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L. Humbeck, S. Weigang, T. Schäfer, P. Mutzel, O. Koch: CHIPMUNK: A
virtual synthesizable small molecule library for medicinal chemistry
exploitable for protein-protein interaction modulators, MFCS 2018,
ChemMedChem 6/2018, vol. 13 (6), Very Important Paper, 2018

A. Droschinsky, N. Kriege, P. Mutzel: Largest Weight Common Subtree
Embeddings with Distance Penalties, MFCS 2018

N. Kriege, F. Kurpicz, P. Mutzel: On Maximum Common Subgraph
Problems in Series-Parallel Graphs, European Journal of Combinatorics, vol.
68, 2018

A. Droschinsky, N. Kriege, P. Mutzel: Finding Largest Common
Substructures of Molecules in Quadratic Time, SOFSEM-FOCS 1017, LNCS
10139, 2017

2 / 62



Literature: Graph Edit Distance, Frobenius Distance

Lei Yang and Lei Zou: Noah: Neural-optimized A∗ Search Algorithm for
Graph Edit Distance Computation, IEEE 37th Int. Conf. on Data
Engineering (ICDE) 2021, 576-587

Xiaoyang Chen, Hongwei Huo, Jun Huan, Jeffrey Scott Vitter: An efficient
algorithm for graph edit distance computation, Knowledge-Based Systems,
vol. 163, 2019

David B. Blumenthal, Johann Gamper: On the exact computation of the
graph edit distance, Pattern Recognition Letters 134, 46-57, 2020 [A∗ and
ILP]

Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and
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Introduction

Motivation: Four fundamental problems for
analyzing data (Aggarwal 2015)

Clustering Classification

Association Pattern Mining Outlier Detection

Sources: www.geeksforgeeks.org/, towardsdatascience.com/, www.researchgate.net/
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Introduction

Clustering (Unsupervised Learning)

Clustering is the task of grouping a set of objects such that objects in the
same group (cluster) are more similar to each other than objects in
different groups.

many possibilities for formal definition

studied for a long time (statistics, data bases, machine learning)

recently also in TCS (e.g., data streams)

useful for data sparsification and sampling approaches → big data

popular approaches: distance-based, centroid-based (k-Means)

Sources: www.geeksforgeeks.org/, www.hipparchus.org/, www.nature.com/
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Introduction

Classification (Supervised Learning)

Given: Training set with labelled items (classes).
Goal: Train a classifier so that a new item will be assigned to its correct
class.

many variations (decisions, predictions)

discrete labels: mostly studied in ML community

continuous labels: regression mostly studied in statistics

popular approaches: SVMs (kernel), deep learning, k-NN, logistic
regression, Bayes classifiers, decision tree method, clustering

Sources: towardsdatascience.com/, www.ritchieng.com/logistic-regression/, medium.freecodecamp.org/
6 / 62



Introduction

Association Pattern Mining

Goal: find inherent regularities in the data
Frequent pattern mining: find frequent items (occuring at least minimum
support times)
Association pattern mining: generalization also based on association rules

widely studied in data mining

useful for deriving similarity measures on data sets

useful for clustering, classification, outlier detection

Sources: medium.freecodecamp.org/, www.kdnuggets.com/
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Introduction

Outlier Detection

Find data items that are different from the majority of the given data.

outlier may reflect errors in the data or belong to rare events

methods: statistical tests, models based on spatial proximity (k-NN),
density-based methods, ...

methods: clustering, classification, association pattern mining

Sources: towardsdatascience.com/, www.kdnuggets.com/
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Introduction

Four fundamental problems for analyzing data
(Aggarwal 2015)

Clustering Classification

Association Pattern Mining Outlier Detection

Important basis for all these: Distances and Similarities
Sources: www.geeksforgeeks.org/, towardsdatascience.com/, www.researchgate.net/

9 / 62



Introduction

When are two graphs similar?

SURVEY
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Introduction

Approaches to Graph Similarity
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Introduction

Graph Embedding

feature vector feature space

Generate a feature vector for each graph in the given graph data set

Use your favorite (data) classification/clustering method

Sources: https://www.kdd.org/kdd2019/accepted-papers/view/learning-interpretable-metric-between-graphs-convex-
formulation-and-computa
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Introduction

Outline for Structural Similarity Approaches

1 Introduction

2 Isomorphism-based Approaches
Graph isomorphism
Subgraph Isomorphism based Approaches
Structural Clustering of Sets of Graphs

3 Frobenius Distance

4 Graph Edit Distance
A∗ Algorithm for GED
Integer Linear Programs for GED
Computational Study

13 / 62



Isomorphism-based Approaches Graph isomorphism

1 Introduction

2 Isomorphism-based Approaches
Graph isomorphism
Subgraph Isomorphism based Approaches
Structural Clustering of Sets of Graphs

3 Frobenius Distance

4 Graph Edit Distance
A∗ Algorithm for GED
Integer Linear Programs for GED
Computational Study

14 / 62



Isomorphism-based Approaches Graph isomorphism

When are two graphs identical?

Graph Isomorphism

Let G = (VG ,EG ) and H = (VH ,EH) be simple graphs. A bijective
mapping π : VG → VH is called graph isomorphism if the following holds:

∀ v ,w ∈ VG : (v ,w) ∈ EG ⇐⇒ (π(v), π(w)) ∈ EH

G H
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⇒ Natural extension to graphs with labels and attributes
Two graphs are called isomorphic (G1 ' G2), if a graph isomorphism exists.
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Isomorphism-based Approaches Graph isomorphism

Are these graphs isomorphic to each other?

SURVEY
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Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism Problem

Definition (Graph Isomorphism Problem)

Given: simple graphs G and H
Find: Is G isomorphic to H, i.e., G ' H?

Remarks:

If graphs have vertex and/or edge labels or attributes, definition will
be extended to the labels (various possibilities)

Complexity: OPEN

Quasipolynomial algorithm: n(log n)O(1)
[Babai 2015/17]

Practice: mostly solvable very fast

→ Weisfeiler-Leman algorithm (Lecture on Friday)

→ We want: graph similarity
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Maximum Common Subgraph Problem (MCS)

Definition (MCS)

Given: G = (VG ,EG ) und H = (VH ,EH)
Find: Largest vertex sets R ⊆ VG and S ⊆ VH , such that the induced
subgraphs G [R] and H[S ] are isomorphic to each other.

G H

Complexity: Decision problem is NP-complete
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Maximum Common Subgraph Problem (MCS)

G H

many variants: vertex or edge induced subgraphs

in practice: consider node/edge labels and attributes

complexity: decision problem is NP-complete

widely studied in Cheminformatics
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Motivation: Rational Drug Design

Which molecules are active against disease X?

Which molecules have a similar function/effect? (Reduction of side
effects)

Which molecules may have an increased effectiveness?

High-throughput screening for promising candidates

Molecules can be modelled as graphs with attributes

Direct relationship between structure and effects

→ Graph similarity
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Properties of Molecule Graphs

almost always planar, often outerplanar

bounded tree width

bounded degree

have vertex and edge labels (e.g. activity attributes)
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Maximum Common Subgraph Problem (MCS)

G H

polynomial time algorithms for trees and outerplanar G

NP-complete for partial k-trees for k = 11 with bounded node degree

Kriege, Kurpicz, Mutzel 2018
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Analysis of the Chemical Problem

Rings and bridges shall be preserved

very important in Cheminformatics

→ Block-and-bridge preserving MCS → simpler
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Block/Bridge MCS

G SPQR-tree of G

polynomial algorithm for block/bridge MCS for partial 2-trees
generalizes results for trees and outerplanar G
Idea: BC-tree and SPQR-tree decomposition
NP-completeness of MCS for biconnected partial 2-trees with almost
all vertices of degree bounded by 3

Kriege, Kurpicz, Mutzel 2018, Gutwenger, Mutzel 2000, Kriege, Mutzel 2014 24 / 62



Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Maximum Common Subgraph Embedding
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Upper: MCS, Lower: MCS Embedding of Melphalan in Chlorambucil

bridges (single edges) maybe mapped to paths of bridges

→ Largest Weight Common Subtree Embeddings

Droschinsky, Kriege, Mutzel 2018
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Isomorphism-based Approaches Subgraph Isomorphism based Approaches

Overview of Algorithmic Results

Droschinsky Dissertation 2021, Droschinsky, Kriege, Mutzel 2016, 2017, 2018, Kriege, Kurpicz,
Mutzel 2017, 2018
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Isomorphism-based Approaches Structural Clustering of Sets of Graphs

Clustering of Graphs with Subgraph-Isomorphism

Clustering of graphs

Given: set of graphs X = {G1, . . . ,Gn}
Goal: find a clustering of X that

maximizes cluster homogenity
separates cluster from each other

Setting in drug design

small graphs

huge number of graphs (� 106)
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Isomorphism-based Approaches Structural Clustering of Sets of Graphs

Structural Clustering (StruClus)

sets of representatives for clusters → interpretability

similarity measure based on common subgraphs

new error-bounded sampling strategy for support counting

linear running time → scalable

parallelisable → very fast in practice

Mutzel, Schäfer, 2017, 2022
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Isomorphism-based Approaches Structural Clustering of Sets of Graphs

Rational Drug Design: GraBaDrug

DFG SPP Algorithms for Big Data

explorative analysis of molecule data bases ← Scaffold Hunter

similarity search on molecular structures ← graph similarity, clustering

creation of virtual molecule data bases for drug design
← CHIPMUNK: 95 mio. molecules with ≤ 700 atoms, 90 attributes

Nature Chem. Biol. 2009: Wetzel, Klein, Renner, Rauh, Oprea, Mutzel, Waldmann
ChemMedChem 2018: Humbeck, Weigang, Schäfer, Mutzel Koch + Cover Feature, ...
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Isomorphism-based Approaches Structural Clustering of Sets of Graphs

CHIPMUNK: A Virtual Synthesizable
Small-Molecule Library for Medicinal Chemistry

Dateiname: U800126 Pagina: 1
Seite: 1 te von 2 Umfang (Seiten): 2

Humbeck, Weigang, Schäfer, Mutzel, Koch ChemMedChem 2018 + Cover Feature 31 / 62



Frobenius Distance

1 Introduction

2 Isomorphism-based Approaches
Graph isomorphism
Subgraph Isomorphism based Approaches
Structural Clustering of Sets of Graphs

3 Frobenius Distance

4 Graph Edit Distance
A∗ Algorithm for GED
Integer Linear Programs for GED
Computational Study
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Frobenius Distance

Motivation: Permutation of Adjacency Matrices

12

3

4

13

2

4

isomorphic graphs, different
drawings,


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0




0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 different numbering of
vertices, different adjacency

matrices

Aim: Permute the vertex set of one of the graphs in order to minimize the
number of edge mismatches (0 vs. 1)
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Frobenius Distance

Frobenius Distance

(
0 1 1 0
0 0 0 1
1 0 0 1
0 1 1 0

) (
0 0 1 1
1 0 0 1
1 0 0 1
1 1 1 0

)
Idea: Permute vertex set of G in order to minimize the number of
edge mismatches w.r.t. H

Given G and H with their adjacency matrices A and B

Search a permutation of rows and columns of A minimizing the
Frobenius norm of the matrix Aπ − B:

‖Aπ − B‖ =
√∑∑

(aπij − bij)2

NP-hard even if G and H are trees or if G is a path [Grohe et al. 2018]
33 / 62
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Graph Edit Distance

Graph Edit Distance

Idea

Compute the minimum cost to transform G into H

allowed operations, e.g.,

vertex or edge insertion
vertex or edge deletion
vertex or edge substitution

graph editing problem is NP-hard

used in Cheminformatics and Bioinformatics

Source: gedevo.mpi-inf.mpg.de
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Graph Edit Distance

Motivation for Graph Edit Distance

Widely used, since

it can precisely capture the structural differences between graphs

it is very flexible due to arbitrary edit costs

error-tolerant

controllable sensitivity to changes

can be applied to all types of graphs

Source: gedevo.mpi-inf.mpg.de 35 / 62



Graph Edit Distance

Edit Path for Labelled Graphs

Definition (Cost of an edit path)

A labeled graph is denoted as G = (V ,E , LV , LE ), where LV and LE
are label functions that assign labels to vertices and edges, resp.

Given are two labeled graphs. An edit path is given by a sequence of
primitive edit operations to transform G1 to G2, such as
G1 = G 0

1 → G 1
1 → · · · → G k

1 = G2.

Primitive edit operations are

deleting ui → ε or inserting an α-labeled node (ε→ ui )
deleting or inserting an α-labeled edge
changing a node’s (ui → vj) or an edge’s label from α to β

Edit operations on vertices and edges come with associated
non-negative edit costs cV and cE .

The cost of an edit path is defined as the sum of the costs of its edit
operations.
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Graph Edit Distance

Graph Edit Distance

Definition (Graph Edit Distance (GED))

The GED(G1,G2) of two labeled graphs G1 and G2 is defined as the
minimum cost of an edit path from G1 to G2.

GEDs are not unique in general.

Algorithms for GED restrict their attention to those edit paths
induced by a node map between G and H.
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Graph Edit Distance

Approaches for computing an optimal GED

Approaches for computing an optimal GED

A∗ algorithm for graph edit distance

Integer Linear Programming for GEDs

Algorithms for GED restrict their attention to those edit paths induced by
a node map between G and H.

38 / 62



Graph Edit Distance

Approaches for computing an optimal GED

Approaches for computing an optimal GED

A∗ algorithm for graph edit distance

Integer Linear Programming for GEDs

Algorithms for GED restrict their attention to those edit paths induced by
a node map between G and H.

38 / 62
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Graph Edit Distance A∗ Algorithm for GED

A∗ Algorithm for Graph Edit Distance

Idea of A∗

compute all possible mappings between the vertices of the given two
graphs by means of an ordered search tree

vertices of G1 are processed in the order {u1, . . . , u|V1|}
start with u1, and iteratively construct partial edit paths mapping ui
to vertices vj , j = 1, . . . , |V2| [source: Chen et al. 2019]
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Graph Edit Distance A∗ Algorithm for GED

A∗ Algorithm for Graph Edit Distance

Idea of best-first search paradigm A∗

let p be a partial edit path from G1 to current vertex v

let g(p) be the cost of p from G1 to current vertex v ,

and h(p) be an estimated cost from v to G2 (a leaf node in tree)

for further expansion choose the partial edit path p that minimizes
g(p) + h(p)

40 / 62



Graph Edit Distance A∗ Algorithm for GED

A∗ Algorithm for Graph Edit Distance

Idea of best-first search paradigm A∗

let p be a partial edit path from G1 to current vertex v

let g(p) be the cost of p from G1 to current vertex v ,

and h(p) be an estimated cost from v to G2 (a leaf node in tree)

for further expansion choose the partial edit path p that minimizes
g(p) + h(p)

40 / 62



Graph Edit Distance A∗ Algorithm for GED

A∗ Algorithm for Graph Edit Distance

Idea of best-first search paradigm A∗

let p be a partial edit path from G1 to current vertex v

let g(p) be the cost of p from G1 to current vertex v ,

and h(p) be an estimated cost from v to G2 (a leaf node in tree)

for further expansion choose the partial edit path p that minimizes
g(p) + h(p)

40 / 62



Graph Edit Distance A∗ Algorithm for GED

A∗ Algorithm for Graph Edit Distance

Idea of best-first search paradigm A∗

let p be a partial edit path from G1 to current vertex v

let g(p) be the cost of p from G1 to current vertex v ,

and h(p) be an estimated cost from v to G2 (a leaf node in tree)

for further expansion choose the partial edit path p that minimizes
g(p) + h(p)

40 / 62



Graph Edit Distance A∗ Algorithm for GED

A∗ Algorithm for Graph Edit Distance

Idea of best-first search paradigm A∗

let p be a partial edit path from G1 to current vertex v

let g(p) be the cost of p from G1 to current vertex v ,

and h(p) be an estimated cost from v to G2 (a leaf node in tree)

for further expansion choose the partial edit path p that minimizes
g(p) + h(p)

40 / 62



Graph Edit Distance A∗ Algorithm for GED

Estimated cost of edit paths

For ease of notation we assume unit edit costs 1 for all edit operations

Possible approaches for estimating h(p)

label set-based lower bound

compare the labels of the remaining vertices and edges
sum up the difference (e.g. 5 vs. 3 α labels → 2)

star match-based lower bound

build stars of the remaining vertices by adding the direct neighbors
compare the stars using the Hungarian algorithm (weighted bipartite
matching)
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Graph Edit Distance A∗ Algorithm for GED

Discussion

Analysis and Improvements

the worst case running time is n!

→ only very small graph instances can be computed exactly

reduce the search space

identify redundant and invalid mappings
prune the search space
heuristic improvement: beam search (only follow a constant number of
most promising partial edit paths)

Details: see Chen et al. 2019
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Graph Edit Distance Integer Linear Programs for GED
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Graph Edit Distance Integer Linear Programs for GED

Integer Quadratic Program IQP-GED

GED can naturally be written as an integer quadratic program (IQP).

Introducing dummy nodes:

Let V G+0 denote V G extended by the dummy node for vertex
insertion.

Let VH+0 denote VH extended by the dummy node for vertex
deletion.

A mapping from dummy node ε denotes an insertion to VH , and

a mapping to ε corresponds to a deletion in V G .

Binary variables:

For all i ∈ V G+0, k ∈ VH+0 we introduce variables xi ,k = 1
⇔ node i is mapped to k
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Graph Edit Distance Integer Linear Programs for GED

Integer Quadratic Program IQP-GED

Binary variables:

For all i ∈ V G+0, k ∈ VH+0 we introduce variables xi ,k = 1
⇔ node i is mapped to k

min
∑

i∈V G+0

∑
k∈V H+0

cV (i , k)xi,k +
∑

i,j∈V G+0

∑
k,l∈V H+0

cE (ij , kl)xi,kxj,l

∑
k∈V H+0

xi,k = 1 ∀i ∈ V G (1)

∑
i∈V G+0

xi,k = 1 ∀k ∈ V H (2)

xi,k ∈ {0, 1} ∀(i , k) ∈ V G+0 × V H+0 (3)

Observation

If both graphs have n vertices, then the IQP-GED formulation contains
(n + 1)2 binary variables and (n + 1)2 + 2n constraints.
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Graph Edit Distance Integer Linear Programs for GED

Integer Quadratic Program IQP-GED

Lemma

Let G and H be graphs and (x∗) be an optimal solution to the IQP-GED.

1 Then (x∗) corresponds to a mapping of each vertex in G to either a
vertex in H or to a deletion (VH+0), and vice versa: A mapping to
each vertex in H from either a vertex in G or from an insertion
(V G+0) (whereby a mapping from ε denotes an insertion, and a
mapping to ε corresponds to a deletion).

2 Such a mapping induces a set of feasible edit paths from G to H.

3 The costs of each edit path induced by the mapping (x∗) is equal to
the objective value of the IQP-GED.

4 Every edit path induces a mapping from V G+0 to VH+0, satisfies
constraints (1) – (3) of IQP-GED, and the costs coincide.

Notice: We do not require constraints (1) and (2) for the dummy vertices,
since we introduced exactly one dummy vertex for G and one for H.
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Graph Edit Distance Integer Linear Programs for GED

Linearization of Integer Quadratic Programs

Quadratic programs with linear constraints can be transformed into linear
programs. Example:

min
∑
u∈V

∑
v∈V

zuzv +
∑
u∈V

cuzu (4)∑
u∈V

zu = 1 ∀v ∈ V (5)∑
v∈V

zv = 1 ∀u ∈ V (6)

zu ∈ {0, 1} ∀(u, v) ∈ V × V (7)

Introduce new binary variables and constraints:

For all u, v ∈ V we introduce new variables yu,v = 1
⇔ zu = 1 and zv = 1

We need additional constraints that guarantee the above rule during the
optimization process. Here: yu,v ≥ zu + zv − 1.
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Graph Edit Distance Integer Linear Programs for GED

Back to: Integer Quadratic Program IQP-GED

GED can naturally be written as an integer quadratic program.

Binary variables:

For all i ∈ V G+0, k ∈ VH+0 we introduce variables xi ,k = 1
⇔ node i is mapped to k

min
∑

i∈V G+0

∑
k∈VH+0

cV (i , k)xi ,k +
∑

i ,j∈V G+0

∑
k,l∈VH+0

cE (ij , kl)xi ,kxj ,l

∑
k∈VH+0

xi ,k = 1 ∀i ∈ V G (8)

∑
i∈V G+0

xi ,k = 1 ∀k ∈ VH (9)

xi ,k ∈ {0, 1} ∀(i , k) ∈ V G+0 × VH+0 (10)
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Graph Edit Distance Integer Linear Programs for GED

Standard Linearization of IQP-GED: LIQP-GED

Binary variables:

For all i ∈ V G+0, k ∈ VH+0 we introduce variables xi ,k = 1
⇔ node i is mapped to k

For all i , j ∈ V G+0, k, l ∈ VH+0 we introduce variables yi ,k,j ,l = 1
⇔ xi ,k = 1 and xj ,l = 1

min
∑

i∈VG+0

∑
k∈VH+0

cV (i , k)xi,k +
∑

i,j∈VG+0

∑
k,l∈VH+0

cE (ij , kl)yi,k,j,l

∑
k∈VH+0

xi,k = 1 ∀i ∈ V G (11)

∑
i∈VG+0

xi,k = 1 ∀k ∈ V H (12)

xi,k + xj,l − yi,k,j,l ≤ 1 ∀i , j ∈ V G+0,∀k, l ∈ V H+0 (13)

xi,k ∈ {0, 1} ∀(i , k) ∈ V G+0 × V H+0 (14)

yi,k,j,l ∈ {0, 1} ∀i , j ∈ V G+0,∀k, l ∈ V H+0 (15)

48 / 62



Graph Edit Distance Integer Linear Programs for GED

Standard Linearization of IQP-GED: LIQP-GED

Binary variables:

For all i ∈ V G+0, k ∈ VH+0 we introduce variables xi ,k = 1
⇔ node i is mapped to k

For all i , j ∈ V G+0, k, l ∈ VH+0 we introduce variables yi ,k,j ,l = 1
⇔ xi ,k = 1 and xj ,l = 1

min
∑

i∈VG+0

∑
k∈VH+0

cV (i , k)xi,k +
∑

i,j∈VG+0

∑
k,l∈VH+0

cE (ij , kl)yi,k,j,l

∑
k∈VH+0

xi,k = 1 ∀i ∈ V G (11)

∑
i∈VG+0

xi,k = 1 ∀k ∈ V H (12)

xi,k + xj,l − yi,k,j,l ≤ 1 ∀i , j ∈ V G+0,∀k, l ∈ V H+0 (13)

xi,k ∈ {0, 1} ∀(i , k) ∈ V G+0 × V H+0 (14)

yi,k,j,l ∈ {0, 1} ∀i , j ∈ V G+0,∀k, l ∈ V H+0 (15)

48 / 62



Graph Edit Distance Integer Linear Programs for GED

Standard Linearization of IQP-GED: LIQP-GED

Binary variables:

For all i ∈ V G+0, k ∈ VH+0 we introduce variables xi ,k = 1
⇔ node i is mapped to k

For all i , j ∈ V G+0, k, l ∈ VH+0 we introduce variables yi ,k,j ,l = 1
⇔ xi ,k = 1 and xj ,l = 1

min
∑

i∈VG+0

∑
k∈VH+0

cV (i , k)xi,k +
∑

i,j∈VG+0

∑
k,l∈VH+0

cE (ij , kl)yi,k,j,l

∑
k∈VH+0

xi,k = 1 ∀i ∈ V G (11)

∑
i∈VG+0

xi,k = 1 ∀k ∈ V H (12)

xi,k + xj,l − yi,k,j,l ≤ 1 ∀i , j ∈ V G+0, ∀k, l ∈ V H+0 (13)

xi,k ∈ {0, 1} ∀(i , k) ∈ V G+0 × V H+0 (14)

yi,k,j,l ∈ {0, 1} ∀i , j ∈ V G+0, ∀k, l ∈ V H+0 (15)
48 / 62



Graph Edit Distance Integer Linear Programs for GED

Standard Linearization of IQP-GED: LIQP-GED

Lemma

The formulation LIQP-GED is equivalent to IQP-GED, in particular, a
feasible solution of LIQP-GED corresponds to a feasible solution IQP-GED,
and vice versa. The cost of the optimal solution is the same in both cases.

Proof: ⇒:

Let (x ′, y ′) be a feasible solution to LIQP-GED. From this we take the
first part and claim that x ′ is also a feasible solution of IQP-GED,
since it satisfies constraints (8) to (10).

The first part of the objective functions is the same in both
formulations, we will concentrate on the second part.

In the case that y ′i ,k,j ,l = 0, then because of (13) we have that either
x ′i ,k = 0 or x ′j ,l = 0. But then this leads to a contribution of 0 in both
objective functions.
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Graph Edit Distance Integer Linear Programs for GED

Standard Linearization of IQP-GED: LIQP-GED

Proof: ⇐:

Let (x ′) be a feasible solution to IQP-GED. From this we assign a
vector (x ′, y ′) with y ′i ,k,j ,l = x ′i ,kx

′
j ,l and claim that it is feasible for

LIQP-GED. Since 0 ≤ y ′i ,k,j ,l ≤ 1, constraint (13) is valid.

The first part of the objective functions is the same in both
formulations, we will concentrate on the second part.

In the case that y ′i ,k,j ,l = 0, the contribution to both objective
functions is 0.

Otherwise, y ′i ,k,j ,l = 1, and we have x ′i ,k = x ′j ,l = 1. In both objective
functions, we get the same contribution of cE (ij , kl).

Observation

If both graphs have n vertices, then the LIQP-GED formulation contains
(n + 1)2 + (n + 1)4 binary variables and (n + 1)2 + 2(n + 1)4 + 2n
constraints.
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Graph Edit Distance Integer Linear Programs for GED

Alternative Binary Integer Linear Program:
BIP-GED

Formulation by Lerouge et al. 2017

Binary variables:

For all i ∈ V G , k ∈ VH we introduce variables xi ,k = 1
⇔ node i is mapped to k

For all edges (i , j) ∈ EG and (k, l) ∈ EH we introduce variables
wij ,kl = 1 ⇔ edge (i , j) is mapped to edge (k , l)
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Graph Edit Distance Integer Linear Programs for GED

Binary Integer Linear Program BIP-GED

min
∑
i∈V G

∑
k∈V H

(ci,k − ci,ε − cε,k)xi,k +
∑
ij∈EG

∑
kl∈EH

(cij,kl − cij,ε − cε,kl)wij,kl + C

. ∑
k∈V H

xi,k ≤ 1 ∀i ∈ V G (16)

∑
i∈V G

xi,k ≤ 1 ∀k ∈ V H (17)

∑
l :(k,l)∈EH

wij,kl − xi,k − xj,k ≤ 0 ∀k ∈ V H ,∀(i , j) ∈ EG (18)

xi,k ∈ {0, 1} ∀(i , k) ∈ V G × V H (19)

wij,kl ∈ {0, 1} ∀(i , j) ∈ EG ,∀(k, l) ∈ EH (20)

with constant
C =

∑
i∈V G

ci,ε +
∑
k∈V H

cε,k +
∑
ij∈EG

cij,ε +
∑
kl∈EH

cε,kl

Source: Lerouge et al. 2017
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Binary Integer Linear Program BIP-GED

Lemma

Let G and H be graphs and (x∗,w∗) be an optimal solution to the
BIP-GED with value z∗. Then we have

GED(G ,H) = z∗.

Observation

If both graphs have n vertices and m edges, then the BIP-GED
formulation has n2 + m2 variables and n2 + m2 + nm + 2n constraints.
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Graph Edit Distance Integer Linear Programs for GED

Mixed Integer Linear Program MIP-GED

Binary variables x and continuous variables z:

For all i ∈ V G+0, k ∈ VH+0 we introduce variables xi ,k = 1
⇔ node (or dummy node) i is mapped to k

For all i ∈ V G+0, k ∈ VH+0 we introduce variables zi ,k that contain
the edit cost that is induced by mapping i to k , given all other node
assignments.

The constants ui ,k are defined as

ui ,k = cV (i , k) +
∑

j∈V G+0

∑
l∈VH+0

cE (ij , kl)

2
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Mixed Integer Linear Program MIP-GED

min
∑

i∈V G+0

∑
k∈VH+0

zi ,k

∑
k∈VH+0

xi ,k = 1 ∀i ∈ V G (21)

∑
i∈V G+0

xi ,k = 1 ∀k ∈ VH (22)

∑
j∈V G+0

∑
l∈VH+0

cE (ij , kl)

2
xj ,l (23)

+cV (i , k)− (1− xi ,k)ui ,k ≤ zi ,k ∀(i , k) ∈ V G+0 × VH+0 (24)

xi ,k ∈ {0, 1} ∀(i , k) ∈ V G+0 × VH+0 (25)

zi ,k ≥ 0 ∀(i , k) ∈ V G+0 × VH+0 (26)

Source: Lerouge et al. 2017
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Mixed Integer Linear Program MIP-GED

Lemma

Let G and H be graphs and (x∗, z∗) be an optimal solution to the
MIP-GED. Then we have

GED(G ,H) =
∑

i∈V G+0

∑
k∈VH+0

z∗i ,k .

Proof: Case 1: x∗i ,k = 0 for i ∈ V G+0 and k ∈ VH+0

Constraint (24) gives:

zi ,k ≥
∑

j∈V G+0

∑
l∈VH+0

cE (ij , kl)

2
xj ,l + cV (i , k)− ui ,k = 0

Since the objective function minimizes the (sum of the) z-values, it
will end up with zi ,k = 0. The contribution to the objective function is
0 as in the formulation IQP-GED.
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Graph Edit Distance Integer Linear Programs for GED

Proof of Lemma ff

Case 2: x∗i ,k = 1 for i ∈ V G+0 and k ∈ VH+0

Constraint (24) gives:

zi ,k ≥
∑

j∈V G+0

∑
l∈VH+0

cE (ij , kl)

2
xj ,l + cV (i , k)

For all xjl = 0 the contribution to the sum is 0, which is true also for
the objective function of IQP-GED.
For all xjl = 1 the contribution to the sum is cE (ij ,kl)

2
cE (ij , kl) is the edit cost for changing edge (i , j) to (k , l).
Constraint (24) gives half of that to zi ,k and half of it to zj ,l .
The sum of the contribution to the objective function for zi ,k and for
zj ,l is exactly the same as in the formulation IQP-GED.

Observation

If both graphs have n vertices, then the MIP-GED formulation contains
2(n + 1)2 variables and 3(n + 1)2 + 2n constraints.
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Graph Edit Distance Computational Study

Computational Study by Blumenthal and Gamper

Test Set Up

Comparison of performance of A∗-based approaches

A∗-GED (based on best-first search)
DF-GED (basically A∗ with depth-first search)
CSI-GED (basically edge-based A∗)

with ILP-based approaches

BIP-GED
MIP-GED

data sets PROTEIN, GREC, LETTERS from the IAM graph database

timeouts: percentage of graph comparisons where the algorithm has
not finished within 1000 seconds

runtime: average runtime across pairwise comparisons

Source: Blumenthal and Gamper 2020
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Graph Edit Distance Computational Study

Experimental Results

A∗-GED algorithm often failed and needed much more storage, therefore it
is omitted from the plots

Source: Blumenthal and Gamper 2020
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Graph Edit Distance Computational Study

Conclusion and Open Problems

Graph Edit Distance is widely used in practice

However, exact approaches seem to work for graphs with up to 20
vertices

Practitioners use heuristics

new exact approaches necessary

Source: Blumenthal and Gamper 2020
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