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Graph Coloring Literature: Surveys

DISCLAIMER: There is a vast amount of literature concerning the graph
coloring problem. Here, we can only discuss a tiny part of it!

T. Husfeldt: Graph colouring algorithms, Cambridge University Press,
2015

R.M.R. Lewis: Guide to graph colouring: Algorithms and applications,
Guide to Graph Colouring, 2016

A.M.D. Lima and R. Carmo: Exact algorithms for the graph colouring
problem. Revista de Informática Teórica e Aplicada, 2018

E. Malaguti, and P. Toth: A survey on vertex coloring problems.
International Transactions in Operational Research 2010
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Some Graph Coloring Instances and Results
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Graph Coloring Definitions and Properties

Graph Coloring Problem

Definitions

Let G = (V ,E ) be an undirected graph.

A (vertex-) (coloring) of G is an assignment of one color to each
vertex, so that adjacent vertices are colored differently.

The smallest number of colors for a given graph G is called the
chromatic number of G : χ(G ).

The coloring problem: “Does G have a coloring with at most k colors?”
(in short:“Is G k-colorable?”) is NP-complete [Karp 1972].
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Graph Coloring Definitions and Properties

Properties

Notations

Let ω(G ) denote the clique number (size of largest clique),

∆(G ) the largest vertex degree in G

The following holds

χ(G ) = 1 ⇔

E = ∅
χ(G ) ≤ 2 ⇔

G is bipartite

χ(G ) ≥ 3 ⇔

G has an odd cycle

χ(G ) ≥ ω(G )

χ(G ) ≤ ∆(G ) + 1

χ(G ) ≤ ∆(G ) ⇔

(G is not complete) and (G is not an odd cycle)
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Graph Coloring Definitions and Properties

Four Color Theorem

Four Color Conjecture by Francis Guthrie (1852)

Four colors are sufficient to color a map so that no two adjacent
regions receive the same color.

Four Color Theorem by Appel and Haken 1976

Planar graphs are 4-colorable

⇒ first generally accepted major computer-aided proof
Image sources: https://de.wikiversity.org/, https://geoawesomeness.com
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Graph Coloring Definitions and Properties

Four Color Theorem

Four Color Conjecture by Francis Guthrie (1852)

Four colors are sufficient to color a map so that no two adjacent
regions receive the same color.

Four Color Theorem by Appel and Haken 1976

Planar graphs are 4-colorable

Remarks

this was the first generally accepted major computer-aided proof

Robertson, Sanders, Seymour, and Thomas (1997) found a simpler
proof (also computer-aided)

Gonthier used a general-purpose theorem-proving software Coq (2005)

It is NP-complete to decide if a given planar graph is 3-colorable.

12 / 49



Graph Coloring Definitions and Properties

Four Color Theorem

Four Color Conjecture by Francis Guthrie (1852)

Four colors are sufficient to color a map so that no two adjacent
regions receive the same color.

Four Color Theorem by Appel and Haken 1976

Planar graphs are 4-colorable

Remarks

this was the first generally accepted major computer-aided proof

Robertson, Sanders, Seymour, and Thomas (1997) found a simpler
proof (also computer-aided)

Gonthier used a general-purpose theorem-proving software Coq (2005)

It is NP-complete to decide if a given planar graph is 3-colorable.

12 / 49



Graph Coloring Definitions and Properties

Four Color Theorem

Four Color Conjecture by Francis Guthrie (1852)

Four colors are sufficient to color a map so that no two adjacent
regions receive the same color.

Four Color Theorem by Appel and Haken 1976

Planar graphs are 4-colorable

Remarks

this was the first generally accepted major computer-aided proof

Robertson, Sanders, Seymour, and Thomas (1997) found a simpler
proof (also computer-aided)

Gonthier used a general-purpose theorem-proving software Coq (2005)

It is NP-complete to decide if a given planar graph is 3-colorable.

12 / 49



Graph Coloring Definitions and Properties

Strong Perfect Graph Theorem

Definitions

A perfect graph is a graph G in which, for every induced subgraph F
of G : ω(F ) = χ(F ).

G is a Berge graph if no induced subgraph of G is an odd cycle of
length at least 5 or the complement of one.

Perfect graphs include, e.g., bipartite graphs, chordal graphs

Strong Perfect Graph Conjecture by Claude Berge (1961)

G is perfect ⇔ G is Berge.
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Graph Coloring Definitions and Properties

Strong Perfect Graph Theorem

Strong Perfect Graph Conjecture by Claude Berge (1961)

G is perfect ⇔ G is Berge.

Strong Perfect Graph Theorem by Chudnovsky, Robertson,
Seymour, Thomas (2002)

Strong perfect graph conjecture holds.

Every Berge graph either falls into one of five basic classes, or it has
one of four different types of structural types of decomposition into
simpler graphs (stronger conjecture by Conforti, Cornuéjols, and
Vuskovic and Cornuéjols, Robertson, Seymour, and Thomas).
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Graph Coloring Applications

Applications

map coloring

frequency assignment of telecommunication networks

computer register allocation problem

time tabling

scheduling problems

map labelling

Sudoku

Image sources: Idoumghar, Schott, IEEEE Transactions on Broadcasting 2009
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Graph Coloring Applications

Sudoku

Sudoku Task

Complete a given 9x9 matrix, so that in each row, in each column, and in
each of the marked 3x3 squares each of the numbers 1, 2, . . . , 9 occurs
exactly once.

A (correct) Sudoku has exactly one feasible solution.
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Graph Coloring Applications

Sudoku: Formulation as graph coloring problem

The vertices of the graph correspond to the cells. For each pair of vertices
within the same row, the same column, or the same marked square there is
an edge.

Abbildung: small example with 2x2 squares

Coloring task: Find a coloring with 9 colors (here: 4 colors) that are
consistent with the given partial coloring.
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Graph Coloring Exact approaches for the graph coloring problem
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Graph Coloring Exact approaches for the graph coloring problem

Exact approaches for the graph coloring problem

Dynamic programming approaches

Branch-and-bound based enumeration

SAT based approaches

ILP approaches

ILP approaches

explicit coloring models, e.g., assignment, partial-ordering based
model

independent set-based models, e.g., representatives model, set
covering / partitioning model, reduced ordered decision diagram
approach

In the following: Let G be a connected graph with at least 3 vertices and
H be an upper bound of χ(G ).
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ILP Formulations Assignment Model

Assignment-based ILP model

Binary variables

For each vertex v ∈ V and color i ∈ 1, . . . ,H we introduce

assignment variables xv ,i =

{
1 v is assigned to color i
0 otherwise.

For each color i ∈ 1, . . . ,H we introduce wi =

{
1 color i is used
0 otherwise

a

b

c

d

1 2 3 H
colors

G
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ILP Formulations Assignment Model

Assignment model

min
∑

1≤i≤H
wi

s.t.
H∑
i=1

xv ,i = 1 ∀v ∈ V (1)

xu,i + xv ,i ≤ wi ∀(u, v) ∈ E , i = 1, . . . ,H (2)

xv ,i ,wi ∈ {0, 1} ∀v ∈ V , i = 1, . . . ,H (3)

a

b

c

d

1 2 3 H
colors

G

number of variables: H + H|V | and constraints: |V |+ H|E |
simple and easy to use, easily adaptable for problem variations

problem: many optimal solutions that are symmetric to each other

⇒ problem for branch-and-bound approaches
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ILP Formulations Assignment Model

Assignment model (extended)

In order to overcome the symmetry, Mendez-Diaz and Zabala (2006) have
suggested to add the following constraints:

min
∑

1≤i≤H
wi

s.t.
H∑
i=1

xv ,i = 1 ∀v ∈ V (4)

xu,i + xv ,i ≤ wi ∀(u, v) ∈ E , i = 1, . . . ,H (5)

wi ≤
∑
v∈V

xvi i = 1, . . . ,H (6)

wi ≤ wi−1 i = 2, . . . ,H (7)

xv ,i ,wi ∈ {0, 1} ∀v ∈ V , i = 1, . . . ,H (8)

a

b

c

d

1 2 3 H
colors

G
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ILP Formulations Representatives Formulations

Representatives Formulation

Binary variables

For each vertex u ∈ V we introduce a variable

xuu =

{
1 u is a representative
0 otherwise.

For each pair of non-adjacent vertices u, v ∈ V we introduce

xuv =

{
1 u represents the color of v
0 otherwise.

a

e

b c

d

representatives

For example: xa,e = 1, xc,c = 1, xa,b = 0, . . .
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ILP Formulations Representatives Formulations

Representatives Formulation

min
∑
u∈V

xuu

s.t.
∑

u∈N̄(v)∪v

xuv ≥ 1 ∀v ∈ V (9)

xuv + xuw ≤ xuu ∀u ∈ V , ∀(v ,w) ∈ E and v ,w ∈ N̄(u) (10)

xuu ∈ {0, 1} ∀u ∈ V (11)

xuv ∈ {0, 1} ∀ non-adjacent pairs u, v . (12)

N̄(v) is the set of vertices not adjacent to v

number of variables: |(V × V ) \ E | and constraints: up to |V |+ |V ||E |
simple and compact

problem: symmetry, since any of the vertices can be representative
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ILP Formulations Representatives Formulations

Asymmetric Representatives Formulation

Let v1, v2, · · · , vi , · · · , vj , · · · , v|V | be a linear ordering of the vertices

vi may represent vj only if i < j

variable for every ordered pair of non-adjacent vertices,

⇒ reduces symmetry and number of variables

a
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ILP Formulations Partial Ordering based Models
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ILP Formulations Partial Ordering based Models

Partial Ordering based Model

Binary variables

Let 1, 2, . . . ,H be a linear ordering of the colors

For each vertex v ∈ V and color i = 1, . . . ,H introduce variables

lv ,i =

{
1 color(v) < i
0 otherwise.

and ri ,v =

{
1 i < color(v)
0 otherwise

Connection to assignment variables: xv ,i = 1− (lv ,i + ri ,v )

a

b

c

d

1 2 H
colors

G

Example:
la,2 = 1, r2,a = 0
lb,2 = 0, r2,b = 0
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ILP Formulations Partial Ordering based Models

Partial Ordering based Model

min 1 +
∑

1≤i≤H
ri ,q

s.t. lv ,1 = rH,v = 0 ∀v ∈ V (13)

ri−1,v − ri ,v ≥ 0 ∀v ∈ V , i = 2, . . . ,H (14)

ri−1,v + lv ,i = 1 ∀v ∈ V , i = 2, . . . ,H (15)

(ri ,u + lu,i ) + (ri ,v + lv ,i ) ≥ 1 ∀uv ∈ E , i = 1, . . . ,H (16)

ri ,q − ri ,v ≥ 0 ∀v ∈ V , i = 1, . . . ,H − 1 (17)

ri ,v , lv ,i ∈ {0, 1} ∀v ∈ V , i = 1, . . . ,H

q is an arbitrary vertex chosen from V which we will fix to the largest
occupied color class

q

1 2 H
colors

G

Jabrayilov and Mutzel 2018
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ILP Formulations Partial Ordering based Models

Partial Ordering based Model

Number of variables: 2H|V | and constraints: up to 3H|V |+ H|E |

Equations can be used to reduce the model.

The reduced model has (H − 1)|V | variables only.

Model can be strengthened further ⇒ POP2

Jabrayilov and Mutzel 2018, Jabrayilov and Mutzel 2022
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ILP Formulations Partial Ordering based Models

Partial Ordering based Model POP2

min 1 +
∑

1≤i≤H ri,q

s.t. rH,v = 0 ∀ v ∈ V

ri−1,v − ri,v ≥ 0 ∀ v ∈ V , i = 2, . . . ,H

ri,u + r1,v ≥ 2− r1,q ∀ uv ∈ E

(ri−1,u − ri,u) + (ri−1,v − ri,v ) ≤ ri−1,q ∀ uv ∈ E , i = 2, . . . ,H

ri,q − ri,v ≥ 0 ∀ v ∈ V , i = 1, . . . ,H − 1

ri+1,q − ri,v ≥ 0 ∀ v ∈ N(q), i = 1, . . . ,H − 1

ri,v , lv ,i ∈ {0, 1} ∀ v ∈ V , i = 1, . . . ,H

q

1 2 H
colors

G

with growing density, the POP models have more non-zero elements than
that of ASS ⇒ Hybrid model

Jabrayilov and Mutzel 2018, Jabrayilov and Mutzel 2022
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ILP Formulations Partial Ordering based Models

Hybrid Partial Ordering based Model POPH2

Introducing assignment variables:

min 1 +
∑

1≤i≤H ri,q

s.t. rH,v = 0 ∀v ∈ V

xv ,1 = 1− r1,v ∀v ∈ V

xv ,i = ri−1,v − ri,v ∀v ∈ V , i = 2, . . . ,H

xu,1 + xv ,1 ≤ r1,q ∀uv ∈ E

xu,i + xv ,i ≤ ri−1,q ∀uv ∈ E , i = 2, . . . ,H

ri,q − ri,v ≥ 0 ∀v ∈ V , i = 1, . . . ,H

ri+1,q − ri,v ≥ 0 ∀v ∈ N(q), i = 1, . . . ,H − 1

xv ,i , ri,v ∈ {0, 1} ∀v ∈ V , i = 1, . . . ,H

q

1 2 H
colors

G

Jabrayilov and Mutzel 2018, Jabrayilov and Mutzel 2022
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ILP Formulations Set Covering based Model

Set Covering based Model

Observation

The vertices of the same color build a stable (independent) set.

Idea: Find a small set of stable sets S1, · · · ,Sk , that cover all
vertices, i.e., S1 ∪ · · · ∪ Sk = V .

Binary variables

Let S be the set of all maximal stable sets. For each s ∈ S define a

variable xs =

{
1 stable set s is selected
0 otherwise.

a

e

b c

d

stable sets

Mehrotra and Trick 1996, Malaguti, Monaci and Toth 2011, Held, Cook and Sewell
2011, Held, Cook, and Sewell 2012
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ILP Formulations Set Covering based Model

Set covering based Model

min
∑
s∈S

xs

s.t.
∑

s∈S :v∈s
xs ≥ 1 ∀v ∈ V

xs ∈ {0, 1} ∀s ∈ S .

Number of variables: exponential; number of constraints: |V |
⇒ Branch-and-price algorithms necessary for computation (column
generation)

previous models have polynomial size, and can be computed directly
(branch-and-cut)

Mehrotra and Trick 1996, Malaguti, Monaci and Toth 2011, Held, Cook and Sewell
2011, Held, Cook, and Sewell 2012
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Computational Studies and Results

Preprocessing

The following techniques are well known:

Preprocessing: domination

vertex u is dominated by another vertex v , if N(u) ⊆ N(v).

⇒ u can be deleted

at the end: u can get the color of v

Preprocessing: precoloring

Fix variables in ASS and POP models by precoloring a clique Q with
max(|Q|H + |δ(Q)|).

Choose q in POP models from the clique, and color remaining
vertices in Q with colors 1, . . . , |Q| − 1.
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Computational Studies and Results

Implementation

Heuristically compute small H

small upper bound H leads to smaller number of variables in ASS and
POP models

we use heuristics in networkx

Implementation

Gurobi-python API

branching priority option: high degree

Implementation by A. Jabrayilov
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Computational Studies and Results

Computational Study 2018: Simple Methods

Test Set Up

Gurobi 6.5 single-threadedly on Intel Xeon E5-2640, 2.60GHz with 64
GB of memory, Ubuntu Linux 14.04

ASS: Assignment model [Mendez & Zabala, 2008]

POP: Partial Ordering based model [Jabrayilov, Mutzel, 2018]

POPH: Partial Ordering based model [Jabrayilov, Mutzel, 2018]

REP: Representative formulation [Campélo, Corréa, Frota, 2003]

AREP: Representative formulation [Campélo, Corréa, Frota, 2003]

Test instances

hardest instances (68) from the DIMACS benchmark set and the
GPIA graphs: (|V |, |E |) ≤ (10 000, 990 000)

340 randomly generated Erdós-Rényi graphs G (n, p) (20 each):
n = |V | = 70, 80, 90, 100 and edge probability p ∈ {0.1, 0.25}

Experiments conducted by A. Jabrayilov 2018
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340 randomly generated Erdós-Rényi graphs G (n, p) (20 each):
n = |V | = 70, 80, 90, 100 and edge probability p ∈ {0.1, 0.25}

Experiments conducted by A. Jabrayilov 2018
42 / 49



Computational Studies and Results

Computational Study 2018: Simple Methods

Test Set Up

Gurobi 6.5 single-threadedly on Intel Xeon E5-2640, 2.60GHz with 64
GB of memory, Ubuntu Linux 14.04

ASS: Assignment model [Mendez & Zabala, 2008]

POP: Partial Ordering based model [Jabrayilov, Mutzel, 2018]

POPH: Partial Ordering based model [Jabrayilov, Mutzel, 2018]

REP: Representative formulation [Campélo, Corréa, Frota, 2003]
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Computational Studies and Results

Results for random graphs G (n, p) ≤ G (100, 0.25)
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Computational Studies and Results

Results for 68 DIMACS instances 2018

COV: Set-Covering model [Malaguti et al. 2011]

taken from paper, processor was ≈ 1.3× slower

REP ASS POPH COV

solved 15 21 25 25
avg. time [sec] 170 171 182 1196

Experiments conducted by A. Jabrayilov 2018
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Computational Studies and Results

Experimental Results 2022:

Implementation and Test Set Up

Gurobi 6.5 single-threadedly on Intel Xeon E5-2640, 2.60GHz with 64
GB of memory, Ubuntu Linux 18.04

time limit of 3 hours

ASS: Assignment model [Mendez & Zabala, 2008]

POP2: Partial ordering based model [Jabrayilov, Mutzel, 2022]

POPH2: Hybrid partial ordering based model [Jabrayilov, Mutzel,
2022]

Test instances

all instances with |E | ≤ 100 000 from the DIMACS benchmark set (in
total 116 from 137):

Experiments conducted by A. Jabrayilov 2022
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Computational Studies and Results

Results for 116 DIMACS instances 2022

HCS: Set covering model, code by Held, Cook, Sewell, 2012

MMT: Set covering model, from paper by Malaguti, Monaci, Toth, 2011,
processor was ≈ 1.3× slower

Hoeve: OBDD approach, from paper by van Hoeve 2022
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Conclusion and Open Questions

Conclusion from Experiments

For the tested instances and our test setup, we conclude:

POPH2 dominates the ASS model.

On the sparse instances with density ≤ 0.1, POPH2 dominates the
set covering approaches HCS and MMT.

This is no more true if the density increases.

The representative models REP and AREP dominate ASS and
POP2H for graphs with density larger than 0.5

POPH2 was the only model that solved all five DIMACS GPIA graphs
(estimation of sparse Jacobian matrix problem). POPH2 is the first
ILP model solving instance abb313GPIA (n = 1555, |E | = 53356).
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Conclusion and Open Questions

Open Questions

Many open questions

How do these models compare to SAT-based approaches?

Conduct broad experimental studies including a broad set of instances
and a broad set of comparable implementations

Study the polyhedra and/or dual bounds of the models.

Find more strengthening constraints for the various models.

Extend to related problems, e.g., the equitable coloring problem, . . .

Apply in practical problems!

ANY QUESTIONS?
Source: https://www.inc.com/chris-matyszczyk
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