Linear Programming A Historical View

Robert E. Bixby bixby@gurobi.com

Sept 2022

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Agenda

01 The "Early" History 1947-1990

02 New Developments Three Examples

03 LP Today

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 3

LP History References

- "Programming in a linear structure," George B. Dantzig, published August 1948 by U.S. Air Force Comptroller
- "History of the Development of LP Solvers," William Orchard-Hays, Interfaces Vol. 20, 4 July-August 1990 (pp. 61-73)
- "Solving Real-World Linear Programs: A Decade and more of progress," Robert E. Bixby, *Operations Research* Vol. 50, No. 1, January-February 2002, pp. 3-15.
- "A Brief History of Linear and Mixed-Integer Programming Computation," Robert E. Bixby, *Optimization Stories*, Ed. M. Grötschel, Documenta Mathematica, 2012, pp. 107-121

The Early History

George Dantzig, 1947

- Introduced LP and recognized it as more than a conceptual tool: Computing answers important.
- Invented "primal" simplex algorithm.
- First LP solved: Laderman, 9 cons., 77 vars., 120 PERSON-DAYS.

First computer code – 1951

- National Bureau of Standards (now NIST)
- SEAC computer
- 18 hours and 73 simplex iterations to solve an instance with 48 equations and 71 variables.

Orchard-Hays

- 1952-54 "Card Programmable Calculator" implementation
- First implementation used explicit inverse not encouraging. The introduced product form update.
- 8 hours to solve an instance with 26 equations and 71 variables.

"A certain wide class of practical problems appears to be just beyond the range of modern computing machinery. These problems occur in everyday life; they run the gamut from some very simple situations that confront an individual to those connected with the national economy as a whole. Typically, these problems involve a complex of different activities in which one wishes to know which activities to emphasize in order to carry out desired objectives under known limitations."

George B. Dantzig, 1948

The Early History

Continued

1954-55: IBM 701, 100-200 rows

1956: IBM 704, 4 K "core", RSLP1, 255 rows

• Used by large oil companies

1962-66: 7090/94, LP/90/94, 1024 rows

1966-70: IBM 360, MPS/360 & MPSX/370

• First real LP systems

1971-73: MPS III/Whizard, 32000 rows

- Supersparsity: Kalan 1971
- P4, Pre-assigned pivot factorization: Hellerman & Rarick 1971
- Presolve came later with Whizard (~1980)

The Decade of the 70's

Interest in optimization flowered

Numerous new applications identified

- Large scale planning applications particularly popular
- Funding widely available

Significant difficulties emerged

Building application was very expensive and very risky

- 3-4 year development cycles
- Developers and application owners had to be multi-faceted experts: Computer, Data, Algorithm, and Modeling skills necessary.
 - "Deploying an application was virtually impossible"
- Technology just wasn't ready: LP were hard and MIP was a disaster

Result: Disillusionment and much of that disillusionment persists to this day.

The Decade of the 80's

Mid 80's:

There was perception was that LP software had progressed about as far as it could go – MPSX/370 and MPSIII

BUT LP was definitely **not a solved problem** ... example: "Unsolvable" airline LP model with 4420 constraints, 6711 variables

There were several key developments IBM PC introduced in 1981

Relational databases developed:

- Separation of logical and physical allocation of data.
- ERP systems introduced.

LP solvable in polynomial time

- Khachian's 1979 paper on the "ellipsoid method"
- Karmarkar's 1984 paper on interior-point methods

The Genesis of CPLEX: 1983-1988

1972-1985: Very theoretical research in OR ("matroid theory")

1983: Began developing classroom LP code (IBM had introduced PCs)

1985-1987

- Invited by Tom Baker to provide LP code for Chesapeake Decision Sciences MIMI product
- First actual sale of that code was to AMOCO is 1987

1987-1988

 Could not get funding for research in LP computation -- zero success

1988: Founded CPLEX optimization

Cofounder: Janet Lowe

End of 80's: Still not out of the woods

Grötschel and Holland, "Solution of large-scale symmetric travelling salesman problems," 1991, Mathematical Programming

LP codes were still far from satisfactory:

• "Some of the linear programs that arose were hard to solve, even for highly praised commercial LP-codes like IBM's MPSX"

What were they referring to?

- LPs that had ~1500 rows and ~2500 variables and took almost 3 hours to solve, if they solved
- Degeneracy, slow convergence, and system inflexibility remained major obstacles in commercial software.

1st Public CPLEX Results -1986

		Test	RUNS	*			
NETLIB				LOPT		XMP	
PROBLEM	# Rows	# Cols	*=0	# ITER	Time	*ITER	Time
GFRD-PNC	616	1092	2378	628	80.5	983	144.1
SCB28	490	1169	3183	735	112.2	1271	1897
SIERRA	1227	2036	7303	493	93.8	950	270 0
STANDAT	359	1183	3032	181	14.7	15	270.0
SCAGR 25	471	500	1555	517	69 1	1430	1.0
SHARE 28	97	79	695	93	4.7.	120	248.5
SHARE1B	118	225	(152	217	16 1	150	6.5
E226	224	282	2579	444	10.1	411	28.8
CAPRE	272	353	1768	200	50.0	655	70.2
BANDM	306	472	2495	364	32.4	550	44.5
STAIR	357	462	2547	200	54.5	1679	2509
ETA MACRO	401	488	2410	258	260.4	1667	530.9
SHIPPOL	1152	\$427	16(31	997	105.3	1140	144.
			, or r	1 1283	242.5	1510	515-7

Run on SUN 3/50 work station. Compiled with -O and -f68881 options set.

-3-

The Decade of the 90's

LP performance takes off

Primal-dual log-barrier algorithms completely reset the bar

Simplex algorithms unexpectedly kept pace

Data became plentiful and accessible ERP systems became commonplace

Popular new applications begin to show that integer programming could work on difficult, real-world problems Airlines, Supply-Chain

Agenda

01

The "Early" History 1947-1990

02 New Developments Three Examples

03 LP Today

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 14

AA Challenge, 1989

Example 1

Bob Bixby Irv Lustig Roy Marsten Dave Shanno John Gregory

AA made a huge crew-scheduling model available 837 rows, 12,753, 313 columns The Challenge: Solve the LP Sheer size of model dictated a special-purpose algorithm

Developed algorithm called **Sifting**, an idea of John Forrest

Step 1: Select a subset of columns and solveStep 2: Use optimal duals to price out the remaining columns

- No violation implies optimal, stop.
- Otherwise select a "good set" of violated columns

Step 3: Augment column subset and return to Step 1.

Two observations

Barrier (interior-point) much faster solving from scratch Advanced basis helps near the end. Primal feasibility \rightarrow use primal.

AA Challenge, 1989

Continued

Implemented on Cray Y-MP

Considerable experimentation

Solved in 10 applications of Step 1

- 5 barrier steps at start
- 5 primal steps to complete computation
 - Total computation time: 247 seconds
 - Optimization 204, pricing 43

What did we learn

Developed first really fast crossover (based on a result of Megiddo)

Generated a great deal of enthusiasm for solving larger, harder models.

Table XIteration Log for Problem 13mil With Hybrid Scheme

Major Iteration	Column in Problem	Method	Iterations	Objective Value	Optimize Time	Price Time	Columns Added	Duplicates Deleted
1	1,688	OB1	9	57448.00	8.549	7.262	25,449	14,638
2	12,499	OB1	14	57448.00	15.324	6.041	25,857	12,135
3	26,221	OB1	24	57448.00	28.582	6.493	25,857	12,774
4	39,304	OB1	33	50743.910	44.399	5.750	13,018	7,239
5	45,083	OB1	31	48530.461	43.398	0.000	0	0
*	45,083	Crossover	327	48530.461	30.538			
6	5,217	CPLEX	0	48530.461	3.105	3.555	1,832	1,000
7	6,049	CPLEX	297	48510.117	9.572	3.532	1,798	1,022
8	6,825	CPLEX	648	48418.199	13.754	3.571	382	238
9	6,969	CPLEX	316	48400.129	6.244	3.259	18	7
10	6,980	CPLEX	7	48400.129	0.972	3.145	0	0

Instance: 837 rows 1,322,797 columns

Primal	93.1 seconds
Dual	416.0 seconds
Barrier	25.9 seconds
Sifting	11.9 seconds

AA & US Air Merger?

Example 2

As reported by Ed Rothberg, ~early to mid 1990s

CPLEX having trouble breaking into airlines OSL had a firm hold

SGI and Ed Rothberg entered the picture

CPLEX wanted a better barrier solver SGI wanted to sell computers

SGI-CPLEX collaboration produced a new barrier solver

Used latest SGI hardware: 3-4x

Parallelized code, 8 processors: 4-5x

Improved Cholesky Ordering algorithm

- Nested Dissection versus Approximate Min Degree: 3-4x
- Net effect: SGI-CPLEX barrier was about 40x OSL Not enough: 40x was a nice to have **not a must have!**

AA & US Air Merger

Continued

Then: A critical business event occurred

AA & US Air were considering a merger

Due diligence \rightarrow needed to evaluate combined fleet model and do it quickly

- OSL took 3-4 hours, SGI-CPLEX took 5 minutes! A nice to have became a must have
- Result: A key business breakthrough for CPLEX.

What did we learn? Parallel barrier became the standard We learned the "must-have" story

LAU2 (Late 1980s) Example 3

LAU2

Fleet-assignment model 4420 rows, 6711 Columns, 101377 Nonzeros

Challenge presented by UA

If you "solve" this problem, we will buy computers – John Gregory, Cray Research

LAU2 (Late 1980s)

Attempts to solve LAU2 with CPLEX

Step 1: 1987 – Ran CPLEX 1.0 for 7 hours on Cray X-MP. Stuck in Phase I

Step 2: Introduced degeneracy handling

• Problem solvable but still slow

Step 3: John Gregory reported solving with OB1 in 1200 seconds.

• Recommended giving up on simplex!!

Step 4: An idea

- Maybe the dual isn't nearly as degenerate.
- Took explicit dual and solved with primal. Closer to barrier.
- Implemented dual simplex, with standard pricing. Closer still.

Step 5: Another idea

- John Forrest had success using primal Devex.
- Conclusion: Implemented dual steepest edge.
- Dual simplex was now winner

Step 6: Don Goldfarb (steepest-edge guru) suggests simpler SE

- Implemented new dual steepest edge
- Dual simplex was the clear winner

LAU2 (Late 1980s) Continued

CPLEX 3.0 on HP9000/730

27765 seconds
1400 seconds
2440 seconds
273 seconds

What did we learn?

D

This led to the development of dual steepest edge, today's LP algorithm of choice

Agenda

01

The "Early" History 1947-1990

02 New Developments Three Examples

03 LP Today

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 28

401,640 constraints 1,584,000 variables

Solution timeline (2.0 GHz Pentium 4):

Test: Went back to 1st CPLEX (1988)

1988 (CPLEX 1.0): 15.0 days (Dagstuhl, 28 Nov)

401,640 constraints 1,584,000 variables

Solution timeline (2.0 GHz Pentium 4):

Test: Went back to 1st CPLEX (1988)

1988 (CPLEX 1.0): 19.0 days (Amsterdam, 2 Dec)

401,640 constraints 1,584,000 variables

Solution timeline (2.0 GHz Pentium 4):

Test: Went back to 1st CPLEX (1988)

1988 (CPLEX 1.0): 23.0 days (Houston, 6 Dec)

401,640 constraints 1,584,000 variables

Solution timeline (2.0 GHz Pentium 4):

Test: Went back to	1st CPLEX (1988)	Speedup
1988 (CPLEX 1.0):	29.8 days	1x
1997 (CPLEX 5.0):	1.5 hours	480x
2003 (CPLEX 9.0):	59.1 seconds	43500x

Progress in LP 1988-2004

<u>Operations Research</u>, Jan 2002, pp. 3–15, updated in 2004

Algorithms (machine independent): Primal versus best of Primal/Dual/Barrier	3,300x
Machines (workstations \rightarrow PCs):	1,600x
NET : Algorithm × Machine (2 months/5300000 ~= 1 second)	5,300,000x

What progress has occurred since 2004?

No significant algorithmic improvements between 2004 and ~2015.

In the last 7 years that has changed: on "large" models, LP simplex algorithms have improved by approximately 3x.

LP Today

Practitioners consider LP a solved problem

Large models can now be solved robustly and quickly

• Regularly solve models with millions of variables and constraints

Thank You

Robert E. Bixby bixby@gurobi.com September 2022