versa. The cost of the optimal solution is the same in both cases.

Proof: =

@ Let (x',y’) be a feasible solution to LIQP-GED. From this we take the
first part and claim that x’ is also a feasible solution of IQP-GED,
since it satisfies constraints (8) to (10).

@ The first part of the objective functions is the same in both
formulations, we will concentrate on the second part.

@ In the case that y;, ., = 0, then because of (13) we have that either
i =0 or x;; = 0. But then this leads to a contribution of 0 in both
objective functions.
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Integer Linear Programs for GED
Standard Linearization of IQP-GED: LIQP-GED

Proof: «:

@ Let (x’) be a feasible solution to IQP-GED. From this we assign a
vector (x,y') with y/, . = x; ,x;; and claim that it is feasible for
LIQP-GED. Since 0 < yi,k,j/ <1, constraint (13) is valid.
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Proof: <:

@ Let (x’) be a feasible solution to IQP-GED. From this we assign a
vector (x,y') with y/, . = x; ,x;; and claim that it is feasible for
LIQP-GED. Since 0 < y,-”k,j’, <1, constraint (13) is valid.

@ The first part of the objective functions is the same in both
formulations, we will concentrate on the second part.

@ In the case that y:{,kJ,/ = 0, the contribution to both objective
functions is 0.
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Standard Linearization of IQP-GED: LIQP-GED

Proof: <:

@ Let (x’) be a feasible solution to IQP-GED. From this we assign a
vector (x,y') with y/, . = x; ,x;; and claim that it is feasible for
LIQP-GED. Since 0 < y,-”k,j’, <1, constraint (13) is valid.

@ The first part of the objective functions is the same in both
formulations, we will concentrate on the second part.

@ In the case that y;’k,J-’, = 0, the contribution to both objective
functions is 0.

o Otherwise, y;, ., =1, and we have x;, = x;; = L. In both objective
functions, we get the same contribution of cg(ij, k/).
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Integer Linear Programs for GED
Standard Linearization of IQP-GED: LIQP-GED

Proof: <:

@ Let (x’) be a feasible solution to IQP-GED. From this we assign a
vector (x,y') with y/, . = x; ,x;; and claim that it is feasible for
LIQP-GED. Since 0 < y,-”k,j’, <1, constraint (13) is valid.

@ The first part of the objective functions is the same in both
formulations, we will concentrate on the second part.

@ In the case that y;’k,J-’, = 0, the contribution to both objective
functions is 0.

o Otherwise, y;, ., =1, and we have x;, = x;; = L. In both objective
functions, we get the same contribution of cg(ij, k/).

Observation

If both graphs have n vertices, then the LIQP-GED formulation contains
(n+1)2 + (n+ 1)* binary variables and (n+ 1)? +2(n+ 1)* +2n
constraints.
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Graph Edit Distance Integer Linear Programs for GED

Alternative Binary Integer Linear Program:
BIP-GED

Formulation by Lerouge et al. 2017
Binary variables:

@ Forall ie V¢ ke VM we introduce variables Xjik =1
< node / is mapped to k

e For all edges (i,j) € E® and (k, /) € EH we introduce variables
wij ki = 1 < edge (i, /) is mapped to edge (k,/)
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Binary Integer Linear Program BIP-GED

min E E (Ciik — Cire = Ce k) Xik + E E (Cij, ki — Cij,e — Ceut)Wij i + C

i€EVE keVH jEEC kIcEH

> Xk <1 VieVve (16)

kevH
> xik <1 VkeVH (17)

ieve
S Wi —Xik—xu <0 Vke VP (i j)eE® (18)

I:(k,I)€EH

xix €{0,1} V(i,k)e Vv xVvH (19)

win €1{0,1} V(i,j)€ EC,VY(k,1) € E"  (20)

C= Z Cie t+ Z Ce,k + Z Cije + Z Ce, ki

ieve kevH jEEC kleEH

with constant
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Graph Edit Distance Integer Linear Programs for GED

Binary Integer Linear Program BIP-GED

Lemma

Let G and H be graphs and (x*, w*) be an optimal solution to the
BIP-GED with value z*. Then we have

GED(G,H) = z*.
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Binary Integer Linear Program BIP-GED

Lemma

Let G and H be graphs and (x*, w*) be an optimal solution to the
BIP-GED with value z*. Then we have

GED(G,H) = z*.

Observation

If both graphs have n vertices and m edges, then the BIP-GED
formulation has n? + m? variables and n? + m? + nm + 2n constraints.

53 /62




Mixed Integer Linear Program MIP-GED

Binary variables x and continuous variables z:
@ Forall i€ VC*0 k e VHF0 we introduce variables x; 4 = 1
< node (or dummy node) i is mapped to k
@ Forall i € VE10 k € VH+0 we introduce variables z;  that contain
the edit cost that is induced by mapping i to k, given all other node
assignments.
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Mixed Integer Linear Program MIP-GED

Binary variables x and continuous variables z:
@ Forall i€ VC*0 k e VHF0 we introduce variables x; 4 = 1
< node (or dummy node) i is mapped to k
@ Forall i € VE10 k € VH+0 we introduce variables z;  that contain
the edit cost that is induced by mapping i to k, given all other node
assignments.

The constants u; , are defined as

uik = cv(i, k) + Z Z e U’kl

je VG+0 [ yH+0
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Mixed Integer Linear Program MIP-GED

min E Z Zj k

e VG0 ke yH+0

Y Xk =1 VieVve (21)
kEVH+O
Z xixk =1 VkevH (22)
jevGeto

> > el 3

JjEVGHO [y H+0

—I-Cv(i, k) — (]. — x,-,k)u;,k < Zj k V(i, k) € VG+O X VH+0 (24)
xix €1{0,1} V(i k) € V€O x vHTO (25)
zik >0 V(i k)€ VCeTOx vHTO (26)
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Mixed Integer Linear Program MIP-GED

Lemma

Let G and H be graphs and (x*, z*) be an optimal solution to the
MIP-GED. Then we have

GED(G,H)= > > z

ie VG+0 ke yH+O
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Graph Edit Distance Integer Linear Programs for GED

Mixed Integer Linear Program MIP-GED
Lemma

Let G and H be graphs and (x*, z*) be an optimal solution to the
MIP-GED. Then we have

GED(G,H)= > > z

ie VG+0 ke yH+O

Proof: Case 1: x;, =0 for i € VE+0 and k € VHFO
e Constraint (24) gives:

CE(Ua k/) .
Zik > Z Z — Xt cv(i, k) —ujx =0
jevG+0 |e VH+0

@ Since the objective function minimizes the (sum of the) z-values, it

will end up with z; , = 0. The contribution to the objective function is
0 as in the formulation IQP-GED.
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Graph Edit Distance Integer Linear Programs for GED

Proof of Lemma ff

Case 2: x}, = 1for i€ V6*0 and k € VH+0
o Constraint (24) gives:

ce(ij, ki )
Zjg > Z Z E(é)xj,l+CV(lvk)

je VG+0 [ VH+0

For all xj = 0 the contribution to the sum is 0, which is true also for
the objective function of IQP-GED. )

For all xj = 1 the contribution to the sum is CE(g’k/)

ce(ij, kI) is the edit cost for changing edge (/,)) to (k, /).

Constraint (24) gives half of that to z; 4 and half of it to z; ;.

The sum of the contribution to the objective function for z; , and for
z; | is exactly the same as in the formulation IQP-GED.
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Graph Edit Distance Integer Linear Programs for GED

Proof of Lemma ff

Case 2: x}, = 1for i€ V6*0 and k € VH+0
o Constraint (24) gives:

ce(ij, ki )
Zjg > Z Z E(é)xj,l+CV(lvk)

je VG+0 [ VH+0

For all xj = 0 the contribution to the sum is 0, which is true also for
the objective function of IQP-GED. )

For all xj = 1 the contribution to the sum is CE(g’k/)

ce(ij, kI) is the edit cost for changing edge (/,)) to (k, /).

Constraint (24) gives half of that to z; 4 and half of it to z; ;.

The sum of the contribution to the objective function for z; , and for
z; | is exactly the same as in the formulation IQP-GED.

Observation
If both graphs have n vertices, then the MIP-GED formulation contains
2(n + 1)? variables and 3(n + 1) + 2n constraints.
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o) Sy
Computational Study by Blumenthal and Gamper

Test Set Up

@ Comparison of performance of A*-based approaches
o A*-GED (based on best-first search)
o DF-GED (basically A* with depth-first search)
o CSI-GED (basically edge-based A*)
with ILP-based approaches

e BIP-GED
e MIP-GED

Source: Blumenthal and Gamper 2020
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o) Sy
Computational Study by Blumenthal and Gamper

Test Set Up

@ Comparison of performance of A*-based approaches
o A*-GED (based on best-first search)
o DF-GED (basically A* with depth-first search)
o CSI-GED (basically edge-based A*)
with ILP-based approaches
e BIP-GED
o MIP-GED

o data sets PROTEIN, GREC, LETTERS from the IAM graph database

@ timeouts: percentage of graph comparisons where the algorithm has
not finished within 1000 seconds

@ runtime: average runtime across pairwise comparisons

Source: Blumenthal and Gamper 2020
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(e N COANEENICMN Computational Study

Experimental Results

—<— (CSI-GED (generalised)* DF-GED (original)
—6&— MIP-GED * —H— BIP-GED
LETTER (H) LETTER (H)
103 ‘ = 100 ! -
o 102 E = S
S E 1SS
2 ok E = "l )
5 - I
g 10°!l g = §
s 102k 5 E 25| -
2 103 - e =
10—4 [ T | ] 0 7@ @ ;Hf
31 6+1 941 31 6+1 941
number of nodes number of nodes

A*-GED algorithm often failed and needed much more storage, therefore it
is omitted from the plots

Source: Blumenthal and Gamper 2020
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(e N COANEENICMN Computational Study

Experimental Results

—<+— (CSI-GED (generalised)* DF-GED (original)
—&— MIP-GED * —H— BIP-GED
GREC
10> | E .
g 102 F E S
g 10k = 2 -
E o0 E 2 N
E 0l E s
E 1072 g £ =
2 1073 = E B
107 [ 1 L L] N
351 9x1  15+1 211 3+1  9x1  15+1 211
number of nodes number of nodes

Source: Blumenthal and Gamper 2020
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(e N COANEENICMN Computational Study

Experimental Results

—<+— (CSI-GED (generalised)* DF-GED (original)
—&— MIP-GED * —H— BIP-GED
PrOTEIN PROTEIN
103 e 100
. 2 ]
Q 102 E E &Q
1) = E
Z wo'p = s "
o 100k £ 2
0 E E S 50
E w0l = 3
- [— =
-2 - 25
S 02k e g
10-4 £ L \ &
3+1 9+1 151 21+ 1 3+1 9+1 15+1 21+1
number of nodes number of nodes

Source: Blumenthal and Gamper 2020
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Gy
Conclusion and Open Problems

o Graph Edit Distance is widely used in practice

@ However, exact approaches seem to work for graphs with up to 20
vertices

@ Practitioners use heuristics

@ new exact approaches necessary

Source: Blumenthal and Gamper 2020
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