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Preface

The traveling salesman problem (TSP) can be stated very easily: Given a finite
set of cities and the distance of every pair, visit all of them (and return to the
starting point) while minimizing the total distance. How can we find an optimum
tour?

The TSP is probably the best-known combinatorial optimization problem.
There are many reasons why:

• It can be described very easily to anybody, but it is not easy to solve. There
are many exciting open questions that are easy to understand. Although
studied intensively for more than 60 years, the TSP continues to pose grand
challenges.
• While trying to make progress on the TSP, many related problems have been

studied and important general techniques have been developed. A substantial
part of the combinatorial optimization theory has been developed with the
TSP in mind.
• The TSP is also relevant in many applications, most notably of course in

vehicle routing. The techniques that have been developed originally for the
TSP are being used in many diverse applications every day.

The first thing to note is that the TSP is NP-hard (Karp [1972]). This makes
us conjecture that there is no polynomial-time algorithm that always finds an
optimum tour. In fact, such an algorithm exists if and only if P = NP. Most
researchers believe (and work with the assumption) that P ≠ NP, and so do we,
but this remains one of the most famous open problems in mathematics and
computer science.

Assuming that there is no polynomial-time algorithm that always finds an
optimum tour (i.e., P ≠ NP), one needs to make compromises. There are three
natural ways:
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iv Preface

• One can relax the running time requirement – that is, accept that the algorithm
is not guaranteed to terminate in polynomial time. Applegate et al. [2006]
solved instances with tens of thousands of cities optimally, but there is no
guarantee that their (or any known) algorithm will solve every instance with,
say, 100 cities in reasonable time.
• One can relax the quality requirement – that is, accept that the algorithm

could perhaps produce a bad tour. There are excellent heuristics (based on Lin
and Kernighan [1973]) that run very fast and usually compute a solution that
is very close to optimal (less than 1% longer). However, there is no guarantee,
and on some instances, the computed tour could be 100 times longer than
optimal or even worse.
• One can ask for guarantees both in the running time and in the quality of

the tour but not require optimality. An 𝛼-approximation algorithm (for some
constant 𝛼 > 1) is an algorithm that is guaranteed to terminate in polynomial
time and is guaranteed to compute a tour at most 𝛼 times longer than optimal.

In practice, one of the first two alternatives is usually chosen. The third one,
however, is the one that has proved most fruitful from a theoretical point of
view, and this is the focus of this book. So, in one sentence, our question is:
How good tours can we guarantee to find in polynomial time?

There are several interesting variants of the TSP that we will study. The
first question is whether or not distances are symmetric – that is, whether the
distance from 𝑎 to 𝑏 equals the distance from 𝑏 to 𝑎 for every pair {𝑎, 𝑏} of
cities. Christofides [1976], and independently Serdyukov [1978], devised a
3
2 -approximation algorithm for the Symmetric TSP: It always finds a tour that
is at most 50% longer than optimum. Recently, a slightly better approximation
algorithm was found by Karlin, Klein, and Oveis Gharan [2021,2023], but we are
still far from the ratio 4

3 , which is widely believed to be achievable. Interestingly,
the new algorithm is based on sampling a random spanning tree, a technique
that has first been used for the Asymmetric TSP (Asadpour et al. [2017]).

For the Asymmetric TSP, no constant-factor approximation algorithm was
known until 2017, when Svensson, Tarnawski, and Végh [2020] found one. We
could improve this to a (22 + 𝜀)-approximation algorithm for any 𝜀 > 0 (Traub
and Vygen [2022]), and in this book, we improve the ratio further to 17 + 𝜀, but
this is still far from what we expect to be possible for the Asymmetric TSP.

Many approximation algorithms start by solving a relaxation of the problem.
Often, this is a linear program (LP) in which every tour corresponds to a
feasible solution but infinitely more “fractional solutions” are allowed. Such LP
relaxations have been studied since the 1950s (Dantzig, Fulkerson, and Johnson
[1954]) and can be solved in polynomial time. In the end, the cost of a tour is
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Preface v

compared to the cost of an optimum LP solution, which is always a lower bound on
the cost of an optimum tour. Therefore, an important question is how strong these
LP relaxations are: What is the worst possible ratio of the cost of an optimum tour
to the cost of an optimum LP solution? In most cases, this so-called integrality
ratio is unknown. The worst examples (that yield the best-known lower bounds
on the integrality ratio) are quite special: Here, the distance of any pair of cities
is simply the distance in an unweighted graph. Therefore, such instances have
received special attention, and better approximation algorithms have been found,
including a 7

5 -approximation algorithm for Graph TSP (Sebő and Vygen [2014]).
A generalization of the TSP with many interesting properties is the Path

TSP: Here, the start and end of the tour are given and not necessarily identical.
An, Kleinberg, and Shmoys [2015] were the first to beat Christofides’ algorithm
(for Path TSP with symmetric distances) and renewed interest in this problem.
This led to the discovery of interesting new techniques and results, culminating
in a general reduction to Symmetric TSP that loses only an arbitrarily small
constant in the approximation guarantee (Traub, Vygen, and Zenklusen [2022]).
For Asymmetric Path TSP, the known reductions lose more, but we can still
achieve the ratio 17 + 𝜀 (another new result in this book). We will also mention
some further generalizations, including the classical vehicle routing problem.

As mentioned, approximation algorithms for the TSP are not used often
in practice. There are many reasons for this: Many instances occurring in
practice are small enough and can be solved optimally. For others, the best
heuristics usually compute better tours than approximation algorithms. There
are exceptions, but they rarely occur in practice. Finally, the running time of
some approximation algorithms, though bounded by a polynomial in the number
of cities, can be too large for practical purposes.

However, interestingly, many techniques that have been developed during
attempts to find better algorithms for the TSP or better upper bounds on the
integrality ratios are being used in practice in a different context. We do not
address practical aspects in this book, but this does not mean that the content of
this book is irrelevant for practical purposes.

We try to present the state of the art as comprehensively as possible and
include complete proofs, at least of the most important results, with very few
exceptions. Most of these results have been obtained since 2010, some only
while we were writing this book. This makes us hope that we will learn more in
the near future. We will of course mention the most intriguing open questions.
Hopefully, this book can serve as a basis for future research.

We also hope that this book might prove useful for teaching and learning. The
open questions on the TSP have been a major driving force in combinatorial
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optimization, and much of the combinatorial optimization theory will be
needed in this book. Although we are not attempting to write another book on
combinatorial optimization, we will cover quite a few topics (including flows,
connectivity, matching, matroids, and of course linear programming). For many
of the classical results, we will not give proofs but rather refer to textbooks such
as Schrĳver [2003] or Korte and Vygen [2018]. Most of our notation will be
consistent with these books.

This is not the first book on the TSP, but it is the first one that focuses on
approximation algorithms. Lawler et al. [1985] wrote the first TSP book, and
this already contains a chapter on approximation algorithms. Although of course
outdated, it is still worth reading. Most of the chapters in the book edited by
Gutin and Punnen [2002] focus on exact algorithms and heuristics, but there
is also one by Arora on his approximation scheme for geometric instances
of the TSP (Arora [1998]), which we do not cover here again. Applegate et
al. [2006] focused on computational aspects and described the (still) leading
algorithm to compute optimum tours. Cook’s [2012] entertaining book gives an
excellent introduction to the TSP and its history. There are many other books
and book chapters, of course; in particular, almost every book on combinatorial
optimization contains a chapter on the TSP.

Parts of this book are based on an earlier and much shorter survey of the second
author (Vygen [2012]) and the PhD thesis of the first author (Traub [2020a]), as
well as on several of our papers. We would like to thank Susanne Armbruster,
Jannis Blauth, Martin Drees, Antonia Ellerbrock, Michel Goemans, Corinna
Gottschalk, Swati Gupta, Dorothee Henke, Satoru Iwata, Volker Kaibel, Marcin
Mucha, Martin Nägele, Meike Neuwohner, Luise Puhlmann, Stefan Rabenstein,
R. Ravi, Niklas Schlomberg, Malte Schürks, András Sebő, David Shmoys, Ola
Svensson, and several students in our courses for carefully reading parts of
this book and providing useful remarks that helped improve the presentation.
We also profited from many discussions with Sylvia Boyd, Bill Cook, Michel
Goemans, Chien-Chung Huang, Nathan Klein, András Sebő, David Shmoys,
Mohit Singh, Ola Svensson, László Végh, David Williamson, Rico Zenklusen,
and Anke van Zuylen.

Most of this work was done at the University of Bonn, but part of it was also
done at ETH Zurich. We thank FIM at ETH Zurich and HIM of the Hausdorff
Center for Mathematics for their support. We are also grateful to our colleagues
and our industrial cooperation partner Greenplan. Last but not least, we thank
Cambridge University Press, in particular Arman Chowdhury and Katie Leach,
for the excellent cooperation.

Vera Traub and Jens Vygen
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Preface vii

Structure of This Book and Possible Courses
Chapters 1–4 of this book contain mostly classical results from combinatorial
optimization, of course with a focus on the traveling salesman problem. We
start with the basics and the classical algorithms of Christofides and Serdyukov
and Frieze, Galbiati, and Maffioli. Then we discuss the most important linear
programming relaxations in detail. These initial chapters also contain a few
less-well-known results, such as the lower bound 2 on the integrality ratio of
the classical LP relaxation of the Asymmetric (Graph) TSP in Section 3.6, a
different LP relaxation in Section 3.3, and Karzanov’s uncrossing algorithm in
Section 4.2. Nevertheless, readers who are familiar with the classical theory can
skip these chapters initially.

Chapter 5 contains the𝑂
( log 𝑛

log log 𝑛
)
-approximation algorithm for the Asymmet-

ric TSP by Asadpour, Goemans, Mądry, Oveis Gharan, and Saberi. Although it
is not the state of the art anymore, it introduced interesting new techniques and
has inspired other researchers. The algorithm is based on sampling a spanning
tree from a maximum entropy distribution, and this will be used again for the
Symmetric TSP in Chapter 10.

Chapters 6–8 give a complete description of a constant-factor approximation
algorithm for the Asymmetric TSP. Such an algorithm was first obtained
by Svensson, Tarnawski, and Végh; however, we present our improved and
simplified version. We start with the special case of the Graph Asymmetric
TSP in Chapter 6, because this relatively short proof (mostly due to Svensson)
already contains many of the key ideas needed in the general case. The entire
proof of the constant-factor approximation for the general Asymmetric TSP
ends with Section 8.5; the final Section 8.6 is needed only to improve the
constant from 21 to 17.

Chapter 9 discusses the asymmetric path version. After the Feige–Singh
black-box reduction in Section 9.2, which loses a factor 2, we present reductions
that yield a constant upper bound on the integrality gap also for this more
general problem, as well as the same approximation ratio that we obtained for
the Asymmetric TSP.

Then we turn to the Symmetric TSP. Chapters 10 and 11 describe the
main ideas of Karlin, Klein, and Oveis Gharan, who recently obtained the first
approximation algorithm for the Symmetric TSP that has an approximation
ratio better than 3

2 . In Chapter 10, we describe the reduction to their main
payment theorem in full detail. We can only sketch the proof of that theorem in
Chapter 11, but we hope to convey the main ideas.

Chapters 12 and 13 deal with the Graph TSP. Chapter 12 is devoted to
the removable pairing technique, introduced by Mömke and Svensson, while
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Chapter 13 discusses the ear-decomposition approach by Sebő and Vygen. This
algorithm has the currently best-known approximation ratio for Graph TSP: 7

5 .
Chapters 14–16 address the symmetric path version, which we simply call

Path TSP. The basic theory presented in Sections 14.1–14.3 is used in the
following two chapters. Hoogeveen observed that the natural generalization of
Christofides’ algorithm has only approximation ratio 5

3 for Path TSP. Chap-
ter 15 presents the result by An, Kleinberg, and Shmoys, who obtained the
first improvement on this, as well as various subsequent improvements and
generalizations (to the so-called 𝑇-tour problem) by Sebő, Gottschalk, van
Zuylen, and the authors. This also leads to the best-known upper bounds on the
integrality ratios for these problems. Chapter 16 presents a general black-box
reduction to the Symmetric TSP that loses only an arbitrarily small constant;
this is a variant of the reduction that the authors obtained with Zenklusen.

Chapter 17 discusses a selection of related results and applications to problems
that are closely related to, or generalizations of, the traveling salesman problem.
This chapter contains pointers to further reading rather than a comprehensive
account; new results are being discovered while we write these lines. Finally,
Chapter 18 summarizes the state of the art of the main variants of the traveling
salesman problem that we studied in this book, as well as a list of open problems.

We taught several graduate courses on various parts of this book at the
University of Bonn. Our detailed proofs with many explanations and figures
should provide a solid basis for teaching; moreover, we included many exercises
in this book. Here are some ideas how courses could be designed.

An introductory (graduate or advanced undergraduate) course on approxi-
mation algorithms for the TSP could cover Chapters 1 and 2, Sections 4.1–4.3,
Chapter 12, and then either Sections 3.1 and 3.4, Chapter 6, and possibly Sec-
tions 9.1 and 9.2 on the Asymmetric TSP, or Sections 14.1–14.3 and 15.1–15.2
on Path TSP. If there is time, Sections 17.4–17.6 can conclude the course.

A more advanced course focusing on the Symmetric TSP could first review
Chapter 2 and Sections 4.1, 4.3, and 4.4, then proceed to Chapters 12 and 13
on the Graph TSP, continue with Chapter 14 and (at least) one of Chapters 15
and 16 on the Path TSP, and save the most difficult part, Chapters 10 and 11,
for the end. If there is time, Sections 5.3 and 5.4 can be included to show how
the maximum entropy sampling can be implemented.

An advanced course on the Asymmetric TSP would start with Section 1.5,
then cover Chapter 3 and Sections 4.1 and 4.2. Chapter 5 could be next (but can
also be omitted). Then we would suggest the entire material in Chapters 6–9,
possibly omitting Section 8.6. Sections 17.4 and 17.6 can be discussed at the
end, if there is time.
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1

Introduction

In this introductory chapter, we will formally introduce the main variants of
the traveling salesman problem – symmetric and asymmetric – explain a very
useful graph-theoretic view based on Euler’s theorem, and describe the classical
simple approximation algorithms. In this chapter, we will also introduce basic
notation, in particular from graph theory, and some fundamental combinatorial
optimization problems.

1.1 Problems and Algorithms

This book is about the traveling salesman problem (TSP), but this is actually
more than one problem. Although one could start with the most general variant
of the problem, let us begin with the most classical one.

Problem 1.1 (Symmetric TSP with Triangle Inequality).

Instance: A finite set 𝑉 and a distance function 𝑐 : 𝑉 ×𝑉 → R≥0 such that
𝑐(𝑢, 𝑣) = 𝑐(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑉 and 𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤)
for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 .

Task: Compute a list 𝑣1, 𝑣2, . . . , 𝑣𝑛 that contains every element of 𝑉
exactly once and minimizes 𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖).

The elements of 𝑉 are called cities, and the number of cities will always be
denoted by 𝑛 in this book. Of course, the distance function 𝑐 does not necessarily
describe geometric distances, but it could also represent driving times or cost.
An example with |𝑉 | = 20 is shown in Figure 1.1.

We will be interested in algorithms that accept any instance (𝑉, 𝑐) as input
and always terminate with a feasible solution (an order of the cities) as output.
If an algorithm always finds an optimum solution, we speak of an exact

1
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2 Introduction

Figure 1.1 A tour visiting 20 locations in Bonn, Germany, by car. The map data is
taken from OpenStreetMap (openstreetmap.org/copyright).

algorithm. One such algorithm would simply enumerate all 𝑛! permutations
of the cities and output the best, but this is too slow already for 20 cities (note
that 20! = 2 432 902 008 176 640 000), and completely hopeless for the 49-city
instance that Dantzig, Fulkerson, and Johnson [1954] solved 70 years ago.

To measure the running time of an algorithm, one counts the maximum
number of elementary steps that it can take. To avoid technical details, one
ignores constant factors and uses the 𝑂-notation. For example, an algorithm
is said to run in 𝑂 (𝑛3) time if there is a constant 𝛾 such that the number of
elementary steps is never more than 𝛾 · 𝑛3. See, for example, Hougardy and
Vygen [2016] for a detailed explanation.

To distinguish algorithms that are, at least asymptotically, much faster than
naive enumeration, Edmonds [1965a] suggested the notion of a polynomial-time
algorithm. For every algorithm that we present in this book, there is a constant
𝑘 such that the algorithm runs in 𝑂 (𝑛𝑘) time.

Karp [1972] showed that the Symmetric TSP with Triangle Inequality is
NP-hard. This implies that there is no polynomial-time exact algorithm unless

https://www.openstreetmap.org/copyright
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P = NP. In fact, there is a polynomial-time exact algorithm if and only if P = NP.
We assume that the reader is familiar with the notions of P, NP, and NP-hard;
otherwise, it is sufficient to know that it is widely believed that P ≠ NP, which
would imply that there is no polynomial-time exact algorithm for any NP-hard
problem.

The fastest known exact algorithm is a simple dynamic programming algo-
rithm that computes an optimum solution in 𝑂 (𝑛22𝑛) time (Bellman [1962],
Held and Karp [1962]; see Exercise 1.1). This time bound has not been improved
on for more than 60 years. Since most researchers believe that P ≠ NP, there is
little hope to find a polynomial-time algorithm that always finds an optimum
solution. Hence we will study approximation algorithms:

Definition 1.2 (approximation algorithm). An 𝛼-approximation algorithm (for
a minimization problem with nonnegative cost function) is a polynomial-time
algorithm that always computes a feasible solution of cost at most 𝛼 times the
optimum.

In the context of the TSP, 𝛼 can be either a constant or a function of 𝑛 (the
number of cities). For a constant-factor approximation algorithm, we define its
approximation ratio to be the infimum of all 𝛼 for which it is an 𝛼-approximation
algorithm, or, equivalently, the supremum of 𝐴(𝐼 )

OPT(𝐼 ) over all instances 𝐼, where
𝐴(𝐼) is the cost of the solution computed by the algorithm, OPT(𝐼) is the cost
of an optimum solution, and 0

0 := 1.
Probably the first proof of an approximation ratio for the TSP was due to

Rosenkrantz, Stearns, and Lewis [1977]. They proposed algorithms called “near-
est insertion” and “cheapest insertion” and showed that they are 2-approximation
algorithms for the Symmetric TSP with Triangle Inequality. We will see a
simpler 2-approximation algorithm in Proposition 1.22.

The triangle inequality 𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣)+𝑐(𝑣, 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 naturally
holds in many applications. If we have general nonnegative symmetric distances,
not obeying the triangle inequality, we should allow for visiting cities more than
once; we will get to this in the next section.

Distances are not always symmetric. Dropping the symmetry assumption
yields the following:

Problem 1.3 (Asymmetric TSP with Triangle Inequality).

Instance: A finite set 𝑉 and a distance function 𝑐 : 𝑉 ×𝑉 → R≥0 such that
𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 .

Task: Compute a list 𝑣1, 𝑣2, . . . , 𝑣𝑛 that contains every element of 𝑉
exactly once and minimizes 𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖).
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4 Introduction

This problem seems to be substantially harder; while it is easy to devise a
2-approximation algorithm for the symmetric special case (see Proposition 1.22),
no such algorithm is known for the asymmetric version, and no constant-factor
approximation algorithm was known at all until 2017.

1.2 Graphs and Euler’s Theorem

Often distances are given by a graph 𝐺 = (𝑉, 𝐸) (which can, for example,
represent a street network). All our graphs are finite; they can be undirected or
directed. In both cases, they consist of a finite set 𝑉 of vertices and a finite set 𝐸
of edges such that each edge is associated with a pair of distinct vertices. All edge
sets in this book can be multi-sets unless specified otherwise, so graphs can have
parallel edges (but no loops). Graphs without parallel edges are called simple.
Directed graphs are also called digraphs. For an edge 𝑒 ∈ 𝐸 that goes from
𝑣 to 𝑤, we write 𝑒 = {𝑣, 𝑤} in undirected graphs and 𝑒 = (𝑣, 𝑤) in digraphs,
and we use this notation even if there are several edges going from 𝑣 to 𝑤.
Edges in digraphs are also called arcs. If 𝐺 is a directed graph, the underlying
undirected graph results from replacing each arc (𝑣, 𝑤) with an undirected
edge {𝑣, 𝑤}. If 𝐻 is the underlying undirected graph of a digraph 𝐺, then 𝐺
is called an orientation of 𝐻. An edge 𝑒 = {𝑣, 𝑤} or 𝑒 = (𝑣, 𝑤) is incident to
𝑣 and 𝑤, and if such an edge exists, 𝑣 and 𝑤 are neighbors. A vertex without
neighbors is isolated. For a graph 𝐺 = (𝑉, 𝐸), we sometimes write 𝑉 (𝐺) := 𝑉
and 𝐸 (𝐺) := 𝐸 .

For a vertex set 𝑈 ⊆ 𝑉 , we denote by 𝛿(𝑈) the (multi)set of edges with
exactly one endpoint in 𝑈. In directed graphs, 𝛿− (𝑈) and 𝛿+ (𝑈) contain the
entering and the leaving edges, respectively (so |𝛿(𝑈) | = |𝛿− (𝑈) | + |𝛿+ (𝑈) |).
For a single vertex 𝑣 ∈ 𝑉 , we write 𝛿(𝑣) := 𝛿({𝑣}), 𝛿− (𝑣) := 𝛿− ({𝑣}), and
𝛿+ (𝑣) := 𝛿+ ({𝑣}). We call |𝛿(𝑣) | (the number of edges incident to 𝑣) the degree
of 𝑣, and in digraphs, |𝛿− (𝑣) | and |𝛿+ (𝑣) | are the in-degree and out-degree of 𝑣,
respectively. We add a subscript and, for example, write 𝛿𝐺 (𝑈) or 𝛿𝐸 (𝑈) if the
graph 𝐺 = (𝑉, 𝐸) is not clear from the context.

Lemma 1.4 (handshake lemma). In any graph, the number of odd-degree
vertices is even.

Proof. For any graph (𝑉, 𝐸), we have
∑
𝑣∈𝑉 |𝛿(𝑣) | = 2|𝐸 |; hence there is an

even number of odd summands on the left-hand side. □

A walk (from 𝑣0 to 𝑣𝑘 of length 𝑘) in 𝐺 is a sequence 𝑣0, 𝑒1, 𝑣1, 𝑒2, . . . , 𝑣𝑘
such that 𝑒𝑖 is an edge from vertex 𝑣𝑖−1 to vertex 𝑣𝑖 for all 𝑖 = 1, . . . , 𝑘 . If
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𝑣0 = 𝑣𝑘 , we speak of a closed walk. Note that 𝑘 = 0 is possible. The footprint
of a walk in 𝐺 = (𝑉, 𝐸) is the multi-subset of 𝐸 that contains 𝑟 copies of
any edge that the walk traverses 𝑟 times. For a multi-subset 𝐹 of 𝐸 and a
cost function 𝑐 : 𝐸 → R, we define the cost of 𝐹 by 𝑐(𝐹) :=

∑
𝑒∈𝐹 𝑐(𝑒),

where the sum counts edges according to their multiplicity in 𝐹. Then the
cost of a walk 𝑣0, 𝑒1, 𝑣1, 𝑒2, . . . , 𝑣𝑘 with footprint 𝐹 can be expressed as
𝑐(𝐹) = ∑

𝑒∈𝐹 𝑐(𝑒) =
∑𝑘
𝑖=1 𝑐(𝑒𝑖). Sometimes we say weight instead of cost.

A walk cannot visit all vertices unless the graph is connected. An undirected
graph is connected if it contains a walk from 𝑣 to 𝑤 for all 𝑣, 𝑤 ∈ 𝑉 . A directed
graph is connected if the underlying undirected graph is connected. A directed
graph is strongly connected if it contains a walk from 𝑣 to 𝑤 for all 𝑣, 𝑤 ∈ 𝑉 .

A subgraph of a graph 𝐺 = (𝑉, 𝐸) is a graph 𝐺′ = (𝑉 ′, 𝐸 ′) with 𝑉 ′ ⊆ 𝑉
and 𝐸 ′ ⊆ 𝐸 . We also say that 𝐺 contains 𝐺′ or that 𝐺′ is in 𝐺. For a graph
𝐺 = (𝑉, 𝐸) and ∅ ≠ 𝑊 ⊆ 𝑉 , the graph with vertex set 𝑊 that contains all
edges of 𝐸 with both endpoints in 𝑊 is called the subgraph of 𝐺 induced by
𝑊 and is denoted by 𝐺 [𝑊]; its edge set is denoted by 𝐸 [𝑊]. The maximal
connected subgraphs of a graph 𝐺 are its connected components; they are
induced subgraphs. A multi-subgraph results from a subgraph by possibly
adding copies of edges. Sometimes we obtain subgraphs by deleting an edge 𝑒,
a vertex 𝑣 (and its incident edges), or a set of vertices 𝑋 and write 𝐺 − 𝑒, 𝐺 − 𝑣,
and 𝐺 − 𝑋 = 𝐺 [𝑉 (𝐺) \ 𝑋].

Contracting a vertex set 𝑊 in a graph 𝐺 means deleting all vertices and
edges in 𝐺 [𝑊], adding a new vertex 𝑣𝑊 , and for every edge in 𝛿(𝑊) replacing
the endpoint in𝑊 by 𝑣𝑊 . We call the result 𝐺/𝑊 . Contracting an edge means
contracting the (two-element) set of its endpoints.

Given a graph 𝐺 (directed or undirected), we will be looking for a closed
walk in 𝐺 that contains every vertex at least once. Euler [1736] observed that
the footprint of such a walk has a simple property:

Definition 1.5 (Eulerian). An undirected graph 𝐺 = (𝑉, 𝐸) (and its edge set 𝐸)
is called Eulerian if every vertex has even degree. A directed graph 𝐺 = (𝑉, 𝐸)
(and its edge set 𝐸) is called Eulerian if for every vertex the in-degree equals
the out-degree.

The following characterization is known as Euler’s theorem:

Theorem 1.6 (Euler [1736], Hierholzer [1873]). Let𝐺 = (𝑉, 𝐸) be a connected
graph (directed or undirected). Then 𝐺 is Eulerian if and only if it contains a
closed walk that traverses each edge exactly once. Such a walk can be computed
in 𝑂 ( |𝐸 |) time.
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Figure 1.2 The left picture shows a connected Eulerian graph. By Theorem 1.6,
this graph contains a closed walk that traverses every edge exactly once. The
numbers next to the edges show the order in which the edges appear in one such
Eulerian walk. The vertices 𝑣1, . . . , 𝑣𝑛 are numbered in the order of their first
appearance in this walk. The right picture shows the solution to the Symmetric
TSP with Triangle Inequality that results from taking shortcuts as in the proof
of Lemma 1.7.

Proof. Let 𝐺 = (𝑉, 𝐸). If 𝐺 contains a closed walk 𝑣0, 𝑒1, 𝑣1, . . . , 𝑒𝑘 , 𝑣𝑘 that
traverses each edge exactly once, then 𝐸 is the footprint of this walk. If this walk
visits a vertex 𝑟 times (where 𝑣0 and 𝑣𝑘 count as one visit), then it enters that
vertex 𝑟 times and leaves it 𝑟 times; so its degree is 2𝑟 . Hence 𝐺 is Eulerian.

We prove the converse by induction on |𝐸 |, the case 𝐸 = ∅ being trivial. So let
𝐺 = (𝑉, 𝐸) be Eulerian, and let 𝐹 be the footprint of a walk 𝑣0, 𝑒1, 𝑣1 . . . , 𝑒𝑘 , 𝑣𝑘
in 𝐺 that contains every edge at most once and is as long as possible. Since
𝐸 is nonempty, so is 𝐹. Moreover, 𝑣𝑘 = 𝑣0, for otherwise there is an unused
edge leaving 𝑣𝑘 that we could append to the walk. So we have a closed walk,
and by the first part, its footprint 𝐹 is Eulerian. Hence also 𝐸 \ 𝐹 is Eulerian.
By induction, 𝐸 \ 𝐹 is the union of footprints of closed walks (one in each
connected component), and each of them must contain a vertex of 𝑣1, . . . , 𝑣𝑘
because 𝐺 is connected. So we can insert the other walks at these positions into
the first walk.

This proof easily implies a linear-time algorithm, by greedily extending a walk
as long as possible and recursively applying the algorithm to the remainder. □

We use Euler’s theorem as follows (cf. Figure 1.2):

Lemma 1.7. Let (𝑉, 𝑐) be an instance of Symmetric TSP with Triangle
Inequality, and let (𝑉, 𝐹) be a connected Eulerian undirected graph. Then
there exists a solution 𝑣1, . . . , 𝑣𝑛 of cost at most

∑
𝑒={𝑣,𝑤}∈𝐹 𝑐(𝑣, 𝑤), and such

a solution can be found in 𝑂 ( |𝐹 |) time.
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Proof. By Theorem 1.6, one can construct, in 𝑂 ( |𝐹 |) time, a closed walk in
(𝑉, 𝐹) that traverses each edge exactly once. Let 𝑣1, . . . , 𝑣𝑛 be the elements
of 𝑉 in the order in which they appear in that walk for the first time. Then
𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖) ≤

∑
𝑒={𝑣,𝑤}∈𝐹 𝑐(𝑣, 𝑤) because, by the triangle

inequality, 𝑐(𝑣𝑖−1, 𝑣𝑖) is at most the total cost of the edges in the subwalk from
the first appearance of 𝑣𝑖−1 to the first appearance of 𝑣𝑖 (for 𝑖 = 1, . . . , 𝑛, where
𝑣0 := 𝑣𝑛). □

The same proof works for the directed version:

Lemma 1.8. Let (𝑉, 𝑐) be an instance of Asymmetric TSP with Triangle
Inequality, and let (𝑉, 𝐹) be a connected Eulerian directed graph. Then there
exists a solution 𝑣1, . . . , 𝑣𝑛 of cost at most

∑
𝑒=(𝑣,𝑤) ∈𝐹 𝑐(𝑣, 𝑤), and such a

solution can be found in 𝑂 ( |𝐹 |) time. □

This motivates the following definition, which plays a central role in this
book:

Definition 1.9 (tour). A tour in a graph 𝐺 = (𝑉, 𝐸) (directed or undirected) is
a multi-subset 𝐹 of 𝐸 such that (𝑉, 𝐹) is connected and Eulerian.

By Theorem 1.6, an edge set 𝐹 is a tour if and only if it is the footprint of
a closed walk in 𝐺 that visits every vertex at least once. Using this, we can
formulate the TSP in graph-theoretical terms:

Problem 1.10 (Symmetric TSP).

Instance: A simple connected undirected graph 𝐺 = (𝑉, 𝐸) and a cost
function 𝑐 : 𝐸 → R≥0.

Task: Compute a tour in 𝐺 with minimum cost.

This has sometimes been called the graphical TSP (see, e.g., Cornuéjols,
Fonlupt, and Naddef [1985]). In the asymmetric setting, we can use the same
terminology:

Problem 1.11 (Asymmetric TSP).

Instance: A simple strongly connected directed graph 𝐺 = (𝑉, 𝐸) and a
cost function 𝑐 : 𝐸 → R≥0.

Task: Compute a tour in 𝐺 with minimum cost.

Now we want to argue that these graph-theoretic versions of the TSP are
equivalent to the ones given in the previous section. We say that problem 𝑃1
reduces to 𝑃2 if there is a polynomial-time algorithm that computes, for any
given instance 𝐼1 of 𝑃1, an instance 𝐼2 of 𝑃2 with the same optimum cost, and
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for any feasible solution 𝑆2 of 𝐼2, a solution 𝑆1 of 𝐼1 with no larger cost. If 𝑃1
reduces to 𝑃2 and 𝑃2 reduces to 𝑃1, we say that 𝑃1 and 𝑃2 are equivalent.

If 𝑣0, 𝑒1, 𝑣1, 𝑒2, . . . , 𝑣𝑘 is a walk without any repetitions of vertices, then the
graph with vertex set {𝑣0, . . . , 𝑣𝑘} and edge set {𝑒1, . . . , 𝑒𝑘} is called a path. If
𝑣0 = 𝑣𝑘 but there are no other repetitions, this graph is called a circuit (or cycle).
(A path or circuit can be directed or undirected.) A path or circuit in a graph 𝐺
is called Hamiltonian if it contains all vertices of 𝐺. A solution to an instance of
the Symmetric TSP with Triangle Inequality with 𝑛 ≥ 3 can be interpreted
as a Hamiltonian circuit in the complete graph on vertex set 𝑉 (whose edge set
is

(𝑉
2
)
). We write 𝑐(𝑒) := 𝑐(𝑣, 𝑤) for an edge 𝑒 = {𝑣, 𝑤} of this graph. Similarly,

a solution to an instance of the Asymmetric TSP with Triangle Inequality
with 𝑛 ≥ 2 can be interpreted as a Hamiltonian circuit in the complete directed
graph on vertex set 𝑉 (whose edge set is {(𝑣, 𝑤) ∈ 𝑉 ×𝑉 : 𝑣 ≠ 𝑤}). Again we
write 𝑐(𝑒) := 𝑐(𝑣, 𝑤) for an edge 𝑒 = (𝑣, 𝑤) of this digraph.

For an instance (𝐺, 𝑐) of the Symmetric TSP or the Asymmetric TSP and
two vertices 𝑣 and 𝑤 of 𝐺, the distance from 𝑣 to 𝑤 is the minimum total cost
of the edges of a walk from 𝑣 to 𝑤. We often denote it by dist(𝐺,𝑐) (𝑣, 𝑤). By
Dĳkstra’s algorithm, such a walk can be computed in polynomial time (see
Theorem 1.14).

Proposition 1.12. Symmetric TSP with Triangle Inequality (Problem 1.1) and
Symmetric TSP (Problem 1.10) are equivalent. Asymmetric TSP with Triangle
Inequality (Problem 1.3) and Asymmetric TSP (Problem 1.11) are equivalent.

Proof. We first reduce Problem 1.10 to Problem 1.1. Let 𝐼1 = (𝐺, 𝑐) be
an instance of Problem 1.10 with 𝐺 = (𝑉, 𝐸). For 𝑣, 𝑤 ∈ 𝑉 , let 𝑐(𝑣, 𝑤)
be the distance from 𝑣 to 𝑤 in (𝐺, 𝑐), and 𝐼2 := (𝑉, 𝑐). By Lemma 1.7,
from any tour 𝐹 in 𝐺, we can construct a solution 𝑣1, . . . , 𝑣𝑛 to 𝐼2 with
𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖) ≤ 𝑐(𝐹) ≤ 𝑐(𝐹).

Conversely, for every solution 𝑣1, . . . , 𝑣𝑛 to 𝐼2, we can compute a minimum-
cost walk in (𝐺, 𝑐) from 𝑣𝑛 to 𝑣1 and from 𝑣𝑖−1 to 𝑣𝑖 for 𝑖 = 2, . . . , 𝑛 and append
all these walks to obtain a closed walk visiting all vertices. Its footprint is a
tour with cost 𝑐(𝑣𝑛, 𝑣1) +

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖). In particular, 𝐼1 and 𝐼2 have the same

optimum cost.
The reduction from Problem 1.11 to Problem 1.3 is identical.
To reduce Problem 1.1 to Problem 1.10, let 𝐼1 = (𝑉, 𝑐) be an instance

of Problem 1.1 and define 𝐼2 = (𝐺, 𝑐), where 𝐺 = (𝑉, 𝐸), 𝐸 =
(𝑉

2
)
, and

𝑐(𝑒) = 𝑐(𝑣, 𝑤) for all 𝑒 = {𝑣, 𝑤} ∈ 𝐸 . Every solution to 𝐼1 corresponds to a
Hamiltonian circuit in 𝐺 with the same cost and vice versa. For every tour
𝐹 in 𝐺, we can construct a Hamiltonian circuit of at most the same cost by
Lemma 1.7.
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To reduce Problem 1.3 to Problem 1.11, let 𝐼1 = (𝑉, 𝑐) be an instance
of Problem 1.3 and define 𝐼2 = (𝐺, 𝑐), where 𝐺 = (𝑉, 𝐸) has edge set
𝐸 = {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑉, 𝑣 ≠ 𝑤}, and 𝑐(𝑒) = 𝑐(𝑣, 𝑤) for all 𝑒 = (𝑣, 𝑤) ∈ 𝐸 , and
proceed the same way. □

If problem 𝑃1 reduces to problem 𝑃2 and 𝑃2 has an 𝛼-approximation
algorithm, then so has 𝑃1. We will often work with the graph versions of the
TSP (Symmetric TSP and Asymmetric TSP), but sometimes the versions with
the triangle inequality are more useful. Proposition 1.12 allows us to switch
between the versions and use whichever is more convenient.

If we do not require the triangle inequality but still want to visit every
city exactly once, the problem is hopeless, as Sahni and Gonzalez [1976]
observed: Any approximation algorithm would imply P = NP. This is because
any 𝛼-approximation algorithm, for any function 𝛼, would allow us to decide
in polynomial time whether a given graph contains a Hamiltonian circuit (see
Problem 1.20): Just define the distance of two cities to be 0 if they are joined
by an edge in the graph and 1 otherwise; then any 𝛼-approximation algorithm
outputs a solution of cost 0 if and only if the given graph contains a Hamiltonian
circuit.

1.3 Some Basic Combinatorial Optimization Problems

In this section, we cite three classical combinatorial optimization results without
proofs. Proofs can be found in every book on combinatorial optimization, such
as Schrĳver [2003] or Korte and Vygen [2018].

We already used the fact that a walk from 𝑠 to 𝑡 whose footprint has minimum
cost can be computed in polynomial time. We may assume that such a walk
does not visit any vertex more than once, for otherwise we can omit cycles and
obtain a walk with fewer edges that does not cost more. For an instance (𝐺, 𝑐)
of the Symmetric TSP or the Asymmetric TSP and a subgraph 𝐻 of 𝐺 with
edge set 𝐹, we call 𝑐(𝐹) the cost of 𝐻. So we can formulate the problem of
finding a walk from 𝑠 to 𝑡 whose footprint has minimum cost as follows:

Problem 1.13 (Shortest Path).

Instance: A simple graph 𝐺 = (𝑉, 𝐸) (directed or undirected), a cost
function 𝑐 : 𝐸 → R≥0, and two vertices 𝑠, 𝑡 ∈ 𝑉 .

Task: Compute a path 𝑃 from 𝑠 to 𝑡 in 𝐺 with minimum cost, or decide
that there is no such path.
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The classical algorithm of Dĳkstra [1959] (see Exercise 1.4) solves this
problem efficiently. As before, 𝑛 denotes the number of vertices in the given
graph.

Theorem 1.14 (Dĳkstra [1959]). There is an𝑂 (𝑛2)-time algorithm for Shortest
Path.

A faster running time can be obtained for sparse graphs (with 𝑜(𝑛2) edges),
but this is not important for the purpose of this book. Note that it is essential
that the cost function is nonnegative: The shortest path problem with general
weights is NP-hard. Using Dĳkstra’s algorithm, we can compute the distance
from 𝑠 to 𝑡 for all vertices 𝑠, 𝑡 ∈ 𝑉 . Since the algorithm in fact computes shortest
paths from one vertex 𝑠 to all vertices 𝑡 ∈ 𝑉 , only 𝑛 applications of Dĳkstra’s
algorithm suffice. The metric closure of a pair (𝐺, 𝑐), where 𝐺 = (𝑉, 𝐸) is a
directed or undirected graph and 𝑐 : 𝐸 → R≥0, is the pair (�̄�, 𝑐) where �̄� has
the same vertex set and contains an edge 𝑒 = (𝑣, 𝑤) or 𝑒 = {𝑣, 𝑤}, respectively,
whenever 𝐺 contains a path from 𝑣 to 𝑤, and 𝑐(𝑒) is the distance from 𝑣 to 𝑤.

Theorem 1.15. There is an 𝑂 (𝑛3)-algorithm that, given a simple graph 𝐺 =

(𝑉, 𝐸) and a cost function 𝑐 : 𝐸 → R≥0, computes the metric closure of (𝐺, 𝑐).

Another basic problem asks to connect all vertices at minimum cost. A tree
is a minimal connected graph – that is, the deletion of any edge would destroy
connectivity. A subgraph of a graph 𝐺 is called spanning if it contains all
vertices of 𝐺.

Problem 1.16 (Minimum Spanning Tree).

Instance: A simple undirected graph 𝐺 = (𝑉, 𝐸) and a cost function
𝑐 : 𝐸 → R≥0.

Task: Compute a spanning tree (𝑉, 𝑆) in 𝐺 with minimum cost, or
decide that 𝐺 is not connected.

This problem was solved quite early by Borůvka [1926]:

Theorem 1.17 (Borůvka [1926], Jarník [1930], Prim [1957]). There is an
𝑂 (𝑛2)-time algorithm for Minimum Spanning Tree.

In fact, it is well known that the Minimum Spanning Tree problem can
be solved by a simple greedy algorithm (see Exercise 1.5 or the proof of
Theorem 2.14).

The third problem we cite here is much more difficult to solve. A perfect
matching in 𝐺 is a set 𝑀 of edges such that every vertex of 𝐺 is incident to
exactly one of these edges.
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Problem 1.18 (Weighted Matching).

Instance: A simple undirected graph 𝐺 = (𝑉, 𝐸) with |𝑉 | even and a cost
function 𝑐 : 𝐸 → R≥0.

Task: Compute a perfect matching in 𝐺 with minimum cost, or decide
that no perfect matching exists.

This problem was solved by Edmonds [1965b]:

Theorem 1.19 (Edmonds [1965b], Gabow [1973]). There is an 𝑂 (𝑛3)-time
algorithm for Weighted Matching.

For Minimum Spanning Tree and Weighted Matching, one could also
allow edges with negative cost. Since all spanning trees have 𝑛 − 1 edges and
all perfect matchings have 𝑛

2 edges, adding a constant to all edges costs does
not change the set of optimum solutions. This trick does not work for Shortest
Path. One can still solve Shortest Path in polynomial time for conservative
weights (i.e., when there is no circuit of negative total weight), but this is more
complicated (see Exercise 1.11).

In contrast to the above three problems, many others have a polynomial-time
algorithm only if P = NP. We mention one famous example of such an NP-hard
problem:

Problem 1.20 (Hamiltonian Circuit).

Instance: A undirected graph 𝐺 = (𝑉, 𝐸).

Task: Decide whether 𝐺 has a Hamiltonian circuit.

Theorem 1.21 (Karp [1972]). Hamiltonian Circuit has a polynomial-time
algorithm if and only if P = NP.

A graph with a Hamiltonian circuit is called Hamiltonian. Theorem 1.21
easily implies that the shortest path problem with general weights has no
polynomial-time algorithm unless P = NP (cf. Exercise 1.7).

1.4 Christofides’ Algorithm

Given an instance 𝐼 of one of our TSP variants, we will denote by OPT(𝐼) the
cost of an optimum solution. For two edge sets 𝐴 and 𝐵, we denote by 𝐴

.
∪ 𝐵

(the disjoint union of 𝐴 and 𝐵) the multi-set that contains two copies of each
edge in 𝐴 ∩ 𝐵 and one copy of each edge in (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵). Our very first
approximation algorithm is now almost trivial:
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Figure 1.3 Illustrating the double tree algorithm (left) and Christofides’ algorithm
(right). Both start with a minimum-cost spanning tree. The former then doubles
all edges, while the latter adds a minimum-cost perfect matching (green, dashed)
among the odd-degree vertices (red squares).

Proposition 1.22 (Rosenkrantz, Stearns, and Lewis [1977]). There is a 2-
approximation algorithm for Symmetric TSP.

Proof. Given an instance (𝐺, 𝑐) with 𝐺 = (𝑉, 𝐸), compute a minimum-cost
spanning tree (𝑉, 𝑆) in (𝐺, 𝑐) (cf. Theorem 1.17) and output the tour 𝑆

.
∪ 𝑆,

which results from 𝑆 by doubling all edges. Since any tour is connected and thus
contains a spanning tree, we have 𝑐(𝑆) ≤ OPT(𝐺, 𝑐), so the tour 𝑆

.
∪ 𝑆 that we

compute costs at most 2 OPT(𝐺, 𝑐). □

Rosenkrantz, Stearns, and Lewis [1977] actually proved (already in 1974)
that two different algorithms (“nearest insertion” and “cheapest insertion”) are
2-approximation algorithms, but the above folklore proof is much simpler. The
algorithm in the proof of Proposition 1.22 has often been called the double tree
algorithm.

Christofides [1976], and independently Serdyukov [1978], showed how to
improve on this. (See van Bevern and Slugina [2020] for a historical note.)
Christofides’ algorithm also begins by computing a minimum-cost spanning tree
(𝑉, 𝑆). Then, instead of doubling all edges, it finds a potentially cheaper way to
make 𝑆 Eulerian. For a graph (𝑉, 𝐹), let odd(𝐹) = {𝑣 ∈ 𝑉 : |𝐹 ∩ 𝛿(𝑣) | odd}
denote the set of odd-degree vertices. We formulate Christofides’ algorithm first
for the Symmetric TSP with Triangle Inequality. See Algorithm 1.23, and
see Figure 1.3 for an illustration.

Theorem 1.24 (Christofides [1976], Serdyukov [1978]). Christofides’ algorithm
(Algorithm 1.23) is a 3

2 -approximation algorithm for Symmetric TSP with
Triangle Inequality.

Proof. An optimum solution corresponds to a Hamiltonian circuit 𝐻 in 𝐺
of cost OPT(𝑉, 𝑐). We have 𝑐(𝑆) ≤ 𝑐(𝐻) because deleting one edge from
𝐻 results in a spanning tree. Let 𝑤1, . . . , 𝑤𝑘 be the vertices of 𝑊 in the
order in which they appear in a traversal of 𝐻, and let 𝑤0 := 𝑤𝑘 . Note that
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Algorithm 1.23: Christofides’ Algorithm
Input: an instance (𝑉, 𝑐) of Symmetric TSP with Triangle

Inequality
Output: a solution 𝑣1, . . . , 𝑣𝑛

(1) Let 𝐺 =
(
𝑉,

(𝑉
2
) )

be the complete graph on 𝑉 , and for 𝑒 = {𝑣, 𝑤} ∈
(𝑉

2
)
,

let 𝑐(𝑒) = 𝑐(𝑣, 𝑤).
(2) Compute a minimum-cost spanning tree (𝑉, 𝑆) in (𝐺, 𝑐).
(3) Let𝑊 = odd(𝑆).
(4) Compute a minimum-cost perfect matching 𝑀 in (𝐺 [𝑊], 𝑐).
(5) Apply Lemma 1.7 to the tour (𝑉, 𝑆

.
∪ 𝑀) and output the resulting solution.

𝑘 = |𝑊 | is even by the handshake lemma (Lemma 1.4). Then by the triangle
inequality,

∑𝑘
𝑖=1 𝑐(𝑤𝑖−1, 𝑤𝑖) ≤ 𝑐(𝐻). Hence we have two perfect matchings

𝑀1 = {{𝑤𝑖−1, 𝑤𝑖} : 𝑖 even} and 𝑀2 = {{𝑤𝑖−1, 𝑤𝑖} : 𝑖 odd} in 𝐺 [𝑊] with total
cost at most 𝑐(𝐻). So

𝑐(𝑀) ≤ min
{
𝑐(𝑀1), 𝑐(𝑀2)

}
≤ 1

2
(
𝑐(𝑀1) + 𝑐(𝑀2)

)
≤ 1

2
𝑐(𝐻).

By Lemma 1.7, our output has cost 𝑐(𝑆
.
∪ 𝑀) = 𝑐(𝑆) + 𝑐(𝑀) ≤ 3

2𝑐(𝐻) =
3
2 OPT(𝑉, 𝑐). The algorithm can be implemented to run in polynomial time by
Theorems 1.17 and 1.19. □

We will now reformulate Christofides’ algorithm for the Symmetric TSP.
The following notion will be used very often in this book:

Definition 1.25 (𝑇-join). Let𝑉 be a finite set and 𝑇 ⊆ 𝑉 with |𝑇 | even. A 𝑇-join
is a multi-subset 𝐽 of

(𝑉
2
)

with 𝑇 = odd(𝐽). If 𝐺 = (𝑉, 𝐸) is a graph and 𝐽 ⊆ 𝐸 ,
then we say that 𝐽 is a 𝑇-join in 𝐺.

We start with a few basic properties. For two sets 𝐴 and 𝐵, their symmetric
difference 𝐴 △ 𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴) contains all elements that are in the union
of 𝐴 and 𝐵, but not in their intersection.

Proposition 1.26. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑇,𝑇 ′ ⊆ 𝑉 with
|𝑇 |, |𝑇 ′ | even. Let 𝐽 be a 𝑇-join and 𝐽′ a 𝑇 ′-join. Then 𝐽 △ 𝐽′ is a (𝑇 △ 𝑇 ′)-join.

Proof. A vertex 𝑣 has odd degree in (𝑉, 𝐽 △ 𝐽′) if and only if it has odd degree
in (𝑉, 𝐽

.
∪ 𝐽′), and this is the case if and only if it has odd degree in exactly one

of (𝑉, 𝐽) and (𝑉, 𝐽′). □
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Proposition 1.27. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑇 ⊆ 𝑉 with |𝑇 |
even. Then 𝐺 contains a 𝑇-join if and only if every connected component of 𝐺
contains an even number of elements of 𝑇 .

Proof. Necessity follows from Lemma 1.4. For sufficiency, let𝑇 = {𝑡1, . . . , 𝑡𝑘}
such that 𝑡𝑖−1 and 𝑡𝑖 are in the same connected component of𝐺 for 𝑖 = 2, 4, . . . , 𝑘 .
Then take any path 𝑃𝑖 from 𝑡𝑖−1 to 𝑡𝑖 for 𝑖 = 2, 4, . . . , 𝑘 . The symmetric difference
of the edge sets of these paths is a 𝑇-join by Proposition 1.26. □

Lemma 1.28. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑇 ⊆ 𝑉 with |𝑇 |
even. Let 𝐽 be a 𝑇-join in 𝐺. Then there exists a numbering 𝑇 = {𝑡1, . . . , 𝑡𝑘}
and a path from 𝑡𝑖−1 to 𝑡𝑖 in (𝑉, 𝐽) for 𝑖 = 2, 4, . . . , 𝑘 such that these paths are
pairwise edge-disjoint.

Proof. We use induction on 𝑘 = |𝑇 |, the case 𝑘 = 0 being trivial. By Proposi-
tion 1.27, there are two vertices 𝑡𝑘−1, 𝑡𝑘 ∈ 𝑇 in the same connected component
of (𝑉, 𝐽), so let 𝑃 be the edge set of a path from 𝑡𝑘−1 to 𝑡𝑘 in (𝑉, 𝐽), and apply
the induction hypothesis to 𝑇 ′ = 𝑇 \ {𝑡𝑘−1, 𝑡𝑘} and the 𝑇 ′-join 𝐽 \ 𝑃. □

Using an algorithm for Weighted Matching, we can compute minimum-cost
𝑇-joins in polynomial time:

Theorem 1.29 (Edmonds and Johnson [1973]). Given a simple undirected
graph 𝐺 = (𝑉, 𝐸), 𝑐 : 𝐸 → R≥0, and 𝑇 ⊆ 𝑉 with |𝑇 | even, one can compute a
minimum-cost 𝑇-join in (𝐺, 𝑐) or decide that none exists in 𝑂 (𝑛3) time.

Proof. The existence of a 𝑇-join can be decided with Proposition 1.27.
Let 𝐻 =

(
𝑇,

(𝑇
2
) )

be the complete undirected graph on 𝑇 , and for 𝑣, 𝑤 ∈ 𝑇 , let
𝑐({𝑣, 𝑤}) be the distance from 𝑣 to 𝑤 in (𝐺, 𝑐). Note that 𝑐 can be computed in
𝑂 (𝑛3) time by Theorem 1.15.

Now compute a minimum-cost perfect matching 𝑀 in (𝐻, 𝑐), using Theorem
1.19. For {𝑣, 𝑤} ∈ 𝑀 , compute a shortest path from 𝑣 to 𝑤 in (𝐺, 𝑐), and let 𝐽 be
the symmetric difference of these |𝑀 | paths. We prove that 𝐽 is a minimum-cost
𝑇-join in (𝐺, 𝑐).

Proposition 1.26 implies that 𝐽 is indeed a𝑇-join. To show that 𝐽 has minimum
cost, let 𝐽∗ be a minimum-cost 𝑇-join. By Lemma 1.28, there exists a numbering
𝑇 = {𝑡1, . . . , 𝑡𝑘} and a path 𝑃𝑖 from 𝑡𝑖−1 to 𝑡𝑖 in (𝑉, 𝐽∗) for 𝑖 = 2, 4, . . . , 𝑘 such
that these paths are pairwise edge-disjoint. We conclude

𝑐(𝐽) ≤ 𝑐(𝑀) ≤
∑︁

𝑖=2,4,...,𝑘
𝑐({𝑡𝑖−1, 𝑡𝑖}) ≤

∑︁
𝑖=2,4,...,𝑘

𝑐(𝑃𝑖) ≤ 𝑐(𝐽∗). □

The problem can actually be solved for general weights too. We do not need
this for now but note it for later use (in Chapter 12):
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(a) (b) (c) (d)

Figure 1.4 Christofides’ algorithm illustrated for an unweighted graph instance.
(a) An unweighted graph 𝐺 (i.e., 𝑐 (𝑒) = 1 for all edges 𝑒), (b) a spanning tree
(𝑉, 𝑆) whose odd-degree vertices (elements of odd(𝑆)) are shown as red squares,
(c) a minimum odd(𝑆)-join 𝐽 , and (d) the resulting tour 𝑆

.

∪ 𝐽 .

Corollary 1.30. Given a simple undirected graph 𝐺 = (𝑉, 𝐸), 𝑐 : 𝐸 → R,
and 𝑇 ⊆ 𝑉 with |𝑇 | even, one can compute a minimum-cost 𝑇-join in (𝐺, 𝑐) or
decide that none exists in 𝑂 (𝑛3) time.

Proof. Let 𝐸− = {𝑒 ∈ 𝐸 : 𝑐(𝑒) < 0} and 𝑐′ (𝑒) := |𝑐(𝑒) | for all 𝑒 ∈ 𝐸 . Then
𝑐′ (𝐾 △ 𝐸−) = 𝑐(𝐾) − 𝑐(𝐸−) for all 𝐾 ⊆ 𝐸 . Let 𝑇 ′ := 𝑇 △ odd(𝐸−). Then 𝐽′ is
a minimum 𝑐′-cost 𝑇 ′-join if and only if 𝐽′ △ 𝐸− is a minimum 𝑐-cost 𝑇-join.
Hence the problem reduces to Theorem 1.29. □

With the notion of 𝑇-joins, we have an elegant reformulation of Christofides’
algorithm: see Algorithm 1.31. Figure 1.4 provides an example.

Algorithm 1.31: Christofides’ Algorithm
Input: an instance (𝐺, 𝑐) of Symmetric TSP
Output: a tour 𝐹

(1) Compute a minimum-cost spanning tree (𝑉, 𝑆) in (𝐺, 𝑐).
(2) Let𝑊 = odd(𝑆), and let 𝐽 be a minimum-cost𝑊-join in (𝐺, 𝑐).
(3) Output the tour 𝑆

.
∪ 𝐽.

The running time of Christofides’ algorithm is also 𝑂 (𝑛3), dominated by the
subroutine to find a minimum-cost odd(𝑆)-join (cf. Theorem 1.29). Let us now
prove the approximation guarantee again for this version:

Theorem 1.32 (Christofides [1976], Serdyukov [1978]). Christofides’ algorithm
(Algorithm 1.31) is a 3

2 -approximation algorithm for Symmetric TSP.

Proof. We have 𝑐(𝑆) ≤ OPT(𝐺, 𝑐), like in the proof of Proposition 1.22. Any
optimum tour 𝐹∗ contains a𝑊-join 𝐽1 by Proposition 1.27. Let 𝐽2 := 𝐹∗ \ 𝐽1. By
Proposition 1.26, odd(𝐽2) = odd(𝐹∗) △ odd(𝐽1) = ∅ △𝑊 = 𝑊 . After deleting
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Table 1.1 Approximation ratios for Symmetric TSP in the order of their
discovery. (R) means randomized; this algorithm computes a random tour, and
the approximation ratio compares its expected cost to OPT.

Approximation Ratio Year Reference Chapter

2 1974 Rosenkrantz, Stearns, and Lewis [1977] –
3
2 1976 Christofides [1976] 1.4
3
2 1976 Serdyukov [1978] 1.4
3
2 − 10−36 (R) 2020 Karlin, Klein, and Oveis Gharan [2021] 10–11
3
2 − 10−36 2022 Karlin, Klein, and Oveis Gharan [2023] 11.6

pairs of parallel edges in 𝐽1 and 𝐽2, we get two 𝑊-joins 𝐽′1 and 𝐽′2 in 𝐺 with
𝑐(𝐽′1) + 𝑐(𝐽

′
2) ≤ 𝑐(𝐽1) + 𝑐(𝐽2) = 𝑐(𝐹∗) = OPT(𝐺, 𝑐). Hence

𝑐(𝐽) ≤ min
{
𝑐(𝐽′1), 𝑐(𝐽

′
2)

}
≤ 1

2
(
𝑐(𝐽′1) + 𝑐(𝐽

′
2)

)
≤ 1

2 OPT(𝐺, 𝑐).

We conclude 𝑐(𝑆
.
∪ 𝐽) = 𝑐(𝑆) + 𝑐(𝐽) ≤ 3

2 OPT(𝐺, 𝑐). □

Adding a matching 𝑀 in Algorithm 1.23 or a𝑊-join 𝐽 in Algorithm 1.31 is
called parity correction because it corrects the parity of every vertex degree
(renders it even). Bounding the cost of parity correction will be a central topic
in several chapters of this book.

Of course, Theorems 1.24 and 1.32 are equivalent. This bound on the
approximation ratio of Christofides’ algorithm is tight even for unweighted
graph instances: For a complete graph with an even number of vertices, take a
spanning tree whose vertices all have odd degree, then we end up with 3

2𝑛 − 1
edges. The special case of Symmetric TSP where 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸 is
known as Graph TSP. Today we know a slightly better approximation algorithm
for Symmetric TSP (see Table 1.1 and Chapters 10 and 11) and much better
approximation algorithms for Graph TSP (see Chapters 12 and 13). However,
the following question is still open:

Open Problem 1.33. Find an 𝛼-approximation algorithm for Symmetric TSP
for some 𝛼 ≪ 3

2 (say 𝛼 ≤ 1.49).

Chekuri and Quanrud [2018] found a ( 3
2 + 𝜀)-approximation algorithm that

is faster than Christofides’ algorithm, for any 𝜀 > 0.
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1.5 Cycle Cover Algorithm

For Asymmetric TSP, a constant-factor approximation algorithm is much more
difficult to obtain, and indeed such an algorithm was not known until 2017.
It is trivial to give an 𝑛-approximation algorithm: Given an instance (𝐺, 𝑐)
with 𝐺 = (𝑉, 𝐸), order the cities arbitrarily (say 𝑉 = {𝑣1, . . . , 𝑣𝑛}), and take a
shortest 𝑣𝑛-𝑣1-path and a shortest 𝑣𝑖−1-𝑣𝑖-path for 𝑖 = 2, . . . , 𝑛 in (𝐺, 𝑐); output
the disjoint union of all these paths. Since every tour contains a path from 𝑣𝑖−1
to 𝑣𝑖 for any two cities 𝑣𝑖−1 and 𝑣𝑖 , this algorithm produces a tour at most 𝑛
times longer than optimal (and this bound is essentially tight; see Exercise 1.12).

The first nontrivial approximation algorithm was found by Frieze, Galbiati,
and Maffioli [1982]. It is based on the following concept: A cycle cover of a
graph 𝐺 = (𝑉, 𝐸) (directed or undirected) is a subset 𝐹 ⊆ 𝐸 of edges such that
every vertex has degree 2 in (𝑉, 𝐹), and in-degree 1 and out-degree 1 in the
directed case. In particular, the edge set of a Hamiltonian circuit is a cycle cover,
and every cycle cover is Eulerian, but a cycle cover is not necessarily connected.

Lemma 1.34. Given a simple directed graph 𝐺 = (𝑉, 𝐸) and 𝑐 : 𝐸 → R≥0,
one can compute a minimum-cost cycle cover in (𝐺, 𝑐) or decide that none
exists in 𝑂 (𝑛3) time.

Proof. Let 𝐺12 be the undirected graph that contains two vertices 𝑣1 and 𝑣2

for each 𝑣 ∈ 𝑉 and an edge {𝑣1, 𝑤2} for each (𝑣, 𝑤) ∈ 𝐸 (with the same cost).
There is a one-to-one correspondence between the cycle covers in 𝐺 and the
perfect matchings in𝐺12. Hence the problem reduces to finding a minimum-cost
perfect matching in𝐺12, which can be done in𝑂 (𝑛3) time by Theorem 1.19. □

We remark that the graph 𝐺12 constructed in this proof is bipartite (every
edge has exactly one endpoint in {𝑣1 : 𝑣 ∈ 𝑉}), and Weighted Matching is
easier in bipartite graphs, but this is not important here.

The cycle cover algorithm by Frieze, Galbiati, and Maffioli [1982] is best
described for the Asymmetric TSP with Triangle Inequality (see Algo-
rithm 1.35 and Figure 1.5).

Theorem 1.36 (Frieze, Galbiati, and Maffioli [1982]). The cycle cover algorithm
(Algorithm 1.35) is a (log2 𝑛)-approximation algorithm for Asymmetric TSP
with Triangle Inequality.

Proof. At any stage, 𝐹 is Eulerian, and the algorithm leaves the while-loop
only when 𝐹 is a tour. The number of connected components decreases by at
least a factor of 2 in each iteration of the while-loop. Hence there are at most
⌊log2 𝑛⌋ iterations, and thus by Lemma 1.34, the algorithm runs in 𝑂 (𝑛3 log 𝑛)
time.
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Algorithm 1.35: Cycle Cover Algorithm
Input: an instance (𝑉, 𝑐) of Asymmetric TSP with Triangle

Inequality
Output: a solution 𝑣1, . . . , 𝑣𝑛

(1) Let 𝐺 = (𝑉, {(𝑣, 𝑤) ∈ 𝑉 ×𝑉 : 𝑣 ≠ 𝑤}) be the complete directed graph
on 𝑉 . Let 𝐹 := ∅.

(2) while (𝑉, 𝐹) is not connected do
(3) Choose one vertex from each connected component of (𝑉, 𝐹); let𝑊

be the set of these vertices.
(4) Let 𝐹𝑊 be a minimum-cost cycle cover in (𝐺 [𝑊], 𝑐). Set

𝐹 := 𝐹
.
∪ 𝐹𝑊 .

(5) Apply Lemma 1.8 to the tour 𝐹 and output the resulting solution.

Figure 1.5 Illustrating the cycle cover algorithm. The first iteration chooses a
minimum-cost cycle cover (black, solid). The second iteration chooses a represen-
tative vertex of each connected component and adds a minimum-cost cycle cover
on these (blue, dotted). After two more edges are added in the third iteration (red,
dashed), the digraph is connected, and the algorithm terminates.

For any set 𝑊 ⊆ 𝑉 , the minimum cost of a cycle cover in 𝐺 [𝑊] is at most
OPT(𝑉, 𝑐) because, due to the triangle inequality, we can take shortcuts in
any Hamiltonian circuit in 𝐺 to obtain a Hamiltonian circuit in 𝐺 [𝑊] without
increasing the cost. We conclude that 𝑐(𝐹𝑊 ) ≤ OPT(𝑉, 𝑐) in each iteration,
and hence our output has cost at most ⌊log2 𝑛⌋OPT(𝑉, 𝑐). □

This bound for the cycle cover algorithm is tight (see Exercise 1.14).
More than 20 years later, the upper bound on the approximation ratio for

Asymmetric TSP was improved by a constant factor by Bläser [2008] to
0.99 log2 𝑛, by Kaplan et al. [2005] to 0.842 log2 𝑛, and by Feige and Singh
[2007] to 2

3 log2 𝑛. We will not present these algorithms here; they are refinements



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

Exercises 19

Table 1.2 Approximation ratios for Asymmetric TSP in the order of their
discovery. (R) means randomized; this algorithm computes a random tour, and
the approximation ratio compares its expected cost to OPT. Moreover, 𝜀 stands
for an arbitrarily small positive constant.

Approximation Ratio Year Reference Chapter

log2 𝑛 1980 Frieze, Galbiati, and Maffioli [1982] 1.5
0.99 log2 𝑛 2002 Bläser [2008] –
0.842 log2 𝑛 2003 Kaplan et al. [2005] –
2
3 log2 𝑛 2006 Feige and Singh [2007] –
𝑂 ( log 𝑛

log log 𝑛 ) (R) 2009 Asadpour et al. [2017] 5
506 2017 Svensson, Tarnawski, and Végh [2020] 6–8
22 + 𝜀 2019 Traub and Vygen [2022] 6–8
17 + 𝜀 2021 this book 6–8

of the cycle cover algorithm. The first sublogarithmic approximation factor
was obtained by Asadpour et al. [2017] and will be presented in Chapter 5.
Finally, a constant-factor approximation algorithm was discovered by Svensson,
Tarnawski, and Végh [2020]. In Chapters 6–8, we will present an improved
version of this algorithm. Table 1.2 summarizes the history.

Exercises

1.1 Show that Asymmetric TSP with Triangle Inequality can be solved
exactly in 𝑂 (𝑛22𝑛) time.
Hint: Choose an arbitrary vertex 𝑠. For every set 𝑋 with {𝑠} ⊊ 𝑋 ⊆ 𝑉
and every vertex 𝑡 ∈ 𝑋 \ {𝑠}, compute a list 𝑠 = 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑡 that
contains every element of 𝑋 exactly once and minimizes

∑𝑘
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖).

Note: This technique is called dynamic programming. No faster algorithm
is known, even for Symmetric TSP with Triangle Inequality.
(Bellman [1962], Held and Karp [1962])

1.2 Prove that a connected undirected graph contains a walk that traverses
each edge exactly once if and only if it has at most two odd-degree vertices.

1.3 Call a tour in a graph minimal if no proper subset is a tour in that graph.
Prove that a minimal tour in an undirected graph does not contain three
parallel edges, and prove that a minimal tour in a directed graph does not
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contain 𝑛 − 1 parallel edges. Show that these bounds are tight: 2 or 𝑛 − 2
parallel edges are possible.

1.4 Consider Dĳkstra’s algorithm to compute the distance from a vertex 𝑠
to all other vertices in a digraph 𝐺 = (𝑉, 𝐸) with nonnegative weights
𝑐 : 𝐸 → R≥0: Initialize 𝑅 := ∅, 𝑑 (𝑠) := 0, and 𝑑 (𝑣) := ∞ for all
𝑣 ∈ 𝑉 \ {𝑠}. Then, while 𝑅 ≠ 𝑉 , select 𝑣 ∈ 𝑉 \𝑅 with 𝑑 (𝑣) minimum, add
𝑣 to 𝑅, and set 𝑑 (𝑤) := min{𝑑 (𝑤), 𝑑 (𝑣) +𝑐(𝑒)} for all 𝑒 = (𝑣, 𝑤) ∈ 𝛿+ (𝑣).
Prove that this algorithm is correct.
(Dĳkstra [1959])

1.5 Consider the following algorithm. Given a connected undirected graph
𝐺 = (𝑉, 𝐸) and edge costs 𝑐 : 𝐸 → R, initialize 𝐹 := ∅. As long as there
exists an edge 𝑒 ∈ 𝐸 \𝐹 such that (𝑉, 𝐹 ∪ {𝑒}) contains no circuit, choose
such an edge with minimum cost and add it to 𝐹.
Prove that this algorithm computes an optimum solution to the Minimum
Spanning Tree problem.
Hint: Among all optimum spanning trees, consider one that has as many
edges as possible in common with the output of the algorithm.
(Kruskal [1956])

1.6 Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑋 ⊊ 𝑉 such that 𝐺 [𝑉 \ 𝑋] has more than
|𝑋 | connected components with an odd number of vertices. Show that
then 𝐺 has no perfect matching. (The converse also holds and is known
as Tutte’s theorem.)

1.7 Deduce from Theorem 1.21 that the shortest path problem with general
weights has no polynomial-time algorithm unless P = NP.

1.8 Show that for every even 𝑛 ≥ 4, there is a Hamiltonian graph 𝐺 on 𝑛
vertices in which every vertex has degree 3 and Christofides’ algorithm –
run on 𝐺 with unit weights – may compute a tour with 3

2𝑛 − 1 edges.
1.9 The Euclidean TSP is a special case of the Symmetric TSP with

Triangle Inequality: Here 𝑉 ⊊ R2, and 𝑐 is given by the Euclidean
distance. Prove that even for Euclidean TSP, Christofides’ algorithm is
not an 𝛼-approximation algorithm for any 𝛼 < 3

2 .
1.10 In the Rural Postman Problem, we are given a connected undirected

graph 𝐺 = (𝑉, 𝐸) with weights 𝑐 : 𝐸 → R≥0 and a subset �̄� of edges. We
ask for a connected (not necessarily spanning) Eulerian multi-subgraph
of 𝐺 that contains at least one copy of every element of �̄� . Devise a
3
2 -approximation algorithm for the Rural Postman Problem.
(This was first mentioned by Frederickson [1979].)

1.11 Conclude from Corollary 1.30 that there is a polynomial-time algorithm
for the Shortest Path problem when the graph 𝐺 is undirected and
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the weights 𝑐 are conservative (i.e., there is no circuit of negative total
weight).

1.12 Prove that the trivial algorithm mentioned at the beginning of Section 1.5
is an (𝑛 − 1)-approximation algorithm for Asymmetric TSP, and prove
that this bound is tight.

1.13 Show that a minimum-cost cycle cover in an undirected graph can be
computed in polynomial time. Note that it is not allowed to take any edge
twice.
Hint: Find a reduction to Weighted Matching by first replacing every
edge by a path of three edges and then duplicating every original vertex.

1.14 Show that whenever 𝑛 is a power of 2, there are instances with 𝑛 cities for
which the cycle cover algorithm (Algorithm 1.35) can produce a solution
that is no better than log2 𝑛 times the optimum.

1.15 Consider the variant of the cycle cover algorithm (Algorithm 1.35) in
which 𝐹𝑊 in Step (4) is chosen as the edge set of a cycle 𝐶 in 𝐺 [𝑊] with
minimum mean weight 𝑐 (𝐸 (𝐶 ) )|𝐸 (𝐶 ) | . Karp [1978] showed that a minimum-
mean-weight cycle can be computed in 𝑂 (𝑛3) time. Prove (by induction
on 𝑛) that this variant is a 2(1 + 1

2 + · · · +
1
𝑛
)-approximation algorithm.

(Bläser [2008] attributed this to Kleinberg and Williamson; see also
Williamson and Shmoys [2011].)
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2

Linear Programming Relaxations of the
Symmetric TSP

For NP-hard problems, it is often useful to study relaxations that are easier to
solve. In Chapter 1, we already saw two approximation algorithms that started
by solving a relaxation: finding a minimum-cost connected spanning subgraph
in Christofides’ algorithm (Algorithm 1.31) and finding a minimum-cost cycle
cover in the cycle cover algorithm (Algorithm 1.35). Another kind of relaxation
arises by formulating the problem as an integer linear program and dropping the
integrality constraints. In this chapter, we will study such linear programming
relaxations for Symmetric TSP with Triangle Inequality and Symmetric
TSP. These two equivalent versions of the problem give rise to two linear
programming relaxations, which turn out to be equivalent as well.

2.1 The Subtour LP

Let (𝑉, 𝑐) be an instance of the Symmetric TSP with Triangle Inequality,
𝑛 = |𝑉 | ≥ 3, and 𝐸 =

(𝑉
2
)
. A solution to this instance can be interpreted as a

Hamiltonian circuit in 𝐺 = (𝑉, 𝐸). Recall that we write 𝑐(𝑒) := 𝑐(𝑣, 𝑤) for
𝑒 = {𝑣, 𝑤} ∈ 𝐸 . In order to formulate the problem as a class of integer linear
programs, one for each instance, we introduce a variable 𝑥𝑒 ∈ {0, 1} for 𝑒 ∈ 𝐸 ,
indicating whether or not 𝑒 is an edge of this Hamiltonian circuit. Any vector
𝑥 ∈ {0, 1}𝐸 corresponds to a subset 𝐹 ⊆ 𝐸 via 𝐹 = {𝑒 ∈ 𝐸 : 𝑥𝑒 = 1}; we say
that 𝑥 is the incidence vector (or characteristic vector) of 𝐹. More generally, for
a multi-subset 𝐹 of 𝐸 , the incidence vector of 𝐹 (with respect to 𝐸) is the vector
𝑥 ∈ Z𝐸 with 𝑥𝑒 = 𝑘 if 𝐹 contains 𝑘 copies of 𝑒 ∈ 𝐸 . We denote this vector by
𝜒𝐹 . For a single edge 𝑒, we sometimes write 𝜒𝑒 instead of 𝜒{𝑒} .

We can then impose linear constraints to enforce that 𝐹 is the edge set of
a Hamiltonian circuit: For example, by degree constraints

∑
𝑒∈ 𝛿 (𝑣) 𝑥𝑒 = 2 for

all 𝑣 ∈ 𝑉 we enforce that 𝑥 is the incidence vector of a cycle cover. To enforce

22
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2.1 The Subtour LP 23

connectivity (i.e., avoid subtours, which here means non-spanning circuits),
we could, for example, write

∑
𝑒∈ 𝛿 (𝑈) 𝑥𝑒 ≥ 1 for all nonempty proper subsets

𝑈 of 𝑉 (such an edge set 𝛿(𝑈) is called a cut). In fact, the incidence vectors
of Hamiltonian circuits satisfy

∑
𝑒∈ 𝛿 (𝑈) 𝑥𝑒 ≥ 2 for ∅ ≠ 𝑈 ⊊ 𝑉 , so it does no

harm to impose these stronger constraints, often called subtour elimination
constraints. Then our problem can be written as

min
∑︁
𝑒∈𝐸

𝑐(𝑒)𝑥𝑒

subject to
∑︁

𝑒∈ 𝛿 (𝑈)
𝑥𝑒 ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉)∑︁

𝑒∈ 𝛿 (𝑣)
𝑥𝑒 = 2 (𝑣 ∈ 𝑉)

𝑥𝑒 ∈ {0, 1} (𝑒 ∈ 𝐸).

(2.1)

Now the idea is to relax the integrality constraints – that is, replace 𝑥𝑒 ∈ {0, 1}
by 0 ≤ 𝑥𝑒 ≤ 1. We then arrive at a linear program (LP) that is a relaxation of
the original instance; we therefore speak of an LP relaxation. In the following,
we abbreviate the objective function by 𝑐(𝑥) :=

∑
𝑒∈𝐸 𝑐(𝑒)𝑥𝑒, and for 𝐹 ⊆ 𝐸 ,

we write 𝑥(𝐹) :=
∑
𝑒∈𝐹 𝑥𝑒.

We then have the following LP:

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥(𝛿(𝑣)) = 2 (𝑣 ∈ 𝑉)

𝑥𝑒 ≤ 1 (𝑒 ∈ 𝐸)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(2.2)

This was first formulated by Dantzig, Fulkerson, and Johnson [1954] and has
often been called subtour elimination LP or simply subtour LP. The set of
feasible solutions to the subtour LP is called the subtour polytope. Appreciating
work by Held and Karp [1970] (see Exercise 4.3), the subtour LP has also been
called the Held–Karp relaxation.

The constraints 𝑥𝑒 ≤ 1 for 𝑒 ∈ 𝐸 are actually redundant:

Proposition 2.1. The set of feasible solutions to the subtour LP (2.2) does not
change if the constraints 𝑥𝑒 ≤ 1 for 𝑒 ∈ 𝐸 are omitted.

Proof. For every edge 𝑒 = {𝑣, 𝑤} and every vector 𝑥 ∈ R𝐸 satisfying
𝑥(𝛿({𝑣, 𝑤}) ≥ 2 and 𝑥(𝛿(𝑣)) = 𝑥(𝛿(𝑤)) = 2, we have 𝑥𝑒 = 1

2
(
𝑥(𝛿(𝑣)) +

𝑥(𝛿(𝑤)) − 𝑥(𝛿({𝑣, 𝑤})
)
≤ 1. □
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Figure 2.1 A feasible solution to the subtour LP. The value 𝑥𝑒 is shown next to
each edge 𝑒. Edges 𝑒 with 𝑥𝑒 = 0 are not shown.

The integral feasible solutions to the subtour LP (2.2) are precisely the
incidence vectors of the Hamiltonian circuits, but this LP has other (fractional)
feasible solutions (see, e.g., Figure 2.1).

Many approximation algorithms for the TSP (as well as for other NP-hard
combinatorial optimization problems) begin by solving an LP relaxation and
bound the cost of the computed solution by 𝜌 times the LP value for some 𝜌,
implying an approximation ratio of at most 𝜌. To make this approach viable, we
need two properties: We need to be able to solve the LP in polynomial time, and
we need that the LP solution is useful; in particular, the LP value should not be
much smaller than the optimum cost of a solution for any instance. We will now
address these two questions.

2.2 Solving a Linear Program

A linear program (or LP for short) is an optimization problem of the type

min
{
𝑐⊤𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0

}
, (2.3)

where 𝐴 ∈ R𝑚×𝑛 is an (𝑚 × 𝑛)-matrix and 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛 are column
vectors. The set of feasible solutions {𝑥 ∈ R𝑛 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} is a polyhedron
(the intersection of a finite number of half-spaces). A bounded polyhedron is
called a polytope.

In general, a linear program can be infeasible (if the set of feasible solutions is
empty) or unbounded, but most LPs in this book will have an optimum solution.
If 𝑥 is an optimum solution, then 𝑐⊤𝑥 is the value of the LP.

Khachiyan [1979] showed (using the ellipsoid method) that linear programs
can be solved in polynomial time, that is, in a running time bounded by a
polynomial in the total number of bits needed to encode all (numerators and
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denominators of rational) numbers in binary encoding (the input size). Tardos
[1986] proved a stronger running time guarantee.

Theorem 2.2 (Khachiyan [1979], Tardos [1986]). A linear program (2.3) can
be solved in polynomial time. The number of arithmetic operations is bounded
by a polynomial in the number of bits that are needed to encode the entries of 𝐴.

However, most of the LPs in this book, including the subtour LP (2.2), have
an exponential number of constraints, so the input size is more than 2𝑛. We
can still solve many such LPs, including (2.2), in a running time bounded by a
polynomial in 𝑛, the number of cities. There are essentially two ways: via an
extended formulation or via the equivalence of separation and optimization.

First, we construct an extended formulation, that is, an equivalent linear
program (extended by additional variables) whose number of variables and
constraints is bounded by a polynomial in 𝑛. We will replace the constraints
𝑥(𝛿(𝑈)) ≥ 2 for all ∅ ≠ 𝑈 ⊊ 𝑉 by flow constraints.

Definition 2.3 (𝑠-𝑡-flow). Let 𝐺 = (𝑉, 𝐸) be a directed graph, 𝑢 : 𝐸 → R≥0
(called capacities), and 𝑠, 𝑡 ∈ 𝑉 (source and sink). A flow in (𝐺, 𝑢) is a function
𝑓 : 𝐸 → R≥0 with 𝑓 (𝑒) ≤ 𝑢(𝑒) for all 𝑒 ∈ 𝐸 . An 𝑠-𝑡-flow in (𝐺, 𝑢) is a flow
with

• 𝑓 (𝛿+ (𝑣)) = 𝑓 (𝛿− (𝑣)) for all 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} and
• 𝑓 (𝛿+ (𝑠)) ≥ 𝑓 (𝛿− (𝑠)).

Then 𝑓 (𝛿+ (𝑠)) − 𝑓 (𝛿− (𝑠)) is the value of the 𝑠-𝑡-flow 𝑓 .

Let 𝐸↔ contain directed edges (𝑣, 𝑤) and (𝑤, 𝑣) for each {𝑣, 𝑤} ∈ 𝐸 (so
(𝑉, 𝐸↔) is the complete directed graph on 𝑉). Choose a city 𝑠 ∈ 𝑉 , introduce
new variables 𝑓 𝑡𝑒 for all 𝑡 ∈ 𝑉 \ {𝑠} and 𝑒 ∈ 𝐸↔, and replace the constraints
𝑥(𝛿(𝑈)) ≥ 2 for all ∅ ≠ 𝑈 ⊊ 𝑉 by∑
𝑒∈ 𝛿+ (𝑠) 𝑓

𝑡
𝑒 −

∑
𝑒∈ 𝛿− (𝑠) 𝑓

𝑡
𝑒 = 2 (𝑡 ∈ 𝑉 \ {𝑠})∑

𝑒∈ 𝛿+ (𝑡 ) 𝑓
𝑡
𝑒 −

∑
𝑒∈ 𝛿− (𝑡 ) 𝑓

𝑡
𝑒 = −2 (𝑡 ∈ 𝑉 \ {𝑠})∑

𝑒∈ 𝛿+ (𝑣) 𝑓
𝑡
𝑒 −

∑
𝑒∈ 𝛿− (𝑣) 𝑓

𝑡
𝑒 = 0 (𝑡 ∈ 𝑉 \ {𝑠}, 𝑣 ∈ 𝑉 \ {𝑠, 𝑡})

𝑓 𝑡(𝑣,𝑤) ≤ 𝑥{𝑣,𝑤} (𝑡 ∈ 𝑉 \ {𝑠}, {𝑣, 𝑤} ∈ 𝐸)

𝑓 𝑡𝑒 ≥ 0 (𝑡 ∈ 𝑉 \ {𝑠}, 𝑒 ∈ 𝐸↔).

(2.4)

These constraints say that one can send two units of flow from 𝑠 to any other
city 𝑡 while not routing more than 𝑥𝑒 units of flow through any edge 𝑒. This is
indeed equivalent by the max-flow min-cut theorem. For its proof, we need the
following basic concept:
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Definition 2.4 (residual graph). Let 𝐺 = (𝑉, 𝐸) be a directed graph with
capacities 𝑢 : 𝐸 → R≥0, and 𝑓 : 𝐸 → R≥0 a flow in (𝐺, 𝑢).

For an edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 , let 𝑒← be a new edge from 𝑤 to 𝑣 and let
𝐸← := {𝑒← : 𝑒 ∈ 𝐸}. Then the residual graph 𝐺 𝑓 is the digraph with vertex
set 𝑉 and edge set{

𝑒 ∈ 𝐸 : 𝑓 (𝑒) < 𝑢(𝑒)
} .
∪

{
𝑒← : 𝑒 ∈ 𝐸, 𝑓 (𝑒) > 0

}
.

For an edge 𝑒 ∈ 𝐸 , we define the residual capacities of 𝑒 and 𝑒← to be
𝑢 𝑓 (𝑒) := 𝑢(𝑒) − 𝑓 (𝑒) and 𝑢 𝑓 (𝑒←) := 𝑓 (𝑒).

The residual graph 𝐺 𝑓 contains precisely those edges from 𝐸
.
∪ 𝐸← with

positive residual capacity. Note that it might contain parallel edges. Now we can
prove the max-flow min-cut theorem:

Theorem 2.5 (Ford and Fulkerson [1956], Dantzig and Fulkerson [1956]). Let
𝐺 = (𝑉, 𝐸) be a directed graph, 𝑢 : 𝐸 → R≥0, and 𝑠, 𝑡 ∈ 𝑉 . Then

max
{
𝑓 (𝛿+ (𝑠)) − 𝑓 (𝛿− (𝑠)) : 𝑓 is an 𝑠-𝑡-flow in (𝐺, 𝑢)

}
= min

{
𝑢(𝛿+ (𝑅)) : 𝑠 ∈ 𝑅 ⊆ 𝑉 \ {𝑡}

}
.

(2.5)

Proof. Since the left-hand side maximizes a continuous function over a
compact set (in fact, it is a linear program), the maximum is attained by some
𝑓 . The maximum is at most the minimum because 𝑓 (𝛿+ (𝑠)) − 𝑓 (𝛿− (𝑠)) =∑
𝑣∈𝑅

(
𝑓 (𝛿+ (𝑣)) − 𝑓 (𝛿− (𝑣))

)
= 𝑓 (𝛿+ (𝑅)) − 𝑓 (𝛿− (𝑅)) for all 𝑅 with 𝑠 ∈ 𝑅 ⊆

𝑉 \ {𝑡}.
To show that equality holds, let 𝛿 > 0 such that for each 𝑒 ∈ 𝐸 we have

𝛿 ≤ 𝑓 (𝑒) ≤ 𝑢(𝑒) − 𝛿 or 𝑓 (𝑒) = 0 or 𝑓 (𝑒) = 𝑢(𝑒). Let 𝑅 be the set of vertices 𝑣
for which there is a path from 𝑠 to 𝑣 in the residual graph 𝐺 𝑓 .

If 𝑡 ∈ 𝑅, then let 𝑃 be such a path from 𝑠 to 𝑡. For each edge 𝑒 ∈ 𝐸 on 𝑃, we
can increase 𝑓 (𝑒) by 𝛿, and for each edge 𝑒← ∈ 𝐸← on 𝑃, we can decrease 𝑓 (𝑒)
by 𝛿. This increases the value 𝑓 (𝛿+ (𝑠)) − 𝑓 (𝛿− (𝑠)) of the flow, a contradiction.

So 𝑡 ∉ 𝑅. By the choice of 𝑅, we have 𝑓 (𝑒) = 𝑢(𝑒) for every edge 𝑒 ∈ 𝛿+
𝐺
(𝑅)

and 𝑓 (𝑒) = 0 for every edge 𝑒 ∈ 𝛿−
𝐺
(𝑅). Thus, 𝑓 (𝛿+ (𝑠)) − 𝑓 (𝛿− (𝑠)) =

𝑓 (𝛿+ (𝑅)) − 𝑓 (𝛿− (𝑅)) = 𝑢(𝛿+ (𝑅)) − 0. □

This shows that replacing the constraints 𝑥(𝛿(𝑈)) ≥ 2 for all ∅ ≠ 𝑈 ⊊ 𝑉 in
the subtour LP (2.2) by the constraints (2.4) leads to an equivalent LP: For every
feasible solution (𝑥, 𝑓 ) to the resulting LP, 𝑥 is a feasible solution to the subtour
LP, and every feasible solution 𝑥 to the subtour LP can be extended to a feasible
solution (𝑥, 𝑓 ) to the resulting LP.

Flows feature an important integrality property:
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Corollary 2.6. Let 𝐺 = (𝑉, 𝐸) be a directed graph, 𝑢 : 𝐸 → Z≥0, and 𝑠, 𝑡 ∈ 𝑉 .
Then there exists an 𝑠-𝑡-flow that has maximum value and is integral.

Proof. Applying the previous proof to an integral 𝑠-𝑡-flow 𝑓 that has maximum
value among all integral 𝑠-𝑡-flows allows for choosing 𝛿 = 1 and hence yields
the assertion. □

Finding an 𝑠-𝑡-flow of maximum value is another fundamental combinatorial
optimization problem for which efficient algorithms are well-known (and of
course it is itself a linear program of polynomial size).

Theorem 2.7 (Edmonds and Karp [1972], Karzanov [1974]). Given a simple
directed graph 𝐺 = (𝑉, 𝐸) with capacities 𝑢 : 𝐸 → R≥0 and 𝑠, 𝑡 ∈ 𝑉 , one can
find an 𝑠-𝑡-flow in (𝐺, 𝑢) with maximum value in 𝑂 (𝑛3) time, where 𝑛 = |𝑉 |.

A set 𝛿+ (𝑅) attaining the minimum in (2.5) is called a minimum-capacity
𝑠-𝑡-cut. The proof of Theorem 2.5 also reveals that finding a minimum-capacity
𝑠-𝑡-cut is easy once we have an 𝑠-𝑡-flow of maximum value:

Corollary 2.8. Given a simple directed graph 𝐺 = (𝑉, 𝐸) with capacities
𝑢 : 𝐸 → R≥0 and 𝑠, 𝑡 ∈ 𝑉 with 𝑠 ≠ 𝑡, one can find a set 𝑅 in 𝑂 (𝑛3) time, where
𝑛 = |𝑉 |, such that 𝛿+ (𝑅) is a minimum-capacity 𝑠-𝑡-cut in (𝐺, 𝑢).

Proof. Find an 𝑠-𝑡-flow 𝑓 of maximum value by Theorem 2.7. Then output the
set 𝑅 of vertices reachable from 𝑠 in 𝐺 𝑓 , which we can compute by initializing
𝑅 = {𝑠} and adding a vertex 𝑤 to 𝑅 whenever 𝛿−

𝐺 𝑓
(𝑤) ∩ 𝛿+

𝐺 𝑓
(𝑅) ≠ ∅. □

This will be applied later in the following ways:

Corollary 2.9. Given a simple graph 𝐺 = (𝑉, 𝐸) with 𝑥 : 𝐸 → R≥0 and
∅ ≠ 𝑆, 𝑇 ⊊ 𝑉 with 𝑆 ∩ 𝑇 = ∅, one can do the following in 𝑂 (𝑛4) time, where
𝑛 = |𝑉 |: find a set𝑈 attaining the minimum in min{𝑥(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊ 𝑉}, and
find a set𝑈 attaining the minimum in min{𝑥(𝛿(𝑈)) : 𝑆 ⊆ 𝑈 ⊆ 𝑉 \ 𝑇} (if 𝐺 is
undirected) or in min{𝑥(𝛿+ (𝑈)) : 𝑆 ⊆ 𝑈 ⊆ 𝑉 \ 𝑇} (if 𝐺 is directed).

Proof. If 𝐺 is an undirected graph, replace each edge {𝑣, 𝑤} by two edges
(𝑣, 𝑤) and (𝑤, 𝑣), both with capacity 𝑥({𝑣, 𝑤}). Now the first problem reduces to
Corollary 2.8 by choosing a vertex 𝑠 arbitrarily, trying all 𝑡 ∈ 𝑉 \ {𝑠}, computing
a minimum-capacity 𝑠-𝑡-cut, and taking one with smallest capacity among these.
The second problem reduces to Corollary 2.8 by contracting 𝑆 to a vertex 𝑠 and
contracting 𝑇 to a vertex 𝑡. □

This leads us to the second way to solve the subtour LP (2.2): via the
equivalence of separation and optimization. Informally, Grötschel, Lovász, and
Schrĳver [1981] showed (using the ellipsoid method) that one can solve an LP
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by a polynomial number of calls to a separation oracle: Such an oracle takes
a vector 𝑥 as input and decides whether it is a feasible solution and otherwise
returns a constraint that 𝑥 violates. For (2.2), such a separation oracle can be
implemented by checking the constraints

∑
𝑒∈ 𝛿 (𝑣) 𝑥𝑒 = 2 for all 𝑣 ∈ 𝑉 and

0 ≤ 𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 one by one and then finding a minimum-weight cut –
that is, solving min{𝑥(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊ 𝑉}, using Corollary 2.9.

Frank and Tardos [1987] showed that one can even solve (2.2) in strongly
polynomial time – that is, the number of elementary arithmetic operations
is bounded by a polynomial in 𝑛, and for rational input, the number of bits
needed to encode any number occurring during the algorithm is bounded by
a polynomial in the total number of bits in the input. Most algorithms in this
book run in strongly polynomial time, although we will usually not mention
this explicitly. It is usually either obvious or follows from the following theorem
(sometimes in combination with Theorem 2.2):

Theorem 2.10 (Frank and Tardos [1987], Grötschel, Lovász, and Schrĳver
[1988]). Let 𝑑, 𝑝 : Z>0 → Z>0 be any fixed polynomials. For each positive
integer 𝑛, let 𝑃𝑛 = {𝑥 ∈ R𝑑 (𝑛) : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} be a nonempty polyhe-
dron where all entries of the matrix 𝐴 and the vector 𝑏 are integers from
{−2𝑝 (𝑛) , . . . , 2𝑝 (𝑛) }.

The optimization problem takes 𝑛 and a rational vector 𝑐 ∈ Q𝑑 (𝑛) as input
and asks for a solution to min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃𝑛}.

The separation problem takes 𝑛 and a rational vector 𝑥 ∈ Q𝑑 (𝑛)≥0 as input and
asks for deciding that 𝑥 ∈ 𝑃𝑛 or returning a vector 𝑎 ∈ Q𝑑 (𝑛) with 𝑎⊤𝑥 < 𝑎⊤𝑦
for all 𝑦 ∈ 𝑃𝑛.

If one of these two problems can be solved in polynomial time, then both can
be solved in strongly polynomial time.

Frank and Tardos [1987] proved this by rounding the objective function 𝑐 to
integers whose binary encoding has only a polynomial number of bits and then
applying the ellipsoid method.

The sequence of subtour polytopes with 𝑛 cities and 𝑑 (𝑛) =
(𝑛
2
)

satisfies the
conditions in Theorem 2.10 with 𝑝(𝑛) = 1: All coefficients in (2.2) are 0, 1,
or 2. We conclude the following:

Corollary 2.11. The subtour LP (2.2) can be solved in polynomial time.

Proof. Directly from Theorem 2.10, solving the separation problem via Corol-
lary 2.9. □

The resulting algorithm is quite inefficient, in spite of its polynomial running
time. In practice, a heuristic approach to iteratively find and add violated
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subtour elimination constraints works well. Moreover, Held and Karp [1970]
and Chekuri and Quanrud [2017] showed how to solve (2.2) fast approximately.
Nevertheless, it would be interesting to have a combinatorial algorithm to solve
the subtour LP exactly. The term combinatorial algorithm is not always meant
the same way, but it never allows using the ellipsoid method. Schrĳver [2000]
asked (in a different context) for a fully combinatorial algorithm – that is, an
algorithm that does not use multiplication or division.

Open Problem 2.12. Find a (fully) combinatorial polynomial-time algorithm
to solve the subtour LP (2.2) exactly.

We remark that the subtour LP (2.2) has not only been used in the design of
approximation algorithms. Already Dantzig, Fulkerson, and Johnson [1954]
used it to solve a 49-city TSP instance optimally. Of course, additional steps
– like adding further constraints (cutting planes) and case distinctions to fix
fractional variables to 0 or 1 (branching) – are needed to arrive at an optimum
integral solution. Over more than 50 years, this branch-and-cut approach was
brought to perfection; Applegate et al. [2006] can solve instances with up to
85 900 cities optimally.

2.3 Polyhedral Descriptions of Connectors and 𝑻-Joins

The difficulty of the Symmetric TSP lies in the combination of connectivity and
parity requirements. In this section, we consider these two aspects separately.
Polyhedral descriptions of connectors and 𝑇-joins will enable us to bound how
much cheaper fractional solutions to the subtour LP can be compared to an
optimum integral solution.

If we describe the feasible solutions to a combinatorial optimization problem
by incidence vectors (e.g., with respect to the edge set of the given graph), we
can try to solve the problem by optimizing over the convex hull of these vectors
(i.e., the set of convex combinations). The convex hull of a finite set of points
is a polytope (Minkowski [1896], Steinitz [1916], Weyl [1935]); hence we can
describe it by linear inequalities. If we have a linear objective function, we
get a linear program, and one of the incidence vectors is always among the
optimum solutions. In many cases, this is not the most efficient way to solve a
combinatorial optimization problem, but nevertheless it is a widely used tool
in the analysis of approximation algorithms. We need the following simple
observation:
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Proposition 2.13. A nonempty polytope 𝑃 ⊆ R𝑑 is the convex hull of integral
points if and only if for all 𝑐 ∈ R𝑑 there is an integral vector 𝑥 attaining
min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃}.

Proof. Let 𝑃int denote the convex hull of the integral points in 𝑃. If there is
some 𝑥 ∈ 𝑃 \ 𝑃int, then there is a separating hyperplane (i.e., a vector 𝑐 ∈ R𝑑
with 𝑐⊤𝑥 < min{𝑐⊤𝑦 : 𝑦 ∈ 𝑃int}).

Conversely, suppose 𝑃 = 𝑃int. Let 𝑐 ∈ R𝑑 . The minimum min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃}
is attained at some point 𝑥∗ because we minimize a continuous function over a
compact set. Now 𝑥∗ is a convex combination of integral points in 𝑃, and then
these also attain the minimum. □

First, we consider connectors. A connector in an undirected graph𝐺 = (𝑉, 𝐸)
is a set 𝐹 ⊆ 𝐸 of edges such that (𝑉, 𝐹) is connected. It is easy to see that the
problem of finding a minimum-cost connector in 𝐺 with respect to edge costs
𝑐 : 𝐸 → R is equivalent to Minimum Spanning Tree (cf. Exercise 2.4).

To describe the convex hull of incidence vectors of connectors, we need
so-called partition constraints. A partition of a finite set 𝑉 is a set of pairwise
disjoint nonempty subsets of 𝑉 whose union is 𝑉 . For instance, the vertex
sets of the connected components of any undirected graph (𝑉, 𝐸) form a
partition of 𝑉 . For a partitionW of the vertex set 𝑉 of a graph, we denote by
𝛿(W) = ⋃

𝑊∈W 𝛿(𝑊) the set of edges that have the two endpoints in different
sets of the partition.

Theorem 2.14. Let 𝐺 = (𝑉, 𝐸) be an undirected graph. The convex hull of
incidence vectors of connectors in 𝐺 is the set of vectors 𝑥 ∈ R𝐸 with

𝑥(𝛿(W)) ≥ |W| − 1 (W a partition of 𝑉)

𝑥𝑒 ≤ 1 (𝑒 ∈ 𝐸)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(2.6)

Proof. Obviously, the integral vectors that satisfy (2.6) are precisely the
incidence vectors of connectors. Let now 𝑐 : 𝐸 → R and assume that (2.6) has
a solution. We show that there is an integral vector 𝑥 that minimizes 𝑐(𝑥) over
(2.6). By Proposition 2.13, this proves the theorem.

Let 𝐸 = 𝐸−
.
∪ 𝐸+, where 𝐸− = {𝑒 ∈ 𝐸 : 𝑐(𝑒) ≤ 0} and 𝐸+ = {𝑒1, . . . , 𝑒𝑘},

sorted so that 𝑐0 < 𝑐1 ≤ · · · ≤ 𝑐𝑘 , where 𝑐0 = 0 and 𝑐𝑖 = 𝑐(𝑒𝑖) for 𝑖 = 1, . . . , 𝑘 .
Moreover, for 𝑖 = 0, . . . , 𝑘 , letW𝑖 be the partition of 𝑉 that is given by the
connected components of (𝑉, 𝐸− ∪ {𝑒1, . . . , 𝑒𝑖}). Let

𝐹 := 𝐸−
.
∪

{
𝑒𝑖 : 𝑖 ∈ {1, . . . , 𝑘},W𝑖−1 ≠W𝑖

}
.
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We complete the proof by showing that 𝑐(𝐹) = min{𝑐(𝑥) : 𝑥 satisfies (2.6)}.
Indeed, for every 𝑥 ∈ [0, 1]𝐸 satisfying (2.6), we have

𝑐(𝑥) ≥
∑︁
𝑒∈𝐸−

𝑐(𝑒) +
𝑘∑︁
𝑖=1

𝑐𝑖𝑥𝑒𝑖

=
∑︁
𝑒∈𝐸−

𝑐(𝑒) +
𝑘∑︁
𝑖=1
(𝑐𝑖 − 𝑐𝑖−1) 𝑥({𝑒𝑖 , . . . , 𝑒𝑘})

≥
∑︁
𝑒∈𝐸−

𝑐(𝑒) +
𝑘∑︁
𝑖=1
(𝑐𝑖 − 𝑐𝑖−1) (|W𝑖−1 | − 1)

≥
∑︁
𝑒∈𝐸−

𝑐(𝑒) +
𝑘∑︁
𝑖=1

𝑐𝑖 (|W𝑖−1 | − |W𝑖 |)

= 𝑐(𝐹). □

The set of vectors satisfying (2.6) is called the connector polytope of 𝐺. If
we remove the constraints 𝑥𝑒 ≤ 1, we have the connector polyhedron:

Corollary 2.15. Let 𝐺 = (𝑉, 𝐸) be an undirected graph. The convex hull of
incidence vectors of multi-subsets 𝐹 of 𝐸 such that the graph (𝑉, 𝐹) is connected
is the set of vectors 𝑥 ∈ R𝐸≥0 with

𝑥(𝛿(W)) ≥ |W| − 1 for every partitionW of 𝑉. (2.7)

Proof. The incidence vectors of multi-subsets 𝐹 of 𝐸 such that the graph
(𝑉, 𝐹) is connected satisfy (2.7). For the other direction, consider a vector
𝑥 ∈ R𝐸≥0 satisfying (2.7). Apply Theorem 2.14 to the graph that arises from 𝐺

by replacing each edge 𝑒 by ⌈𝑥𝑒⌉ parallel copies. □

Theorem 2.14 also implies the following polyhedral description of the set of
spanning trees in a graph:

Theorem 2.16 (Edmonds [1970]). Let 𝐺 = (𝑉, 𝐸) be an undirected graph. The
convex hull of incidence vectors of spanning trees in 𝐺 is the set of vectors
𝑥 ∈ R𝐸 with

𝑥(𝐸) = 𝑛 − 1

𝑥(𝐸 [𝑈]) ≤ |𝑈 | − 1 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(2.8)

Proof. Let 𝐹 be the set of vectors in the connector polytope (cf. (2.6)) that
satisfy 𝑥(𝐸) = 𝑛−1. We first show that 𝐹 is the set of vectors that satisfy (2.8). For
“⊆”, let 𝑥 ∈ 𝐹 and ∅ ≠ 𝑈 ⊊ 𝑉 . LetW be the partition {𝑈} ∪ {{𝑣} : 𝑣 ∈ 𝑉 \𝑈};
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then 𝑥(𝐸 [𝑈]) = 𝑥(𝐸) − 𝑥(W) ≤ 𝑛 − 1 − (|W| − 1) = |𝑈 | − 1. For “⊇”, let 𝑥
satisfy (2.8). Then

𝑥(𝛿(W)) = 𝑥(𝐸) −
∑︁
𝑈∈W

𝑥(𝐸 [𝑈]) ≥ 𝑛 − 1 −
∑︁
𝑈∈W

( |𝑈 | − 1) = |W| − 1

for every partitionW of 𝑉 .
Moreover, every connector has at least 𝑛 − 1 edges, and the connectors with

𝑛 − 1 edges are the spanning trees. This shows the theorem. □

The set described by (2.8) is called the spanning tree polytope of the graph
(𝑉, 𝐸). We can view the proof of Theorem 2.16 in the following context. If
𝑃 ⊆ R𝑛 is a polyhedron and 𝑐 ∈ R𝑛 and 𝛽 ∈ R such that min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃} = 𝛽,
then {𝑥 ∈ 𝑃 : 𝑐⊤𝑥 = 𝛽} is called a face of 𝑃. We have shown that the spanning
tree polytope is a face of the connector polytope. The proof of Theorem 2.14
also shows that a simple greedy algorithm computes a cheapest connector. This
generalizes to matroids (see Exercise 2.5).

The following easy observation was made by Held and Karp [1970]. The
support of a vector 𝑥 ∈ R𝐸≥0 is the set of elements 𝑒 ∈ 𝐸 with 𝑥𝑒 > 0. We call
(𝑉, {𝑒 ∈ 𝐸 : 𝑥𝑒 > 0}) the support graph of 𝑥.

Corollary 2.17. If 𝑥 is a feasible solution to the subtour LP (2.2), then 𝑛−1
𝑛
𝑥 is

in the spanning tree polytope of the support graph, where 𝑛 = |𝑉 | ≥ 3.

Proof. If 𝑥 is a feasible solution to (2.2), then 𝑛−1
𝑛
𝑥(𝐸) = 𝑛−1

2𝑛
∑
𝑣∈𝑉 𝑥(𝛿(𝑣)) =

𝑛 − 1 as well as

𝑥(𝐸 [𝑈]) = 1
2

( ∑︁
𝑣∈𝑈

𝑥(𝛿(𝑣)) − 𝑥(𝛿(𝑈))
)
= 1

2
(
2|𝑈 | − 𝑥(𝛿(𝑈))

)
≤ |𝑈 | − 1

for every ∅ ≠ 𝑈 ⊊ 𝑉 , which implies 𝑛−1
𝑛
𝑥(𝐸 [𝑈]) ≤ 𝑛−1

𝑛
( |𝑈 | − 1). So 𝑛−1

𝑛
𝑥

satisfies all constraints of (2.8) and thus belongs to the spanning tree polytope
by Theorem 2.16. □

In fact, the proof shows that 𝑥 satisfies all inequalities of (2.8) strictly – that
is, 𝑛−1

𝑛
𝑥 is in the relative interior of the spanning tree polytope (Asadpour et al.

[2017]).
Now we consider the parity aspect. Let𝐺 = (𝑉, 𝐸) be an undirected graph and

𝑇 ⊆ 𝑉 with |𝑇 | even. Recall that a 𝑇-join in 𝐺 is a set 𝐽 ⊆ 𝐸 with odd(𝐽) = 𝑇 .
We begin with Guan’s lemma:

Lemma 2.18 (Guan [1962]). Let 𝐺 = (𝑉, 𝐸) be an undirected graph with edge
costs 𝑐 : 𝐸 → R. Let 𝑇 ⊆ 𝑉 and 𝐽 a 𝑇-join in 𝐺. Then 𝐽 is a minimum-cost
𝑇-join if and only if 𝑐(𝐶 ∩ 𝐽) ≤ 𝑐(𝐶 \ 𝐽) for every (edge set of a) circuit 𝐶 in 𝐺.
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Proof. If 𝑐(𝐶 ∩ 𝐽) > 𝑐(𝐶 \ 𝐽) for some circuit 𝐶, then 𝐽 △ 𝐶 is a cheaper
𝑇-join. If 𝐽′ is a cheaper 𝑇-join, then 𝐽 △ 𝐽′ can be partitioned into edge sets
of circuits, and for at least one of these circuits, say 𝐶, we have 𝑐(𝐶 ∩ 𝐽) >
𝑐(𝐶 ∩ 𝐽′) = 𝑐(𝐶 \ 𝐽). □

The cuts 𝛿(𝑈) with |𝑈∩𝑇 | odd are called𝑇-cuts. Every𝑇-join 𝐽 has nonempty
intersection with every 𝑇-cut (by Lemma 1.4 applied to the subgraph of (𝑉, 𝐽)
induced by𝑈), and this yields a polyhedral description that will play a crucial
role many times in this book:

Theorem 2.19 (Edmonds and Johnson [1973]). Let𝐺 = (𝑉, 𝐸) be an undirected
graph with weights 𝑐 : 𝐸 → R≥0 and 𝑇 ⊆ 𝑉 with |𝑇 | even. Then the minimum
weight of a 𝑇-join in 𝐺 equals the value of the LP

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 1 (𝑈 ⊆ 𝑉, |𝑈 ∩ 𝑇 | odd)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(2.9)

Proof. Since every 𝑇-join has nonempty intersection with every 𝑇-cut, the
incidence vector of any 𝑇-join is a feasible solution to (2.9). This proves “≥”.

Note that the inequality “≤” is invariant under multiplying 𝑐 by a positive
constant, and both sides of the inequality are continuous in 𝑐. Hence, we may
assume that 𝑐 is integral and 𝑐(𝐶) is even for every circuit 𝐶. We proceed by
induction on |𝐸 | + 𝑐(𝐸). If 𝑇 = ∅, the assertion is trivial. If there is an edge
𝑒 = {𝑣, 𝑤} with 𝑐(𝑒) = 0, we contract 𝑒 (i.e., identify 𝑣 and 𝑤, remove 𝑒, and
put the new vertex in 𝑇 if exactly one of 𝑣 and 𝑤 was in 𝑇), and apply induction;
note that neither side of the inequality changes by the contraction.

Otherwise, 𝑇 ≠ ∅ and 𝑐(𝑒) ≥ 1 for all 𝑒 ∈ 𝐸 . Choose 𝑎, 𝑏 ∈ 𝑉 such that the
cost of a cheapest (𝑇 △ {𝑎} △ {𝑏})-join is minimum. Note that 𝑎 ≠ 𝑏, because
one possible choice for 𝑎 and 𝑏 is the endpoints of an edge in a minimum-cost
𝑇-join. Next we prove:

|𝐽 ∩ 𝛿(𝑎) | = 1 for every minimum-cost 𝑇-join 𝐽. (2.10)

To show this, let 𝐽 be a minimum-cost 𝑇-join and 𝐽′ a minimum-cost 𝑇 ′-join,
where 𝑇 ′ = 𝑇 △ {𝑎} △ {𝑏}. Then 𝐽 △ 𝐽′ is an {𝑎, 𝑏}-join (cf. Proposition 1.26)
and thus can be partitioned into the edge set 𝑃 of a path from 𝑎 to 𝑏 and edge
sets of circuits. By Lemma 2.18, we have 𝑐(𝐶 ∩ 𝐽) = 𝑐(𝐶 ∩ 𝐽′) for each of
these circuits. Hence 𝑐(𝐽 △ 𝑃) = 𝑐(𝐽′), and 𝐽 △ 𝑃 is a minimum-cost 𝑇 ′-join.
If 𝐽 △ 𝑃 contains an edge 𝑒 = {𝑎, 𝑎′} incident to 𝑎, then (𝐽 △ 𝑃) \ {𝑒} is a
(𝑇 △ {𝑎′} △ {𝑏})-join cheaper than any 𝑇 ′-join, contradicting the choice of 𝑎
and 𝑏. So (𝐽 △ 𝑃) ∩ 𝛿(𝑎) = ∅, and we conclude |𝐽 ∩ 𝛿(𝑎) | = 1.
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This proves (2.10). In particular, it implies that 𝛿(𝑎) is a 𝑇-cut.
Define a cost function 𝑐− : 𝐸 → R by 𝑐− (𝑒) := 𝑐(𝑒) − 1 for 𝑒 ∈ 𝛿(𝑎)

and 𝑐− (𝑒) := 𝑐(𝑒) for 𝑒 ∈ 𝐸 \ 𝛿(𝑎). Note that 𝑐− (𝐶) ∈ {𝑐(𝐶), 𝑐(𝐶) − 2} is
even for every circuit 𝐶. Let 𝐽 be a minimum-cost 𝑇-join in (𝐺, 𝑐). Recall
that |𝐽 ∩ 𝛿(𝑎) | = 1. We will show that 𝐽 is also a minimum-cost 𝑇-join in
(𝐺, 𝑐−). Then, by the induction hypothesis, any vector 𝑥 in (2.9) satisfies
𝑐(𝐽) − 1 = 𝑐− (𝐽) ≤ 𝑐− (𝑥) = 𝑐(𝑥) − 𝑥(𝛿(𝑎)) ≤ 𝑐(𝑥) − 1, completing the proof.

Suppose 𝐽 is not a minimum-cost 𝑇-join in (𝐺, 𝑐−). Then Lemma 2.18
implies that there is a circuit 𝐶 with 𝑐− (𝐶 \ 𝐽) < 𝑐− (𝐶 ∩ 𝐽), hence 𝑐− (𝐶 \ 𝐽) ≤
𝑐− (𝐶∩𝐽)−2. On the other hand, 𝑐− (𝐶\𝐽)+2 ≥ 𝑐(𝐶\𝐽) ≥ 𝑐(𝐶∩𝐽) ≥ 𝑐− (𝐶∩𝐽).
So we have equality throughout, and in particular 𝑐(𝐶 \ 𝐽) = 𝑐(𝐶 ∩ 𝐽), and 𝐶
contains 𝑎 but not the edge of 𝐽 that is incident to 𝑎. This means that 𝐽 △ 𝐶 is a
minimum-cost 𝑇-join with three edges incident to 𝑎, contradicting (2.10). □

This proof is essentially due to Sebő [1987].
In the context of TSP, we are often interested in the set 𝑇 being the set odd(𝐻)

for some (multi-)edge set 𝐻 (for example, cf. Algorithm 1.31). For this case, we
can give an equivalent characterization of odd(𝐻)-cuts:

Lemma 2.20. Let (𝑉, 𝐻) be an undirected graph and𝑈 ⊆ 𝑉 . Then 𝛿(𝑈) is an
odd(𝐻)-cut if and only if |𝛿𝐻 (𝑈) | is odd.

Proof. A cut 𝛿(𝑈) is an odd(𝐻)-cut if and only if |odd(𝐻) ∩𝑈 | is odd. This is
equivalent to

∑
𝑣∈𝑈 |𝛿𝐻 (𝑣) | being odd. We have

∑
𝑣∈𝑈 |𝛿𝐻 (𝑣) | = 2 · |𝐻 [𝑈] | +

|𝛿𝐻 (𝑈) |. Hence, the left-hand side is odd if and only if |𝛿𝐻 (𝑈) | is odd. □

When some edge weights are negative, the LP (2.9) cannot be used directly.
In this case, we need the following:

Theorem 2.21. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑇 ⊆ 𝑉 with |𝑇 |
even. Then the convex hull of incidence vectors of 𝑇-joins in 𝐺 is the set of
vectors 𝑥 ∈ R𝐸 with

|𝐹 | − 𝑥(𝐹) + 𝑥(𝛿(𝑈) \ 𝐹) ≥ 1 (𝑈 ⊆ 𝑉, 𝐹 ⊆ 𝛿(𝑈),

|𝑈 ∩ 𝑇 | + |𝐹 | odd)

𝑥𝑒 ≤ 1 (𝑒 ∈ 𝐸)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(2.11)

Proof. If 𝐽 is a 𝑇-join, then by Lemma 2.20, |𝛿(𝑈) ∩ 𝐽 | + |𝑈 ∩ 𝑇 | is even for
every𝑈 ⊆ 𝑉 , so the incidence vector of 𝐽 satisfies (2.11). This shows “⊆”.
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For the reverse direction, let 𝑃 denote the set of all 𝑥 ∈ [0, 1]𝐸 satisfying (2.11).
Let 𝑐 : 𝐸 → R and let 𝐽 be a minimum 𝑐-cost 𝑇-join. We show that 𝑐(𝐽) ≤
min{𝑐(𝑥) : 𝑥 ∈ 𝑃}; by Proposition 2.13, this will complete the proof.

Let 𝐸− = {𝑒 ∈ 𝐸 : 𝑐(𝑒) < 0} and 𝑐′ (𝑒) := |𝑐(𝑒) | for all 𝑒 ∈ 𝐸 . Then
𝑐′ (𝐾 △ 𝐸−) = 𝑐(𝐾) − 𝑐(𝐸−) for all 𝐾 ⊆ 𝐸 . Let 𝑇 ′ := 𝑇 △ odd(𝐸−) and
𝐽′ := 𝐽 △ 𝐸− . Then 𝐽′ is a minimum 𝑐′-cost 𝑇 ′-join.

Now, let 𝑥 ∈ 𝑃. Define 𝑥′𝑒 := 𝑥𝑒 if 𝑐(𝑒) ≥ 0 and 𝑥′𝑒 := 1−𝑥𝑒 if 𝑐(𝑒) < 0. Then
𝑥′ ≥ 0. Moreover, for every 𝑈 ⊆ 𝑉 with |𝑈 ∩ 𝑇 ′ | odd, we have 𝑥′ (𝛿(𝑈)) ≥ 1.
Indeed, let 𝐹 = 𝐸− ∩ 𝛿(𝑈). Lemma 2.20 with 𝐻 = 𝐸− implies that |𝑈 ∩𝑇 | + |𝐹 |
is odd. Then (2.11) implies 𝑥′ (𝛿(𝑈)) = 𝑥(𝛿(𝑈) \ 𝐹) + |𝐹 | − 𝑥(𝐹) ≥ 1.

So 𝑥′ is in the 𝑇 ′-join polyhedron, and by Theorem 2.19, we have 𝑐′ (𝐽′) ≤
𝑐′ (𝑥′). We conclude

𝑐(𝐽) = 𝑐′ (𝐽′) + 𝑐(𝐸−) ≤ 𝑐′ (𝑥′) + 𝑐(𝐸−) = 𝑐(𝑥). □

The convex hull of incidence vectors of 𝑇-joins in 𝐺 is called the 𝑇-join
polytope of 𝐺, while the set of feasible solutions to (2.9) is called the 𝑇-join
polyhedron (or the up-hull of the 𝑇-join polytope, where the up-hull – also
called dominant – results from adding nonnegative vectors).

We call a polyhedron 𝑃 integral if min{𝑐(𝑥) : 𝑥 ∈ 𝑃} is attained by an integral
vector for every vector 𝑐 for which the minimum is finite. Theorems 2.14, 2.16,
2.19, and 2.21 say that the polyhedra defined by (2.6), (2.8), (2.9), and (2.11)
are integral. However, the subtour LP (2.2) is not integral.

Although the combinatorial optimization problems studied in this section
can be solved more efficiently by combinatorial algorithms than by linear
programming, the polyhedral descriptions will prove very useful. A first and
very important application will be shown in the next section.

2.4 Integrality Ratio

Many approximation algorithms can be analyzed by comparing the cost of the
computed solution to the LP value (for an appropriate LP relaxation). If the LP
value can be arbitrarily smaller than the optimum, this cannot work. Similar to
the definition of the approximation ratio, one can define the integrality ratio of a
family of linear programs:

Definition 2.22 (integrality ratio). Consider a family of LPs, each of which
is of the form min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃} with 𝑃 ⊆ R𝑛≥0 and 𝑐 ∈ R𝑛≥0. Then the
integrality ratio of this family of LPs is the infimum of all 𝜌 for which
min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃 ∩ Z𝑛} ≤ 𝜌 ·min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃} holds for all instances.
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Table 2.1 Upper bounds on the integrality ratio of (2.2) for Symmetric TSP
with Triangle Inequality in the order of their discovery.

Integrality Ratio Year Reference Chapter

3
2 1980 Wolsey [1980] 2.4
3
2 − 10−36 2021 Karlin, Klein, and Oveis Gharan [2022] 10–11

Equivalently, the integrality ratio (often also called integrality gap) is the
supremum of

min{𝑐(𝑥) : 𝑥 ∈ 𝑃 ∩ Z𝑛}
min{𝑐(𝑥) : 𝑥 ∈ 𝑃} ,

where 0
0 := 1. The integrality ratio is 1 if and only if all polyhedra in the family

are integral.
What is the integrality ratio of the subtour LP – that is, of the family of

the LPs (2.2) for all instances (𝑉, 𝑐) of the Symmetric TSP with Triangle
Inequality? Surprisingly, we still do not know, although this question has
been studied for more than 40 years. Wolsey [1980] proved the following upper
bound:

Theorem 2.23 (Wolsey [1980]). For every instance of the Symmetric TSP
with Triangle Inequality, Christofides’ algorithm (Algorithm 1.23) computes
a solution with cost at most 3

2 LP, where LP denotes the value of the subtour
LP (2.2). In particular, the integrality ratio of the subtour LP is at most 3

2 .

Proof. Let 𝑥 be a vector in the subtour polytope. By Corollary 2.17, 𝑛−1
𝑛
𝑥 is

in the spanning tree polytope, and hence the minimum cost of a spanning tree is
at most LP. By Theorem 2.19, 1

2𝑥 is in the 𝑇-join polyhedron for any 𝑇 ⊆ 𝑉
with |𝑇 | even. In particular, for 𝑇 = 𝑊 in Algorithm 1.23, there is a 𝑇-join 𝐽∗ of
cost at most 1

2 LP. By Lemma 1.28 and the triangle inequality, 𝐽∗ corresponds
to a perfect matching 𝑀∗ in 𝐺 [𝑊] with cost 𝑐(𝑀∗) ≤ 𝑐(𝐽∗). The matching 𝑀
that the algorithm computes cannot be more expensive. We conclude that the
solution computed by Christofides’ algorithm costs at most LP + 1

2 LP. □

A different proof of Theorem 2.23 was later given by Shmoys and Williamson
[1990]. We also say that 1

2𝑥 is a parity correction vector (for the spanning tree 𝑆)
because it is used to bound the cost for parity correction.

The upper bound in Theorem 2.23 is tight even for Graph TSP instances: as
mentioned already in Section 1.4, Christofides’ algorithm might end up with
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Figure 2.2 Example showing a lower bound of 4
3 on the integrality ratio of the

subtour LP. The top figure shows a graph𝐺 = (𝑉, 𝐸 ) , which generates the instance
and which is also the support graph of an optimum solution to the subtour LP,
shown by the numbers 𝑥𝑒 (𝑒 ∈ 𝐸). The bottom figure shows an optimum tour. This
is sometimes called the envelope example.

3
2𝑛 − 1 edges even for an unweighted complete graph with an even number
𝑛 of vertices (where the subtour LP has value 𝑛). Karlin, Klein, and Oveis
Gharan [2022] managed to improve on Wolsey’s analysis in a sophisticated way
(see Chapters 10 and 11 and Table 2.1). Moreover, Wolsey’s analysis has been
developed further very successfully for more general problems like Path TSP
(see Chapter 15).

We now show the best-known lower bound on the integrality ratio of the
subtour LP:

Proposition 2.24. The integrality ratio of the subtour LP (2.2) is at least 4
3 .

Proof. Figure 2.2 shows a well-known example: an infinite family of un-
weighted undirected graphs 𝐺 = (𝑉, 𝐸), each consisting of two triangles,
connected by three vertex-disjoint paths with 𝑛

3 vertices each (where 𝑛 = |𝑉 |).
Each such graph 𝐺 = (𝑉, 𝐸) induces an instance (𝑉, 𝑐) of the Symmetric TSP
with Triangle Inequality by letting 𝑐(𝑣, 𝑤) be the distance from 𝑣 to 𝑤 in 𝐺.

Setting 𝑥𝑒 := 1
2 for the six edges of the triangles, 𝑥𝑒 := 1 for the other edges

of 𝐺, and 𝑥{𝑣,𝑤} := 0 for {𝑣, 𝑤} ∈
(𝑉

2
)
\ 𝐸 defines a feasible solution 𝑥 to (2.2),

and we have 𝑐(𝑥) = 𝑛.
We claim that an optimum tour in 𝐺 has 4

3𝑛 − 2 edges. There is such a tour,
as shown in Figure 2.2, but we need to show that there is no tour with fewer
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edges. Indeed, for each of the three vertex-disjoint paths, any tour contains
either all its edges once or all but one of its edges twice (or even more edges),
and for at least one of the three paths, the latter alternative applies. This makes
2( 𝑛3 − 1) + 2( 𝑛3 − 2) = 4𝑛

3 − 6 edges and results in four connected components,
so we need at least four more edges to connect them to a tour.

Since every integral solution to the subtour LP for this instance is a circuit
with vertex set 𝑉 and can thus be transformed to a tour in 𝐺 with the same cost,
every integral solution has cost at least 4

3𝑛 − 2. □

So we know that the integrality ratio of the subtour LP is between 4
3 and

slightly less than 3
2 , with little progress on these bounds in the last 40 years.

Most people believe that 4
3 is the true answer (this is sometimes called the

4
3 conjecture).

Open Problem 2.25. Prove or disprove that the integrality ratio of the subtour
LP (2.2) is 4

3 .

The 4
3 conjecture has been verified for 𝑛 ≤ 12 by Benoit and Boyd [2008]

and Boyd and Elliott-Magwood [2010].
The fact that the worst-known examples (cf. Figure 2.2) are instances of the

Graph TSP raised interest in this special case (see Chapters 12 and 13).
Goemans [1995] and Carr and Vempala [2004] gave an interesting characteri-

zation of the integrality ratio. Before we show this, we note the following:

Proposition 2.26 (Cornuéjols, Fonlupt, and Naddef [1985]). The convex hull of
the incidence vectors of tours is a polyhedron.

Proof. Let 𝑃min be the convex hull of all incidence vectors of tours with
𝑥𝑒 ≤ 2 for all 𝑒 ∈ 𝐸 . Then 𝑃min is a polytope because it is the convex hull of
a finite number of vectors. We claim that the convex hull 𝑃 of all incidence
vectors of tours is the polyhedron 𝑃↑min := {𝑥 + 𝑦 : 𝑥 ∈ 𝑃min, 𝑦 ≥ 0}. To see
“⊆”, we observe that 𝑃↑min is convex and contains all incidence vectors of tours.
Now we prove “⊇”. For every vector 𝑥 ∈ 𝑃 and every edge 𝑒 ∈ 𝐸 , the vector
𝑥 + 2 · 𝜒{𝑒} is contained in 𝑃: If 𝑥 is a convex combination of incidence vectors
𝑥1, . . . , 𝑥𝑘 of tours, then 𝑥 + 2𝜒{𝑒} is a convex combination of the vectors
𝑥1 + 2𝜒{𝑒} , . . . , 𝑥𝑘 + 2𝜒{𝑒} , which are also incidence vectors of tours. Because
𝑃 is convex, this implies 𝑃 = {𝑥 + 𝑦 : 𝑥 ∈ 𝑃, 𝑦 ≥ 0}. Since 𝑃 ⊇ 𝑃min, this
implies 𝑃 ⊇ 𝑃↑min. □

Cornuéjols, Fonlupt, and Naddef [1985] called this the graphical traveling
salesman polyhedron (see also Goemans [1995]). This is in contrast to the
convex hull of incidence vectors of Hamiltonian circuits, which is called the
traveling salesman polytope.
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Theorem 2.27 (Goemans [1995], Carr and Vempala [2004]). The integrality
ratio of the subtour LP (2.2) is the smallest number 𝜌 such that for every vector
𝑥∗ in the subtour polytope, the vector 𝜌𝑥∗ is a convex combination of incidence
vectors of tours.

Proof. Let (𝑉, 𝑐) be an instance of the Symmetric TSP with Triangle
Inequality and 𝑥∗ an optimum solution to the subtour LP. Suppose for some
𝜌 ≥ 1, we can write 𝜌𝑥∗ =

∑𝑘
𝑖=1 𝜆𝑖𝑦𝑖 , where 𝜆1, . . . , 𝜆𝑘 ≥ 0,

∑𝑘
𝑖=1 𝜆𝑖 = 1, and

𝑦1, . . . , 𝑦𝑘 are incidence vectors of tours. Then 𝜌𝑐(𝑥∗) = ∑𝑘
𝑖=1 𝜆𝑖𝑐(𝑦𝑖), so at

least one of the 𝑦𝑖 (and thus a tour) costs at most 𝜌𝑐(𝑥∗). By Lemma 1.7, we
conclude that the integrality ratio of the subtour LP is at most 𝜌.

For the other direction, let 𝑥∗ be in the subtour polytope, and suppose
that 𝜌𝑥∗ ∉ 𝑄, where 𝑄 is the graphical traveling salesman polyhedron (cf.
Proposition 2.26).

Then there is a separating hyperplane – that is, a vector 𝑤 with 𝑤⊤ (𝜌𝑥∗) <
min{𝑤⊤𝑞 : 𝑞 ∈ 𝑄}. Note that 𝑤 is nonnegative because otherwise the right-hand
side would be −∞ (we can always add 2 to any component of a vector in 𝑄
without leaving 𝑄). We can interpret 𝑤 as a weight function on the edge set of
the complete graph on 𝑉 . Now, for the metric closure �̄� of 𝑤,

𝜌(�̄�⊤𝑥∗) ≤ 𝜌(𝑤⊤𝑥∗)
= 𝑤⊤ (𝜌𝑥∗)
< min{𝑤⊤𝑞 : 𝑞 ∈ 𝑄}
= min{�̄�⊤𝑞 : 𝑞 ∈ 𝑄}
= min{�̄�(𝐹) : 𝐹 is a tour},

so the integrality ratio is larger than 𝜌. □

Boyd and Sebő [2021] noted another characterization of the integrality ratio
(cf. Exercise 2.12). Call an undirected graph𝐺 = (𝑉, 𝐸) 𝑘-regular if every vertex
has degree 𝑘 , and call it 𝑘-edge-connected if |𝛿𝐺 (𝑈) | ≥ 𝑘 for all ∅ ≠ 𝑈 ⊊ 𝑉 .
Then the integrality ratio is the smallest number 𝜌 for which the following is true:
For every positive integer 𝑘 and every 𝑘-regular 𝑘-edge-connected graph 𝐺, the
all- 2𝜌

𝑘
vector is a convex combination of incidence vectors of tours. Haddadan,

Newman, and Ravi [2021] showed that the latter statement is true for 𝑘 = 3 and
𝜌 = 27

19 .
Based on earlier work by Carr and Ravi [1998] and Boyd and Carr [2011],

Carr and Vempala [2004] showed that in order to prove the 4
3 conjecture, it is

sufficient to consider extreme points 𝑥 of the subtour polytope for which the
edges 𝑒 with 𝑥𝑒 = 1 form a perfect matching and the edges 𝑒 with 0 < 𝑥𝑒 < 1
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form a Hamiltonian cycle (so the support graph of 𝑥 is 3-regular), so-called
fundamental points.

2.5 Splitting Off

Since we will often work with the Symmetric TSP (without triangle inequality)
and ask for a tour rather than a Hamiltonian circuit, an LP that has no degree
constraints and allows using edges more than once is more useful in this context.
Let 𝐺 = (𝑉, 𝐸) and 𝑐 : 𝐸 → R≥0 be an instance of Symmetric TSP. We study
the following linear program:

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(2.12)

Lemma 2.28. Every feasible solution 𝑥 to (2.12) is in the connector polyhedron
of 𝐺.

Proof. For every partitionW of𝑉 , we have 𝑥(𝛿(W)) = 1
2
∑
𝑊∈W 𝑥(𝛿(𝑊)) ≥

1
2
∑
𝑊∈W 2 = |W| > |W|−1, so 𝑥 satisfies (2.7). We are done by Corollary 2.15.

□

Wolsey’s analysis also works here:

Theorem 2.29 (Wolsey [1980]). For every instance of the Symmetric TSP,
Christofides’ algorithm (Algorithm 1.31) computes a tour with cost at most 3

2 LP,
where LP denotes the value of the LP (2.12).

Proof. Every feasible solution 𝑥 to (2.12) is in the connector polyhedron of 𝐺
by Lemma 2.28. The cost of the spanning tree 𝑆 that Christofides’ algorithm
(Algorithm 1.31) computes is the minimum cost of a connector (because
𝑐 ≥ 0) and hence at most LP. Moreover, by Theorem 2.19, 1

2𝑥 is in the 𝑇-join
polyhedron for every 𝑇 ⊆ 𝑉 with |𝑇 | even, and thus the minimum weight of
an odd(𝑆)-join is at most 1

2 LP. We conclude that the solution computed by
Christofides’ algorithm costs at most LP + 1

2 LP. □

We will now show that the values of the two LPs, (2.2) and (2.12), are actually
the same whenever the triangle inequality holds. The following useful tool is
known as Lovász’ [1976] splitting-off technique. Splitting off a pair 𝑒 = {𝑣, 𝑧}
and 𝑓 = {𝑧, 𝑤} of distinct edges incident to the same vertex 𝑧 means replacing
𝑒 and 𝑓 by a single edge {𝑣, 𝑤} (or just remove 𝑒 and 𝑓 if 𝑣 = 𝑤, i.e., if 𝑒 and 𝑓
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𝑣 𝑤

𝑧

𝑈 𝑉 \ {𝑧}

𝑒 𝑓

Figure 2.3 Splitting off the pair of edges 𝑒 = {𝑣, 𝑧} and 𝑓 = {𝑧, 𝑤} means
replacing them by the edge {𝑣, 𝑤} (green, dotted). This reduces | 𝛿 (𝑈) | by 2 for
every set𝑈 ⊆ 𝑉 \ {𝑧} with 𝑣, 𝑤 ∈ 𝑈 (one example for such a set𝑈 is shown in
red).

were parallel edges). See Figure 2.3. We want to do this while keeping the graph
sufficiently connected:

Theorem 2.30 (Lovász [1976]). Let 𝐺 = (𝑉, 𝐸) be an undirected graph and
𝑧 ∈ 𝑉 a vertex whose degree is even. Let 𝜆 ≥ 2 be an integer and

|𝛿(𝑈) | ≥ 𝜆 for all ∅ ≠ 𝑈 ⊊ 𝑉 \ {𝑧}. (2.13)

Then for every 𝑒 = {𝑣, 𝑧} ∈ 𝛿(𝑧), there is an 𝑓 = {𝑧, 𝑤} ∈ 𝛿(𝑧) \ {𝑒} such that
splitting off 𝑒 and 𝑓 preserves (2.13).

Proof. Let 𝑒 = {𝑣, 𝑧} ∈ 𝛿(𝑧). Call a set𝑈 with 𝑣 ∈ 𝑈 ⊊ 𝑉 \ {𝑧} dangerous if
|𝛿(𝑈) | ≤ 𝜆 + 1. For any 𝑓 = {𝑧, 𝑤} ∈ 𝛿(𝑧) \ {𝑒}, splitting off 𝑒 and 𝑓 preserves
(2.13) unless there is a dangerous set containing (𝑣 and) 𝑤. So assume that there
is a family F of dangerous sets whose union contains all neighbors of 𝑧. Choose
F to be minimal.

Note that for each element 𝐹 ∈ F , we have |𝛿(𝐹) ∩ 𝛿(𝑧) | ≤ 1
2 |𝛿(𝑧) |. This is

because otherwise |𝛿(𝑉 \ (𝐹∪{𝑧})) | ≤ |𝛿(𝐹) | −2 ≤ 𝜆−1 (in the first inequality,
we used that |𝛿(𝑧) | is even), contradicting (2.13).

As 𝑒 ∈ 𝛿(𝐹) ∩ 𝛿(𝑧) and |𝛿(𝐹) ∩ 𝛿(𝑧) | ≤ 1
2 |𝛿(𝑧) | for all 𝐹 ∈ F , we conclude

|F | ≥ 3. Let 𝐴, 𝐵, 𝐶 ∈ F be distinct. Now

3(𝜆 + 1) ≥ |𝛿(𝐴) | + |𝛿(𝐵) | + |𝛿(𝐶) |
≥ |𝛿(𝐴 ∩ 𝐵 ∩ 𝐶) | + |𝛿(𝐴 \ (𝐵 ∪ 𝐶)) | + |𝛿(𝐵 \ (𝐴 ∪ 𝐶)) |
+ |𝛿(𝐶 \ (𝐴 ∪ 𝐵)) | + 2|𝛿(𝐴 ∩ 𝐵 ∩ 𝐶) ∩ 𝛿(𝐴 ∪ 𝐵 ∪ 𝐶) |

≥ 𝜆 + 𝜆 + 𝜆 + 𝜆 + 2,

where we used the minimality of F in the last inequality. This implies 𝜆 ≤ 1, a
contradiction. □
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This proof is due to Frank [2011]. Note that Lemma 1.7 can be seen as a
special case because a tour remains a tour when splitting off at a vertex of degree
more than 2. Among the many applications of Theorem 2.30 is the following
observation by Cunningham (see Monma, Munson, and Pulleyblank [1990])
and Goemans and Bertsimas [1993]:

Theorem 2.31. If (𝑉, 𝐸) is a complete graph, |𝑉 | ≥ 3, and 𝑐 obeys the triangle
inequality, then the optimum values of (2.2) and (2.12) are the same.

Proof. Let 𝑥 be a rational optimum solution to (2.12). Among all such 𝑥,
choose one that minimizes 𝑥(𝐸). We show that then 𝑥 is a feasible solution to
(2.2).

Choose 𝐾 ∈ N such that 𝐾𝑥𝑒 is an integer for each 𝑒 ∈ 𝐸 . If there is a vertex
𝑧 ∈ 𝑉 with 𝑥(𝛿(𝑧)) > 2, choose incident edges 𝑒 = {𝑧, 𝑣} and 𝑓 = {𝑧, 𝑤} with
𝑥𝑒 > 0 and 𝑥 𝑓 > 0, reduce 𝑥𝑒 and 𝑥 𝑓 each by 1

2𝐾 and increase 𝑥{𝑣,𝑤} by 1
2𝐾

while maintaining 𝑥(𝛿(𝑈)) ≥ 2 for all ∅ ≠ 𝑈 ⊊ 𝑉 . The existence of two such
edges 𝑒, 𝑓 follows from applying Theorem 2.30 to 𝜆 = 4𝐾 and the Eulerian
graph with 2𝐾𝑥𝑒 copies of each edge 𝑒. This operation reduces 𝑥(𝐸) but does
not increase 𝑐(𝑥) due to the triangle inequality. This is a contradiction. So
𝑥(𝛿(𝑧)) = 2 for all 𝑧 ∈ 𝑉 .

Finally, observe that the constraints 𝑥𝑒 ≤ 1 (𝑒 ∈ 𝐸) are satisfied by Proposi-
tion 2.1. □

The above proofs suggest an algorithm. It can be implemented as follows:

Theorem 2.32. Let 𝐺 = (𝑉, 𝐸) be an undirected graph with edge weights
𝑥 : 𝐸 → R≥0 and 𝑧 ∈ 𝑉 . Let 𝜆 > 0 and

𝑥(𝛿(𝑈)) ≥ 𝜆 for all ∅ ≠ 𝑈 ⊊ 𝑉 \ {𝑧}. (2.14)

Then one can compute in polynomial time a list of triples (𝑒𝑖 , 𝑓𝑖 , 𝛾𝑖) ∈ 𝛿(𝑧) ×
𝛿(𝑧) × R>0, 𝑖 = 1, . . . , 𝑘 , such that splitting off all (𝑒𝑖 , 𝑓𝑖 , 𝛾𝑖) maintains (2.14)
and leads to 𝑥(𝑒) = 0 for all edges 𝑒 incident to 𝑧. Here splitting off (𝑒, 𝑓 , 𝛾)
for 𝑒 = {𝑣, 𝑧} and 𝑓 = {𝑤, 𝑧} means reducing 𝑥(𝑒) and 𝑥( 𝑓 ) by 𝛾 and adding
an edge {𝑣, 𝑤} with weight 𝛾.

Proof. We can simply scan the list of all pairs (𝑒𝑖 , 𝑓𝑖) ∈ 𝛿(𝑧) × 𝛿(𝑧) with
𝑒𝑖 ≠ 𝑓𝑖 , greedily set 𝛾𝑖 as large as possible in order to maintain (2.14), and split
off (𝑒𝑖 , 𝑓𝑖 , 𝛾𝑖) before continuing with the next pair. The largest feasible 𝛾𝑖 for
𝑒𝑖 = {𝑣, 𝑧} and 𝑓𝑖 = {𝑤, 𝑧} is

𝛾𝑖 = min
{
𝑥(𝑒𝑖), 𝑥( 𝑓𝑖), 1

2

(
min

{
𝑥(𝛿(𝑈)) : 𝑣, 𝑤 ∈ 𝑈 ⊊ 𝑉 \ {𝑧}

}
− 𝜆

)}
.
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Hence, it can be computed by less than 𝑛 calls to a max-flow algorithm, applying
Corollary 2.9 for 𝑆 = {𝑣, 𝑤} and𝑇 = {𝑧, 𝑡} for all possibilities of 𝑡 ∈ 𝑉 \(𝑆∪{𝑧}).
Triples with 𝛾𝑖 = 0 are omitted from the final list.

If 𝑥 is rational, Theorem 2.30 (applied to the graph where every edge 𝑒 is
replaced by 2𝐾𝑥(𝑒) parallel edges, where 𝐾 is a common denominator) implies
that at the end, we have 𝑥(𝑒) = 0 for all edges 𝑒 incident to 𝑧. Since every 𝑥
is the limit of a monotone sequence of rational functions, this also holds for
irrational 𝑥. □

Cen, Li, and Panigrahi [2022] devised a faster randomized algorithm.
Although the optimum values of the LPs (2.2) and (2.12) are the same, their

integrality ratios might be different because not every integral solution to (2.12)
is the incidence vector of a tour. A graph 𝐺 = (𝑉, 𝐸) is 2-edge-connected if
|𝛿𝐺 (𝑈) | ≥ 2 for all ∅ ≠ 𝑈 ⊊ 𝑉 . Every tour is the edge set of a 2-edge-connected
graph because |𝛿𝐹 (𝑈) | is even for every tour 𝐹 and every vertex set 𝑈. The
integral solutions to (2.12) are the incidence vectors of the 2-edge-connected
spanning multi-subgraphs, not only of tours. Therefore, the integrality ratio
of (2.12) might be smaller than the integrality ratio of (2.2). We will return
to this question and the problem of finding a minimum-cost 2-edge-connected
spanning subgraph in Sections 13.6 and 17.2.

Strengthening the subtour LP by adding further classes of facets of the traveling
salesman polytope (the convex hull of incidence vectors of Hamiltonian circuits)
has proved very useful in the design of exact branch-and-cut algorithms (see
Applegate et al. [2006]), but this has not (yet) been used for approximation
algorithms.

Goemans [1995] showed for most of the known classes of facets that adding
this class would increase the value of (2.12) by at most a factor of 4

3 , giving
further support of the 4

3 conjecture. Unfortunately, there is no LP relaxation
for which we know that it can be solved in polynomial time and has a better
integrality ratio than what is known for the subtour LP.

Open Problem 2.33. Prove that there exists a polynomial-time solvable LP
relaxation of the Symmetric TSP with Triangle Inequality that has a smaller
integrality ratio than the subtour LP.

Of course, no complete polyhedral description can be expected for the
traveling salesman polytope. In fact, Fiorini et al. [2015] proved that every
polyhedron that projects to the TSP polytope (i.e., any extended formulation) has
2Ω(𝑛1/4 ) facets. It may not be surprising that the TSP has no compact extended
formulation, but this was not known before, and this result is unconditional (i.e.,
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it does not assume P ≠ NP). The proof reveals an interesting connection to
communication complexity.

Exercises

2.1 Prove the undirected version of the max-flow min-cut theorem: If 𝐺 =

(𝑉, 𝐸) is an undirected graph, 𝑢 : 𝐸 → R≥0, and 𝑠, 𝑡 ∈ 𝑉 , then
the maximum value of an 𝑠-𝑡-flow in an orientation of (𝐺, 𝑢) equals
min

{
𝑢(𝛿(𝑅)) : 𝑠 ∈ 𝑅 ⊆ 𝑉 \ {𝑡}

}
.

2.2 Prove (the directed vertex-disjoint version of) Menger’s theorem: Let
𝐺 = (𝑉, 𝐸) be a directed graph, 𝑠, 𝑡 ∈ 𝑉 such that there is no edge (𝑠, 𝑡),
and 𝑘 ∈ Z>0. Then there are 𝑘 paths 𝑃1, . . . , 𝑃𝑘 from 𝑠 to 𝑡 such that their
vertex sets are pairwise disjoint except for the endpoints 𝑠 and 𝑡 if and
only if for every 𝑋 ⊆ 𝑉 \ {𝑠, 𝑡} with |𝑋 | ≤ 𝑘 − 1 there exists an 𝑠-𝑡-path
that does not contain any vertex from 𝑋 .
Hint: Replace every vertex 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} by two vertices 𝑣′ (inheriting
the edges entering 𝑣) and 𝑣′′ (inheriting the edges leaving 𝑣) and an edge
(𝑣′, 𝑣′′). Apply the max-flow min-cut theorem. For sufficiency, apply
Corollary 2.6 and decompose the integral flow into flows along 𝑠-𝑡-paths.
(Menger [1927])

2.3 Let 𝐺 = (𝑉, 𝐸) be an undirected graph with weights 𝑐 : 𝐸 → R≥0. For
𝑠, 𝑡 ∈ 𝑉 , let 𝜆𝑠,𝑡 = min{𝑐(𝛿(𝑈)) : 𝑠 ∈ 𝑈 ⊆ 𝑉 \ {𝑡}} be the minimum
weight of a cut separating 𝑠 and 𝑡. Show that for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 , we have
𝜆𝑢,𝑤 ≥ min{𝜆𝑢,𝑣 , 𝜆𝑣,𝑤}.

2.4 Consider the problem of finding a minimum-cost connector in a graph
𝐺 = (𝑉, 𝐸) with edge costs 𝑐 : 𝐸 → R. Show that this problem is
equivalent to Minimum Spanning Tree.

2.5 Let 𝐸 be a finite set and F ⊆ 2𝐸 with the properties that (i) ∅ ∈ F ; (ii)
if 𝐴 ⊆ 𝐵 ∈ F , then 𝐴 ∈ F ; and (iii) if 𝐴, 𝐵 ∈ F and |𝐴| < |𝐵 |, then
there exists a 𝑏 ∈ 𝐵 \ 𝐴 such that 𝐴 ∪ {𝑏} ∈ F . Then (𝐸, F ) is called a
matroid. A forest is an undirected graph without circuits.

• Let F be the set of edge sets of forests in a connected undirected graph
𝐺 = (𝑉, 𝐸). Prove that (𝐸, F ) is a matroid.
• Show (similar to the proof of Theorem 2.14) that one can construct

an 𝐹 ∈ F with maximum 𝑐(𝐹) in any matroid (𝐸, F ) with weights
𝑐 : 𝐸 → R≥0 by the greedy algorithm: sort 𝐸 = {𝑒1, . . . , 𝑒𝑚} so that
𝑐(𝑒1) ≥ · · · ≥ 𝑐(𝑒𝑚), initialize 𝐹 = ∅, and successively add 𝑒𝑖 to 𝐹 if
this remains in F (𝑖 = 1, . . . , 𝑚).



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

Exercises 45

• Prove that the convex hull of incidence vectors of elements of F is{
𝑥 ∈ R𝐸 : 𝑥 ≥ 0, 𝑥(𝐴) ≤ 𝑟 (𝐴) for all 𝐴 ⊆ 𝐸

}
,

where 𝑟 (𝐴) := max{|𝐹 | : 𝐹 ∈ F , 𝐹 ⊆ 𝐴} is called the rank of 𝐴.

Hint: Note that the greedy algorithm chooses 𝑟 ({𝑒1, . . . , 𝑒𝑖}) elements
among 𝑒1, . . . , 𝑒𝑖 for each 𝑖 = 1, . . . , 𝑚. Proceed similarly as in the proof
of Theorem 2.14.

2.6 Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑧 a vector in the spanning tree
polytope of 𝐺. Call a set𝑈 ⊆ 𝑉 tight if 𝑧(𝐸 [𝑈]) = |𝑈 | − 1. Let 𝐴 and 𝐵
be tight sets with 𝐴 ∩ 𝐵 ≠ ∅. Show that then 𝐴 ∩ 𝐵 and 𝐴 ∪ 𝐵 are tight.

2.7 Minimum Spanning Tree can be described by the integer linear program
min{𝑐(𝑥) : 𝑥(𝐸) = 𝑛 − 1, 𝑥(𝛿(𝑈)) ≥ 1 (∅ ≠ 𝑈 ⊊ 𝑉), 𝑥𝑒 ∈ {0, 1} (𝑒 ∈
𝐸)}. Show that replacing 𝑥𝑒 ∈ {0, 1} by 0 ≤ 𝑥𝑒 ≤ 1 leads to an LP with
integrality ratio 2.

2.8 Deduce a description of the perfect matching polytope (the convex hull of
incidence vectors of perfect matchings in an undirected graph 𝐺) from
the 𝑇-join polyhedron (Theorem 2.19).

2.9 Consider a weaker variant of the subtour LP:

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 1 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥(𝛿(𝑣)) = 2 (𝑣 ∈ 𝑉)

𝑥𝑒 ≤ 1 (𝑒 ∈ 𝐸)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

This LP still has the property that the integral feasible solutions are
precisely the incidence vectors of Hamiltonian circuits. Prove, however,
that the integrality ratio of this LP is at least 8

3 .
2.10 Prove that the integrality ratio of the LP in Exercise 2.9 is exactly twice

the integrality ratio of the subtour LP.
2.11 Show that without the triangle inequality, the integrality ratio of the

subtour LP (2.2) would be unbounded.
2.12 Prove that the integrality ratio of the subtour LP (2.2) is the smallest

number 𝜌 for which the following is true: For every positive integer 𝑘 and
every 𝑘-regular 𝑘-edge-connected graph 𝐺, the all- 2𝜌

𝑘
vector is a convex

combination of incidence vectors of tours.
(Boyd and Sebő [2021])
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2.13 A 2-factor (or simple perfect 2-matching, or cycle cover) in a graph is an
edge set 𝐹 that forms a 2-regular spanning subgraph. Show that there are
instances of the Symmetric TSP with Triangle Inequality in which
there is no 2-factor that costs less than 10

9 times the value of the subtour
LP (2.2).
Hint: See the envelope example (Figure 2.2).
Note: Schalekamp, Williamson, and van Zuylen [2014] showed that the
worst ratio of an optimum 2-factor over (2.2) is indeed 10

9 , as conjectured
by Boyd and Carr [2011].

2.14 Let 𝐺 = (𝑉, 𝐸) be a 2-edge-connected undirected graph and 𝑐(𝑒) = 1
for all 𝑒 ∈ 𝐸 . Show that then the value of (2.12) does not change when
adding constraints 𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 .
(Vygen [2012])

2.15 Show the following strengthening of Theorem 2.30. Let𝐺 be an undirected
graph, 𝑧 ∈ 𝑉 an even-degree vertex, and 𝜆 ≥ 2 such that (2.13) holds.
Then for every 𝑒 = {𝑣, 𝑧} ∈ 𝛿(𝑧), there are at least 1

2 |𝛿(𝑧) | − 1 edges
𝑓 = {𝑧, 𝑤} ∈ 𝛿(𝑧) \ {𝑒} such that splitting off 𝑒 and 𝑓 preserves (2.13).
Hint: Consider two dangerous sets 𝐴 and 𝐵 whose union contains all
neighbors of 𝑧 that we cannot use for splitting off. Then exploit that
|𝛿(𝑉 \ (𝐴 ∪ 𝐵 ∪ {𝑧})) | ≥ 𝜆.
(Bang-Jensen et al. [1999])
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3

Linear Programming Relaxations of the
Asymmetric TSP

As in the symmetric case, there are two versions of the asymmetric TSP and
two corresponding LP relaxations. Again, the two versions are equivalent, and
we will present a third equivalent version. We will also study the integrality
ratio and show that it is at least 2.

3.1 The Two Basic LP Relaxations of the Asymmetric TSP

First, let (𝑉, 𝑐) be an instance of the Asymmetric TSP with Triangle In-
equality and 𝐸 = {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑉, 𝑣 ≠ 𝑤}. The following is the natural
analogon of the subtour LP (2.2) in this case:

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥(𝛿(𝑣)) = 2 (𝑣 ∈ 𝑉)

𝑥(𝛿+ (𝑣)) = 𝑥(𝛿− (𝑣)) (𝑣 ∈ 𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(3.1)

Second, let 𝐺 = (𝑉, 𝐸) and 𝑐 : 𝐸 → R≥0 be an instance of the Asymmetric
TSP. Then the natural LP relaxation is

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥(𝛿+ (𝑣)) = 𝑥(𝛿− (𝑣)) (𝑣 ∈ 𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(3.2)

47
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48 Linear Programming Relaxations of the Asymmetric TSP

The integral feasible solutions to (3.1) are the incidence vectors of Hamiltonian
circuits, while the integral feasible solutions to (3.2) are the incidence vectors
of tours.

Note that 𝑥(𝛿+ (𝑣)) = 𝑥(𝛿− (𝑣)) for all 𝑣 ∈ 𝑉 implies 𝑥(𝛿+ (𝑈)) = 𝑥(𝛿− (𝑈))
for all 𝑈 ⊆ 𝑉 , and hence 𝑥(𝛿(𝑈)) ≥ 2 is equivalent to 𝑥(𝛿+ (𝑈)) ≥ 1 (or
𝑥(𝛿− (𝑈)) ≥ 1).

Again, both LPs can be solved in polynomial time:

Proposition 3.1. The linear programs (3.1) and (3.2) can be solved in polyno-
mial time.

Proof. This can be done either via an extended formulation or by the equiv-
alence of separation and optimization, exactly as in Section 2.2 (cf. Corol-
lary 2.11). □

We will next show that the two LPs are equivalent.

3.2 Directed Splitting Off

The splitting-off technique that we presented in Section 2.5 can also be applied
to digraphs, as Mader [1982] showed first. Splitting off a pair of edges 𝑒 = (𝑣, 𝑧)
and 𝑓 = (𝑧, 𝑤) in a digraph means replacing 𝑒 and 𝑓 by a single new edge
(𝑣, 𝑤) (which can be a loop if 𝑣 = 𝑤).

There are several versions of directed splitting-off theorems. The following
will contain all we need. The special case 𝑇 = 𝑉 \ {𝑧} is an analogon of
Theorem 2.30.

Theorem 3.2 (Jackson [1988], Frank [1989]). Let 𝐺 = (𝑉, 𝐸) be an Eulerian
digraph, 𝑇 ⊊ 𝑉 , and 𝑧 ∈ 𝑉 \ 𝑇 . Let 𝜆 ≥ 2 be an even integer and

|𝛿(𝑈) | ≥ 𝜆 for all𝑈 ⊊ 𝑉 with 𝑇 ∩𝑈 ≠ ∅ and 𝑇 \𝑈 ≠ ∅. (3.3)

Then for every edge 𝑒 = (𝑣, 𝑧) ∈ 𝛿− (𝑧), there is an edge 𝑓 = (𝑧, 𝑤) ∈ 𝛿+ (𝑧)
such that splitting off 𝑒 and 𝑓 preserves (3.3).

Proof. Let 𝑒 = (𝑣, 𝑧) ∈ 𝛿− (𝑧). Call a set 𝑈 ⊊ 𝑉 dangerous if 𝑇 ∩ 𝑈 ≠ ∅,
𝑇 \𝑈 ≠ ∅, 𝑒 ∈ 𝛿+ (𝑈), and |𝛿(𝑈) | = 𝜆. Let𝑊 be the union of all dangerous sets.
For any 𝑓 = (𝑧, 𝑤) ∈ 𝛿+ (𝑧), splitting off 𝑒 and 𝑓 preserves (3.3) unless 𝑤 ∈ 𝑊
(i.e., unless there is a dangerous set containing 𝑤; see Figure 3.1). Hence we are
done unless 𝛿+ (𝑧) ⊆ 𝛿− (𝑊).

We next show that𝑊 is dangerous, which follows from the following:

The union of dangerous sets is dangerous. (3.4)
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𝑣 𝑤

𝑧

𝑈

𝑉 \ {𝑧}

𝑒 𝑓

Figure 3.1 Splitting off the pair of edges 𝑒 = (𝑣, 𝑧) and 𝑓 = (𝑧, 𝑤) means
replacing them with the edge (𝑣, 𝑤) (green, dotted). This reduces | 𝛿 (𝑈) | by 2
for every set 𝑈 ⊆ 𝑉 \ {𝑧} with 𝑣, 𝑤 ∈ 𝑈. For sets 𝑈 with | 𝛿 (𝑈) | = 𝜆 and
𝑇 ∩𝑈 ≠ ∅ and 𝑇 \𝑈 ≠ ∅, this would lead to violating (3.3). One example for such
a set𝑈 is shown in red; here, the blue empty squares indicate elements of 𝑇 .

To prove (3.4), let 𝑋 and 𝑌 be dangerous sets such that neither of them is a
subset of the other.

If 𝑇 ∩ (𝑋 \ 𝑌 ) ≠ ∅ and 𝑇 ∩ (𝑌 \ 𝑋) ≠ ∅ (Figure 3.2 (a)), then

𝜆 + 𝜆 = |𝛿(𝑋) | + |𝛿(𝑌 ) |
= |𝛿(𝑋 \ 𝑌 ) | + |𝛿(𝑌 \ 𝑋) | + 2|𝛿(𝑋 ∩ 𝑌 ) ∩ 𝛿(𝑋 ∪ 𝑌 ) |
≥ 𝜆 + 𝜆 + 2,

a contradiction (we used (3.3) for 𝑋 \ 𝑌 and 𝑌 \ 𝑋 , and the existence of
𝑒 ∈ 𝛿+ (𝑋 ∩ 𝑌 ) ∩ 𝛿+ (𝑋 ∪ 𝑌 )).

Therefore we conclude 𝑇 ∩ (𝑋 ∩𝑌 ) ≠ ∅ and 𝑇 \ (𝑋 ∪𝑌 ) ≠ ∅ (Figure 3.2 (b)).
Then |𝛿(𝑋 ∪ 𝑌 ) | = 𝜆 follows from

𝜆 + 𝜆 = |𝛿(𝑋) | + |𝛿(𝑌 ) |
≥ |𝛿(𝑋 ∩ 𝑌 ) | + |𝛿(𝑋 ∪ 𝑌 ) |
≥ 𝜆 + 𝜆.

So 𝑋 ∪ 𝑌 is indeed dangerous, and (3.4) is proved.
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(a)
𝑧

𝑋 𝑌𝑒

(b)
𝑧

𝑋 𝑌𝑒

(c)
𝑧

𝑊
𝑒

Figure 3.2 (a) and (b): The two cases in the proof of (3.4). (c): The maximal
dangerous set𝑊: Assuming 𝛿+ (𝑧) ⊆ 𝛿− (𝑊 ) leads to a contradiction. The blue
empty squares indicate elements of 𝑇 .

(3.4) says in particular that𝑊 is dangerous. But now 𝛿+ (𝑧) ⊆ 𝛿− (𝑊) would
imply (cf. Figure 3.2 (c))

|𝛿({𝑧} ∪𝑊) | = |𝛿(𝑊) \ 𝛿(𝑧) | + |𝛿(𝑧) \ 𝛿(𝑊) |
= |𝛿(𝑊) | − |𝛿+ (𝑧) | − |𝛿+ (𝑊) ∩ 𝛿− (𝑧) | + |𝛿− (𝑧) \ 𝛿+ (𝑊) |
= |𝛿(𝑊) | − |𝛿− (𝑧) | − |𝛿+ (𝑊) ∩ 𝛿− (𝑧) | + |𝛿− (𝑧) \ 𝛿+ (𝑊) |
= |𝛿(𝑊) | − 2|𝛿+ (𝑊) ∩ 𝛿− (𝑧) |
≤ |𝛿(𝑊) | − 2
= 𝜆 − 2

because 𝑒 ∈ 𝛿+ (𝑊) ∩ 𝛿− (𝑧) and 𝑊 is dangerous. But then {𝑧} ∪𝑊 violates
(3.3), a contradiction. □

The uncrossing technique that we used in this proof will reappear in the next
chapter.

Again, Lemma 1.8 can be seen as a special case (because a tour remains a
tour when splitting off at a vertex of degree more than 2 while maintaining
connectivity among the other vertices). Very similarly to Theorem 2.32, we
obtain an algorithm:

Theorem 3.3. Let 𝐺 = (𝑉, 𝐸) be a digraph with weights 𝑥 : 𝐸 → R≥0 that
satisfy 𝑥(𝛿− (𝑣)) = 𝑥(𝛿+ (𝑣)) for all 𝑣 ∈ 𝑉 . Let 𝑇 ⊊ 𝑉 and 𝑧 ∈ 𝑉 \ 𝑇 . Let 𝜆 > 0
and

𝑥(𝛿(𝑈)) ≥ 𝜆 for all𝑈 ⊊ 𝑉 with 𝑇 ∩𝑈 ≠ ∅ and 𝑇 \𝑈 ≠ ∅. (3.5)

Then one can compute in polynomial time a list of triples (𝑒𝑖 , 𝑓𝑖 , 𝛾𝑖) ∈ 𝛿− (𝑧) ×
𝛿+ (𝑧) × R>0, 𝑖 = 1, . . . , 𝑘 , such that splitting off all (𝑒𝑖 , 𝑓𝑖 , 𝛾𝑖) maintains (3.5)
and leads to 𝑥(𝑒) = 0 for all edges 𝑒 incident to 𝑧. Here, splitting off (𝑒, 𝑓 , 𝛾)
means reducing 𝑥(𝑒) and 𝑥( 𝑓 ) by 𝛾 and adding an edge with weight 𝛾 from the
tail of 𝑒 to the head of 𝑓 .
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Proof. We can simply scan the list of all pairs (𝑒𝑖 , 𝑓𝑖) ∈ 𝛿− (𝑧)×𝛿+ (𝑧), greedily
set each 𝛾𝑖 as large as possible in order to maintain (3.5), and split off (𝑒𝑖 , 𝑓𝑖 , 𝛾𝑖)
if 𝛾𝑖 > 0 before continuing with the next pair. The largest feasible 𝛾𝑖 for
𝑒𝑖 = (𝑣, 𝑧) and 𝑓𝑖 = (𝑧, 𝑤) is

𝛾𝑖 = min
{
𝑥(𝑒𝑖), 𝑥( 𝑓𝑖),

1
2

(
min

{
𝑥(𝛿(𝑈)) : 𝑣, 𝑤, 𝑡 ∈ 𝑈 ⊆ 𝑉 \ {𝑧, 𝑡′}, 𝑡, 𝑡′ ∈ 𝑇

}
− 𝜆

)}
(see Figure 3.1), so it can be computed by less than 𝑛2 calls to a max-flow
algorithm (cf. Corollary 2.9), one for each possible choice of 𝑡 and 𝑡′.

If 𝑥 and 𝜆 are rational and 𝐾 ∈ N such that 𝐾𝑥𝑒 is an integer for all 𝑒 ∈ 𝐸
and 𝐾𝜆 is an even integer, Theorem 3.2 (applied to the Eulerian digraph that
results from 𝐺 by replacing every edge 𝑒 by 𝐾𝑥(𝑒) parallel edges) implies that,
at the end, we have 𝑥(𝑒) = 0 for all edges 𝑒 incident to 𝑧. Since every 𝑥, 𝜆 is the
limit of a monotonely increasing sequence of rational functions, this also holds
for irrational 𝑥, 𝜆. □

The running time of this algorithm can be improved easily (see Nagamochi,
Nichimura, and Ibaraki [1997]). By replacing every undirected edge {𝑣, 𝑤} by
a pair of antiparallel edges (𝑣, 𝑤) and (𝑤, 𝑣), each with half the weight, and
setting 𝑇 = 𝑉 \ {𝑧}, we can view Theorem 2.32 as a special case of Theorem
3.3.

The equivalence of the LPs now follows directly (as was noted, for example,
by Nagarajan and Ravi [2011]):

Theorem 3.4. For any instance (𝑉, 𝑐) of the Asymmetric TSP with Triangle
Inequality, the LPs (3.1) and (3.2) have the same value.

Proof. Every feasible solution to (3.1) is a feasible solution to (3.2). Conversely,
let 𝑥 be a feasible solution to (3.2). As long as there is a vertex 𝑧with 𝑥(𝛿(𝑧)) > 2,
apply Theorem 3.3 with 𝜆 = 2 and 𝑇 = 𝑉 \ {𝑧} and apply the resulting splitting-
off operations partially, until 𝑥(𝛿(𝑧)) = 2. Remove loops. This yields a feasible
solution to (3.1), which by the triangle inequality, has no larger cost. □

Theorem 3.5. Let (𝑉, 𝑐) be an instance of the Asymmetric TSP with Triangle
Inequality, 𝐸 = {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑉, 𝑣 ≠ 𝑤}, and 𝑇 ⊆ 𝑉 . Let 𝑥 ∈ R𝐸≥0 satisfy
𝑥(𝛿− (𝑣)) = 𝑥(𝛿+ (𝑣)) for all 𝑣 ∈ 𝑉 and 𝑥(𝛿(𝑈)) ≥ 2 for all 𝑈 ⊊ 𝑉 with
𝑇 ∩𝑈 ≠ ∅ and 𝑇 \𝑈 ≠ ∅. Then the value of (3.1) for the subinstance (𝑇, 𝑐) is
at most 𝑐(𝑥).

Proof. Apply Theorem 3.3 to all 𝑧 ∈ 𝑉 \ 𝑇 to obtain a solution to (3.2) for
(𝑇, 𝑐) that has no larger cost. Then apply Theorem 3.4. □
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In particular, we get the following monotonicity property: The LP value does
not increase if we restrict the instance to a subset of vertices.

Corollary 3.6. Let (𝑉, 𝑐) be an instance of the Asymmetric TSP with Triangle
Inequality and 𝑇 ⊆ 𝑉 . Then the value of (3.2) for (𝑇, 𝑐) is at most the value of
(3.2) for (𝑉, 𝑐).

Proof. Apply Theorem 3.5 to an optimum solution to (3.2) for (𝑉, 𝑐). □

The analogous statement holds for the Symmetric TSP with Triangle
Inequality (see Exercise 3.1).

3.3 A Third LP Relaxation of the Asymmetric TSP

It might be interesting to note that one can also obtain a strengthened cut
condition. A circulation in a digraph (𝑉, 𝐸) is a function 𝑓 : 𝐸 → R≥0 with
𝑓 (𝛿− (𝑣)) = 𝑓 (𝛿+ (𝑣)) for all 𝑣 ∈ 𝑉 . Any circulation can be decomposed into
flows along circuits:

Proposition 3.7. Let 𝐺 = (𝑉, 𝐸) be a digraph and 𝑓 a circulation in 𝐺. Then
there are edge sets 𝐶1, . . . , 𝐶𝑘 of circuits in 𝐺 and 𝜆1, . . . , 𝜆𝑘 > 0 such that
𝑓 (𝑒) = ∑

𝑖:𝑒∈𝐶𝑖
𝜆𝑖 .

Proof. Induction on the number of edges 𝑒 with 𝑓 (𝑒) > 0. The statement is
trivial if there are no such edges. If 𝑒1 = (𝑣1, 𝑣2) is an edge with 𝑓 (𝑒1) > 0,
there must be an edge 𝑒2 = (𝑣2, 𝑣3) ∈ 𝛿+ (𝑣2) with 𝑓 (𝑒2) > 0. Iterate until we
hit a vertex that we visited before. Then the sequence between the two visits
defines the edge set 𝐶 of a circuit with 𝛾 := min{ 𝑓 (𝑒) : 𝑒 ∈ 𝐶} > 0. Subtract 𝛾
from 𝑓 (𝑒) for all 𝑒 ∈ 𝐶 and apply induction. □

Of course, any solution to (3.2) is a circulation and hence can be decomposed
to flows along circuits. Let C denote the set of edge sets of all circuits in the
given digraph (𝑉, 𝐸). Instead of only requiring that the total value of the edges
crossing a cut is at least 2, we now require that the total value of circuits crossing
any cut is at least 1. This is stronger because circuits crossing a cut several times
count only once:

min
∑︁
𝐶∈C

𝑐(𝐶)𝜆𝐶

subject to
∑︁

𝐶∈C :𝐶∩𝛿+ (𝑈)≠∅
𝜆𝐶 ≥ 1 (∅ ≠ 𝑈 ⊊ 𝑉)

𝜆𝐶 ≥ 0 (𝐶 ∈ C )

(3.6)
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(a) (b) (c)

Figure 3.3 Decomposing a solution to (3.1) into circuits in an arbitrary way may not
yield a feasible solution to (3.6), as this example (taken from Henke [2018]) shows.
In (a) we see the support graph of a solution to (3.1), where each of the eight edges
has value 1

2 . The pictures (b) and (c) show two decompositions of this circulation
into flows on circuits; each of the circuits has value 1

2 . The decomposition in (c) is
a feasible solution to (3.6), but the one in (b) is not.

The example in Figure 3.3 shows that not every decomposition is good:
decomposing a solution to (3.2) into circuits in an arbitrary way will not always
lead to a feasible solution to (3.6). However, a good decomposition always exists,
as the authors showed together with Henke [2018]. The following simpler proof
is due to Goemans.

Theorem 3.8. From any solution 𝑥 to (3.2), one can compute in polynomial
time a solution 𝜆 to (3.6) with 𝑥𝑒 =

∑
𝐶∈C :𝑒∈𝐶 𝜆𝐶 (and hence the same objective

function value).

Proof. Take an arbitrary order of the vertices, 𝑉 = {𝑧1, . . . , 𝑧𝑛}, and apply
Theorem 3.3 to 𝑧 = 𝑧𝑛 and 𝑇 = {𝑧1, . . . , 𝑧𝑛−1}, then to 𝑧 = 𝑧𝑛−1 and 𝑇 =

{𝑧1, . . . , 𝑧𝑛−2}, and so on, until 𝑧3, . . . , 𝑧𝑛 are isolated. Note that after 𝑘 steps,
the subgraph induced by {𝑧1, . . . , 𝑧𝑛−𝑘} contains a feasible solution 𝑥 (𝑛−𝑘 ) to
(3.2) for this smaller instance.

We show how to compute a feasible solution 𝜆 (𝑛−𝑘 ) to (3.6). For 𝜆 (2) , there
are only two vertices (𝑧1 and 𝑧2), and hence any decomposition of 𝑥 (2) into
circuits (with two edges each), which we get greedily like in Proposition 3.7,
does the job: the sum of the 𝜆𝐶 will be 1

2𝑥
(2) (𝛿(𝑣1)) ≥ 1.

Now, for 𝑘 = 𝑛 − 3, 𝑛 − 4, . . . , 0 we compute 𝜆 (𝑛−𝑘 ) from 𝜆 (𝑛−𝑘−1) . To
this end, we note that 𝑥 (𝑛−𝑘−1) resulted from 𝑥 (𝑛−𝑘 ) by splitting off some
triples (𝑒𝑖 , 𝑓𝑖 , 𝛾𝑖). We now undo this operation on 𝜆 (𝑛−𝑘−1) : Whenever a circuit
𝐶 with 𝜆

(𝑛−𝑘−1)
𝐶

> 0 contains an edge (𝑣, 𝑤) that resulted from splitting
off ((𝑣, 𝑧𝑛−𝑘), (𝑧𝑛−𝑘 , 𝑤), 𝛾), we replace (𝑣, 𝑤) in 𝐶 by the edges (𝑣, 𝑧𝑛−𝑘) and
(𝑧𝑛−𝑘 , 𝑤).𝐶 remains Eulerian, but 𝑧𝑛−𝑘 may have in-degree and out-degree more
than 1 in 𝐶. We partition 𝐶 into edge sets of circuits and set 𝜆 (𝑛−𝑘 )

𝐶′ := 𝜆 (𝑛−𝑘−1)
𝐶

for each circuit 𝐶′ in this partition. The result is a feasible solution to (3.6) on
{𝑧1, . . . , 𝑧𝑛−𝑘}. □
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Theorem 3.8 implies that we can solve the LP (3.6) in polynomial time
for any 𝑐 : 𝐸 → R≥0 although the LP has exponentially many variables and
exponentially many constraints. However, we cannot hope to optimize arbitrary
objective function 𝑐 : C → R≥0; for example, the LP for 𝑐(𝐶) = 1 for all
circuits 𝐶 in a given digraph has value 1 if and only if 𝐺 contains a Hamiltonian
circuit (cf. Exercise 3.2).

3.4 Integral and Minimum-Cost Circulations

Feasible solutions to the above LPs are circulations. In this section, we collect
some classical facts on circulations for later use. It is often useful to impose lower
and upper bounds. Hoffman’s circulation theorem tells us when a circulation
subject to such bounds exists:

Theorem 3.9 (Hoffman [1960]). Let 𝐺 = (𝑉, 𝐸) be a digraph with lower
and upper bounds 𝑙, 𝑢 : 𝐸 → R≥0. Then there is a circulation 𝑓 in 𝐺 with
𝑙 (𝑒) ≤ 𝑓 (𝑒) ≤ 𝑢(𝑒) for all 𝑒 ∈ 𝐸 if and only if 𝑙 (𝑒) ≤ 𝑢(𝑒) for all 𝑒 ∈ 𝐸 and
𝑙 (𝛿− (𝑈)) ≤ 𝑢(𝛿+ (𝑈)) for all𝑈 ⊆ 𝑉 .

Proof. Set 𝑢′ (𝑒) := 𝑢(𝑒) − 𝑙 (𝑒) for all 𝑒 ∈ 𝐸 , 𝑏(𝑣) := 𝑙 (𝛿− (𝑣)) − 𝑙 (𝛿+ (𝑣)) for
all 𝑣 ∈ 𝑉 , and construct 𝐺′ from 𝐺 by adding two vertices 𝑠 and 𝑡 and edges
(𝑠, 𝑣) with capacity 𝑢′ ((𝑠, 𝑣)) = max{0, 𝑏(𝑣)} and edges (𝑣, 𝑡) with capacity
𝑢′ ((𝑣, 𝑡)) = max{0,−𝑏(𝑣)} for all 𝑣 ∈ 𝑉 . Then an 𝑠-𝑡-flow 𝑔 of value 𝑢′ (𝛿+ (𝑠))
in (𝐺′, 𝑢′) corresponds to a circulation 𝑓 in𝐺 with 𝑙 ≤ 𝑓 ≤ 𝑢 and vice versa, via
𝑓 (𝑒) = 𝑔(𝑒) + 𝑙 (𝑒) for 𝑒 ∈ 𝐸 . By the max-flow min-cut theorem (Theorem 2.5),
such an 𝑠-𝑡-flow exists if and only if 𝑢′ (𝛿+ ({𝑠} ∪ 𝑈)) ≥ 𝑢′ (𝛿+ (𝑠)) for all
𝑈 ⊆ 𝑉 . Since 𝑢′ (𝛿+

𝐺′ ({𝑠}∪𝑈)) = 𝑢
′ (𝛿+

𝐺′ (𝑠)) −𝑏(𝑈) +𝑢(𝛿
+
𝐺
(𝑈)) − 𝑙 (𝛿+

𝐺
(𝑈)) =

𝑢′ (𝛿+
𝐺′ (𝑠)) +𝑢(𝛿

+
𝐺
(𝑈)) − 𝑙 (𝛿−

𝐺
(𝑈)), this is equivalent to 𝑙 (𝛿− (𝑈)) ≤ 𝑢(𝛿+ (𝑈))

for all𝑈 ⊆ 𝑉 . □

Next, we prove the integral circulation theorem:

Theorem 3.10. Let 𝐺 = (𝑉, 𝐸) be a digraph with lower and upper bounds
𝑙, 𝑢 : 𝐸 → Z≥0 and costs 𝑐 : 𝐸 → R. Then, among all circulations 𝑓 in 𝐺 with
𝑙 (𝑒) ≤ 𝑓 (𝑒) ≤ 𝑢(𝑒) for all 𝑒 ∈ 𝐸 that minimize

∑
𝑒∈𝐸 𝑐(𝑒) 𝑓 (𝑒), there is an

integral one.

Proof. Call a circulation 𝑓 with 𝑙 (𝑒) ≤ 𝑓 (𝑒) ≤ 𝑢(𝑒) for all 𝑒 ∈ 𝐸 optimal if it
minimizes 𝑐( 𝑓 ) :=

∑
𝑒∈𝐸 𝑐(𝑒) 𝑓 (𝑒). Among all optimal circulations, let 𝑓 be

one that minimizes |{𝑒 ∈ 𝐸 : 𝑓 (𝑒) ∉ Z}|. We show that 𝑓 is integral. Suppose
not, then there is an edge 𝑒1 = (𝑣1, 𝑣2) with 𝑓 (𝑒1) ∉ Z. This cannot be the only
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edge incident to 𝑣2 with non-integral flow value, so let 𝑒2 be another such edge,
and let 𝑣3 be the other endpoint of 𝑒2. Continue with 𝑣3, and iterate until we
meet a vertex that we have already visited. Then the sequence between the two
visits defines the edge set 𝐶 of a graph whose underlying undirected graph is
a circuit. Let 𝛿 := min

{
min{ 𝑓 (𝑒) − ⌊ 𝑓 (𝑒)⌋, ⌈ 𝑓 (𝑒)⌉ − 𝑓 (𝑒)} : 𝑒 ∈ 𝐶

}
. Then

𝛿 > 0, and we define two circulations 𝑓 + and 𝑓 − as follows: 𝑓 + arises from 𝑓 by
traversing 𝐶 and increasing 𝑓 (𝑒) by 𝛿 on forward edges 𝑒 ∈ 𝐶 and decreasing
𝑓 (𝑒) by 𝛿 on backward edges 𝑒 ∈ 𝐶, and 𝑓 − is constructed analogously by
traversing 𝐶 in the opposite direction. Then 𝑓 + and 𝑓 − satisfy the lower and
upper bounds. Moreover, 𝑓 − (𝑒) + 𝑓 + (𝑒) = 2 𝑓 (𝑒) for all 𝑒 ∈ 𝐸 and hence
𝑐( 𝑓 +) + 𝑐( 𝑓 −) = 2𝑐( 𝑓 ). So both 𝑓 + and 𝑓 − are optimal, but at least one of them
has at least one edge more with integral flow value, which is a contradiction. □

A polynomial-time algorithm to compute an integral optimum circulation
follows from linear programming (Theorem 2.2) and the (algorithmic) proof of
Theorem 3.10, but there are faster combinatorial algorithms:

Theorem 3.11 (Tardos [1985], Orlin [1993]). Let 𝐺 = (𝑉, 𝐸) be a digraph with
lower and upper bounds 𝑙, 𝑢 : 𝐸 → R≥0 and costs 𝑐 : 𝐸 → R. Then one can
compute a circulation 𝑓 in𝐺 with 𝑙 (𝑒) ≤ 𝑓 (𝑒) ≤ 𝑢(𝑒) for all 𝑒 ∈ 𝐸 , minimizing∑
𝑒∈𝐸 𝑐(𝑒) 𝑓 (𝑒), in 𝑂 (𝑚2 log2 𝑚) time, where 𝑚 = |𝐸 |. If 𝑙 and 𝑢 are integral,
𝑓 will be integral.

If all input numbers are integers bounded by a polynomial in |𝑉 |, faster
randomized algorithms are known (see, e.g., Chen et al. [2022] and van den
Brand et al. [2023]). Due to the above theorems, minimum-cost flows (or
circulations) are a very powerful tool that we will also use at several places in
this book. The following version with bounds on the throughput of every vertex
will also be useful:

Corollary 3.12. Let 𝐺 = (𝑉, 𝐸) be a digraph with lower and upper bounds
𝑙, 𝑢 : 𝐸 ∪ 𝑉 → Z≥0 and costs 𝑐 : 𝐸 → R. Then, among all circulations 𝑓 in
𝐺 with 𝑙 (𝑒) ≤ 𝑓 (𝑒) ≤ 𝑢(𝑒) for all 𝑒 ∈ 𝐸 and 𝑙 (𝑣) ≤ 𝑓 (𝛿− (𝑣)) ≤ 𝑢(𝑣) for all
𝑣 ∈ 𝑉 that minimize

∑
𝑒∈𝐸 𝑐(𝑒) 𝑓 (𝑒), there is an integral one. We can find such

an integral optimum circulation in 𝑂 (𝑚2 log2 𝑚) time, where 𝑚 = |𝐸 |.

Proof. Split each vertex 𝑣 into two vertices 𝑣− and 𝑣+, and replace each
edge (𝑣, 𝑤) by (𝑣+, 𝑤−). For each vertex 𝑣, add an edge 𝑒𝑣 = (𝑣− , 𝑣+) with
𝑙 (𝑒𝑣) := 𝑙 (𝑣) and 𝑢(𝑒𝑣) := 𝑢(𝑣). Now, apply Theorem 3.11. Finally, contract
the added edges. □

Another problem that can be reduced to network flows is bipartite matching.
An undirected graph 𝐺 = (𝑉, 𝐸) is called bipartite if there exists a set 𝐴 ⊆ 𝑉
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such that 𝐸 = 𝛿(𝐴). Here is a famous theorem, essentially due to Hall [1935].
We formulate it for oriented bipartite graphs:

Theorem 3.13. Let 𝐴 and 𝐵 be disjoint finite sets and 𝐺 = (𝑉, 𝐸) be a digraph
with 𝑉 = 𝐴 ∪ 𝐵 and 𝐸 ⊆ 𝐴 × 𝐵. Let 𝑙 : 𝐴 → R≥0 and 𝑢 : 𝐵 → R≥0. There
exists a function 𝑓 : 𝐸 → R≥0 with 𝑓 (𝛿+ (𝑎)) ≥ 𝑙 (𝑎) for all 𝑎 ∈ 𝐴 and
𝑓 (𝛿− (𝑏)) ≤ 𝑢(𝑏) for all 𝑏 ∈ 𝐵 if and only if

𝑢
({
𝑏 ∈ 𝐵 : 𝛿+ (𝐴′) ∩ 𝛿− (𝑏) ≠ ∅

})
≥ 𝑙 (𝐴′) for all 𝐴′ ⊆ 𝐴.

If 𝑙 and 𝑢 are integral, then 𝑓 can be chosen integral.

Proof. Add a source 𝑠 and a sink 𝑡, and add an edge (𝑠, 𝑎) with capacity
𝑙 (𝑎) for each 𝑎 ∈ 𝐴 and an edge (𝑏, 𝑡) with capacity 𝑢(𝑏) for each 𝑏 ∈ 𝐵. All
original edges have infinite capacity. Then an 𝑓 as required corresponds to an
(integral) 𝑠-𝑡-flow of value 𝑙 (𝐴) subject to the constraints given by the edge
capacities. By the max-flow min-cut theorem (Theorem 2.5 and Corollary 2.6),
such a flow exists if and only if every 𝑠-𝑡-cut 𝛿+ (𝑆) has capacity at least 𝑙 (𝐴). If
𝛿+ (𝐴 ∩ 𝑆) ⊈ 𝛿− (𝐵 ∩ 𝑆), then the capacity of 𝛿+ (𝑆) is infinite. For fixed 𝐴 ∩ 𝑆,
the capacity of 𝛿+ (𝑆) is minimized if 𝐵∩ 𝑆 = {𝑏 ∈ 𝐵 : 𝛿+ (𝐴∩ 𝑆) ∩ 𝛿− (𝑏) ≠ ∅}.
So only such sets 𝑆 need to be considered, and for those, 𝛿+ (𝑆) has capacity
𝑙 (𝐴 \ 𝑆) + 𝑢(𝐵∩ 𝑆). This is at least 𝑙 (𝐴) if and only if 𝑢(𝐵∩ 𝑆) ≥ 𝑙 (𝐴∩ 𝑆). □

Hall’s [1935] original bipartite matching theorem dealt with the special
case 𝑙 (𝑎) = 1 for all 𝑎 ∈ 𝐴 and 𝑢(𝑏) = 1 for all 𝑏 ∈ 𝐵. By essentially the
same construction, one can reduce the minimum-cost perfect matching problem
in bipartite graphs (also called the assignment problem) to a minimum-cost
circulation problem (see Exercise 3.4).

3.5 Integrality Ratio

We have introduced three classes of LPs, which all have the same integrality
ratio:

Proposition 3.14. The integrality ratios of (3.1), (3.2), and (3.6), are the same.

Proof. For any instance (𝐺, 𝑐) of the Asymmetric TSP, the LP values of (3.2)
and (3.6) are the same by Theorem 3.8, and in both cases, the integral solutions
correspond to tours. Hence, the integrality ratios of these two LPs are the same.

Now consider the instance (𝑉, 𝑐) of the Asymmetric TSP with Triangle
Inequality that corresponds to the metric closure. Then, by Theorem 3.4,
the LP value of (3.1) for (𝑉, 𝑐) is at most the LP value of (3.2) for (𝐺, 𝑐).
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Moreover, the optimum integral solutions have the same cost (as in the proof of
Proposition 1.12). We conclude that the integrality ratio of (3.1) is at least the
integrality ratio of (3.2).

For the other inequality, let (𝑉, 𝑐) be any instance of the Asymmetric TSP
with Triangle Inequality, and let (𝐺, 𝑐) be the corresponding instance of
the Asymmetric TSP (cf. Proposition 1.12). Then the LP value of (3.2) for
(𝐺, 𝑐) cannot be larger than the LP value of (3.1) for (𝑉, 𝑐). The minimum cost
of a tour in (𝐺, 𝑐) cannot be smaller than the cost of a Hamiltonian circuit by
Lemma 1.7. Thus, the integrality ratio of (3.1) is at most the integrality ratio
of (3.2). □

Similar to Theorem 2.27, we have the following:

Theorem 3.15 (Goemans [1995], Carr and Vempala [2004]). The integrality
ratio of (3.2) is the smallest number 𝜌 such that for every feasible solution 𝑥∗ to
(3.2), the vector 𝜌𝑥∗ is a convex combination of incidence vectors of tours.

Proof. Let (𝐺, 𝑐) be an instance of the Asymmetric TSP and 𝑥∗ an optimum
solution to (3.2). Suppose, for some 𝜌 ≥ 1, we can write 𝜌𝑥∗ =

∑𝑘
𝑖=1 𝜆𝑖𝑦𝑖 , where

𝜆1, . . . , 𝜆𝑘 > 0,
∑𝑘
𝑖=1 𝜆𝑖 = 1, and 𝑦1, . . . , 𝑦𝑘 are incidence vectors of tours. Then

we have 𝜌𝑐(𝑥∗) = ∑𝑘
𝑖=1 𝜆𝑖𝑐(𝑦𝑖), and therefore at least one of the vectors 𝑦𝑖 (and

thus a tour) costs at most 𝜌𝑐(𝑥∗). We conclude that the integrality ratio is at
most 𝜌.

For the other direction, suppose that the integrality ratio is at most 𝜌. Let 𝑥∗
be a feasible solution to (3.2), let 𝑄 denote the convex hull of incidence vectors
of tours, and let dom(𝑄) := {𝑦 + 𝑧 : 𝑦 ∈ 𝑄, 𝑧 ≥ 0}.

First, suppose 𝜌𝑥∗ ∉ dom(𝑄). Then there is a separating hyperplane – that is,
a vector 𝑤 with 𝑤⊤ (𝜌𝑥∗) < inf{𝑤⊤𝑞 : 𝑞 ∈ dom(𝑄)}. Note that 𝑤 is nonnegative
because otherwise the right-hand side would be −∞. Now,

𝜌(𝑤⊤𝑥∗) = 𝑤⊤ (𝜌𝑥∗)
< inf{𝑤⊤𝑞 : 𝑞 ∈ dom(𝑄)}
= inf{𝑤⊤𝑞 : 𝑞 ∈ 𝑄}
= min{𝑤(𝐹) : 𝐹 is a tour},

contradicting the assumption that the integrality ratio is at most 𝜌.
So 𝜌𝑥∗ ∈ dom(𝑄) – that is, there are vectors 𝑦 ∈ 𝑄 and 𝑧 ≥ 0 with 𝜌𝑥∗ = 𝑦+𝑧.

Since 𝑥∗ and 𝑦 are circulations, 𝑧 is also a circulation and can thus (using
Proposition 3.7) be written as 𝑧 =

∑𝑙
𝑗=1 𝜇 𝑗 𝑧 𝑗 , where 𝑧1, . . . , 𝑧𝑙 are incidence

vectors of circuits and 𝜇1, . . . , 𝜇𝑙 > 0. Since 𝑦 ∈ 𝑄, we can write 𝑦 =
∑𝑘
𝑖=1 𝜆𝑖𝑦𝑖 ,

where 𝜆1, . . . , 𝜆𝑘 > 0,
∑𝑘
𝑖=1 𝜆𝑖 = 1, and 𝑦1, . . . , 𝑦𝑘 are incidence vectors of tours.
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Let Λ𝑖 :=
∑𝑖−1
𝑗=1 𝜆 𝑗 . We may assume 𝜇 𝑗 − ⌊𝜇 𝑗⌋ ∈ {Λ𝑖 : 𝑖 = 1, . . . , 𝑘} because

we can add duplicates of tours as needed. Then 𝑦′
𝑖
= 𝑦𝑖 +

∑𝑙
𝑗=1⌊𝜇 𝑗 + 1 − Λ𝑖⌋𝑧 𝑗

is the incidence vector of a tour for 𝑖 = 1, . . . , 𝑘 , and
𝑘∑︁
𝑖=1

𝜆𝑖𝑦
′
𝑖 = 𝑦 +

𝑙∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝜆𝑖
(
⌊𝜇 𝑗 + 1 − Λ𝑖⌋

)
𝑧 𝑗 = 𝑦 +

𝑙∑︁
𝑗=1

𝜇 𝑗 𝑧 𝑗 = 𝑦 + 𝑧 = 𝜌𝑥∗

because ⌊𝜇 𝑗 + 1 − Λ𝑖⌋ = ⌊𝜇 𝑗⌋ + 1 if and only if Λ𝑖 ≤ 𝜇 𝑗 − ⌊𝜇 𝑗⌋. We conclude
𝜌𝑥∗ ∈ 𝑄. □

See Exercise 3.9 for an alternative proof.
Analyzing the cycle cover algorithm (Algorithm 1.35) with respect to the LP

yields the following upper bound (as noted by Williamson [1990]):

Proposition 3.16. The integrality ratio of (3.1) is at most ⌊log2 𝑛⌋, where
𝑛 = |𝑉 |.

Proof. Let LP denote the value of (3.1). The algorithm computes at most
⌊log2 𝑛⌋ cycle covers. In each iteration, it considers a subset 𝑊 of 𝑉 and
computes a cycle cover 𝐹𝑊 in 𝐺 [𝑊]. We show 𝑐(𝐹𝑊 ) ≤ LP.

By Corollary 3.6, an optimum solution 𝑥′ to the LP (3.1) for the subinstance
(𝑊, 𝑐) costs at most LP. Note that 𝑥′ is a fractional circulation with 𝑥′ (𝛿− (𝑣)) = 1
for all 𝑣 ∈ 𝑊 . A cycle cover in this subinstance corresponds to an integral
circulation 𝑓 with 𝑓 (𝛿− (𝑣)) = 1 for all 𝑣 ∈ 𝑊 . By Corollary 3.12, an optimum
integral circulation costs no more than an optimum fractional circulation (i.e.,
at most LP). □

We will show better upper bounds on the integrality ratio in Chapters 6–8. See
Table 3.1 for an overview. In the next section, we will consider lower bounds.

3.6 Lower Bound on the Integrality Ratio

A first lower bound on the integrality ratio of (3.1) (which is the same as the
integrality ratio of (3.2) and of (3.6) by Proposition 3.14) follows from the LP
relaxations of the Symmetric TSP. In particular, we get:

Proposition 3.17. The integrality ratio of (3.1) is at least 4
3 .

Proof. This follows directly from Proposition 2.24 (cf. Figure 2.2): Any
solution 𝑥 to the subtour LP (2.2) can be transformed to a solution 𝑥′ to (3.1) by
setting 𝑥′(𝑣,𝑤) = 𝑥

′
(𝑤,𝑣) =

1
2𝑥{𝑣,𝑤} for all {𝑣, 𝑤} ∈

(𝑉
2
)
. □
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Table 3.1 Upper bounds on the integrality ratio of (3.2) for Asymmetric TSP
in the order of their discovery. The second and third papers do not mention the
integrality ratio explicitly.

Integrality Ratio Year Reference Chapter

log2 𝑛 1990 Williamson [1990] 3.5
0.99 log2 𝑛 2002 Bläser [2008] –
0.842 log2 𝑛 2003 Kaplan et al. [2005] –
2
3 log2 𝑛 2006 Feige and Singh [2007] –
𝑂 ( log 𝑛

log log 𝑛 ) 2009 Asadpour et al. [2017] 5
(log log 𝑛)𝑂 (1) 2014 Anari and Oveis Gharan [2015] –
319 2017 Svensson, Tarnawski, and Végh [2020] 6–8
22 2019 Traub and Vygen [2022] 6–8
17 2021 this book 6–8

For many years, it was unclear whether the asymmetric LPs have a larger
integrality ratio than the subtour LP (2.2). Then Charikar, Goemans, and Karloff
[2006] showed that the integrality ratio of (3.2) is at least 2 (disproving a
conjecture of Carr and Vempala [2004]). In contrast to the instances used in
Proposition 3.17, the instances constructed by Charikar, Goemans, and Karloff
[2006] are not unweighted digraphs. The lower bound for unweighted digraphs
was later raised to 3

2 by Gottschalk [2013]. Based on a different family of
examples due to Boyd and Elliott-Magwood [2005] (which is somewhat similar
to the one suggested by Charikar, Goemans, and Karloff [2006]), Köhne, Traub,
and Vygen [2020] constructed a family of unweighted instances for which the
integrality ratio of (3.2) is at least 2. We use this family of examples (with minor
simplification) to prove Theorem 3.18.

Theorem 3.18. The integrality ratio of (3.2) is at least 2, even when restricted
to unweighted digraphs.

Proof. Let 𝑙 ≥ 4 be an even integer. We will construct a sequence 𝐺′
𝑖
(𝑖 ∈ Z≥0)

of directed graphs such that the integrality ratio of the Asymmetric TSP
instances with graph 𝐺′

𝑖
and cost 𝑐(𝑒) = 1 for all edges 𝑒 converges to 2𝑙

𝑙+1 for
𝑖 →∞.

Let 𝐺0 be a bidirected path with 𝑙 + 2 vertices and 2(𝑙 + 1) edges. Let 𝑣0 = 𝑣′0
be one endpoint of this path, and let 𝑤0 = 𝑤′0 be the other endpoint.
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𝐺0 𝑣0 = 𝑣′0 𝑤0 = 𝑤′0

𝐺𝑖 𝐺
(1)
𝑖−1 𝐺

(2)
𝑖−1 𝐺

(3)
𝑖−1 𝐺

(4)
𝑖−1

𝑣′
𝑖−1 𝑣𝑖−1

𝑤𝑖−1 𝑤′
𝑖−1

𝑣′
𝑖−1 𝑣𝑖−1

𝑤𝑖−1 𝑤′
𝑖−1

𝑣′
𝑖−1𝑣𝑖−1

𝑤𝑖−1𝑤′
𝑖−1

𝑣′
𝑖−1𝑣𝑖−1

𝑤𝑖−1𝑤′
𝑖−1

𝑡0

𝑠0 𝑡1

𝑠1 𝑡2

𝑠2 𝑡3

𝑠3 𝑡4

𝑠4
𝑣𝑖

𝑣′
𝑖

𝑤𝑖

𝑤′
𝑖

Figure 3.4 Constructing a family of digraphs with integrality ratio arbitrarily close
to 2 for Asymmetric TSP with unit weights. For a fixed even integer 𝑙 ≥ 4, we
define digraphs𝐺0, 𝐺1, . . . . The digraph𝐺0 consists of a bidirected path of length
𝑙 + 1. Then we construct 𝐺𝑖 from 𝐺𝑖−1 as in the picture. The picture shows the
construction for 𝑙 = 4; in general, there are 𝑙 copies of the graph 𝐺𝑖−1 (shown
in green). The blue wiggly paths indicate the paths 𝑃 ( 𝑗)

𝑖
, each with 𝑙𝑖 vertices.

Let 𝐺′𝑖 be the graph arising from 𝐺𝑖 by identifying the blue 𝑣𝑖-𝑣′𝑖 -path with the
blue 𝑤𝑖-𝑤′𝑖 -path. Then for 𝑖 → ∞, the integrality ratio of 𝐺′𝑖 converges to 2𝑙

𝑙+1 .
This picture is taken from Köhne, Traub, and Vygen [2020] (with permission from
Springer Nature).

For 𝑖 ≥ 1, let𝐺𝑖 result from𝐺𝑖−1 as follows (see Figure 3.4 for an illustration).
Let 𝐺 (1)

𝑖−1, . . . , 𝐺
(𝑙)
𝑖−1 be 𝑙 copies of the graph 𝐺𝑖−1. Moreover, let 𝑃 (0)

𝑖
, . . . , 𝑃

(𝑙)
𝑖

be directed paths with 𝑙𝑖 vertices and 𝑙𝑖 − 1 edges. Denote the first vertex of
𝑃
( 𝑗 )
𝑖

by 𝑠 𝑗 and the last vertex by 𝑡 𝑗 . For every odd number 𝑗 with 1 ≤ 𝑗 ≤ 𝑙, we
add an edge from the copy of 𝑣′

𝑖−1 in 𝐺 ( 𝑗 )
𝑖−1 to 𝑠 𝑗−1, an edge from 𝑡 𝑗 to the copy

of 𝑣𝑖−1 in 𝐺 ( 𝑗 )
𝑖−1, an edge from 𝑡 𝑗−1 to the copy of 𝑤𝑖−1 in 𝐺 ( 𝑗 )

𝑖−1, and an edge
from the copy of 𝑤′

𝑖−1 in 𝐺 ( 𝑗 )
𝑖−1 to 𝑠 𝑗 . For every even number 𝑗 with 1 ≤ 𝑗 ≤ 𝑙,

we add an edge from the copy of 𝑣′
𝑖−1 in 𝐺 ( 𝑗 )

𝑖−1 to 𝑠 𝑗 , an edge from 𝑡 𝑗−1 to the
copy of 𝑣𝑖−1 in 𝐺 ( 𝑗 )

𝑖−1, an edge from 𝑡 𝑗 to the copy of 𝑤𝑖−1 in 𝐺 ( 𝑗 )
𝑖−1, and an edge

from the copy of 𝑤′
𝑖−1 in 𝐺 ( 𝑗 )

𝑖−1 to 𝑠 𝑗−1. We define 𝑣𝑖 := 𝑠0, 𝑣′
𝑖

:= 𝑡0, 𝑤𝑖 := 𝑠𝑙 ,
and 𝑤′

𝑖
:= 𝑡𝑙 .

Finally, the graph 𝐺′
𝑖

arises from 𝐺𝑖 by identifying the path 𝑃 (0)
𝑖

with the
path 𝑃 (𝑙)

𝑖
. See Figure 3.6.

Let 𝑛𝑖 denote the number of vertices of 𝐺𝑖 . We have 𝑛0 = 𝑙 + 2 and
𝑛𝑖 = (𝑙 +1)𝑙𝑖 + 𝑙𝑛𝑖−1 for 𝑖 ≥ 1. By induction, this yields 𝑛𝑖 = (𝑖+1)𝑙𝑖+1+ (𝑖+2)𝑙𝑖
for all 𝑖 ≥ 0. We conclude that 𝐺′

𝑖
has 𝑛𝑖 − 𝑙𝑖 = (𝑖 + 1) (𝑙𝑖+1 + 𝑙𝑖) vertices.

Suppose 𝐺𝑖 appears as a subgraph of an instance 𝐺′
𝑗

for some 𝑗 > 𝑖, and
consider a tour in 𝐺′

𝑗
, which can be viewed as a closed walk that visits all

vertices. Then the vertices of (this copy of) 𝐺𝑖 must be visited by a set of walks,

https://www.springer.com/journal/10107


This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

3.6 Lower Bound on the Integrality Ratio 61

𝑤𝑖 𝑤′
𝑖

𝑣𝑖𝑣′
𝑖

short

𝑤𝑖 𝑤′
𝑖

𝑣𝑖𝑣′
𝑖

𝑤𝑖 𝑤′
𝑖

𝑣𝑖𝑣′
𝑖

long

𝑤𝑖 𝑤′
𝑖

𝑣𝑖𝑣′
𝑖

Figure 3.5 Examples of short and long visits of a subgraph 𝐺𝑖 .

each starting in 𝑣𝑖 or 𝑤𝑖 and ending in 𝑣′
𝑖

or 𝑤′
𝑖
, such that each vertex is visited

by at least one of these walks. We call such a set of walks a visit of 𝐺𝑖 . We call
a visit short if it contains a walk from 𝑣𝑖 to 𝑤′

𝑖
or from 𝑤𝑖 to 𝑣′

𝑖
; otherwise, we

call it long. See Figure 3.5. We denote by 𝑆𝑖 the minimum number of edges in a
short visit of 𝐺𝑖 , and we denote by 𝐿𝑖 the minimum total number of edges in a
long visit of 𝐺𝑖 . We claim:

𝑆𝑖 ≥ (2𝑖 + 1)𝑙𝑖+1 + 𝑙𝑖 and 𝐿𝑖 ≥ (2𝑖 + 2)𝑙𝑖+1 for all 𝑖 ≥ 0. (3.7)

This is obvious for 𝑖 = 0. For 𝑖 ≥ 1, we distinguish between short and long
visits.

First, a short visit of 𝐺𝑖 visits all copies of 𝐺𝑖−1 and traverses each of the
blue wiggly paths 𝑃 ( 𝑗 )

𝑖
at least once. For each short visit of a copy of 𝐺𝑖−1,

we traverse one of these paths once more. Hence the total length is at least
(𝑙 + 1)𝑙𝑖 + 𝑙min{𝐿𝑖−1, 𝑆𝑖−1 + 𝑙𝑖}. By the induction hypothesis, this is at least
(2𝑖 + 1)𝑙𝑖+1 + 𝑙𝑖 .

A long visit of 𝐺𝑖 consists of walks from 𝑣𝑖 to 𝑣′
𝑖

and/or from 𝑤𝑖 to 𝑤′
𝑖
. The

turning point of such a walk (farthest away from start and end) is either a visit
of a copy of 𝐺𝑖−1 or a path 𝑃 ( 𝑗 )

𝑖
. Now our long visit of 𝐺𝑖 traverses all of the

blue wiggly paths 𝑃 ( 𝑗 )
𝑖

at least twice, except one at the turning point of a walk.
Moreover, for each short visit of a copy of 𝐺𝑖−1, except one at the turning point
of a walk, it traverses one of these paths once more. Hence, the total length is at
least (2𝑙 +1)𝑙𝑖 +𝑆𝑖−1 + (𝑙−1)min{𝐿𝑖−1, 𝑆𝑖−1 + 𝑙𝑖}. By the induction hypothesis,
this is at least (2𝑖 + 2)𝑙𝑖+1 + 𝑙𝑖−1.

Having proved (3.7), we can now bound from below the number of edges in a
tour in 𝐺′

𝑖
. We claim:

Every tour in 𝐺′𝑖 has at least (2𝑖 + 1)𝑙𝑖+1 edges. (3.8)
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Figure 3.6 The graph 𝐺′1 for 𝑙 = 6. An optimum LP solution has value 1 on the
blue edges and value 1

2 on all other edges, and hence we have LP = |𝑉 (𝐺′1 ) |.
This picture is taken from Köhne, Traub, and Vygen [2020] (with permission from
Springer Nature).

Let 𝑇 be a shortest tour in 𝐺′
𝑖
, which we again view as a closed walk. If 𝑇

traverses the blue paths of 𝐺′
𝑖
(cf. Figure 3.6) at least twice on average, then 𝑇

has at least 2𝑙 · 𝑙𝑖 + 𝑙 · 𝑆𝑖−1 > (2𝑖 + 1)𝑙𝑖+1 edges as claimed.
Otherwise, we say that the tour 𝑇 crosses a blue path 𝑃𝑖 if we enter and leave

via clockwise edges (cf. Figure 3.6) or if we enter and leave via anti-clockwise
edges. Now there is a blue path traversed only once. Either this path is crossed
(then call it 𝑃∗

𝑖
) or every other path is crossed exactly once in clockwise and

exactly once in anti-clockwise direction (at least once because the tour visits
all vertices, and at most once because we traverse the paths at most twice on
average); in the latter case, we choose an arbitrary one of these paths and call it
𝑃∗
𝑖
.
Without loss of generality, this 𝑃∗

𝑖
resulted from identifying the left blue path

𝑃
(0)
𝑖

and the right blue path 𝑃 (𝑙)
𝑖

in 𝐺𝑖 (cf. Figure 3.4). We map the tour 𝑇 to a
set of walks in 𝐺𝑖 in the natural way, mapping a traversal of 𝑃∗

𝑖
to the left or

right blue path according to which side we enter from.
If 𝑇 crosses 𝑃∗

𝑖
in both directions, we get an Eulerian edge set (the union of

the footprints of two closed walks); otherwise, we get (the footprint of) one

https://www.springer.com/journal/10107
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walk from 𝑣′
𝑖
to 𝑤′

𝑖
or from 𝑤′

𝑖
to 𝑣′

𝑖
. In the first case, we add another copy of the

left and another copy of the right blue path to obtain a long visit of 𝐺𝑖 . In the
second case, we add another copy of the left or the right blue path to obtain a
short visit of 𝐺𝑖 .

We conclude that any tour in 𝐺′
𝑖

has length at least min{𝑆𝑖 − 𝑙𝑖 , 𝐿𝑖 − 2𝑙𝑖},
which is at least (2𝑖 + 1)𝑙𝑖+1 by (3.7). This concludes the proof of (3.8).

Finally, we compute the ratio of an optimum tour to the LP value in the
digraph 𝐺′

𝑖
= (𝑉, 𝐸). The LP value is equal to the number of vertices: Putting

𝑥𝑒 = 1 for all edges of the blue paths (on all levels) and 𝑥𝑒 = 1
2 for all other

edges constitutes a feasible solution to (3.2), and the value of this solution is
𝑥(𝐸) = 1

2
∑
𝑣∈𝑉 𝑥(𝛿(𝑣)) = |𝑉 | = (𝑖+1) (𝑙𝑖+1+ 𝑙𝑖). This shows that the integrality

ratio is at least (2𝑖+1)𝑙𝑖+1
(𝑖+1) (𝑙𝑖+1+𝑙𝑖 ) =

(2𝑖+1)𝑙
(𝑖+1) (𝑙+1) . Since we can choose 𝑙 and 𝑖 arbitrarily

large, the integrality ratio is at least 2. □

Open Problem 3.19. Prove or disprove that the integrality ratio of the LP
relaxation (3.2) of the Asymmetric TSP is 2.

Exercises

3.1 Formulate and prove a statement analogous to Corollary 3.6 for the
Symmetric TSP with Triangle Inequality.

3.2 Let 𝐹 be the set of feasible solutions of (3.6) that satisfy
∑
𝐶∈C 𝜆𝐶 = 1.

Note that if 𝐹 is nonempty, it is a face of the polytope of feasible solutions.
For 𝜆 ∈ 𝐹, let 𝑥𝜆𝑒 :=

∑
𝐶∈C : 𝑒∈𝐶 𝜆𝐶 for 𝑒 ∈ 𝐸 . Show that {𝑥𝜆 : 𝜆 ∈ 𝐹} is

the convex hull of incidence vectors of directed Hamiltonian circuits in 𝐺.
3.3 Show that for any instance (𝑉, 𝑐) of the Asymmetric TSP with Triangle

Inequality, the value of the LP (3.6) does not change when we add the
constraints

∑
𝐶∈C :𝐶∩𝛿+ (𝑣)≠∅ 𝜆𝐶 = 1 for all 𝑣 ∈ 𝑉 .

3.4 Show that finding a minimum-cost perfect matching in a bipartite graph
𝐺 = (𝑉, 𝐸) with weights 𝑐 : 𝐸 → R≥0 can be reduced to a circulation
problem and thus solved in polynomial time via Theorem 3.11.
Note: This indicates that bipartite matching is easier than general matching.
Bipartite matching has many applications. For instance, we used bipartite
matching in the proof of Lemma 1.34.

3.5 An arborescence (rooted at 𝑟) is a digraph whose underlying undirected
graph is a tree and such that every vertex except 𝑟 has in-degree 1. Let
𝐺 = (𝑉, 𝐸) be a digraph with 𝑟 ∈ 𝑉 and edge weights 𝑐 : 𝐸 → R≥0.
Show that the minimum weight of an arborescence rooted at 𝑟 in 𝐺 equals
max{∑∅≠𝑈⊆𝑉\{𝑟 } 𝑦𝑈 :

∑
𝑈:𝑒∈ 𝛿− (𝑈) 𝑦𝑈 ≤ 𝑐(𝑒), 𝑦 ≥ 0}. Show that if 𝑐 is
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integral, there is an integral vector 𝑦 attaining the maximum.
Hint: Consider a counterexample (𝐺, 𝑟, 𝑐) with 𝑐 integral and 𝑐(𝐸)
minimum, and let𝑈 be the vertex set of a strongly connected component
of (𝑉, {𝑒 ∈ 𝐸 : 𝑐(𝑒) = 0}) that does not contain 𝑟 and for which 𝑐(𝑒) > 0
for all 𝑒 ∈ 𝛿− (𝑈).
Note: This proof can be turned into a polynomial-time algorithm.
(Edmonds [1967a], Bock [1971], Fulkerson [1974])

3.6 For a digraph 𝐺 = (𝑉, 𝐸) with nonnegative edge weights 𝑐 : 𝐸 → R≥0,
we ask for a minimum-weight strongly connected spanning subgraph.
Describe a 2-approximation algorithm for this problem.
Hint: An anti-arborescence results from an arborescence by reversing
every arc (so every vertex except 𝑟 has out-degree 1). Compute an
arborescence and an anti-arborescence (cf. Exercise 3.5).

3.7 For a digraph 𝐺 = (𝑉, 𝐸) with nonnegative edge weights 𝑐 : 𝐸 → R≥0,
consider the linear program

min
{
𝑐(𝑥) : 𝑥(𝛿− (𝑈)) ≥ 1 (∅ ≠ 𝑈 ⊊ 𝑉), 𝑥 ≥ 0

}
,

whose integral solutions are the incidence vectors of strongly connected
spanning subgraphs. Show that the integrality ratio of this family of LPs
is at most 2.
Hint: Use Exercise 3.5 to prove that the algorithm from Exercise 3.6
produces a solution that costs at most twice the LP value.
Note: No better upper bound is known. The integrality ratio is at least 3

2
(see Exercise 3.12).

3.8 A feasible potential in a digraph𝐺 = (𝑉, 𝐸) with edge weights 𝑐 : 𝐸 → R
is a function 𝜋 : 𝑉 → R such that 𝑐(𝑒) + 𝜋(𝑣) − 𝜋(𝑤) ≥ 0 for all
𝑒 = (𝑣, 𝑤) ∈ 𝐸 . Show that there exists a feasible potential if and only if 𝑐
is conservative (i.e., there is no circuit with negative total weight).
Hint: Add a vertex 𝑟 and edges (𝑟, 𝑣) for all 𝑣 ∈ 𝑉 , and let 𝜋(𝑣) be the
minimum weight of an 𝑟-𝑣-path.

3.9 Use Exercise 3.8 to give an alternative proof of Theorem 3.15: let 𝜌 > 1
be such that 𝜌𝑥∗ ∉ 𝑄 for a feasible solution 𝑥∗ of (3.2). Then there
exists a vector 𝑐 with 𝑐⊤ (𝜌𝑥∗) < min{𝑐⊤𝑞 : 𝑞 ∈ 𝑄}. Note that 𝑐 is
conservative because otherwise the right-hand side would be −∞. Let 𝜋
be a feasible potential (cf. Exercise 3.8) and 𝑐𝜋 (𝑒) := 𝑐(𝑒) + 𝜋(𝑣) − 𝜋(𝑤)
for 𝑒 = (𝑣, 𝑤) ∈ 𝐸 . Conclude that 𝜌(𝑐⊤𝜋𝑥∗) = 𝜌(𝑐⊤𝑥∗) < inf{𝑐⊤𝑞 : 𝑞 ∈
𝑄} = min{𝑐𝜋 (𝐹) : 𝐹 is a tour}.

3.10 Prove that the convex hull of incidence vectors of tours in a strongly
connected digraph is a polyhedron.
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3.11 Show that the digraphs 𝐺′
𝑖

constructed in the proof of Theorem 3.18 have
a tour of length at most twice the number of vertices.

3.12 Prove that the family of linear programs from Exercise 3.7 has integrality
ratio at least 3

2 .
Hint: Consider the graph 𝐺′

𝑖
from the proof of Theorem 3.18 but with

different edge weights: In each copy of 𝐺 𝑗 (for 0 ≤ 𝑗 ≤ 𝑖), the blue
wiggly paths in Figure 3.4 have weight 0, while the horizontal edges
in Figure 3.4 have weight 𝑙 𝑗 . Call a subset 𝐹 of edges of 𝐺 𝑗 a cover if(
𝑉 (𝐺𝑖), 𝐹 ∪ {(𝑤′𝑖 , 𝑣𝑖), (𝑣′𝑖 , 𝑤𝑖)}

)
is strongly connected, and call a cover

long if (𝑉 (𝐺𝑖), 𝐹) is strongly connected. Show by induction that a cover
has at least (3𝑖 + 1)𝑙𝑖+1 edges and a long cover has at least (3𝑖 + 2)𝑙𝑖+1
edges.
(Laekhanukit, Oveis Gharan, and Singh [2012])
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4

Duality, Cuts, and Uncrossing

While many exact and approximation algorithms work with a linear programming
formulation (often a relaxation), the dual LP often plays a key role in the
algorithms and their analysis. In this chapter, we analyze the structure of
optimum dual solutions for the classical LP relaxations of the TSP but also for
𝑇-joins, and we deduce properties like laminarity. We obtain optimum primal
and dual solutions with linear-size support. Since the primal constraints and
dual variables correspond to cuts, enumerating all cuts with a small value is a
useful tool in several algorithms.

4.1 LP Duality

For any LP
min{𝑐⊤𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0}, (4.1)

its dual is defined to be the LP

max{𝑏⊤𝑦 : 𝐴⊤𝑦 ≤ 𝑐, 𝑦 ≥ 0}. (4.2)

In this context, (4.1) is called the primal LP. Note that primal constraints
correspond to dual variables and vice versa. For any pair (𝑥, 𝑦) of primal and
dual feasible solutions, we have

𝑐⊤𝑥 ≥ (𝐴⊤𝑦)⊤𝑥 = 𝑦⊤𝐴𝑥 ≥ 𝑦⊤𝑏 = 𝑏⊤𝑦, (4.3)

which is called weak duality, and hence 𝑏⊤𝑦 provides a lower bound on the
primal LP value. The duality theorem of linear programming tells us that the
two LP values are equal:

Theorem 4.1 (von Neumann [1947], Gale, Kuhn, and Tucker [1951]). If (4.1)
and (4.2) have feasible solutions, then the two LP values are the same.

66
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Thus, a pair of feasible solutions 𝑥 and 𝑦 to (4.1) and (4.2) are optimum
solutions if and only if equality holds in both inequalities of (4.3); this property
is known as complementary slackness.

Corollary 4.2. Let 𝑥 and 𝑦 be feasible solutions to (4.1) and (4.2), respectively.
Then 𝑥 and 𝑦 are optimum solutions if and only if 𝑥⊤ (𝑐 − 𝐴⊤𝑦) = 0 and
𝑦⊤ (𝐴𝑥 − 𝑏) = 0.

Proof. This follows immediately from (4.3) and Theorem 4.1. □

For example, the dual of (2.12) is

max
∑︁
∅≠𝑈⊊𝑉

2 𝑦𝑈

subject to
∑︁

𝑈:𝑒∈ 𝛿 (𝑈)
𝑦𝑈 ≤ 𝑐(𝑒) (𝑒 ∈ 𝐸)

𝑦𝑈 ≥ 0 (∅ ≠ 𝑈 ⊊ 𝑉).

(4.4)

For optimum primal and dual solutions 𝑥 and 𝑦, respectively, complementary
slackness requires that

∑
𝑈:𝑒∈ 𝛿 (𝑈) 𝑦𝑈 = 𝑐(𝑒) whenever 𝑥𝑒 > 0, and 𝑥(𝛿(𝑈)) = 2

whenever 𝑦𝑈 > 0.
Some of our LPs have equality constraints. These can of course be described

by two inequalities and thus brought into the above form. It is however easier to
allow equations, then dual variables corresponding to equality constraints are
not restricted to be nonnegative. For example, the dual of (3.2) is

max
∑︁
∅≠𝑈⊊𝑉

2 𝑦𝑈

subject to 𝑎𝑤 − 𝑎𝑣 +
∑︁

𝑈:𝑒∈ 𝛿 (𝑈)
𝑦𝑈 ≤ 𝑐(𝑒) (𝑒 = (𝑣, 𝑤) ∈ 𝐸)

𝑦𝑈 ≥ 0 (∅ ≠ 𝑈 ⊊ 𝑉).

(4.5)

Here, the variables 𝑎𝑣 (𝑣 ∈ 𝑉) are not restricted to be nonnegative.
The dual LPs (4.4) and (4.5) have exponentially many variables. However,

there is always an optimum solution with a linear number of nonzero variables,
and such a solution can be found in polynomial time. We first show:

Proposition 4.3. Given an instance of Symmetric TSP or Asymmetric TSP, the
LP (4.4) or (4.5), respectively, can be solved in polynomial time.

Proof. We first solve the primal LP (2.12) or (3.2) by the ellipsoid method
(Theorem 2.10) using a separation oracle for the exponentially many cut
constraints (cf. Corollary 2.9). While doing so, we record the sets 𝑈 that the
separation oracle returned, producing a constraint 𝑥(𝛿(𝑈)) ≥ 2. We set all
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𝐴 𝐵

Figure 4.1 Two sets 𝐴, 𝐵 ⊊ 𝑉 such that 𝐴 \ 𝐵, 𝐵 \ 𝐴, 𝐴∩ 𝐵, and 𝑉 \ (𝐴∪ 𝐵)
are all nonempty. The black lines indicate the six relevant types of edges.

𝑦-variables of other sets to zero in the dual LP. Then the primal solution is
also optimal with respect to this subset of constraints, and hence, by strong
duality (Theorem 4.1), restricting the dual LP to these variables does not change
the optimum value. But now the restricted dual LP has a polynomial number
of variables and constraints, so we can solve it in polynomial time (using
Theorem 2.2). □

We will give an alternative proof at the end of Section 4.4.

4.2 Uncrossing

The goal of this section is to obtain a dual solution with a nice structure. The
following inequality is fundamental:

Proposition 4.4. For any undirected graph 𝐺 = (𝑉, 𝐸) and 𝑥 ∈ R𝐸≥0 and any
𝐴, 𝐵 ⊆ 𝑉 , we have

𝑥(𝛿(𝐴 ∩ 𝐵)) + 𝑥(𝛿(𝐴 ∪ 𝐵)) ≤ 𝑥(𝛿(𝐴)) + 𝑥(𝛿(𝐵)). (4.6)

Proof. Let first 𝑥 be a unit vector, so there is an edge 𝑒 ∈ 𝐸 with 𝑥𝑒 = 1 and
𝑥𝑒′ = 0 for all 𝑒′ ∈ 𝐸 \ {𝑒}. Then 𝑥(𝛿(𝐴 ∩ 𝐵)) + 𝑥(𝛿(𝐴 ∪ 𝐵)) = |{𝑒} ∩ 𝛿(𝐴 ∩
𝐵) | + |{𝑒} ∩ 𝛿(𝐴∪ 𝐵) | ≤ |{𝑒} ∩ 𝛿(𝐴) | + |{𝑒} ∩ 𝛿(𝐵) | = 𝑥(𝛿(𝐴)) + 𝑥(𝛿(𝐵)); the
six relevant cases are illustrated by Figure 4.1. Since every nonnegative vector
is a nonnegative combination of unit vectors, the assertion follows by taking a
weighted sum of these inequalities. □

We also get 𝑥(𝛿(𝐴 \ 𝐵)) + 𝑥(𝛿(𝐵 \ 𝐴)) ≤ 𝑥(𝛿(𝐴)) + 𝑥(𝛿(𝐵)) by applying
(4.6) to 𝐴 and 𝑉 \ 𝐵.

By complementary slackness, all variables 𝑦𝑈 in every optimum solution
to the dual LP (4.4) or (4.5) are zero unless 𝑥(𝛿(𝑈)) = 2 for every optimum
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primal solution 𝑥. Given a primal LP solution 𝑥, we call a cut 𝛿(𝑈) tight if
𝑥(𝛿(𝑈)) = 2. The following property is very useful:

Proposition 4.5. Let 𝑥 be a feasible solution to (2.12) or (3.2) and 𝐴, 𝐵 ⊊ 𝑉
two sets such that 𝐴 \ 𝐵, 𝐵 \ 𝐴, 𝐴 ∩ 𝐵, and 𝑉 \ (𝐴 ∪ 𝐵) are all nonempty. If
𝛿(𝐴) and 𝛿(𝐵) are tight cuts, then so are 𝛿(𝐴 ∪ 𝐵), 𝛿(𝐴 ∩ 𝐵), 𝛿(𝐴 \ 𝐵), and
𝛿(𝐵 \ 𝐴).

Proof. Using Proposition 4.4 and 𝑥(𝛿(𝑈)) ≥ 2 for all ∅ ≠ 𝑈 ⊊ 𝑉 , we have
2+2 ≤ 𝑥(𝛿(𝐴∩𝐵)) +𝑥(𝛿(𝐴∪𝐵)) ≤ 𝑥(𝛿(𝐴)) +𝑥(𝛿(𝐵)) = 2+2, which implies
that 𝛿(𝐴 ∪ 𝐵) and 𝛿(𝐴 ∩ 𝐵) are tight. To obtain that 𝛿(𝐴 \ 𝐵) and 𝛿(𝐵 \ 𝐴) are
tight, apply this to 𝐴 and 𝑉 \ 𝐵. □

To show that there is always an optimum dual solution with linear-size support,
we use an extremely useful technique in combinatorial optimization: uncrossing.

Definition 4.6 (cross-free, laminar). Let 𝑉 be a finite set and U a family of
subsets of𝑉 . Two sets 𝐴, 𝐵 ∈ U are crossing if the four sets 𝐴 \ 𝐵, 𝐵 \ 𝐴, 𝐴∩ 𝐵,
and 𝑉 \ (𝐴 ∪ 𝐵) are all nonempty. The familyU is called cross-free if no two
of its sets are crossing. The familyU is called laminar if for any two of its sets
that are not disjoint, one is the subset of the other.

The following is immediate from the definition:

Proposition 4.7. Let 𝑉 be a finite set andU a family of subsets of 𝑉 . IfU is
laminar, thenU ∪ {𝑉 \𝑈 : 𝑈 ∈ U} is cross-free. IfU is cross-free and 𝑣 ∈ 𝑉 ,
then {𝑈 ∈ U : 𝑣 ∉ 𝑈} ∪ {𝑉 \𝑈 : 𝑈 ∈ U, 𝑣 ∈ 𝑈} is laminar. □

Proposition 4.8. Let 𝑉 be a finite set and L a laminar family of subsets of 𝑉 .
Then |L| ≤ 2|𝑉 |. If ∅, 𝑉 ∉ L, then |L| ≤ 2|𝑉 | − 2.

Proof. Suppose L is a family of laminar subsets of 𝑉 and ∅, 𝑉 ∉ L; it suffices
to show |L| ≤ 2|𝑉 | −2. This is trivial for |𝑉 | = 1. Otherwise, let 𝐴 be a maximal
set in L. Then L consists of 𝐴, possibly 𝑉 \ 𝐴, a laminar family of nonempty
proper subsets of 𝐴, and a laminar family of nonempty proper subsets of 𝑉 \ 𝐴.
By induction, these families contain at most 2|𝐴| − 2 and 2|𝑉 \ 𝐴| − 2 sets,
respectively. We obtain |L| ≤ 2 + (2|𝐴| − 2) + (2|𝑉 \ 𝐴| − 2) = 2|𝑉 | − 2. □

By Proposition 4.7, this also shows that a cross-free family of subsets of 𝑉
has at most 4|𝑉 | − 4 elements. These bounds are tight (see Exercise 4.8).

Now we return to the dual LPs (4.4) and (4.5) and show that there is always
an optimum solution that has laminar support. Let 𝑦 be an arbitrary optimum
solution to (4.4), or let (𝑎, 𝑦) be an arbitrary optimum solution to (4.5). First,
we can choose an arbitrary vertex 𝑣 and eliminate the variables 𝑦𝑈 for all sets
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𝑈 that contain 𝑣, by adding 𝑦𝑈 to 𝑦𝑉\𝑈 for such sets. This does not change
anything since 𝛿(𝑈) = 𝛿(𝑉 \𝑈).

Next, we will apply uncrossing until the support of 𝑦 is laminar. This means
that we take two crossing sets 𝐴 and 𝐵, set 𝜀 := min{𝑦𝐴, 𝑦𝐵}, reduce 𝑦𝐴 and 𝑦𝐵
by 𝜀, and increase 𝑦𝐴∩𝐵 and 𝑦𝐴∪𝐵 by 𝜀. This keeps

∑
∅≠𝑈⊊𝑉 2𝑦𝑈 constant and

maintains dual feasibility. To see this for (4.5), note that for any edge 𝑒 = (𝑣, 𝑤) ∈
𝐸 , we have |{𝑒} ∩ 𝛿(𝐴 ∩ 𝐵) | + |{𝑒} ∩ 𝛿(𝐴 ∪ 𝐵) | ≤ |{𝑒} ∩ 𝛿(𝐴) | + |{𝑒} ∩ 𝛿(𝐵) |
(this is Proposition 4.4 applied to the unit vector corresponding to 𝑒), therefore
the left-hand side of the inequality 𝑎𝑤 − 𝑎𝑣 +

∑
𝑈:𝑒∈ 𝛿 (𝑈) 𝑦𝑈 ≤ 𝑐(𝑒) does not

increase. The analogous argument applies to (4.4).
By the same argument (applied to 𝐴 and 𝑉 \ 𝐵), we could also do uncrossing

by increasing 𝑦𝐴\𝐵 and 𝑦𝐵\𝐴 instead of 𝑦𝐴∩𝐵 and 𝑦𝐴∪𝐵.
However, it can always happen that the new sets cross other existing sets. It is

nontrivial to show that this procedure can be carried out so that it terminates
after a polynomial number of steps. We will show this in a slightly more general
context so that it can also be used for other LPs with a similar structure. To this
end, we define:

Definition 4.9 (uncrossable). Let 𝑉 be a finite set, 𝑣 ∈ 𝑉 , andU a family of
subsets of 𝑉 \ {𝑣}. We callU uncrossable if for all crossing sets 𝐴, 𝐵 ∈ U:

• 𝐴 ∩ 𝐵 ∈ U or 𝐴 \ 𝐵 ∈ U;
• if 𝐴 ∩ 𝐵 ∈ U, then 𝐴 ∪ 𝐵 ∈ U; and
• if 𝐴 \ 𝐵 ∈ U, then 𝐵 \ 𝐴 ∈ U.

In our applications, U will contain the nonempty subsets of 𝑉 \ {𝑣} that
correspond to dual variables (all these sets for (4.4) and (4.5)). Following
Hurkens et al. [1988], we can view the task of uncrossing (or tidying up) a set
family as a game:

Definition 4.10 (uncrossing game). The uncrossing game is played by two
players, Parent and Child, on an uncrossable familyU of subsets of 𝑉 and an
initial subfamily F ⊆ U.

In each round, Parent chooses two sets 𝐴, 𝐵 ∈ F . Moreover, Parent chooses
𝐶 = 𝐴 ∩ 𝐵 and 𝐷 = 𝐴 ∪ 𝐵 or 𝐶 = 𝐴 \ 𝐵 and 𝐷 = 𝐵 \ 𝐴, such that 𝐶, 𝐷 ∈ U.
Parent removes 𝐴 and 𝐵 from F and adds 𝐶 and 𝐷 to F (if they are not already
in F ). Then Child chooses one of 𝐴 and 𝐵 and puts it back into F .

The game ends (and Parent wins) as soon as the family F is laminar at the
end of some round.

Hurkens et al. [1988] noted that we need to be careful if we want Parent to win
this game. This is illustrated by the following example. Let 𝑉 = {0, 1, 2, 3, 4}
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andU = {𝑈 ⊆ 𝑉 : 0 ∈ 𝑈, 4 ∉ 𝑈}; consider the initial family

F =
{
{0}, {0, 1}, {0, 1, 3}, {0, 2, 3}, {0, 1, 2, 3}

}
.

If we uncross {0, 1, 3} and {0, 2, 3} first, we get the intersection {0, 3} (the
union was already there), and Child might put back {0, 2, 3}. Then we have the
family

F =
{
{0}, {0, 1}, {0, 3}, {0, 2, 3}, {0, 1, 2, 3}

}
.

If we next uncross {0, 1} and {0, 3}, we get the union {0, 1, 3} (the intersection
was already there), and Child might put back {0, 1}. We get

F =
{
{0}, {0, 1}, {0, 1, 3}, {0, 2, 3}, {0, 1, 2, 3}

}
,

which was exactly our starting point!
Karzanov [1996], generalizing the work by Hurkens et al. [1988], showed

that Parent can guarantee the game to end in polynomial time. Hirai [2016]
generalized this result further and improved the running time. The following is
a simplified version in a less general setting, which is sufficient for our purposes
and for which we obtain an even better running time:

Theorem 4.11. There is a strategy for Parent to make the uncrossing game end
after 4𝑛2𝑝 rounds, no matter how Child plays, where 𝑛 = |𝑉 | and 𝑝 is the initial
number of elements of F .

Proof. To perform their strategy, Parent maintains a coloring of all sets in F .
Initially, all sets are red. In the process, some sets will be colored blue and green.
The game will end once all sets are green. Throughout this process, we maintain
the following invariants:

• The green sets form a laminar family.
• The blue sets form a laminar family.
• For every blue set 𝐵, there is a subset 𝑆𝐵 such that for every green set 𝐴 that

crosses 𝐵, we have 𝐴 ∩ 𝐵 ∈ {𝑆𝐵, 𝐵 \ 𝑆𝐵}.

By Proposition 4.8, this means in particular that there are less than 2𝑛 blue and
less than 2𝑛 green sets at any time. Now, Parent plays according to the following
strategy:

(i) If there is no blue set but a red set, we color all green sets blue and color an
arbitrary red set green. Repeat this until there is a blue set.

(ii) Then take a maximal blue set 𝐵∗. Apply Algorithm 4.12 to 𝐵∗ (see Figure 4.2
for an illustration).
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Algorithm 4.12: Uncrossing Algorithm
(1) while 𝐵∗ ∈ F and 𝐵∗ crosses at least one green set do
(2) Let 𝑆∗ ∈ {𝑆𝐵∗ , 𝐵∗ \ 𝑆𝐵∗ } ∩ U.
(3) if there is a green set 𝐴∗ that crosses 𝐵∗ and 𝐴∗ ∩ 𝐵∗ = 𝐵∗ \ 𝑆∗, then
(4) take the minimal such set 𝐴∗ and uncross 𝐴∗ and 𝐵∗,

replacing one of them by 𝐵∗ \ 𝐴∗ and 𝐴∗ \ 𝐵∗,
(5) else
(6) take the maximal green set 𝐴∗ that crosses 𝐵∗ and uncross 𝐴∗

and 𝐵∗, replacing one of them by 𝐴∗ ∩ 𝐵∗ and 𝐴∗ ∪ 𝐵∗.
(7) If new sets arise, color them green.
(8) Finally, if 𝐵∗ is still in F , color 𝐵∗ green.

(a)

𝑆∗

𝐵∗
𝐴∗

(b)

𝑆∗

𝐵∗

𝐴∗

Figure 4.2 Illustration of the uncrossing procedure in the proof of Theorem 4.11.
Take a maximal blue set 𝐵∗. The gray subset 𝑆∗ belongs to U. For every green
set that crosses 𝐵∗, the intersection is either 𝑆∗ or 𝐵∗ \ 𝑆∗. (a): In Step (4) of
Algorithm 4.12, we take the minimal green set 𝐴∗ that crosses 𝐵∗ and with
𝐵∗ \ 𝐴∗ = 𝑆∗. We uncross 𝐴∗ and 𝐵∗ and obtain 𝐴∗ \ 𝐵∗ and 𝐵∗ \ 𝐴∗ (the filled
sets). (b): If there is no such green set, we take the maximal green set 𝐴∗ that
crosses 𝐵∗ in Step (6). We uncross 𝐴∗ and 𝐵∗ and obtain 𝐴∗ ∪ 𝐵∗ and 𝐴∗ ∩ 𝐵∗.
New sets will be colored green.

Step (2) of Algorithm 4.12 can be performed due to the third invariant and
sinceU is uncrossable. Step (4) is feasible (i.e., 𝐴∗ \ 𝐵∗, 𝐵∗ \ 𝐴∗ ∈ U), since
𝐵∗ \ 𝐴∗ = 𝑆∗ ∈ U and U is uncrossable. Similarly, Step (6) is feasible (i.e.,
𝐴∗ ∩ 𝐵∗, 𝐴∗ ∪ 𝐵∗ ∈ U) because 𝐴∗ ∩ 𝐵∗ = 𝑆∗ ∈ U.

It is obvious that one operation (i) or (ii) can be applied until all sets are green.
It is also obvious that operation (i) maintains the invariants. It remains to show
that operation (ii) maintains the invariants. Then, since every application of (ii)
consists of less than 2𝑛 uncrossing steps (at most one with each green set that
exists at the beginning of (ii)) and reduces the number of blue sets, after at most
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2𝑛 consecutive applications of (ii), and thus, in less than 4𝑛2 uncrossing steps,
we have no blue sets anymore. Then we will next apply (i), reducing the number
of red sets. Hence, the procedure terminates after less than 4𝑛2𝑝 uncrossing
steps.

Since no blue sets are added in (ii), the second invariant is obviously
maintained. Moreover, Step (8) obviously maintains the invariants. Consider a
pair of sets 𝐴∗ and 𝐵∗ that we uncross in (4) or (6), and let 𝑆∗ be the set chosen
in (2). We show that this uncrossing step (including (7)) maintains the first and
third invariant.

To show that the first invariant is maintained, let 𝐴 be a green set. If 𝐴 crosses
a new green set, it must cross 𝐴∗ or 𝐵∗. However, 𝐴 does not cross 𝐴∗ because
the green family was laminar. So 𝐴 crosses 𝐵∗, which by the third invariant
implies 𝐴 ∩ 𝐵∗ ∈ {𝑆∗, 𝐵∗ \ 𝑆∗}.

If 𝐴∩ 𝐵∗ = 𝐵∗ \ 𝑆∗, then 𝐴∗ was chosen in (4), and 𝐴 is disjoint from 𝐵∗ \ 𝐴∗
and a superset of 𝐴∗ (and hence also of 𝐴∗ \ 𝐵∗) by the minimal choice of 𝐴∗
in (4).

If 𝐴 ∩ 𝐵∗ = 𝑆∗ ≠ 𝐴, then there are two cases: If 𝐴∗ was chosen in (4), 𝐴 is
disjoint from 𝐴∗ (and hence also from 𝐴∗ \ 𝐵∗) and contains 𝐵∗ \ 𝐴∗; if 𝐴∗ was
chosen in (6), 𝐴 is a subset of 𝐴∗ (and hence also of 𝐴∗ ∪ 𝐵∗) and a superset of
𝐴∗ ∩ 𝐵∗. In all cases, we see that every new green set is disjoint from 𝐴 or a
subset or superset of 𝐴, so the first invariant is maintained.

We finally show that the third invariant is maintained. Let 𝐵 be a blue set.
Due to the maximal choice of 𝐵∗, 𝐵 is not a proper superset of 𝐵∗. So it is a
subset or it is disjoint.

First, assume that 𝐵 is a subset of 𝐵∗. Then 𝐴∗ \ 𝐵∗ and 𝐴∗ ∪ 𝐵∗ do not cross
𝐵, and (𝐵∗ \ 𝐴∗) ∩𝐵 = 𝐵 \ 𝐴∗ and (𝐴∗∩𝐵∗) ∩𝐵 = 𝐴∗∩𝐵, so the third invariant
is also preserved.

Finally, consider the case when 𝐵 is disjoint from 𝐵∗. Then 𝐵∗ \ 𝐴∗ and
𝐴∗ ∩ 𝐵∗ do not cross 𝐵, and (𝐴∗ \ 𝐵∗) ∩ 𝐵 = (𝐴∗ ∪ 𝐵∗) ∩ 𝐵 = 𝐴∗ ∩ 𝐵, so the
third invariant is also preserved. □

Our main application is to obtain dual solutions with laminar support:

Lemma 4.13. For every instance (𝐺, 𝑐) of the Asymmetric TSP, there exists
an optimum solution (𝑎, 𝑦) to (4.5) such that {𝑈 : 𝑦𝑈 > 0} is laminar. Such a
solution can be found in polynomial time.

Proof. We can first find any optimum dual solution (𝑎, 𝑦) in polynomial time
by Proposition 4.3. Choose an arbitrary 𝑣 ∈ 𝑉 , and for all 𝑈 ⊆ 𝑉 \ {𝑣}, set
𝑦𝑈 := 𝑦𝑈 + 𝑦𝑉\𝑈 and 𝑦𝑉\𝑈 := 0. Then we apply uncrossing: While the support
of 𝑦 contains crossing sets 𝐴 and 𝐵, we uncross 𝐴 and 𝐵 – that is, we set
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𝜀 := min{𝑦𝐴, 𝑦𝐵}, reduce 𝑦𝐴 and 𝑦𝐵 by 𝜀, and increase 𝑦𝐴∩𝐵 and 𝑦𝐴∪𝐵 by 𝜀.
This maintains dual feasibility by Proposition 4.4.

By Theorem 4.11 (applied to the uncrossable familyU = 2𝑉\{𝑣} \ ∅), these
uncrossing operations can be performed in an order so that, in polynomial time,
we end up with a laminar family. □

Essentially the same proof works for the Symmetric TSP:

Lemma 4.14. For every instance (𝐺, 𝑐) of the Symmetric TSP, there exists an
optimum solution 𝑦 to (4.4) such that {𝑈 : 𝑦𝑈 > 0} is laminar. Such a solution
can be found in polynomial time. □

We will give an alternative proof of these two results at the end of Section 4.4.
Let us mention another application of the uncrossing game. A similar linear

program to (4.4) is the dual of (2.9) (optimizing over the 𝑇-join polyhedron for
𝑇 ⊆ 𝑉 with |𝑇 | even):

max
∑︁

𝑈⊆𝑉 : |𝑈∩𝑇 | odd
𝑦𝑈

subject to
∑︁

𝑈⊆𝑉 : |𝑈∩𝑇 | odd,
𝑒∈ 𝛿 (𝑈)

𝑦𝑈 ≤ 𝑐(𝑒) (𝑒 ∈ 𝐸)

𝑦𝑈 ≥ 0 (𝑈 ⊆ 𝑉 : |𝑈 ∩ 𝑇 | odd).

(4.7)

Lemma 4.15. For every undirected graph 𝐺 = (𝑉, 𝐸), every 𝑇 ⊆ 𝑉 with |𝑇 |
even, and 𝑐 : 𝐸 → R≥0, there exists an optimum solution 𝑦 to (4.7) such that
{𝑈 : 𝑦𝑈 > 0} is laminar. Such a solution can be found in polynomial time.

Proof. As in the proof of Proposition 4.3, we first solve the primal LP (2.9).
By Theorem 2.19, the incidence vector of a minimum-cost 𝑇-join is an optimum
solution, and this can be found in 𝑂 (𝑛3) time by Theorem 1.29. Nevertheless,
we use the ellipsoid method (Theorem 2.10) for solving (2.9), which we can
do because the separation problem has a polynomial-time algorithm, again by
Theorem 2.10. We record the sets that the separation oracle returns, set all dual
variables corresponding to other sets to zero, and solve the restricted dual LP,
which now has only a polynomial number of variables and constraints. Let 𝑦 be
the optimum solution to (4.7) that we obtain.

Finally, we do uncrossing similarly to the proof of Lemma 4.13. Again, choose
an arbitrary vertex 𝑣 ∈ 𝑉 , and for all 𝑈 ⊆ 𝑉 \ {𝑣}, set 𝑦𝑈 := 𝑦𝑈 + 𝑦𝑉\𝑈 and
𝑦𝑉\𝑈 := 0 (note that | (𝑉 \𝑈) ∩𝑇 | is odd if and only if |𝑈 ∩𝑇 | is odd). Now the
support of 𝑦 is a subset of the familyU = {𝑈 ⊆ 𝑉 \ {𝑣} : |𝑈 ∩ 𝑇 | odd}. This
family is uncrossable, so whenever 𝐴 and 𝐵 cross, we can reduce 𝑦𝐴 and 𝑦𝐵 by
𝜀; if |𝐴∩ 𝐵∩𝑇 | is odd, increase 𝑦𝐴∩𝐵 and 𝑦𝐴∪𝐵 by 𝜀; and if |𝐴∩ 𝐵∩𝑇 | is even,
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increase 𝑦𝐴\𝐵 and 𝑦𝐵\𝐴 by 𝜀. By Theorem 4.11, these uncrossing operations can
be performed in an order so that, in polynomial time, we end up with laminar
support. □

The separation problem in the proof of Lemma 4.15 asks for a minimum-
capacity 𝑇-cut; this problem can be reduced to solving 𝑛 − 1 maximum flow
problems (Padberg and Rao [1982]). However, a laminar fractional 𝑇-cut
packing as guaranteed by Lemma 4.15 can also be computed directly by a
fast combinatorial algorithm (see, e.g., Edmonds and Johnson [1973] or Sebő
[1997]). Moreover, if 𝑐 is integral and 𝑐(𝐶) is even for every edge set 𝐶 of a
circuit in 𝐺, then 𝑦 can be chosen integral (cf. Exercise 4.10).

Uncrossing is also useful to describe the tight constraints of a vector in the
spanning tree polytope:

Lemma 4.16. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑥 a vector in the
spanning tree polytope (2.8). Then there is a laminar family L of subsets of 𝑉
such that

(i) 𝑥(𝐸 [𝐿]) = |𝐿 | − 1 for all 𝐿 ∈ L, and
(ii) for every ∅ ≠ 𝑈 ⊊ 𝑉 with 𝑥(𝐸 [𝑈]) = |𝑈 | − 1, the incidence vector 𝜒𝐸 [𝑈 ]

is a linear combination of 𝜒𝐸 [𝐿 ] for 𝐿 ∈ L and 𝜒{𝑒} for 𝑒 ∈ 𝐸 with 𝑥𝑒 = 0.

Proof. Let L be a maximal laminar family with (i). Suppose there is a set𝑈
violating (ii); choose𝑈 so that it crosses as few sets from L as possible. By the
maximality of L, the set𝑈 crosses some 𝐿 ∈ L. We have

𝜒𝐸 [𝑈∩𝐿 ] + 𝜒𝐸 [𝑈∪𝐿 ] = 𝜒𝐸 [𝑈 ] + 𝜒𝐸 [𝐿 ] + 𝜒𝛿 (𝑈\𝐿)∩𝛿 (𝐿\𝑈) (4.8)

and hence

( |𝑈 | − 1) + (|𝐿 | − 1) = ( |𝑈 ∩ 𝐿 | − 1) + (|𝑈 ∪ 𝐿 | − 1)
≥ 𝑥(𝐸 [𝑈 ∩ 𝐿]) + 𝑥(𝐸 [𝑈 ∩ 𝐿])
= 𝑥(𝐸 [𝑈]) + 𝑥(𝐸 [𝐿]) + 𝑥(𝛿(𝑈 \ 𝐿) ∩ 𝛿(𝐿 \𝑈))
≥ (|𝑈 | − 1) + (|𝐿 | − 1) + 0.

We have equality and conclude 𝑥(𝐸 [𝑈 ∩ 𝐿]) = |𝑈 ∩ 𝐿 | − 1 and 𝑥(𝐸 [𝑈 ∪ 𝐿]) =
|𝑈 ∪ 𝐿 | − 1 and 𝑥(𝛿(𝑈 \ 𝐿) ∩ 𝛿(𝐿 \𝑈)) = 0. If both𝑈 ∩ 𝐿 and𝑈 ∪ 𝐿 satisfy (ii),
then (4.8) and 𝑥(𝛿(𝑈 \ 𝐿) ∩ 𝛿(𝐿 \𝑈)) = 0 imply that also𝑈 satisfies (ii), which
is a contradiction. So, one of𝑈 ∩ 𝐿 and𝑈 ∪ 𝐿 violates (ii). Since each of these
two sets crosses fewer sets of L than𝑈, this contradicts the choice of𝑈. □
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4.3 Extreme Point Solutions

The set of feasible solutions of a linear program is a polyhedron. We will need
some basic polyhedral theory. First, consider the set of optimum solutions
to a linear program. Recall that the faces of a polyhedron 𝑃 are the sets
𝐹 = {𝑥 ∈ 𝑃 : 𝑐⊤𝑥 = 𝛾}, where 𝛾 = min{𝑐⊤𝑥 : 𝑥 ∈ 𝑃}, for all 𝑐 ∈ R𝑛 for which
the minimum is bounded.

Definition 4.17 (extreme point). Let 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} be a nonempty
polyhedron. If a face of 𝑃 contains only a single point 𝑥, then 𝑥 is called an
extreme point of 𝑃.

The extreme points of 𝑃 are sometimes also called the vertices of 𝑃.

Proposition 4.18. The faces of 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} are the polyhedra
𝐹 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏, 𝐴′𝑥 = 𝑏′} for those subsystems 𝐴′𝑥 ≤ 𝑏′ of 𝐴𝑥 ≤ 𝑏 for
which 𝐹 is nonempty.

Proof. If 𝐹 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏, 𝐴′𝑥 = 𝑏′} ≠ ∅ for a subsystem 𝐴′𝑥 ≤ 𝑏′ of
𝐴𝑥 ≤ 𝑏, let 𝑐 be the sum of the rows of 𝐴′ and 𝛾 the sum of the entries of 𝑏′.
Then 𝑐⊤𝑥 ≤ 𝛾 for all 𝑥 ∈ 𝑃 and 𝐹 = {𝑥 ∈ 𝑃 : 𝑐⊤𝑥 = 𝛾}, so 𝐹 is a face of 𝑃.

Conversely, let 𝐹 = {𝑥 ∈ 𝑃 : 𝑐⊤𝑥 = 𝛾} be a face of 𝑃, where 𝛾 = min{𝑐⊤𝑥 :
𝑥 ∈ 𝑃}. Let 𝐴′𝑥 ≤ 𝑏′ be the maximal subsystem of 𝐴𝑥 ≤ 𝑏 for which 𝐴′𝑥 = 𝑏′
for all 𝑥 ∈ 𝐹, and let 𝐴′′𝑥 ≤ 𝑏′′ consist of the remaining inequalities. Then
𝐹 ⊆ {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏, 𝐴′𝑥 = 𝑏′}. To show the other inclusion, let 𝑦 ∈ 𝑃
with 𝐴′𝑦 = 𝑏′. For each inequality of 𝐴′′𝑥 ≤ 𝑏′′, there is a vector 𝑥 ∈ 𝐹 that
satisfies it strictly, so the arithmetic mean 𝑥∗ of these vectors satisfies all these
inequalities strictly (and belongs to 𝐹). Hence, for small enough 𝜀 > 0, we have
𝑧 := 𝑥∗ + 𝜀(𝑥∗ − 𝑦) ∈ 𝑃. Then 𝑐⊤𝑧 ≥ 𝛾, implying 𝑐⊤𝑦 = 𝛾. □

This also implies that the faces of the faces of a polyhedron 𝑃 are faces of 𝑃.
Moreover, we note:

Proposition 4.19. Every face of an integral polyhedron is integral.

Proof. By definition, a polyhedron is integral if and only if every face contains
an integral vector. By Proposition 4.18, the faces of a face of a polyhedron 𝑃
are faces of 𝑃. □

Extreme points are described by linear equation systems arising from the
description of the polyhedron:

Proposition 4.20 (Hoffman and Kruskal [1956]). Let 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}
be a polyhedron and 𝑥∗ be an extreme point of 𝑃. Then there exists a subsystem
𝐴′𝑥 ≤ 𝑏′ of 𝐴𝑥 ≤ 𝑏 such that 𝑥∗ is the unique solution of 𝐴′𝑥∗ = 𝑏′.
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Proof. Let 𝐴′𝑥 ≤ 𝑏′ be a maximal subsystem of 𝐴𝑥 ≤ 𝑏 such that {𝑥∗} = {𝑥 ∈
𝑃 : 𝐴′𝑥 = 𝑏′} (cf. Proposition 4.18), so 𝑥∗ satisfies all other inequalities strictly.
Suppose there is a vector 𝑦 ≠ 𝑥∗ with 𝐴′𝑦 = 𝑏′. Then 𝑧 = 𝑥∗ + 𝜀(𝑦 − 𝑥∗) ∈ 𝑃
for small enough 𝜀 > 0. Since 𝐴′𝑧 = 𝑏′ and 𝑧 ≠ 𝑥∗, this is a contradiction. □

Most polyhedra that we study are nonempty subsets of the nonnegative
orthant. If we optimize a linear objective function over such a polyhedron and
the optimum is bounded, then it is attained at an extreme point. We call this
an optimum extreme point of the LP. When we solve a linear program with
nonnegativity constraints, we may assume that we get an optimum extreme
point:

Corollary 4.21. If a linear program min{𝑐⊤𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} has an optimum
solution, then it has an optimum extreme point. If, for a class of LPs in the
setting of Theorem 2.10, one can solve the optimization problem in polynomial
time, then one can find an optimum extreme point in polynomial time.

Proof. We first solve the given LP min{𝑐⊤𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} and let
𝛾 be the LP value. Then we solve min{𝑥1 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0, 𝑐⊤𝑥 = 𝛾},
where 𝑥1 is the first entry of 𝑥, and let 𝜉1 be this LP value. Then we solve
min{𝑥2 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0, 𝑐⊤𝑥 = 𝛾, 𝑥1 = 𝜉1} and so on. We always optimize
over a face of the original polyhedron, so we end up with an optimum extreme
point.

If we are in the setting of Theorem 2.10, we can solve all these LPs in
polynomial time: To solve the separation problem for min{𝑥𝑖 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥
0, 𝑐⊤𝑥 = 𝛾, 𝑥1 = 𝜉1, . . . , 𝑥𝑖−1 = 𝜉𝑖−1}, it suffices to solve the separation problem
for {𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} (by Theorem 2.10) and check the remaining constraints
directly.

The number of bits needed to encode the new right-hand side numbers
𝜉1, . . . , 𝜉𝑛−1 is polynomially bounded because the output of the above algorithm,
which coincides with 𝜉1, . . . , 𝜉𝑛−1 on the first 𝑛 − 1 components, is an extreme
point; by Proposition 4.20, it is a solution to a linear equation system with
polynomially bounded coefficients.

We cannot guarantee that 𝛾 is polynomially bounded, but instead of adding
the constraint 𝑐⊤𝑥 = 𝛾, we can first solve the dual LP as in the proof of
Proposition 4.3, let 𝑦 denote an optimum dual solution, and then add the
complementary slackness constraints – that is, instead of the constraint 𝑐⊤𝑥 = 𝛾
we add 𝑥𝑖 = 0 whenever 𝐴⊤

𝑖
𝑦 < 𝑐𝑖 and 𝐴 𝑗𝑥 = 𝑏 𝑗 whenever 𝑦 𝑗 > 0. Corollary 4.2

says that this is equivalent. □
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The dimension of a polyhedron 𝑃 is the minimum dimension of an affine
subspace containing 𝑃. The following is an algorithmic version of Carathéodory’s
theorem:

Theorem 4.22 (Carathéodory [1911], Grötschel, Lovász, and Schrĳver [1981]).
Consider a class of polytopes in the setting of Theorem 2.10, and let 𝑃 ⊆ R𝑑 be a
𝑘-dimensional polytope in this class (in particular, we can solve the optimization
problem over 𝑃 in polynomial time). Then, for any given 𝑦 ∈ 𝑃, we can find in
polynomial time extreme points 𝑥1, . . . , 𝑥𝑘+1 of 𝑃 and numbers 𝜆1, . . . , 𝜆𝑘+1 ≥ 0
such that 𝑦 =

∑𝑘+1
𝑖=1 𝜆𝑖𝑥𝑖 and

∑𝑘+1
𝑖=1 𝜆𝑖 = 1.

Proof. By induction on 𝑘 . First, find an arbitrary extreme point 𝑥𝑘+1 of 𝑃 via
Corollary 4.21. If 𝑦 = 𝑥𝑘+1, we set 𝜆𝑘+1 = 1, and we are done (in particular, this
is the case when 𝑘 = 0). Otherwise, by translating 𝑃 and 𝑦, we may assume
𝑥𝑘+1 = 0.

We use the equivalence of optimization and separation (Theorem 2.10) several
times. We first compute 𝜇′ = max{𝜇 : 𝜇𝑦 ∈ 𝑃} using the separation problem
for 𝑃. Set 𝑦′ = 𝜇′𝑦. Note that 𝜇′ ≥ 1. By the maximality of 𝜇′, there exists a
vector 𝑎 with 𝑎⊤𝑦′ = max{𝑎⊤𝑥 : 𝑥 ∈ 𝑃} = 1.

Now, let 𝑄 = {𝑧 ∈ R𝑛 : 𝑧⊤𝑥 ≤ 1 for all 𝑥 ∈ 𝑃}. Note that 𝑄 is a polyhedron
because it is given by the constraints 𝑧⊤𝑥 ≤ 1 for all extreme points 𝑥 of 𝑃.
Using the optimization problem for 𝑃, we can solve the separation problem for
𝑄 and hence the optimization problem for 𝑄. We solve the LP

max{𝑧⊤𝑦′ : 𝑧 ∈ 𝑄}. (4.9)

Let 𝑧 be an optimum solution to (4.9). We have 𝑧⊤𝑦′ ≤ 1 because 𝑧 ∈ 𝑄 and
𝑦′ ∈ 𝑃. Since 𝑎 is a feasible solution to (4.9), we have 𝑧⊤𝑦′ = 1.

Now let 𝐹 = {𝑥 ∈ 𝑃 : 𝑧⊤𝑥 = 1}. We have 𝑦′ ∈ 𝐹, and 𝐹 is a face of 𝑃.
Moreover, we can solve the separation problem for 𝐹 (using the separation
problem for 𝑃 and checking 𝑧⊤𝑥 = 1 directly). Since 𝑥𝑘+1 = 0 ∉ 𝐹, the
dimension of 𝐹 is smaller than the dimension of 𝑃. By the induction hypothesis,
we can write 𝑦 =

∑𝑘
𝑖=1 𝜆𝑖𝑥𝑖 and

∑𝑘
𝑖=1 𝜆𝑖 = 1 in polynomial time. We conclude

𝑦 = 1
𝜇′ 𝑦
′ = 1

𝜇′ 𝑦
′ + (1 − 1

𝜇′ )𝑥𝑘+1 =
∑𝑘
𝑖=1

𝜆𝑖
𝜇′ 𝑥𝑖 + (1 −

1
𝜇′ )𝑥𝑘+1.

Note that all induction steps apply to a face of the original polytope 𝑃,
which is described by linear inequalities with the same coefficients as 𝑃 by
Proposition 4.18, and hence Theorem 2.10 implies an overall polynomial running
time. □

Every extreme point solution to any of the LPs (2.2) and (2.12) has at most
2𝑛 − 3 nonzero variables (Cornuéjols, Fonlupt, and Naddef [1985]). In fact, the
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support graph is “everywhere sparse” – that is, the following stronger property
holds:

Theorem 4.23 (Goemans [2006]). Let 𝑥 be an extreme point solution to (2.2)
or (2.12). Let𝑊 ⊆ 𝑉 with |𝑊 | ≥ 2. Then the subgraph of the support graph of
𝑥 induced by𝑊 has at most 2|𝑊 | − 3 edges.

Proof. Let 𝑤 ∈ 𝑊 arbitrary and call a set 𝑈 with ∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑤} tight
if 𝑥(𝛿(𝑈)) = 2. Let 𝐹 = {𝑒 ∈ 𝐸 [𝑊] : 𝑥𝑒 > 0}. By Proposition 4.20, every
extreme point is the unique solution of a linear equation system 𝐴𝑥 = 𝑏, where
the columns of 𝐴 correspond to variables and the rows correspond to constraints
satisfied with equality. The restriction of 𝑥 to 𝐹, which we call 𝑥′, is the unique
solution of a system 𝐴′𝑥′ = 𝑏′ where the columns of 𝐴′ correspond to 𝐹 and
the rows of 𝐴′ are incidence vectors of 𝛿(𝑈) ∩ 𝐹 (henceforth denoted by 𝑟𝑈)
for tight sets 𝑈 (recall that the constraints 𝑥𝑒 ≤ 1 in (2.2) are redundant by
Proposition 2.1). Moreover, 𝐴′ has rank |𝐹 |.

We now apply a standard uncrossing argument. Let B be a maximal family
of tight sets such that B is laminar and the vectors 𝑟𝐵 (𝐵 ∈ B) are linearly
independent. If |B| < |𝐹 |, there is a tight set 𝐴 such that 𝑟𝐵 (𝐵 ∈ B ∪ {𝐴}) are
linearly independent. Choose 𝐴 such that it crosses as few members of B as
possible. We claim that it crosses none. To show this, suppose that 𝐴 crosses
some 𝐵 ∈ B. Then

2 + 2 + 0 ≤ 𝑥(𝛿(𝐴 ∩ 𝐵)) + 𝑥(𝛿(𝐴 ∪ 𝐵)) + 2𝑥(𝛿(𝐴 \ 𝐵) ∩ 𝛿(𝐵 \ 𝐴))
= 𝑥(𝛿(𝐴)) + 𝑥(𝛿(𝐵))
= 2 + 2,

so 𝐴 ∩ 𝐵 and 𝐴 ∪ 𝐵 are tight and 𝐹 ∩ 𝛿(𝐴 \ 𝐵) ∩ 𝛿(𝐵 \ 𝐴) = ∅. Hence

𝑟𝐴∩𝐵 + 𝑟𝐴∪𝐵 = 𝑟𝐴 + 𝑟𝐵

and therefore 𝑟𝐵 (𝐵 ∈ B ∪ {𝐴 ∩ 𝐵}) or 𝑟𝐵 (𝐵 ∈ B ∪ {𝐴 ∪ 𝐵}) are linearly
independent, but 𝐴 ∩ 𝐵 and 𝐴 ∪ 𝐵 cross fewer elements of B than 𝐴, a
contradiction. So |B| = |𝐹 |.

Let B′ := {𝐵 ∩𝑊 : 𝐵 ∈ B}; note that this is a laminar family of |B| distinct
nonempty subsets of𝑊 \ {𝑤}. Hence |B| = |B′ | ≤ 2|𝑊 | − 3. □

With the same technique, Goemans [2006] also obtained a similar result for
the asymmetric TSP:

Theorem 4.24 (Goemans [2006]). Let 𝑥 be an extreme point solution to (3.1)
or (3.2). Let𝑊 ⊆ 𝑉 with |𝑊 | ≥ 2. Then the subgraph of the support graph of 𝑥
induced by𝑊 has at most 3|𝑊 | − 4 edges.
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Proof. We proceed similarly as in the proof of Theorem 4.23. Let again 𝑤 ∈ 𝑊
arbitrary and call a set 𝑈 with ∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑤} tight if 𝑥(𝛿(𝑈)) = 2. Note
that the constraint 𝑦(𝛿− (𝑤)) = 𝑦(𝛿+ (𝑤)) is redundant. The restriction of 𝑥
to 𝐹 = {𝑒 ∈ 𝐸 [𝑊] : 𝑥𝑒 > 0}, which we call 𝑥′, is the unique solution of a
system 𝐴′𝑥′ = 𝑏′ where the columns of 𝐴′ correspond to 𝐹 and the rows of
𝐴′ are vectors 𝑟𝑈 for tight sets 𝑈 and vectors corresponding to constraints
𝑦(𝛿− (𝑣)) = 𝑦(𝛿+ (𝑣)) for some 𝑣 ∈ 𝑊 \ {𝑤}. Exactly as in the proof of
Theorem 4.23, the matrix 𝐴′ has at most 2|𝑊 | − 3 linearly independent rows of
the first kind. Moreover, it has at most |𝑊 | − 1 rows of the second kind. Hence,
|𝐹 | ≤ 3|𝑊 | − 4. □

In particular, any extreme point solution to the LP (3.1) or (3.2) has at most
3𝑛 − 4 nonzero variables.

The extreme points of (3.1) arise as the unique solutions to a linear equation
system with a 0-1-matrix, so by Cramer’s rule, each of their components can
be written as 𝑎

𝑏
for integers 𝑎 and 𝑏 ≤ (3𝑛−4)!

2 . The same holds for (2.2) and
(2.12), even with 𝑏 ≤ (2𝑛−3)!

2 . Boyd and Pulleyblank [1991] found a family of
instances with extreme points whose denominators grow linearly in 𝑛. Pritchard
[2010] found a family of instances where the denominators grow exponentially
in 𝑛 (more precisely, the 𝑛

2 -th Fibonacci number).

4.4 Near-Minimum Cuts

By complementary slackness (Corollary 4.2), in an optimum solution to the
dual LP (4.4) or (4.5), all variables are zero except for those corresponding
to tight constraints in an optimum solution to the primal LP ((2.12) or (3.2),
respectively). These can be viewed as minimum-weight cuts, where an edge
𝑒 = {𝑣, 𝑤} has weight 𝑥𝑒 (or 𝑥 (𝑣,𝑤) +𝑥 (𝑤,𝑣) for the Asymmetric TSP). For many
algorithms, the cuts of (approximately) minimum weight play an important role.

A minimum-weight cut in an undirected graph 𝐺 = (𝑉, 𝐸) with nonnegative
weights 𝑐 : 𝐸 → R≥0 can be found by 𝑛 − 1 maximum flow computations (cf.
Corollary 2.9). For a faster algorithm, see Exercise 4.15. However, we are often
interested in all minimum-weight cuts.

The number of minimum-weight cuts is at most
(𝑛
2
)
, and these cuts have a nice

structure (called cactus) as Dinits, Karzanov, and Lomonosov [1976] showed
(see Exercise 10.6). Karger and Stein [1996] gave a simple proof of this bound
and generalized it to cuts of near-minimum weight:

Theorem 4.25 (Karger and Stein [1996]). Let 𝐺 = (𝑉, 𝐸) be an undirected
graph, 𝑛 = |𝑉 |, and 𝑐 : 𝐸 → R≥0. Let 𝜆 := min{𝑐(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊ 𝑉} > 0
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and 𝛾 ≥ 1 be a half-integer. Then there are less than 𝑛2𝛾 cuts 𝛿(𝑈) with
𝑐(𝛿(𝑈)) ≤ 𝛾𝜆.

Proof. Consider the following random contraction algorithm: We randomly
choose an edge 𝑒, where 𝑒 is picked with probability proportional to 𝑐(𝑒),
contract 𝑒, and iterate this 𝑛 − 2𝛾 times. At the end, we have 2𝛾 vertices left and
output a random cut among the 22𝛾−1 − 1 possibilities, each with probability

1
22𝛾−1−1 .

Let ∅ ≠ 𝑈 ⊊ 𝑉 with 𝑐(𝛿(𝑈)) ≤ 𝛾𝜆. We claim that every such cut is output
of this algorithm with probability more than 𝑛−2𝛾 .

After 𝑘 iterations, the graph has 𝑛 − 𝑘 vertices, and the singleton cuts all have
value at least 𝜆, showing that the total weight of edges that still exist is at least
1
2 (𝑛 − 𝑘)𝜆. Hence, the probability that an edge of 𝛿(𝑈) is contracted is at most
2𝛾
𝑛−𝑘 . Therefore, the probability that we never contract an edge of 𝛿(𝑈) is at least

𝑛−2𝛾−1∏
𝑘=0

(
1 − 2𝛾

𝑛 − 𝑘

)
=

𝑛−2𝛾−1∏
𝑘=0

𝑛 − 𝑘 − 2𝛾
𝑛 − 𝑘 =

1( 𝑛
2𝛾

) ,
and hence the probability that we output 𝛿(𝑈) is at least 1

( 𝑛2𝛾) (22𝛾−1−1) > 𝑛
−2𝛾 . □

This bound is essentially tight for every integer 𝛾 ≥ 1 if 𝐺 is a circuit with
unit weights. For 𝛾 = 1, the proof of Theorem 4.25 yields the tight bound

(𝑛
2
)

on the number of minimum-weight cuts, as well as a randomized algorithm to
compute a minimum-weight cut. Nagamochi, Nichimura, and Ibaraki [1997]
showed that there are at most

(𝑛
2
)

cuts of weight less than 4
3 times the minimum

(see also Goemans and Ramakrishnan [1995]). Henzinger and Williamson
[1996] showed that there are 𝑂 (𝑛2) cuts 𝛿(𝑈) with 𝑥(𝛿(𝑈)) < 3 in any solution
𝑥 to the subtour LP. Karger [2000] generalized this by a different randomized
algorithm (see Theorem 4.27).

For Karger’s [2000] more general bound, we need the following LP relaxation
of the global minimum cut problem:

min
{
𝑐(𝑥) : 𝑥(𝑆) ≥ 1 (𝑆 ∈ S), 𝑥 ∈ R𝐸≥0

}
, (4.10)

where S denotes the set of edge sets of spanning trees in 𝐺. We first show that
the integrality ratio of this LP is at most 2 (and in fact exactly 2 because the
bound is tight for unit-weight circuits).

Lemma 4.26 (Tutte [1961], Nash-Williams [1961]). Let 𝐺 = (𝑉, 𝐸) be an
undirected graph, 𝑛 = |𝑉 |, and 𝑐 : 𝐸 → R≥0. Let 𝜆 := min{𝑐(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊
𝑉} be the minimum weight of a cut. Then 𝜆 is at most 2(𝑛−1)

𝑛
times the value of

the LP (4.10).
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Proof. First, we show that we may assume that there is an optimum LP solution
with 𝑥𝑒 > 0 for all 𝑒 ∈ 𝐸 . Indeed, if there is an edge 𝑒 with 𝑥𝑒 = 0, we contract
it and arrive at a smaller instance. In this instance, the minimum weight of a cut
cannot be smaller, and we now show that the LP value cannot be larger. This
follows from the fact that 𝑥 is still feasible in the smaller instance because, for
every spanning tree 𝑆 in the smaller instance, 𝑆 ∪ {𝑒} is a spanning tree in the
original instance and 𝑥(𝑆) = 𝑥(𝑆 ∪ {𝑒}) ≥ 1.

Now, assuming 𝑥𝑒 > 0 for all 𝑒 ∈ 𝐸 , let 𝑦 be an optimum solution to the
dual LP

max

{
𝑦(S) :

∑︁
𝑆∈S:𝑒∈𝑆

𝑦𝑆 ≤ 𝑐(𝑒) (𝑒 ∈ 𝐸), 𝑦 ≥ 0

}
. (4.11)

The singleton cuts have total weight 2𝑐(𝐸), so 𝜆 ≤ 2𝑐 (𝐸 )
𝑛

. On the other hand,
complementary slackness (Corollary 4.2) yields

𝑐(𝐸) =
∑︁
𝑒∈𝐸

∑︁
𝑆∈S:𝑒∈𝑆

𝑦𝑆 =
∑︁
𝑆∈S

𝑦𝑆 |𝑆 | = 𝑦(S)(𝑛 − 1).

Hence 𝜆 ≤ 2(𝑛−1)
𝑛

𝑦(S). □

Here is Karger’s [2000] more general bound:

Theorem 4.27 (Karger [2000]). Let 𝛾 ≥ 1 be a constant. Let 𝐺 = (𝑉, 𝐸) be an
undirected graph, 𝑛 = |𝑉 |, and 𝑐 : 𝐸 → R≥0. Let 𝜆 := min{𝑐(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊
𝑉} > 0. Then there are 𝑂 (𝑛⌊2𝛾⌋) cuts 𝛿(𝑈) in 𝐺 with 𝑐(𝛿(𝑈)) ≤ 𝛾𝜆.

Proof. Let 𝛿(𝑈) be a fixed cut with 𝑐(𝛿(𝑈)) ≤ 𝛾𝜆. Let again 𝑦 be an optimum
solution to (4.11). Then∑︁

𝑆∈S
𝑦𝑆 |𝑆 ∩ 𝛿(𝑈) | =

∑︁
𝑒∈ 𝛿 (𝑈)

∑︁
𝑆∈S: 𝑒∈𝑆

𝑦𝑆 ≤
∑︁

𝑒∈ 𝛿 (𝑈)
𝑐(𝑒) ≤ 𝛾𝜆 (4.12)

and 𝑦(S) > 𝜆
2 by Lemma 4.26. Combining these inequalities, we get

1
𝑦(S)

∑︁
𝑆∈S

𝑦𝑆 |𝑆 ∩ 𝛿(𝑈) | < 2𝛾. (4.13)

Call a tree 𝑆 ∈ S good (for 𝛿(𝑈)) if |𝑆 ∩ 𝛿(𝑈) | ≤ ⌊2𝛾⌋.
Let 𝑝 := 1

𝑦 (S)
∑
𝑆∈S: 𝑆 good 𝑦𝑆 be the probability that a random tree (where

the probability of picking 𝑆 is proportional to 𝑦𝑆) is good. Then
1

𝑦(S)
∑︁
𝑆∈S

𝑦𝑆 |𝑆 ∩ 𝛿(𝑈) | ≥ 𝑝 + (1 − 𝑝) (⌊2𝛾⌋ + 1),

which together with (4.13) yields

𝑝⌊2𝛾⌋ > ⌊2𝛾⌋ + 1 − 2𝛾,
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so 𝑝 is bounded from below by a positive constant (depending on 𝛾 only).
For a good tree 𝑆 ∈ S and 𝐹 = 𝑆 ∩ 𝛿(𝑈), we have |𝐹 | ≤ ⌊2𝛾⌋. From 𝑆 and

𝐹, we can recover 𝛿(𝑈) by contracting the edges 𝑆 \ 𝐹 in (𝑉, 𝑆), coloring the
vertices of the resulting tree red and blue so that the endpoints of each edge
have different colors, and letting 𝑈 contain the vertices of 𝐺 that result from
uncontracting the red vertices.

Hence, choosing a random spanning tree (where the probability of picking
𝑆 is proportional to 𝑦𝑆) and a random subset 𝐹 ⊆ 𝑆 with |𝐹 | ≤ ⌊2𝛾⌋ (with
uniform distribution) produces 𝛿(𝑈) with probability at least 𝑝𝑛−⌊2𝛾⌋ . Since
this holds for every cut 𝛿(𝑈) with 𝑐(𝛿(𝑈)) ≤ 𝛾𝜆, we conclude that there are at
most 1

𝑝
𝑛⌊2𝛾⌋ of those. □

See also Chekuri, Quanrud, and Xu [2020] for extensions of this idea. Both
algorithms underlying Theorems 4.25 and 4.27 are randomized. Nagamochi,
Nichimura, and Ibaraki [1997] showed how to enumerate all small cuts in
deterministic polynomial time:

Theorem 4.28 (Nagamochi, Nichimura, and Ibaraki [1997]). Let 𝛾 ≥ 1 be a
constant. Then there is a deterministic polynomial-time algorithm that, given an
undirected graph 𝐺 = (𝑉, 𝐸) and 𝑐 : 𝐸 → R≥0 with 𝜆 := min{𝑐(𝛿(𝑈)) : ∅ ≠
𝑈 ⊊ 𝑉} > 0, computes all sets ∅ ≠ 𝑈 ⊊ 𝑉 with 𝑐(𝛿(𝑈)) ≤ 𝛾𝜆.

Proof. Let 𝑉 = {𝑣1, . . . , 𝑣𝑛}. Without loss of generality, the graph is complete
(some edges 𝑒 may have 𝑐(𝑒) = 0).

Let 𝑐𝑛 := 𝑐, and for 𝑘 = 𝑛, 𝑛 − 1, . . . , 3, obtain 𝑐𝑘−1 from 𝑐𝑘 by applying
Theorem 2.32 (splitting off) to 𝑧 = 𝑣𝑘 so that 𝑐𝑘−1 (𝛿(𝑣𝑘)) = 0 and

𝑐𝑘−1 (𝛿(𝑈)) ≥ 𝜆 for all ∅ ≠ 𝑈 ⊊ {𝑣1, . . . , 𝑣𝑘−1}. (4.14)

Now define U𝑘 := {𝑈 ⊊ {𝑣1, . . . , 𝑣𝑘} : 𝑣1 ∈ 𝑈, 𝑐𝑘 (𝛿(𝑈)) ≤ 𝛾𝜆} for
𝑘 = 2, . . . , 𝑛. We want to compute U𝑛. We have U2 ⊆ {{𝑣1}}. To compute
U𝑘 fromU𝑘−1 (for 𝑘 = 3, . . . , 𝑛), observe that for every set𝑈 ⊊ {𝑣1, . . . , 𝑣𝑘}
with 𝑣1 ∈ 𝑈 and 𝑐𝑘 (𝛿(𝑈)) ≤ 𝛾𝜆, we have either 𝑈 = {𝑣1, . . . , 𝑣𝑘−1} or
𝑈 \ {𝑣𝑘} ∈ U𝑘−1 because 𝑐𝑘−1 (𝛿(𝑈 \ {𝑣𝑘})) ≤ 𝑐𝑘 (𝛿(𝑈)) ≤ 𝛾𝜆. So we can
computeU𝑘 fromU𝑘−1 in𝑂 ( |U𝑘−1 | ·𝑛2) time. By Theorem 4.27 and (4.14), we
have |U𝑘−1 | = 𝑂

(
(𝑘 − 1) ⌊2𝛾⌋

)
. Hence, the total running time is𝑂

(
𝑛3+⌊2𝛾⌋ ) . □

We remark that this result also follows from combining Theorem 4.25 with
the enumeration algorithm by Vazirani and Yannakakis [1992]. Another proof
was suggested by Beideman, Chandrasekaran, and Wang [2023].

Theorem 4.28 also yields an alternative proof of Lemma 4.13 (and analogously
of Lemma 4.14 and hence also of Proposition 4.3): After having solved the
primal LP (3.2), let 𝑥 be an optimum solution. Consider the complete undirected
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graph on 𝑉 and, for {𝑣, 𝑤} ∈
(𝑉

2
)
, let 𝑥′ ({𝑣, 𝑤}) := 𝑥 (𝑣,𝑤) + 𝑥 (𝑤,𝑣) . Enumerate

all sets ∅ ≠ 𝑆 ⊊ 𝑉 with 𝑥′ (𝛿(𝑆)) = 2; these are the minimum-weight cuts. By
complementary slackness (Corollary 4.2), dual variables that correspond to other
sets must be zero in every optimum dual solution. Therefore, restricting the dual
LP to the at most

(𝑛
2
)

subsets of 𝑉 \ {𝑤} (for some arbitrary vertex 𝑤) inducing
minimum cuts does not change the dual. Since this LP now has polynomially
many variables and constraints, we can solve it in polynomial time. To obtain a
solution with laminar support, we add a constraint

∑
∅≠𝑈⊊𝑉 2𝑦𝑈 = LP, where LP

again denotes the LP value, and minimize
∑
∅≠𝑈⊊𝑉 |𝑈 |𝑦𝑈 (using Theorem 2.2).

The resulting dual solution will be optimum and laminar because otherwise
uncrossing a pair of sets (reducing 𝑦𝐴 and 𝑦𝐵 and increasing 𝑦𝐴\𝐵 and 𝑦𝐵\𝐴;
note that these variables exist by Proposition 4.5) would decrease the objective
function value.

The same proof works for Lemma 4.14.

Exercises

4.1 Show that the dual of the dual LP is equivalent to the primal LP.
4.2 Describe the convex hull of incidence vectors of spanning arborescences

rooted at 𝑟 in a digraph 𝐺 = (𝑉, 𝐸) with 𝑟 ∈ 𝑉 .
Hint: Consider the dual of the LP in Exercise 3.5 and add a constraint that
the sum of all variables is |𝑉 | − 1.

4.3 Let (𝑉, 𝑐) be an instance of the Symmetric TSP with Triangle Inequal-
ity and 𝑣1 ∈ 𝑉 arbitrary. A 1-tree is a tree on 𝑉 \ {𝑣1} plus two edges
incident to 𝑣1 – that is, a graph 𝑇 with𝑉 (𝑇) = 𝑉 and |𝛿(𝑣1) | = 2 such that
𝑇 [𝑉 \ {𝑣1}] is a tree. Show that the value of the subtour LP (2.2) equals

max

{
min

{
𝑐(𝐸 (𝑇)) +

∑︁
𝑣∈𝑉
( |𝛿𝑇 (𝑣) | − 2)𝜆𝑣 : 𝑇 is a 1-tree

}
: 𝜆 ∈ R𝑉

}
.

Hint: Derive a polyhedral description of 1-trees from Theorem 2.16 and
apply LP duality (Theorem 4.1) twice: first to the inner minimization
problem and then to the maximization problem.
(Held and Karp [1970])

4.4 Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑐 : 𝐸 → R≥0. Let 𝜆 :=
min{𝑐(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊ 𝑉} and 𝜀 ≥ 0. Let 𝐴, 𝐵 ⊊ 𝑉 be crossing with
𝑐(𝛿(𝐴)) ≤ 𝜆+𝜀 and 𝑐(𝛿(𝐵)) ≤ 𝜆+𝜀. Show that then 𝑐(𝛿(𝐴∩𝐵)) ≤ 𝜆+2𝜀
and 𝑐(𝛿(𝐴 ∪ 𝐵)) ≤ 𝜆 + 2𝜀 and 𝑐(𝛿(𝐴 \ 𝐵) ∩ 𝛿(𝐵 \ 𝐴)) ≤ 2𝜀.
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4.5 Let 𝑉 be a finite set and 𝑓 : 2𝑉 → R. If

𝑓 (𝐴 ∩ 𝐵) + 𝑓 (𝐴 ∪ 𝐵) ≤ 𝑓 (𝐴) + 𝑓 (𝐵)

for all 𝐴, 𝐵 ⊆ 𝑉 , then 𝑓 is called submodular (and− 𝑓 is called supermodu-
lar). See (4.6) for an example. Let𝐺 = (𝑉, 𝐸) be a digraph, 𝑢 : 𝐸 → R≥0,
and 𝑓 (𝐴) = 𝑢(𝛿− (𝐴)) for 𝐴 ⊆ 𝑉 . Show that 𝑓 is submodular.

4.6 Show that the rank function 𝑟 : 2𝐸 → Z≥0 of a matroid (𝐸, F ) (cf.
Exercise 2.5) is submodular.

4.7 The submodular function minimization problem takes as input a finite set
𝑉 and has access to a submodular function 𝑓 : 2𝑉 → R via an oracle that
computes 𝑓 (𝐴) for any given 𝐴 ⊆ 𝑉 ; the task is to compute a set 𝐴 ⊆ 𝑉
with 𝑓 (𝐴) minimum. Show that computing a minimum-capacity 𝑠-𝑡-cut
(cf. Corollary 2.8) reduces to submodular function minimization.
Note: (Strongly) polynomial-time algorithms for submodular function
minimization have been designed by Grötschel, Lovász, and Schrĳver
[1988], Schrĳver [2000], and Iwata, Fleischer, and Fujishige [2001]. The
currently fastest algorithms are due to Lee, Sidford, and Wong [2015] and
Dadush, Végh, and Zambelli [2021].

4.8 Show that for every 𝑛 ∈ N with 𝑛 ≥ 2, there is a cross-free family of
subsets of {1, . . . , 𝑛} with 4𝑛 − 4 sets, and show that no cross-free family
contains more sets.

4.9 Prove that the LP in Exercise 3.5 (cf. Exercise 4.2) has an optimum
solution with laminar support and that one can compute such a solution
in polynomial time.

4.10 Let 𝐺 = (𝑉, 𝐸) be an undirected graph, 𝑇 ⊆ 𝑉 with |𝑇 | even, and
𝑐 : 𝐸 → Z≥0 such that 𝑐(𝐶) is even for every edge set 𝐶 of a circuit.
Show that then there exists an optimum solution 𝑦 to the 𝑇-cut packing
LP (4.7) such that 𝑦 is integral and {𝑈 : 𝑦𝑈 > 0} is laminar.
Hint: Review the proof of Theorem 2.19.

4.11 Let 𝑃 be a polyhedron and 𝑥 ∈ 𝑃. Show that 𝑥 is an extreme point of 𝑃 if
and only if there are no 𝑦, 𝑧 ∈ 𝑃 \ {𝑥} with 𝑥 = 1

2 (𝑦 + 𝑧).
4.12 Let 𝑥 be an extreme point of the subtour polytope (cf. (2.2), for 𝑛 cities).

Call a city 𝑣 ∈ 𝑉 fractional if 𝑥𝑒 < 1 for all 𝑒 ∈ 𝛿(𝑣). Suppose the support
graph 𝐺𝑥 of 𝑥 contains a set𝑈 of three fractional degree-3 vertices such
that 𝐺𝑥 [𝑈] is a circuit and 𝑥(𝛿(𝑈)) = 2 (such a set is called a triangle
configuration). Let 𝑥′ result from 𝑥 by contracting 𝑈. Show that 𝑥′ is
again an extreme point of the subtour polytope (for 𝑛 − 2 cities).
Hint: Use Exercise 4.11.
(Boyd and Pulleyblank [1991])
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4.13 Let 𝑥∗ be an extreme point of the subtour polytope (cf. (2.2)). Let
𝐺 = (𝑉, 𝐸) be the support graph of 𝑥∗.

(a) Assume there is no triangle configuration (cf. Exercise 4.12). Let 𝑉 𝑓3
denote the set of degree-3 vertices of 𝐺 that have no incident edge
𝑒 ∈ 𝛿𝐺 (𝑣) with 𝑥∗𝑒 = 1. Let B be a laminar family of tight sets such
that 𝑥∗ (restricted to 𝐸) is the unique element of {𝑥 ∈ R𝐸 : 𝑥(𝛿(𝑈)) =
2 for all𝑈 ∈ B} (cf. Theorem 4.23). Show that there is a family C

of ⌈ 1
2 |𝑉

𝑓

3 |⌉ nonempty proper subsets of 𝑉 such that B ∩ C = ∅ and
B ∪ C is laminar.
Hint: For each non-singleton set 𝐵 ∈ B, let �̂� denote the set of vertices
of 𝐵 that are not in any non-singleton set 𝐵′ ∈ B that is a proper subset
of 𝐵. If |�̂� | = |�̂� ∩ 𝑉 𝑓3 | = 1, add 𝐵 \ �̂� (which is not tight!) to C . If
|�̂� | > 1, add a maximal laminar family of non-singleton subsets of �̂�
to C (but do not add 𝐵 if �̂� = 𝐵).

(b) Show that if there is no triangle configuration, then |𝐸 | ≤ 2𝑛−2− 1
2 |𝑉

𝑓

3 |.
Hint: Use (a) and recall the proof of Theorem 4.23.

(c) Prove that there are two edges 𝑒 ∈ 𝐸 with 𝑥∗𝑒 = 1.
Hint: Use Exercise 4.12 and (b).

Note: By refining this proof, one can obtain three edges 𝑒 ∈ 𝐸 with 𝑥∗𝑒 = 1.
(Boyd and Pulleyblank [1991])

4.14 Let𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑐 : 𝐸 → R≥0. For 𝑖 = 1, . . . , 𝑛,
let 𝑣𝑖 be a vertex maximizing 𝑐(𝛿({𝑣1, . . . , 𝑣𝑖−1}) ∩ 𝛿(𝑣𝑖)). Prove that
then 𝛿(𝑣𝑛) is a minimum-weight cut separating 𝑣𝑛−1 and 𝑣𝑛.
Hint: Induction on 𝑛, use the induction hypothesis for𝐺−𝑣𝑛 and𝐺−𝑣𝑛−1
and Exercise 2.3.
(Stoer and Wagner [1997], Frank [1994])

4.15 Given an undirected graph 𝐺 = (𝑉, 𝐸) and weights 𝑐 : 𝐸 → R≥0, show
how to find a minimum-weight cut in𝑂 (𝑛3) time, exploiting Exercise 4.14.
(Nagamochi and Ibaraki [1992], Stoer and Wagner [1997])
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5

Thin Trees and Random Trees

After the 𝑂 (log 𝑛)-approximation algorithms for the Asymmetric TSP by
Frieze, Galbiati, and Maffioli [1982], Bläser [2008], Kaplan et al. [2005], and
Feige and Singh [2007] (cf. Section 1.5), the first algorithm to beat the cycle
cover algorithm by more than a constant factor was found in 2009 by Asadpour,
Goemans, Mądry, Oveis Gharan, and Saberi [2017]. Their approach is based on
finding a “thin” (oriented) spanning tree and then adding edges to obtain a tour.
A major open question is how thin trees are guaranteed to exist.

Asadpour et al. [2017] sampled a random spanning tree from the maximum
entropy distribution. To show how this works, we discuss interesting connections
between random spanning trees and electrical networks. Some results of this
chapter will be used again in Chapters 10 and 11 when we discuss the maximum
entropy sampling for the Symmetric TSP.

5.1 Completing Connected Digraphs to Tours

Asadpour, Goemans, Mądry, Oveis Gharan, and Saberi [2017] were the first to
obtain an 𝑜(log 𝑛)-approximation algorithm for the Asymmetric TSP, albeit
their algorithm is randomized.

There are two definitions of randomized approximation algorithms. For us,
a randomized 𝛼-approximation algorithm (for a minimization problem with
nonnegative cost function) is a polynomial-time algorithm that uses random
bits in addition to the input and always computes a feasible solution, such that
the expected cost of this solution is at most 𝛼 times the optimum. In a different
definition, rather than bounding the expected cost, one demands that with
probability at least 1

2 the algorithm produces a solution of cost at most 𝛼 times
the optimum. These two definitions are almost equivalent (see Exercise 5.1).

87
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A tour is connected and Eulerian, and it is quite natural to first compute a
connected subgraph and then add a minimum-cost multi-set of edges in order
to make the graph Eulerian. This idea (underlying Christofides’ algorithm)
works also in the directed case, but bounding the cost is more difficult. The
following was observed by Goemans et al. [2009] and Asadpour et al. [2017]
(see Figure 5.1 for an example).

Lemma 5.1. Let 𝐺 = (𝑉, 𝐸) be a digraph and 𝑐 : 𝐸 → R≥0. Let (𝑉, 𝑅) be a
connected spanning subgraph of 𝐺, and let 𝑥 ∈ R𝐸≥0. Then one can find a tour
𝐹 in 𝐺 in polynomial time such that 𝑐(𝐹) ≤ 𝑐(𝑅) + 𝛼𝑐(𝑥) for every 𝛼 > 0 with
|𝑅 ∩ 𝛿− (𝑈) | ≤ 𝛼𝑥(𝛿+ (𝑈)) for all𝑈 ⊆ 𝑉 .

Proof. Let 𝑙 (𝑒) := 1 for 𝑒 ∈ 𝑅 and 𝑙 (𝑒) := 0 for 𝑒 ∈ 𝐸 \ 𝑅. Any integral
circulation 𝑓 in (𝑉, 𝐸) with 𝑓 ≥ 𝑙 corresponds to a tour. We compute an
integral minimum-cost circulation 𝑓 ∗ ≥ 𝑙 (using Theorem 3.11) and note that
the resulting tour has cost 𝑐( 𝑓 ∗).

To prove that the cost of 𝑓 ∗ is at most 𝑐(𝑅) + 𝛼𝑐(𝑥), we show that there exists
a fractional circulation 𝑔 with 𝑔 ≥ 𝑙 and cost at most 𝑐(𝑅) + 𝛼𝑐(𝑥). This is
sufficient by Theorem 3.10.

To prove that such a circulation 𝑔 exists, we define upper bounds 𝑢(𝑒) :=
max{𝑙 (𝑒), 𝛼𝑥𝑒} for all 𝑒 ∈ 𝐸 and observe that a circulation 𝑔 with 𝑙 ≤ 𝑔 ≤ 𝑢
exists; then 𝑐( 𝑓 ∗) ≤ 𝑐(𝑔) ≤ ∑

𝑒∈𝐸 𝑐(𝑒)𝑢(𝑒) ≤ 𝑐(𝑅) + 𝛼𝑐(𝑥).
The existence of 𝑔 follows from Hoffman’s circulation theorem (Theorem 3.9):

We have 𝑙 ≤ 𝑢 and 𝑙 (𝛿− (𝑈)) = |𝑅 ∩ 𝛿− (𝑈) | ≤ 𝛼𝑥(𝛿+ (𝑈)) ≤ 𝑢(𝛿+ (𝑈)) for all
𝑈 ⊆ 𝑉 . □

However, a minimum-cost oriented spanning tree does often not give the best
overall result (see Exercise 5.3). A cheap and “thin” tree, containing not too many
edges in any cut, is better. It is useful to define thinness in an undirected setting:

Definition 5.2 (thin tree). Let 𝐺 = (𝑉, 𝐸) be an undirected graph, 𝛼 > 0,
and (𝑉, 𝑆) a spanning tree in 𝐺. Then (𝑉, 𝑆) is 𝛼-thin with respect to 𝐺 if
|𝑆 ∩ 𝛿(𝑈) | ≤ 𝛼 |𝛿(𝑈) | for all 𝑈 ⊆ 𝑉 . For 𝑧 ∈ R𝐸≥0, we say that (𝑉, 𝑆) is 𝛼-thin
with respect to 𝑧 if |𝑆 ∩ 𝛿(𝑈) | ≤ 𝛼𝑧(𝛿(𝑈)) for all𝑈 ⊆ 𝑉 .

The main ingredient of the randomized approximation algorithm of Asadpour
et al. [2017] is the following result:

Theorem 5.3 (Asadpour et al. [2017]). There is a randomized polynomial-time
algorithm that, given a feasible solution 𝑧 to the subtour LP (2.2) for any
𝑛 := |𝑉 | ≥ 3, computes a spanning tree (𝑉, 𝑆) such that each edge 𝑒 belongs
to 𝑆 with probability at most 𝑧𝑒, and (𝑉, 𝑆) is 𝛼-thin with respect to 𝑧 with
probability at least 9

10 , where 𝛼 = 3 ln 𝑛
ln ln 𝑛 .
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Figure 5.1 (a): A digraph 𝐺 = (𝑉, 𝐸 ) with a vector 𝑥 ∈ R𝐸≥0. The (weakly) con-
nected subgraph (𝑉, 𝑅) (shown in bold red) satisfies |𝑅∩ 𝛿− (𝑈) | ≤ 2𝑥 (𝛿+ (𝑈) )
for all𝑈 ⊆ 𝑉 . (b): Therefore, for any cost function 𝑐, it can be extended to a tour
in 𝐺 that costs at most 2𝑐 (𝑥 ) more than 𝑅 (see Lemma 5.1). If we ignore all
orientations in (a), the red tree (𝑉, 𝑅) is 2-thin with respect to the symmetrized
vector 𝑧 (resulting from 𝑥 as in Step (2) of Algorithm 5.4).

Assuming Theorem 5.3, the algorithm of Asadpour et al. [2017] and its analysis
can be described easily. Without loss of generality, 𝑛 ≥ 3. By Proposition 1.12,
we can work in the metric closure, so we assume that 𝑐 satisfies the triangle
inequality.

Algorithm 5.4: Thin Tree Completion
Input: an instance (𝑉, 𝑐) of the Asymmetric TSP with Triangle

Inequality
Output: a tour in the complete digraph on 𝑉

(1) Let 𝑥 be an optimum solution to the LP (3.1).
(2) Set 𝑧{𝑣,𝑤} := 𝑥 (𝑣,𝑤) + 𝑥 (𝑤,𝑣) for all {𝑣, 𝑤} ∈

(𝑉
2
)
.

(3) Apply Theorem 5.3 to 𝑧 to obtain a spanning tree (𝑉, 𝑆).
(4) Orient each edge of 𝑆 in the cheaper direction and apply Lemma 5.1 to the

result.
(5) Repeat Steps (3) and (4) 𝑛 times and output the best of the resulting tours.

Theorem 5.5 (Asadpour et al. [2017]). Algorithm 5.4 (thin tree completion)
is a randomized 𝑂 ( log 𝑛

log log 𝑛 )-approximation algorithm for the Asymmetric TSP
with Triangle Inequality.
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Proof. Observe that 𝑧 as constructed in Step (2) is a feasible solution to (2.2)
by Proposition 2.1. By Theorem 5.3, the expected cost of 𝑆 (with respect to
symmetrized cost 𝑐′ ({𝑣, 𝑤}) := min{𝑐(𝑣, 𝑤), 𝑐(𝑤, 𝑣)}) is at most 𝑐′ (𝑧). By
Markov’s inequality, 𝑐′ (𝑆) ≤ 2𝑐′ (𝑧) with probability at least 1

2 . Orienting
the edges of this tree (by replacing each {𝑣, 𝑤} ∈ 𝑆 by the cheaper one of
(𝑣, 𝑤) and (𝑤, 𝑣)) yields an arc set 𝑅. With probability 1

2 , this set 𝑅 satisfies
𝑐(𝑅) = 𝑐′ (𝑆) ≤ 2𝑐′ (𝑧) ≤ 2𝑐(𝑥), and with probability at least 9

10 , it satisfies

|𝑅 ∩ 𝛿− (𝑈) | ≤ |𝑆 ∩ 𝛿(𝑈) |
≤ 𝛼𝑧(𝛿(𝑈))
= 𝛼(𝑥(𝛿− (𝑈)) + 𝑥(𝛿+ (𝑈)))
= 2𝛼𝑥(𝛿+ (𝑈))

for all 𝑈 ⊆ 𝑉 , where 𝛼 = 3 ln 𝑛
ln ln 𝑛 . We apply Lemma 5.1 to 𝑅 and 𝑥. With

probability at least 4
10 , we obtain a tour of cost at most (2𝛼 + 2)𝑐(𝑥). Repeating

this process 𝑛 times increases the success probability to at least 1 − ( 6
10 )

𝑛.
Let 𝑝 ≤ ( 6

10 )
𝑛 be the probability of failure. In this case, we analyze the tour that

we obtain from the first spanning tree (𝑉, 𝑆1). In the event of failure, the expected
cost of 𝑆1 is at most 1

𝑝
𝑐(𝑥) because in Step (3) we sample a spanning tree with

expected cost at most 𝑐(𝑥). Every spanning tree, in particular (𝑉, 𝑆1), is 𝑛−1
2 -thin

with respect to 𝑧, and therefore |𝑆1 ∩ 𝛿(𝑈) | ≤ 𝑛−1
2 𝑥(𝛿(𝑈)) = (𝑛 − 1)𝑥(𝛿+ (𝑈))

for all 𝑈 ⊆ 𝑉 . By Lemma 5.1, the resulting tour cannot cost more than
1
𝑝
𝑐(𝑥) + (𝑛 − 1)𝑐(𝑥).
The expected cost of the final solution is at most

(1 − 𝑝) (2𝛼 + 2) · 𝑐(𝑥) + 𝑝
( 1
𝑝
+ 𝑛 − 1

)
· 𝑐(𝑥) ≤ (2𝛼 + 3 + 𝑛𝑝) · 𝑐(𝑥)

≤ (2𝛼 + 4) · 𝑐(𝑥). □

It remains to prove Theorem 5.3. This will take much of the rest of this
chapter.

5.2 Random Spanning Trees with Negative Correlation

Let us see how Asadpour et al. [2017] proved Theorem 5.3. First, if 𝑧 is a feasible
solution to (2.2), then 𝑛−1

𝑛
𝑧 is in the relative interior of the spanning tree polytope

of the support graph (𝑉, 𝐸) (cf. Corollary 2.17). So 𝑛−1
𝑛
𝑧 is a convex combination

of incidence vectors of spanning trees – that is, 𝑛−1
𝑛
𝑧𝑒 =

∑
𝑆∈S:𝑒∈𝑆 𝜇(𝑆) for all

𝑒 ∈ 𝐸 , whereS is the set of (edge sets of) spanning trees, 𝜇(𝑆) ≥ 0 for all 𝑆 ∈ S,
and

∑
𝑆∈S 𝜇(𝑆) = 1. One could obtain such an explicit convex combination in

polynomial time (cf. Theorem 4.22 or Theorem 15.4), but here we will only
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Figure 5.2 The function 𝑓 in Lemma 5.6.

sample from an implicitly given distribution. If we pick each tree 𝑆 ∈ S with
probability 𝜇(𝑆), the expected cost is 𝑛−1

𝑛

∑
𝑒∈𝐸 𝑐

′ (𝑒)𝑧𝑒, where 𝑐′ is again the
symmetrized cost function.

The difficulty is that such a random spanning tree will in general not be thin
enough. Therefore, Asadpour et al. [2017] chose the probability distribution
carefully. It turns out that it is sufficient to have negative correlation, which we
will show in Theorem 5.7. Let P[·] denote the probability of an event, and letE[·]
denote the expectation of a random variable. A set 𝑋1, . . . , 𝑋𝑘 of nonnegative real
random variables is called negatively correlated if E[∏𝑖∈𝐼 𝑋𝑖] ≤

∏
𝑖∈𝐼 E[𝑋𝑖]

for all 𝐼 ⊆ {1, . . . , 𝑘}. It is well-known that the sum of negatively correlated
random variables is unlikely to deviate much from the expectation:

Lemma 5.6 (Chernoff [1952], Panconesi and Srinivasan [1997]). Let 𝑋1, . . . , 𝑋𝑘
be random variables in [0, 1] that are negatively correlated. Let 𝑠 be the sum of
their expectations, and let 𝛼 ≥ 1. Then the probability that 𝑋1 + · · · + 𝑋𝑘 > 𝛼𝑠
is at most 𝑒−𝑠 𝑓 (𝛼) , where 𝑓 (𝛼) := 1 − 𝛼 + 𝛼 ln𝛼 (cf. Figure 5.2).

Proof. The assertion is trivial for 𝛼 = 1. For 𝛼 > 1, we compute

P[𝑋1 + · · · + 𝑋𝑘 > 𝛼𝑠]

= P

[∏𝑘
𝑖=1 𝛼

𝑋𝑖

𝛼𝛼𝑠
> 1

]
≤ P

[∏𝑘
𝑖=1 (1 + (𝛼 − 1)𝑋𝑖)

𝛼𝛼𝑠
> 1

]
(𝛼𝑥 ≤ 1+ (𝛼− 1)𝑥

for 0 ≤ 𝑥 ≤ 1)

≤ E
[∏𝑘

𝑖=1 (1 + (𝛼 − 1)𝑋𝑖)
𝛼𝛼𝑠

]
(Markov’s inequality)
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= E


1
𝛼𝛼𝑠

∑︁
𝐼⊆{1,...,𝑘}

(𝛼 − 1) |𝐼 |
∏
𝑖∈𝐼

𝑋𝑖


=

1
𝛼𝛼𝑠

∑︁
𝐼⊆{1,...,𝑘}

(𝛼 − 1) |𝐼 |E
[∏
𝑖∈𝐼

𝑋𝑖

]
(linearity of expectation)

≤ 1
𝛼𝛼𝑠

∑︁
𝐼⊆{1,...,𝑘}

(𝛼 − 1) |𝐼 |
∏
𝑖∈𝐼
E [𝑋𝑖] (negative correlation)

=

∏𝑘
𝑖=1 (1 + (𝛼 − 1)E[𝑋𝑖])

𝛼𝛼𝑠

≤
∏𝑘
𝑖=1 𝑒

(𝛼−1)E[𝑋𝑖 ]

𝛼𝛼𝑠
(1 + 𝑥 ≤ 𝑒𝑥 for 𝑥 ∈ R)

=
𝑒 (𝛼−1)𝑠

𝛼𝛼𝑠

= 𝑒−𝑠 𝑓 (𝛼) . □

For a probability distribution over the spanning trees of a graph 𝐺 = (𝑉, 𝐸)
and 𝑒 ∈ 𝐸 , let 𝑞𝑒 be the probability that the random spanning tree contains 𝑒.
Then the values (𝑞𝑒)𝑒∈𝐸 are called the marginals of that probability distribution.
Now, we can prove:

Theorem 5.7 (Asadpour et al. [2017]). Let 𝐺 = (𝑉, 𝐸) be an undirected graph
with 𝑛 = |𝑉 | ≥ 3 vertices, and let 𝑧 be a feasible solution to the LP (2.2). Let
(𝑉, 𝑆) be a spanning tree of 𝐺 sampled according to a probability distribution
with marginals at most 𝑧𝑒 (𝑒 ∈ 𝐸) such that the 0-1 random variables |{𝑒} ∩ 𝑆 |
(for 𝑒 ∈ 𝐸) are negatively correlated. Then (𝑉, 𝑆) is 3 ln 𝑛

ln ln 𝑛 -thin with respect to 𝑧
with probability at least 9

10 .

Proof. Applying Lemma 5.6 to 𝛼 = 3 ln 𝑛
ln ln 𝑛 yields

𝑓 (𝛼) = 1 + 3 ln 𝑛
ln ln 𝑛

(
ln ln 𝑛 + ln 3 − ln ln ln 𝑛 − 1

)
> 1 + 2 ln 𝑛

for all 𝑛 ≥ 3.
Now, thinness is implied by the fact that there are only few small cuts (see

Theorem 4.25). The union bound yields that the probability that a random tree
is not 𝛼-thin is at most

∑∞
𝑘=3 𝑛

𝑘𝑒−(𝑘−1) 𝑓 (𝛼) , where the 𝑘-th summand takes
care of the cuts 𝛿(𝑈) with 𝑘 − 1 ≤ 𝑧(𝛿(𝑈)) < 𝑘 . Using 𝑓 (𝛼) > 1 + 2 ln 𝑛 for
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𝛼 = 3 ln 𝑛
ln ln 𝑛 , the tree is 𝛼-thin with probability at least

1 −
∞∑︁
𝑘=3

𝑛𝑘𝑒−(𝑘−1) (1+2 ln 𝑛) = 1 −
∞∑︁
𝑘=3

𝑒−(𝑘−1)𝑛2−𝑘

≥ 1 − 𝑒−2
∞∑︁
𝑘=3

𝑛2−𝑘

= 1 − 𝑒−2

𝑛−1

> 9
10 . □

Now the proof of Theorem 5.3 reduces to sampling a random spanning tree 𝑆
according to a probability distribution with marginals at most 𝑧𝑒 (𝑒 ∈ 𝐸) such
that the 0-1 random variables |{𝑒} ∩ 𝑆 | (for 𝑒 ∈ 𝐸) are negatively correlated.
This is the subject of the next two sections.

5.3 Electrical Networks

Still following Asadpour et al. [2017], we will exploit a nice connection of
random spanning trees to electrical networks, discovered by Kirchhoff [1847].

Given a connected undirected graph 𝐺 = (𝑉, 𝐸), positive edge weights
𝜆𝑒 (𝑒 ∈ 𝐸), and two distinct vertices 𝑠, 𝑡 ∈ 𝑉 , we interpret every edge 𝑒 as
a wire with resistance 1

𝜆𝑒
and send one unit of electrical flow from 𝑠 to 𝑡.

We call (𝐺, 𝜆, 𝑠, 𝑡) an electrical network. It is convenient to fix an arbitrary
orientation 𝐺→ = (𝑉, 𝐸→) of 𝐺 and interpret a negative flow along an edge
(𝑣, 𝑤) ∈ 𝐸→ as a flow in the reverse direction (from 𝑤 to 𝑣). Then 𝑓 ∈ R𝐸→

is an 𝑠-𝑡-flow of value 1 if 𝑓 (𝛿+ (𝑣)) − 𝑓 (𝛿− (𝑣)) is 0 for all 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} and
is 1 for 𝑣 = 𝑠 and −1 for 𝑣 = 𝑡. Note that we now allow negative flow along an
oriented edge. Sometimes, we consider 𝐸↔ (with edges oriented both ways)
and write 𝑓𝑒← := − 𝑓𝑒 for every edge 𝑒 ∈ 𝐸→ and its reverse edge 𝑒←. We write
𝐺↔ := (𝑉, 𝐸↔) and 𝜆 (𝑣,𝑤) := 𝜆{𝑣,𝑤} for (𝑣, 𝑤) ∈ 𝐸↔.

Definition 5.8 (electrical flow). Let 𝐺 = (𝑉, 𝐸) be a connected undirected
graph with an orientation 𝐸→, 𝜆 ∈ R𝐸

>0, and 𝑠, 𝑡 ∈ 𝑉 . The electrical 𝑠-𝑡-flow
of value 1 in (𝐺, 𝜆), or simply the electrical flow, is the 𝑠-𝑡-flow 𝑓 ∈ R𝐸→ of
value 1 that minimizes the energy

E( 𝑓 ) :=
∑︁
𝑒∈𝐸→

( 𝑓𝑒)2
𝜆𝑒

. (5.1)

Since E is a strictly convex function and the set of 𝑠-𝑡-flows of value 1 is
convex, the electrical flow is indeed unique. Note that it is irrelevant how we
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Figure 5.3 A small electrical network (with 𝜆𝑒 shown in black below every edge 𝑒).
The electrical 𝑠-𝑡-flow of value 1 is shown in red above the edges, flowing from
left to right. A corresponding potential 𝜋 is shown in blue below.

oriented the edges of 𝐺. Here are two alternative definitions (cf. Figure 5.3 for a
small example):

Theorem 5.9. Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph, 𝜆𝑒 > 0 for
𝑒 ∈ 𝐸 , and 𝑠, 𝑡 ∈ 𝑉 . Let 𝑓 ∈ R𝐸→ be an 𝑠-𝑡-flow of value 1. Then the following
statements are equivalent:

(i) 𝑓 is the electrical flow.
(ii) There is a potential 𝜋 ∈ R𝑉 such that 𝑓𝑒 = 𝜆𝑒 (𝜋𝑣 − 𝜋𝑤) for every edge

𝑒 = (𝑣, 𝑤) ∈ 𝐸→ (Ohm’s law).
(iii)

∑
𝑒∈𝐶

𝑓𝑒
𝜆𝑒

= 0 for every directed circuit 𝐶 in 𝐺↔, where 𝑓𝑒← := − 𝑓𝑒 for
every edge 𝑒 ∈ 𝐸→ (Kirchhoff’s potential law).

Proof. (i)⇒(iii): Let 𝑓 be the electrical flow, and suppose
∑
𝑒∈𝐶

𝑓𝑒
𝜆𝑒

≠ 0 for

some directed circuit𝐶. Then let 𝜀 :=
(∑

𝑒∈𝐶
𝑓𝑒
𝜆𝑒

)
/
(∑

𝑒∈𝐶
1
𝜆𝑒

)
, and let 𝑔 ∈ R𝐸→

be defined by 𝑔𝑒 = 𝑓𝑒 − 𝜀 for 𝑒 ∈ 𝐶 and 𝑔𝑒 = 𝑓𝑒 elsewhere. Then 𝑔 is an 𝑠-𝑡-flow
of value 1 and

E(𝑔) − E( 𝑓 ) =
∑︁
𝑒∈𝐸→

1
𝜆𝑒

(
(𝑔𝑒)2 − ( 𝑓𝑒)2

)
=

∑︁
𝑒∈𝐶

(
𝜀2

𝜆𝑒
− 2𝜀 𝑓𝑒

𝜆𝑒

)
= −𝜀

∑︁
𝑒∈𝐶

𝑓𝑒
𝜆𝑒

< 0,

contradicting the assumption that 𝑓 is the electrical flow.
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(iii)⇒(ii): Let (𝑉, 𝑆) be any anti-arborescence in 𝐺↔ rooted at 𝑡. Let 𝜋𝑣
be the distance from 𝑣 to 𝑡 in (𝑉, 𝑆) with respect to the edge weights 𝑓𝑒

𝜆𝑒

(for 𝑒 ∈ 𝑆). Then for all 𝑒 = (𝑣, 𝑤) ∈ 𝑆, we have 𝜋𝑣 − 𝜋𝑤 =
𝑓𝑒
𝜆𝑒

. Now let
𝑒 = (𝑣, 𝑤) ∈ 𝐸→ \ 𝑆. Then 𝜋𝑣 − 𝜋𝑤 = dist(𝑆, 𝑓 /𝜆) (𝑣, 𝑡) − dist(𝑆, 𝑓 /𝜆) (𝑤, 𝑡) = 𝑓𝑒

𝜆𝑒
,

where the last equation follows from (iii) applied to the unique directed circuit
in 𝑆↔ ∪ {𝑒} that contains 𝑒. Hence, this potential function 𝜋 satisfies (ii) (and is
independent of the choice of 𝑆).

(ii)⇒(i): Let 𝜋 be a potential as in (ii). For any 𝑠-𝑡-flow 𝑔 of value 1 with
𝑔 ≠ 𝑓 , we have

E(𝑔) − E( 𝑓 )

=
∑︁
𝑒∈𝐸→

1
𝜆𝑒

(
(𝑔𝑒)2 − ( 𝑓𝑒)2

)
=

∑︁
𝑒∈𝐸→

1
𝜆𝑒
(𝑔𝑒 − 𝑓𝑒)2 +

∑︁
𝑒∈𝐸→

2
𝜆𝑒
𝑓𝑒 (𝑔𝑒 − 𝑓𝑒)

=
∑︁
𝑒∈𝐸→

1
𝜆𝑒
(𝑔𝑒 − 𝑓𝑒)2 +

∑︁
𝑒=(𝑣,𝑤) ∈𝐸→

2(𝜋𝑣 − 𝜋𝑤) (𝑔𝑒 − 𝑓𝑒)

=
∑︁
𝑒∈𝐸→

1
𝜆𝑒
(𝑔𝑒 − 𝑓𝑒)2

+
∑︁
𝑣∈𝑉

2𝜋𝑣
( (
𝑔(𝛿+ (𝑣)) − 𝑔(𝛿− (𝑣))

)
−

(
𝑓 (𝛿+ (𝑣)) − 𝑓 (𝛿− (𝑣))

) )
=

∑︁
𝑒∈𝐸→

1
𝜆𝑒
(𝑔𝑒 − 𝑓𝑒)2

> 0,

where we used in the last equation that both 𝑓 and 𝑔 are 𝑠-𝑡-flows of value 1. □

The electrical flow can be computed easily by linear algebra, using the
Laplacian matrix:

Definition 5.10 (Laplacian). Given an undirected graph 𝐺 = (𝑉, 𝐸) and 𝜆𝑒 > 0
for 𝑒 ∈ 𝐸 , the weighted Laplacian of (𝐺, 𝜆) is the matrix 𝐿 = 𝐴 diag(𝜆)𝐴⊤
where diag(𝜆) is the diagonal matrix with entries 𝜆𝑒 (𝑒 ∈ 𝐸) and 𝐴 is the
vertex-edge incidence matrix of any orientation of 𝐺 – that is, the matrix whose
column with index 𝑒 = {𝑣, 𝑤} ∈ 𝐸 has entries 𝑎𝑣,𝑒 = 1 and 𝑎𝑤,𝑒 = −1 if 𝑒 is
oriented from 𝑣 to 𝑤, and 𝑎𝑢,𝑒 = 0 for all 𝑢 ∈ 𝑉 \ {𝑣, 𝑤}.

Note that this is well-defined: The matrix 𝐿 is independent of the orientation
of 𝐺. The weighted Laplacian is always symmetric and positive semi-definite:
For every 𝜋 ∈ R𝑉 , we have 𝜋⊤𝐿𝜋 =

∑
𝑒={𝑣,𝑤}∈𝐸 𝜆𝑒 (𝜋𝑣 − 𝜋𝑤)2 ≥ 0. Now we

can compute the electrical flow as follows:
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Corollary 5.11. Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph, 𝜆𝑒 > 0 for
𝑒 ∈ 𝐸 , and 𝑠, 𝑡 ∈ 𝑉 . Consider the linear equation system 𝐿𝜋 = 𝑏, where 𝐿 is the
weighted Laplacian of (𝐺, 𝜆) and 𝑏 = 𝜒{𝑠} − 𝜒{𝑡 } is the vector 𝑏 ∈ {−1, 0, 1}𝑉
with 𝑏𝑠 = 1, 𝑏𝑡 = −1, and 𝑏𝑣 = 0 for 𝑣 ∈ 𝑉 \ {𝑠, 𝑡}. Then 𝐿𝜋 = 𝑏 has a
solution, and for every solution 𝜋 ∈ R𝑉 , we obtain the electrical flow 𝑓 by
𝑓𝑒 = 𝜆𝑒 (𝜋𝑣 − 𝜋𝑤) for all 𝑒 = (𝑣, 𝑤) ∈ 𝐸→. Moreover, E( 𝑓 ) = 𝜋𝑠 − 𝜋𝑡 .

Proof. Let 𝑓 be the electrical flow and 𝜋 as in Theorem 5.9 (ii). Let 𝐴 be as in
Definition 5.10. Then 𝑓 = diag(𝜆)𝐴⊤𝜋 and hence 𝐿𝜋 = 𝐴 𝑓 = 𝑏.

Next, let 𝜋 be a solution to 𝐿𝜋 = 𝑏 and 𝑓𝑒 = 𝜆𝑒 (𝜋𝑣 − 𝜋𝑤) for all 𝑒 =

(𝑣, 𝑤) ∈ 𝐸→. Then 𝑓 is an 𝑠-𝑡-flow of value 1 because 𝑓 = diag(𝜆)𝐴⊤𝜋 implies
𝐴 𝑓 = 𝐿𝜋 = 𝑏. By Theorem 5.9 (ii)⇒(i), 𝑓 is the electrical flow. Finally, E( 𝑓 ) =
𝑓 ⊤diag(𝜆)−1 𝑓 = (diag(𝜆)𝐴⊤𝜋)⊤diag(𝜆)−1diag(𝜆)𝐴⊤𝜋 = 𝜋⊤𝐴 diag(𝜆)𝐴⊤𝜋 =

𝜋⊤𝐿𝜋 = 𝜋⊤𝑏 = 𝜋𝑠 − 𝜋𝑡 . □

Corollary 5.11 also shows that for connected graphs, the solution 𝜋 to 𝐿𝜋 = 𝑏

is unique up to adding a constant to all entries (because the electrical flow is
unique), and hence 𝐿 has rank 𝑛 − 1. The linear equation system 𝐿𝜋 = 𝑏 can be
solved by Gaussian elimination in polynomial time (Edmonds [1967b]). In fact,
an approximate solution can be computed in (randomized) near-linear time, as
shown by Spielman and Teng [2014].

Since E( 𝑓 ) = 𝜋𝑠 − 𝜋𝑡 , the electrical network behaves like a single resistor
between 𝑠 and 𝑡 with resistance 𝜋𝑠 − 𝜋𝑡 ; hence, the following useful notation:

Definition 5.12 (effective resistance). Let𝐺 = (𝑉, 𝐸) be a connected undirected
graph and 𝜆𝑒 > 0 for 𝑒 ∈ 𝐸 . Let 𝑠, 𝑡 ∈ 𝑉 . The effective resistance between 𝑠 and
𝑡 is defined as

Reff (𝑠, 𝑡) := 𝜋𝑠 − 𝜋𝑡 ,

where 𝜋 is a solution to 𝐿𝜋 = 𝑏 for the weighted Laplacian 𝐿 of (𝐺, 𝜆) and
𝑏 = 𝜒{𝑠} − 𝜒{𝑡 } .

An important property (that will lead us to negative correlation) is Rayleigh’s
monotonicity law: If resistances increase, effective resistances cannot decrease.

Lemma 5.13 (Rayleigh [1871]). Let (𝐺, 𝜆, 𝑠, 𝑡) be an electrical network and
let 0 < 𝜆′𝑒 ≤ 𝜆𝑒 for all 𝑒 ∈ 𝐸 . Then Reff (𝑠, 𝑡) is not smaller in (𝐺, 𝜆′, 𝑠, 𝑡) than
in (𝐺, 𝜆, 𝑠, 𝑡).

Proof. Let 𝑓 be the electrical flow in (𝐺, 𝜆, 𝑠, 𝑡) and 𝑔 be the electrical flow
in (𝐺, 𝜆′, 𝑠, 𝑡). In the original network, 𝑓 has minimum energy, so∑︁

𝑒∈𝐸→

( 𝑓𝑒)2
𝜆𝑒

≤
∑︁
𝑒∈𝐸→

(𝑔𝑒)2
𝜆𝑒

≤
∑︁
𝑒∈𝐸→

(𝑔𝑒)2
𝜆′𝑒

.
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But (by the last sentence of Corollary 5.11) the left-hand side is the effective
resistance between 𝑠 and 𝑡 in (𝐺, 𝜆), and the right-hand side is the effective
resistance between 𝑠 and 𝑡 in (𝐺, 𝜆′). □

We now return to random spanning trees. Let 𝐺 = (𝑉, 𝐸) be a connected
undirected graph and again S the set of edge sets of spanning trees in𝐺. For any
positive edge weights 𝜆𝑒 > 0 for 𝑒 ∈ 𝐸 , we consider the probability distribution
𝜇𝜆 with 𝜇𝜆 (𝑆) = 1

Λ

∏
𝑒∈𝑆 𝜆𝑒 for 𝑆 ∈ S, where Λ =

∑
𝑆∈S

∏
𝑒∈𝑆 𝜆𝑒. Such a

distribution is called 𝜆-uniform.
A useful property of 𝜆-uniform distributions is that we can easily condition

on the event that an edge belongs or does not belong to the spanning tree:

Proposition 5.14. Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph, 𝜆 ∈ R𝐸
>0,

and 𝑆 be a random spanning tree sampled according to the𝜆-uniform distribution.
Let 𝑒 ∈ 𝐸 . Then for all spanning trees (𝑉, 𝑆+) and (𝑉, 𝑆−) with 𝑒 ∈ 𝑆+ \ 𝑆− , we
have

P[𝑆 = 𝑆+ | 𝑒 ∈ 𝑆] = 𝜇𝐺/𝑒 (𝑆+/𝑒) and
P[𝑆 = 𝑆− | 𝑒 ∉ 𝑆] = 𝜇𝐺−𝑒 (𝑆−),

where 𝜇𝐺/𝑒 and 𝜇𝐺−𝑒 denote the 𝜆 |𝐸 (𝐺/𝑒) -uniform spanning tree distribution on
𝐺/𝑒 and the 𝜆 |𝐸 (𝐺−𝑒) -uniform spanning tree distribution on𝐺 − 𝑒, respectively.

Proof. We have

P[𝑆 = 𝑆+ | 𝑒 ∈ 𝑆] =

∏
𝑓 ∈𝑆+ 𝜆 𝑓∑

𝑆∈S:𝑒∈𝑆
∏
𝑓 ∈𝑆 𝜆 𝑓

=

∏
𝑓 ∈𝑆+/𝑒 𝜆 𝑓∑

𝑆∈S[𝐺/𝑒]
∏
𝑓 ∈𝑆 𝜆 𝑓

= 𝜇𝐺/𝑒 (𝑆+/𝑒)

and

P[𝑆 = 𝑆− | 𝑒 ∉ 𝑆] =

∏
𝑓 ∈𝑆− 𝜆 𝑓∑

𝑆∈S:𝑒∉𝑆
∏
𝑓 ∈𝑆 𝜆 𝑓

= 𝜇𝐺−𝑒 (𝑆−). □

We will prove that the random variables |{𝑒} ∩ 𝑆 | (𝑒 ∈ 𝐸) are negatively
correlated if 𝑆 ∈ S is chosen according to the distribution 𝜇𝜆. This will be easy
by exploiting the connection to electrical flows. In fact, as we show now, the
probability that an edge 𝑒 belongs to a 𝜆-uniform spanning tree is 𝜆𝑒 times the
effective resistance of 𝑒 (see Figure 5.4 for examples). Recall that we always
work with an arbitrary orientation of 𝐺 and write 𝑓𝑒← := − 𝑓𝑒 for every edge
𝑒 ∈ 𝐸→.
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𝑛
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𝑛
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Figure 5.4 Two graphs 𝐺 = (𝑉, 𝐸 ) , both with 𝑛 edges and with 𝜆𝑒 = 1 for all
𝑒 ∈ 𝐸. The electrical 𝑠-𝑡-flow of value 1 is shown in red above the edges, flowing
from left to right. A corresponding potential 𝜋 is shown in blue below. The effective
resistance of every edge is 1

𝑛
on the left and 𝑛−1

𝑛
on the right; this is the probability

that an edge belongs to a random spanning tree in the uniform distribution.

Theorem 5.15 (Kirchhoff [1847]). Let 𝐺 = (𝑉, 𝐸) be a connected undirected
graph and 𝜆𝑒 > 0 for 𝑒 ∈ 𝐸 . Let 𝑒 = {𝑠, 𝑡} ∈ 𝐸 , and 𝑓 the electrical 𝑠-𝑡-flow
of value 1 in (𝐺, 𝜆). Then P[𝑒 ∈ 𝑆] = 𝑓®𝑒, where P refers to the probability
distribution 𝜇𝜆 and ®𝑒 = (𝑠, 𝑡).

Proof. Let again 𝐴 denote the vertex-edge-incidence matrix of the orientation
𝐺→ = (𝑉, 𝐸→) of 𝐺 and 𝑏 = 𝜒{𝑠} − 𝜒{𝑡 } .

Let 𝑓 := 1
Λ

∑
𝑆∈S

∏
𝑒∈𝑆 𝜆𝑒 𝑓

𝑆 , where 𝑓 𝑆 ∈ {−1, 0, 1}𝐸→ denotes the unique
𝑠-𝑡-flow of value 1 in 𝑆→ (i.e., 𝐴 𝑓 𝑆 = 𝑏 and 𝑓 𝑆𝑒 = 0 for 𝑒 ∈ 𝐸→ \ 𝑆→). Then,
looking at the component with index ®𝑒 = (𝑠, 𝑡), we get

𝑓®𝑒 =
1
Λ

∑︁
𝑆∈S

∏
𝑒∈𝑆

𝜆𝑒 𝑓
𝑆
®𝑒 =

1
Λ

∑︁
𝑆∈S:�̄�∈𝑆

∏
𝑒∈𝑆

𝜆𝑒 = P[𝑒 ∈ 𝑆] .

Since 𝑓 is a convex combination of the 𝑓 𝑆 , we have 𝐴 𝑓 = 𝑏. We claim that 𝑓
is the electrical flow. To this end, we check Kirchhoff’s potential law (i.e., (iii)
of Theorem 5.9).

Let U = {𝑈 ⊊ 𝑉 : 𝑠 ∈ 𝑈, 𝑡 ∉ 𝑈, 𝐺 [𝑈] connected, 𝐺 [𝑉 \ 𝑈] connected}.
Note that | 𝑓 𝑆𝑒 | = 1 if and only if there is a set𝑈 ∈ U such that 𝑒 is the only edge
in 𝑆 ∩ 𝛿(𝑈), and the sign depends on whether 𝑒 leaves or enters𝑈. If𝑈 exists,
it is unique. Each such spanning tree 𝑆 consists of 𝑒, a spanning tree 𝑆′ ∈ S[𝑈],
and a spanning tree 𝑆′′ ∈ S[𝑉 \𝑈], where S[𝑈] denotes the set of (edge sets
of) spanning trees in 𝐺 [𝑈].
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Let 𝐶 be a directed circuit in 𝐺↔. Using the above observation, we have

Λ
∑︁
𝑒∈𝐶

𝑓𝑒
𝜆𝑒

=
∑︁
𝑒∈𝐶

1
𝜆𝑒

∑︁
𝑆∈S

∏
𝑒′∈𝑆

𝜆𝑒′ 𝑓
𝑆
𝑒

=
∑︁
𝑒∈𝐶

∑︁
𝑆∈S

∏
𝑒′∈𝑆\{𝑒}

𝜆𝑒′ 𝑓
𝑆
𝑒

=
∑︁
𝑒∈𝐶

∑︁
𝑆∈S

∏
𝑒′∈𝑆\{𝑒}

𝜆𝑒′
∑︁

𝑈∈U:𝑆∩𝛿 (𝑈)={𝑒}

(
|𝛿+ (𝑈) ∩ {𝑒}| − |𝛿− (𝑈) ∩ {𝑒}|

)
=

∑︁
𝑒∈𝐶

∑︁
𝑈∈U

∑︁
𝑆∈S:𝑆∩𝛿 (𝑈)={𝑒}

∏
𝑒′∈𝑆\{𝑒}

𝜆𝑒′
(
|𝛿+ (𝑈) ∩ {𝑒}| − |𝛿− (𝑈) ∩ {𝑒}|

)
=

∑︁
𝑈∈U

∑︁
𝑆′∈S[𝑈 ]

∑︁
𝑆′′∈S[𝑉\𝑈 ]

∏
𝑒′∈𝑆′∪𝑆′′

𝜆𝑒′
(
|𝛿+ (𝑈) ∩ 𝐶 | − |𝛿− (𝑈) ∩ 𝐶 |

)
= 0

because for every𝑈 ⊆ 𝑉 , every directed circuit 𝐶 enters and leaves𝑈 the same
number of times. By Theorem 5.9 (iii)⇒(i), 𝑓 is the electrical flow. □

This proof is taken from Williamson [2019]. The special case 𝜆𝑒 = 1 for all
𝑒 ∈ 𝐸 says that the fraction of spanning trees containing an edge 𝑒 equals the
effective resistance of 𝑒.

Now it is easy to show that 𝜆-uniform distributions have negative correlation
(for any 𝜆):

Theorem 5.16 (Brooks et al. [1940], Feder and Mihail [1992]). Let 𝐺 = (𝑉, 𝐸)
be a connected undirected graph and 𝜆𝑒 > 0 for 𝑒 ∈ 𝐸 . Let S be the set of edge
sets of spanning trees in 𝐺, and let 𝑆 ∈ S be chosen randomly according to the
𝜆-uniform probability distribution 𝜇𝜆. Then the 0-1 random variables |{𝑒} ∩ 𝑆 |
(for 𝑒 ∈ 𝐸) are negatively correlated.

Proof. We show P[𝐹 ⊆ 𝑆] ≤ ∏
𝑒∈𝐹 P[𝑒 ∈ 𝑆] for any 𝐹 ⊆ 𝐸 , by induction on

|𝐹 |, where 𝑆 is a random variable distributed according to 𝜇𝜆.
For |𝐹 | = 2, let 𝐹 = {𝑒′, 𝑒′′}. Negative correlation is obvious if 𝑒′ and 𝑒′′

are parallel edges, so assume that this is not the case. Consider the effective
resistance of 𝑒′ = {𝑠, 𝑡} as a function of 𝜆𝑒′′ (keeping all other 𝜆-values fixed).
If 𝜋 is a solution to 𝐿𝜋 = 𝑏 as in Corollary 5.11 and 𝑓 is the electrical flow, we
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have, using Kirchhoff’s Theorem 5.15,

Reff (𝑠, 𝑡) = 𝜋𝑠 − 𝜋𝑡 =
𝑓(𝑠,𝑡 )
𝜆𝑒′

=
P[𝑒′ ∈ 𝑆]
𝜆𝑒′

=

∑︁
𝑆∈S[𝐺/𝑒′ ]

∏
𝑒∈𝑆

𝜆𝑒∑︁
𝑆∈S

∏
𝑒∈𝑆

𝜆𝑒

.

Then by Rayleigh’s monotonicity law (Lemma 5.13),

0 ≥ 𝜕 Reff (𝑠, 𝑡)
𝜕𝜆𝑒′′

=

©«
∑︁

𝑆∈S[𝐺/𝑒′/𝑒′′ ]

∏
𝑒∈𝑆

𝜆𝑒
ª®¬
( ∑︁
𝑆∈S

∏
𝑒∈𝑆

𝜆𝑒

)
− ©«

∑︁
𝑆∈S[𝐺/𝑒′ ]

∏
𝑒∈𝑆

𝜆𝑒
ª®¬ ©«

∑︁
𝑆∈S[𝐺/𝑒′′ ]

∏
𝑒∈𝑆

𝜆𝑒
ª®¬( ∑︁

𝑆∈S

∏
𝑒∈𝑆

𝜆𝑒

)2 .

Multiplying this inequality by 𝜆𝑒′𝜆𝑒′′ and setting Λ =
∑
𝑆∈S

∏
𝑒∈𝑆 𝜆𝑒 yields

1
Λ

∑︁
𝑆∈S:𝑒′ ,𝑒′′∈𝑆

∏
𝑒∈𝑆

𝜆𝑒 ≤
(

1
Λ

∑︁
𝑆∈S:𝑒′∈𝑆

∏
𝑒∈𝑆

𝜆𝑒

) (
1
Λ

∑︁
𝑆∈S:𝑒′′∈𝑆

∏
𝑒∈𝑆

𝜆𝑒

)
,

which means P[𝑒′, 𝑒′′ ∈ 𝑆] ≤ P[𝑒′ ∈ 𝑆] · P[𝑒′′ ∈ 𝑆] and hence pairwise
negative correlation.

If |𝐹 | > 2, let 𝑒′ ∈ 𝐹. Applying the induction hypothesis first to (𝐺/𝑒′, 𝐹 \
{𝑒′}) and then to (𝐺, {𝑒′, 𝑒′′}) for all 𝑒′′ ∈ 𝐹 \ {𝑒′} (using Proposition 5.14),
we obtain

P[𝐹 ⊆ 𝑆] = P[𝑒′ ∈ 𝑆] · P[𝐹 ⊆ 𝑆 | 𝑒′ ∈ 𝑆]

≤ P[𝑒′ ∈ 𝑆] ·
∏

𝑒′′∈𝐹\{𝑒′ }
P[𝑒′′ ∈ 𝑆 | 𝑒′ ∈ 𝑆]

≤ P[𝑒′ ∈ 𝑆] ·
∏

𝑒′′∈𝐹\{𝑒′ }
P[𝑒′′ ∈ 𝑆]

=
∏
𝑒∈𝐹
P[𝑒 ∈ 𝑆]

as required. □

This is sufficient for the purpose of this chapter, and the remaining results of
this section will only be used in Chapter 11.

The negative correlation property from Theorem 5.16 can be generalized, as
Feder and Mihail [1992] showed. In Chapter 11, we will need to condition on
the event that 𝑆 induces a tree on a subset𝑈 of vertices:
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Corollary 5.17 (Feder and Mihail [1992]). Let 𝐺 = (𝑉, 𝐸) be a connected
undirected graph. Sample the edge set 𝑆 of a spanning tree from a 𝜆-uniform
distribution. Let ∅ ≠ 𝑈 ⊆ 𝑉 , let 𝜏 denote the event that (𝑈, 𝑆[𝑈]) is a tree, and
let 𝐴 ⊆ 𝐸 [𝑈] and 𝐵 ⊆ 𝐸 \ 𝐸 [𝑈]. Suppose 𝜏 has positive probability. Then

E[|𝐴 ∩ 𝑆 | | 𝜏] ≥ E[|𝐴 ∩ 𝑆 |] and E[|𝐵 ∩ 𝑆 | | 𝜏] ≤ E[|𝐵 ∩ 𝑆 |] .

Proof. Let 𝑛 = |𝑉 |. For an edge 𝑒, we denote the events that 𝑒 ∈ 𝑆 and that
𝑒 ∉ 𝑆 simply by 𝑒 and 𝑒, respectively. We claim

P[𝜏 | 𝑒] ≥∗ P[𝜏] for all 𝑒 ∈ 𝐴. (5.2)

(For 𝑒 ∈ 𝐵, all inequalities marked with an asterisk will be reversed.) This is
equivalent to P[𝑒 | 𝜏] ≥∗ P[𝑒] for all 𝑒 ∈ 𝐴 and implies

E[|𝐴 ∩ 𝑆 | | 𝜏] =
∑︁
𝑒∈𝐴
P[𝑒 | 𝜏] ≥∗

∑︁
𝑒∈𝐴
P[𝑒] = E[|𝐴 ∩ 𝑆 |]

as required.
We prove the claim (5.2) by induction on |𝐸 |. The assertion is trivial if 𝑛 ≤ 2.

Let now 𝑛 ≥ 3 and 𝑒 ∈ 𝐴. If 𝐸 contains a bridge (an edge that belongs to every
spanning tree), we contract it and apply the induction hypothesis. Now assume
that 𝐸 contains no bridge.

Because
∑
𝑓 ∈𝐸\{𝑒} P[ 𝑓 | 𝜏, 𝑒] = 𝑛 − 2 =

∑
𝑓 ∈𝐸\{𝑒} P[ 𝑓 | 𝑒], there exists

an edge 𝑓 with P[ 𝑓 | 𝜏, 𝑒] ≤∗ P[ 𝑓 | 𝑒] and P[ 𝑓 | 𝑒] > 0. This implies
P[𝜏 | 𝑓 , 𝑒] ≤∗ P[𝜏 | 𝑒] and hence P[𝜏 | 𝑓 , 𝑒] ≤∗ P[𝜏 | 𝑓 , 𝑒]. Using this and
P[ 𝑓 | 𝑒] ≤ P[ 𝑓 ] (negative correlation, cf. Theorem 5.16), we compute

P[𝜏 | 𝑒] = P[ 𝑓 | 𝑒] · P[𝜏 | 𝑓 , 𝑒] + P[ 𝑓 | 𝑒] · P[𝜏 | 𝑓 , 𝑒]
= P[ 𝑓 | 𝑒] ·

(
P[𝜏 | 𝑓 , 𝑒] − P[𝜏 | 𝑓 , 𝑒]

)
+ P[𝜏 | 𝑓 , 𝑒]

≥∗ P[ 𝑓 ] ·
(
P[𝜏 | 𝑓 , 𝑒] − P[𝜏 | 𝑓 , 𝑒]

)
+ P[𝜏 | 𝑓 , 𝑒]

= P[ 𝑓 ] · P[𝜏 | 𝑓 , 𝑒] + P[ 𝑓 ] · P[𝜏 | 𝑓 , 𝑒] .

By applying the induction hypothesis to 𝐺/ 𝑓 and to 𝐺 − 𝑓 (and their induced
𝜆-uniform distributions for the appropriate restrictions of 𝜆; cf. Proposition 5.14),
we obtain P[𝜏 | 𝑓 , 𝑒] ≥∗ P[𝜏 | 𝑓 ] and P[𝜏 | 𝑓 , 𝑒] ≥∗ P[𝜏 | 𝑓 ], respectively. We
conclude P[𝜏 | 𝑒] ≥∗ P[ 𝑓 ] · P[𝜏 | 𝑓 ] + P[ 𝑓 ] · P[𝜏 | 𝑓 ] = P[𝜏] as claimed. □

As we show next, conditioning on the event that a subset𝑈 induces a subtree,
the distributions inside𝑈 and outside𝑈 are independent. When writing 𝑆 ∼ 𝜇,
we mean that 𝑆 is sampled from the probability distribution 𝜇.

Lemma 5.18. Let𝐺 = (𝑉, 𝐸) be a connected undirected graph, 𝜆 ∈ R𝐸
>0, and 𝜇

the 𝜆-uniform spanning tree distribution on 𝐺. Let ∅ ≠ 𝑈 ⊆ 𝑉 such that 𝐺 [𝑈]
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is connected, and let �̃� be the distribution we obtain from 𝜇 by conditioning on
the event that (𝑈, 𝑆[𝑈]) is a tree. Then, for every spanning tree 𝑇 of 𝐺,

�̃�(𝑇) = 𝜇𝐺 [𝑈 ] (𝑇 [𝑈]) · 𝜇𝐺/𝑈 (𝑇/𝑈),

where 𝜇𝐺 [𝑈 ] and 𝜇𝐺/𝑈 denote the 𝜆 |𝐸 [𝑈 ]-uniform spanning tree distribution on
𝐺 [𝑈] and the𝜆 |𝐸 (𝐺/𝑈) -uniform spanning tree distribution on𝐺/𝑈, respectively.

Proof. We may assume that (𝑈,𝑇 [𝑈]) is a tree because otherwise the assertion
is trivial. Using that 𝑆 is a spanning tree in 𝐺 such that (𝑈, 𝑆[𝑈]) is a tree if
and only if 𝑆[𝑈] is a spanning tree of 𝐺 [𝑈] and 𝑆/𝑈 is a spanning tree of 𝐺/𝑈,
we get

P𝑆∼𝜇
[
𝑆 = 𝑇

�� (𝑈, 𝑆[𝑈]) is a tree
]

=
Π𝑒∈𝑇𝜆𝑒∑

𝑆∈S:(𝑈,𝑆 [𝑈 ] ) is a tree Π𝑒∈𝑆𝜆𝑒

=
Π𝑒∈𝑇 [𝑈 ]𝜆𝑒 · Π𝑒∈𝑇/𝑈𝜆𝑒(∑

𝑆 spanning tree in 𝐺 [𝑈 ] Π𝑒∈𝑆𝜆𝑒
)
·
(∑

𝑆 spanning tree in 𝐺/𝑈 Π𝑒∈𝑆𝜆𝑒
)

= 𝜇𝐺 [𝑈 ] (𝑇 [𝑈]) · 𝜇𝐺/𝑈 (𝑇/𝑈). □

In Chapter 11, we will also need another version of Theorem 5.15, known as
Kirchhoff’s matrix tree theorem:

Theorem 5.19 (Kirchhoff [1847]). Let 𝐺 = (𝑉, 𝐸) be an undirected graph
with 𝑛 := |𝑉 | ≥ 2. Let S denote the set of edge sets of spanning trees and
𝜆 ∈ R𝐸

>0. Then
∑
𝑆∈S

∏
𝑒∈𝑆 𝜆𝑒 is equal to the cofactor det 𝐿1..𝑛−1 of the weighted

Laplacian 𝐿 of (𝐺, 𝜆), where 𝐿1..𝑛−1 arises from 𝐿 by deleting the 𝑛-th row and
the 𝑛-th column.

Proof. If 𝐺 is disconnected, then it contains no spanning tree. For a connected
component that does not contain vertex 𝑛, its weighted Laplacian 𝐿′ is singular
(all column sums are zero) and part of 𝐿1..𝑛−1 – that is, after permutation of
rows and columns 𝐿1..𝑛−1 =

(
𝐿′ 0
0 𝐿′′

)
for some matrix 𝐿′′. Hence, det 𝐿1..𝑛−1 =

(det 𝐿′) (det 𝐿′′) = 0 · det 𝐿′′ = 0.
Now assume that 𝐺 is connected. We use induction on |𝑉 |. The base case
|𝑉 | = 2 is trivial because every edge forms a spanning tree and

∑
𝑒∈𝐸 𝜆𝑒 is the

only entry of 𝐿1..𝑛−1. Let now |𝑉 | ≥ 3.
Let 𝑒 = {𝑠, 𝑡} ∈ 𝐸 such that 𝑡 corresponds to the 𝑛-th row and column of

𝐿, and without loss of generality, 𝑠 corresponds to the row and column 𝑛 − 1.
By Corollary 5.11, the system 𝐿𝜋 = (0, . . . , 0, 1,−1)⊤, 𝜋𝑛 = 0 has a unique
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solution, which we obtain by solving 𝐿1..𝑛−1𝜋 = (0, . . . , 0, 1)⊤ because the sum
of all rows of 𝐿 is the all-zero vector. By Cramer’s rule, 𝜋𝑛−1 = det 𝐿1..𝑛−2

det 𝐿1..𝑛−1 .
Let Λ(𝐺) :=

∑
𝑆∈S

∏
𝑒∈𝑆 𝜆𝑒. By Theorem 5.15,

𝜆�̄�Λ(𝐺/𝑒)
Λ(𝐺) = P[𝑒 ∈ 𝑆] = 𝑓(𝑠,𝑡 ) = 𝜆�̄� (𝜋𝑛−1 − 𝜋𝑛) = 𝜆�̄�

det 𝐿1..𝑛−2

det 𝐿1..𝑛−1 .

By the induction hypothesis, Λ(𝐺/𝑒) = det 𝐿1..𝑛−2, and we conclude Λ(𝐺) =
det 𝐿1..𝑛−1. □

5.4 How to Sample Spanning Trees

In this section, we complete the proof of Theorem 5.3 and thus the analysis of the
randomized 𝑂 (log 𝑛/log log 𝑛)-approximation algorithm for the Asymmetric
TSP. By Theorem 5.16 and Theorem 5.7, it suffices to sample a spanning tree
from a 𝜆-uniform distribution such that P[𝑒 ∈ 𝑆] ≤ 𝑧𝑒, where 𝑧 is given by
Step (2) of Algorithm 5.4. We set 𝑞𝑒 = 𝑛−1

𝑛
𝑧𝑒 for 𝑒 ∈ 𝐸 , recall that 𝑞 is in (the

relative interior of) the spanning tree polytope, and aim at P[𝑒 ∈ 𝑆] = 𝑞𝑒 (such
a distribution will be called marginal-preserving).

Asadpour et al. [2017] showed that a 𝜆-uniform marginal-preserving dis-
tribution exists and that it is the unique distribution 𝜇 that maximizes the
entropy

∑
𝑆∈S:𝜇 (𝑆)>0 𝜇(𝑆) ln 1

𝜇 (𝑆) among all marginal-preserving distributions
(cf. Exercise 5.12). The entropy is a measure of how even a distribution is. For
example, the entropy is 0 if 𝜇(𝑆) = 1 for some 𝑆 ∈ S (no randomness), and the
entropy is maximized for the uniform distribution (𝜇(𝑆) = 1

|S | for all 𝑆 ∈ S);
then the entropy is ln |S|. For a simpler notation, we will write 𝜇(𝑆) ln 1

𝜇 (𝑆) = 0
if 𝜇(𝑆) = 0. Moreover, we again abbreviate 𝛾(𝑆) :=

∑
𝑒∈𝑆 𝛾𝑒.

Theorem 5.20 (Asadpour et al. [2017]). Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑞 in
the relative interior of the spanning tree polytope. Then

sup

{∑︁
𝑆∈S

𝜇(𝑆) ln 1
𝜇 (𝑆) : 𝜇 : S → R≥0,

∑︁
𝑆∈S:𝑒∈𝑆

𝜇(𝑆) = 𝑞𝑒 (𝑒 ∈ 𝐸)
}

= inf

{∑︁
𝑆∈S

𝑒𝛾 (𝑆) − 1 −
∑︁
𝑒∈𝐸

𝛾𝑒𝑞𝑒 : 𝛾 ∈ R𝐸
}
,

there exist unique optimum solutions 𝜇∗ and 𝛾∗, and we have 𝜇∗ (𝑆) = 𝑒𝛾∗ (𝑆)
for all 𝑆 ∈ S.

Summing over the marginal-preserving constraints
∑
𝑆∈S:𝑒∈𝑆 𝜇(𝑆) = 𝑞𝑒 for

all 𝑒 ∈ 𝐸 , we get (𝑛 − 1)𝜇(S) = 𝑞(𝐸) = 𝑛 − 1 because 𝑞 is in the spanning



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

104 Thin Trees and Random Trees

tree polytope, and thus 𝜇 is indeed a probability distribution. Theorem 5.20 is a
strong duality theorem and can be shown by nonlinear programming theory. For
our purposes, we only need the inequality “≤” (weak duality), and we do not
need that the infimum is attained. This is easy to show:

Proposition 5.21. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑞 in the spanning tree
polytope. Then

sup

{∑︁
𝑆∈S

𝜇(𝑆) ln 1
𝜇 (𝑆) : 𝜇 : S → R≥0,

∑︁
𝑆∈S:𝑒∈𝑆

𝜇(𝑆) = 𝑞𝑒 (𝑒 ∈ 𝐸)
}

≤ inf

{∑︁
𝑆∈S

𝑒𝛾 (𝑆) − 1 −
∑︁
𝑒∈𝐸

𝛾𝑒𝑞𝑒 : 𝛾 ∈ R𝐸
}
.

Proof. In the supremum, we maximize a strictly concave function over a
compact convex set, which is nonempty because 𝑞 is in the spanning tree
polytope. Hence the supremum is attained by a unique distribution 𝜇∗. The
supremum is at most the Lagrangian dual

inf

{
sup

{ ∑︁
𝑆∈S

𝜇(𝑆) ln 1
𝜇 (𝑆) +

∑︁
𝑒∈𝐸

𝜅𝑒

( ∑︁
𝑆∈S:𝑒∈𝑆

𝜇(𝑆) − 𝑞𝑒
)

:

𝜇 : S → R≥0

}
: 𝜅 ∈ R𝐸

} (5.3)

because 𝜇∗ is a feasible solution to every inner optimization problem. For fixed
𝜅, the inner supremum in (5.3) is easily obtained by optimizing each 𝜇(𝑆)
independently, setting 𝜇(𝑆) = 𝑒𝜅 (𝑆)−1. Hence, (5.3) simplifies to

inf

{∑︁
𝑆∈S

𝑒𝜅 (𝑆)−1 (1 − 𝜅(𝑆)) +
∑︁
𝑒∈𝐸

𝜅𝑒

( ∑︁
𝑆∈S:𝑒∈𝑆

𝑒𝜅 (𝑆)−1 − 𝑞𝑒

)
: 𝜅 ∈ R𝐸

}
.

Cancelling terms and substituting 𝛾𝑒 := 𝜅𝑒 − 1
𝑛−1 yields that the Lagrangian

dual equals

inf

{∑︁
𝑆∈S

𝑒𝛾 (𝑆) −
∑︁
𝑒∈𝐸

𝛾𝑒𝑞𝑒 − 1 : 𝛾 ∈ R𝐸
}
, (5.4)

where we used
∑
𝑒∈𝐸 𝑞𝑒 = 𝑛 − 1 because 𝑞 is in the spanning tree polytope. □

Note that the Lagrangian dual (5.4) is strictly convex and bounded from below
(e.g., by 0; cf. Proposition 5.21). One can evaluate

∑
𝑆∈S 𝑒

𝛾 (𝑆) for any vector
𝛾 in polynomial time using Kirchhoff’s matrix tree theorem (Theorem 5.19).
Alternatively, we can take an arbitrary tree 𝑆 = {𝑒1, . . . , 𝑒𝑛−1} ∈ S, compute
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P[𝑒𝑖 ∈ 𝑆 | 𝑒1, . . . , 𝑒𝑖−1 ∈ 𝑆] for 𝑖 = 1, . . . , 𝑛 − 1 by Proposition 5.14 and
Theorem 5.15 and Corollary 5.11, and note that

𝑛−1∏
𝑖=1
P

[
𝑒𝑖 ∈ 𝑆 | 𝑒1, . . . , 𝑒𝑖−1 ∈ 𝑆

]
= P

[
𝑆 = 𝑆

]
=

𝑒𝛾 (�̄�)∑
𝑆∈S 𝑒𝛾 (𝑆)

.

Asadpour et al. [2017] showed how to compute a near-optimal solution 𝛾 to
the Lagrangian dual (5.4) by convex programming techniques, noting that one
can restrict the variables to a polynomially bounded range. See also Singh and
Vishnoi [2014] for details and generalizations.

If 𝛾 is a near-optimal solution to (5.4), letting the probability of 𝑆 ∈ S be
proportional to 𝑒𝛾 (𝑆) yields a 𝜆-uniform distribution (for 𝜆 𝑓 = 𝑒𝛾 𝑓 for 𝑓 ∈ 𝐸)
and in fact an almost marginal-preserving distribution:

Theorem 5.22. Let 𝐺 = (𝑉, 𝐸) be a graph, S the set of edge sets of spanning
trees, and 𝑞 in the spanning tree polytope of 𝐺 with 𝑞𝑒 > 0 for all 𝑒 ∈ 𝐸 . Let
0 < 𝜀 ≤ 1 and 𝜂 = 𝜀2

36 min𝑒∈𝐸 𝑞𝑒. Let 𝛾 ∈ R𝐸 such that∑︁
𝑆∈S

𝑒𝛾 (𝑆) −
∑︁
𝑓 ∈𝐸

𝛾 𝑓 𝑞 𝑓 − 1 ≤
∑︁
𝑆∈S

𝑒𝛿 (𝑆) −
∑︁
𝑓 ∈𝐸

𝛿 𝑓 𝑞 𝑓 − 1 + 𝜂 (5.5)

for every 𝛿 ∈ R𝐸 . Let 𝜇(𝑆) := 𝑒𝛾 (𝑆)/∑𝑆′∈S 𝑒
𝛾 (𝑆′ ) for 𝑆 ∈ S. Then∑︁

𝑆∈S:𝑒∈𝑆
𝜇(𝑆) ≤ (1 + 𝜀)𝑞𝑒

for all 𝑒 ∈ 𝐸 .

Proof. Let 𝑒 ∈ 𝐸 . Abbreviate 𝜀 := 𝜀
6 . Define 𝛾′𝑒 := 𝛾𝑒 − 𝜀 and 𝛾′

𝑓
:= 𝛾 𝑓 for

all 𝑓 ∈ 𝐸 \ {𝑒}. Using (5.5) for 𝛿 = 𝛾′ yields

(1 − 𝑒− �̂�)
∑︁

𝑆∈S:𝑒∈𝑆
𝑒𝛾 (𝑆) =

∑︁
𝑆∈S

𝑒𝛾 (𝑆) −
∑︁
𝑆∈S

𝑒𝛾
′ (𝑆) ≤ 𝜂 + 𝜀𝑞𝑒 . (5.6)

Now define 𝛾′′
𝑓

:= 𝛾 𝑓 + �̂�
𝑛−1 for all 𝑓 ∈ 𝐸 , where 𝑛 = |𝑉 |. Note that 𝛾′′ (𝑆) =

𝛾(𝑆) + 𝜀 for all 𝑆 ∈ S. Using (5.5) for 𝛿 = 𝛾′′ yields

(𝑒 �̂�−1)
∑︁
𝑆∈S

𝑒𝛾 (𝑆) =
∑︁
𝑆∈S

𝑒𝛾
′′ (𝑆) −

∑︁
𝑆∈S

𝑒𝛾 (𝑆) ≥
∑︁
𝑓 ∈𝐸

�̂�
𝑛−1𝑞 𝑓 −𝜂 = 𝜀−𝜂 (5.7)

because 𝑞(𝐸) = 𝑛−1. Using 𝑒𝑥−1 ≤ 𝑥+𝑥2 for all 𝑥 ≤ 1 and 𝜂 = 𝜀2 min 𝑓 ∈𝐸 𝑞 𝑓 ≤
𝜀2𝑞𝑒 ≤ 𝜀2, we get from (5.6) and (5.7):

(𝜀 − 𝜀2)
∑︁

𝑆∈S:𝑒∈𝑆
𝑒𝛾 (𝑆) ≤ 𝜀(1 + 𝜀)𝑞𝑒

and (𝜀 + 𝜀2)
∑︁
𝑆∈S

𝑒𝛾 (𝑆) ≥ 𝜀(1 − 𝜀).
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Putting these inequalities together yields∑︁
𝑆∈S:𝑒∈𝑆

𝜇(𝑆) =

∑
𝑆∈S:𝑒∈𝑆 𝑒

𝛾 (𝑆)∑
𝑆∈S 𝑒𝛾 (𝑆)

≤ (1 + 𝜀)𝑞𝑒/(1 − 𝜀)(1 − 𝜀)/(1 + 𝜀) =
(1 + 𝜀)2
(1 − 𝜀)2

𝑞𝑒

≤ (1 + 𝜀)𝑞𝑒,

where the last inequality follows from 6𝜀 = 𝜀 ≤ 1. □

Hence, we get an almost marginal-preserving 𝜆-uniform distribution (with
𝜆 𝑓 = 𝑒

𝛾 𝑓 for all 𝑓 ∈ 𝐸):

Corollary 5.23. Given an undirected graph 𝐺 = (𝑉, 𝐸), a number 𝜀 > 0,
and a vector 𝑞 ∈ R𝐸

>0 in the spanning tree polytope of 𝐺, we can compute in
polynomial time 𝜆𝑒 > 0 for 𝑒 ∈ 𝐸 such that the 𝜆-uniform distribution satisfies
P[𝑒 ∈ 𝑆] ≤ (1 + 𝜀)𝑞𝑒 for all 𝑒 ∈ 𝐸 .

Proof. Set 𝜂 = 𝜀2

36 min𝑒∈𝐸 𝑞𝑒. Compute a near-optimal solution 𝛾 to (5.4),
satisfying (5.5) (see Singh and Vishnoi [2014] for details). Set 𝜆 𝑓 = 𝑒𝛾 𝑓 for all
𝑓 ∈ 𝐸 and apply Theorem 5.22. □

Asadpour et al. [2017] also suggested an alternative combinatorial approach
using multiplicative weight updates (however, with a running time that depends
polynomially on 1

𝜀
instead of log 1

𝜀
). The total difference that results from

preserving the marginals only approximately can be bounded as follows:

Theorem 5.24 (Straszak and Vishnoi [2019]). Let 𝐺 = (𝑉, 𝐸) be an undirected
graph with 𝑛 vertices and 𝑞 ∈ R𝐸

>0 a vector in the spanning tree polytope
of 𝐺. Let S be the set of edge sets of spanning trees, and 𝜇 the maximum
entropy distribution on S with marginals 𝑞𝑒 (𝑒 ∈ 𝐸). Let 𝜀𝜇 > 0 and 𝜇𝜆 a

𝜆-uniform distribution on S with P𝑆∼𝜇𝜆 [𝑒 ∈ 𝑆] ≤
(
1 + 𝜀3

𝜇

𝑛4

)
𝑞𝑒 for all 𝑒 ∈ 𝐸 .

Then
∑
𝑆∈S |𝜇𝜆 (𝑆) − 𝜇(𝑆) | ≤ 𝜀𝜇.

We omit the proof here, and we will need this bound only in Chapter 10. Once
we have the vector 𝜆, sampling a tree from the 𝜆-uniform distribution is easy:

Theorem 5.25. Given a connected graph 𝐺 = (𝑉, 𝐸) and 𝜆𝑒 > 0 for all 𝑒 ∈ 𝐸 ,
we can sample a tree from the 𝜆-uniform distribution in polynomial time.

Proof. We can just scan the edges one by one and pick an edge with the
appropriate probability (computed by Proposition 5.14 and Theorem 5.15 and
Corollary 5.11). If we pick an edge, we contract it; otherwise, we delete it. □

A faster method was proposed by Anari et al. [2021]. Corollary 5.23 applied to
𝑞 = 𝑛−1

𝑛
𝑧 and Theorem 5.25 imply Theorem 5.3. Indeed, by Theorem 5.16, the
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random variables |{𝑒} ∩ 𝑆 | are negatively correlated, and hence by Theorem 5.7,
the tree is 3 ln 𝑛

ln ln 𝑛 -thin with respect to 𝑧 with probability at least 9
10 . This shows

Theorem 5.3.
For applying Theorem 5.7, one does not need a 𝜆-uniform distribution.

Negative correlation is sufficient. Sampling a spanning tree according to a
different marginal-preserving distribution with negative correlation can be
easier. Two such approaches are known. Let again 𝑞 = 𝑛−1

𝑛
𝑧.

First, the swap rounding approach of Chekuri, Vondrák, and Zenklusen [2010]
starts by writing 𝑞 as an arbitrary convex combination of spanning trees (which
can be done in polynomial time by Theorem 4.22; see also Theorem 15.4).
Then it iteratively takes two (edge sets of) spanning trees 𝑆1, 𝑆2 in the support
and merges them: Merging 𝑆1 and 𝑆2 means choosing 𝑒1 ∈ 𝑆1 \ 𝑆2 and
𝑒2 ∈ 𝑆2 \ 𝑆1 such that (𝑉, 𝑆1 \ {𝑒1} ∪ {𝑒2}) and (𝑉, 𝑆2 \ {𝑒2} ∪ {𝑒1}) are trees
(cf. Exercise 5.13), exchanging 𝑒1 for 𝑒2 in 𝑆1 (with probability 𝛼) or 𝑒2 for
𝑒1 in 𝑆2 (with probability 1 − 𝛼), until the two trees are the same. Here 𝛼 is
chosen so that the marginals remain constant. It is obvious that swap rounding
runs in polynomial time. Chekuri, Quanrud, and Torres [2021] showed how to
implement swap rounding in near-linear time.

Second, the pipage rounding approach of Ageev and Sviridenko [2004] and
Calinescu et al. [2011] starts with 𝑞, then iteratively takes a minimal face 𝐹 of
the spanning tree polytope such that 𝑞 ∈ 𝐹, as well as two edges 𝑒 and 𝑓 such
that 𝑞′ = 𝑞 + 𝛿(𝜒{𝑒} − 𝜒{ 𝑓 }) ∈ 𝐹 whenever |𝛿 | > 0 is small enough. Choosing 𝛿
as large as possible (with probability 𝛼) or as small as possible (with probability
1 − 𝛼) so that 𝑞′ ∈ 𝐹, we land on a lower-dimensional face, so after at most
𝑛 − 1 steps, we end at an extreme point. Again, 𝛼 is chosen so that the marginals
remain constant. One can see that finding such an 𝐹 and the maximum and
minimum 𝛿 so that 𝑞′ ∈ 𝐹 reduces to submodular function minimization (cf.
Exercise 5.14).

By Exercise 5.15, both swap rounding and pipage rounding lead to probability
distributions over spanning trees such that the marginals are preserved and the
random variables |{𝑒} ∩ 𝑆 | are negatively correlated. In general, neither of these
distributions is identical to the maximum entropy distribution. The maximum
entropy distribution will be used again in Chapter 10.

5.5 Thin Trees Suffice

Goddyn [undated] conjectured that there exists a constant 𝛼 such that all
connected undirected graphs 𝐺 have a spanning tree (𝑉, 𝑆) with |𝛿𝑆 (𝑈) | ≤
2𝛼
𝑘
|𝛿𝐺 (𝑈) | for all 𝑈 ⊆ 𝑉 , where 𝑘 is the edge-connectivity of 𝐺. If such a
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tree could be found in polynomial time, this would imply a constant-factor
approximation algorithm for Asymmetric TSP, as we will show in Theorem 5.27.
The following version of Goddyn’s thin tree conjecture is equivalent (but the
constant may differ by at most a factor 2):

Open Problem 5.26. Does there exist a constant 𝛼 such that for every connected
undirected graph 𝐻 = (𝑉, 𝐹) and any point 𝑦 in the spanning tree polytope of
𝐻, there exists a spanning tree 𝑆 with |𝛿𝑆 (𝑈) | ≤ 𝛼 · 𝑦(𝛿(𝑈)) for all𝑈 ⊆ 𝑉?

If the answer is yes, the constant 𝛼 must be at least 2, as the complete graph
with 𝑦𝑒 = 2

𝑛
for all edges 𝑒 shows.

Oveis Gharan and Saberi [2011] showed that such a constant 𝛼 exists for
bounded-genus graphs (graphs that can be embedded on any fixed orientable
surface).

For general graphs, Theorem 5.7, Theorem 5.16, and Corollary 5.23 imply that
a spanning tree as in Open Problem 5.26 exists for 𝛼 = 3 ln 𝑛

ln ln 𝑛 . Anari and Oveis
Gharan [2015] even showed the upper bound 𝛼 = (log log 𝑛)𝑂 (1) , but it is not
known how to find such a thin tree in polynomial time. Nevertheless, this implies
that the integrality ratio of (3.2) is at most (log log 𝑛)𝑂 (1) by Theorem 5.27.
This was the best-known bound before Svensson, Tarnawski, and Végh [2020]
showed a constant upper bound on this integrality ratio.

It is NP-hard to compute how thin a given tree is (see Exercise 5.16).
Klein and Olver [2023] showed that there is a constant 𝛼 such that for every

laminar familyL, there exists a spanning tree 𝑆 for which |𝛿𝑆 (𝑈) | ≤ 𝛼 · 𝑦(𝛿(𝑈))
for all𝑈 ∈ L.

Oveis Gharan and Saberi [2011] and Goemans [2012] observed that a
resolution of the thin tree conjecture would have immediate consequences for
the Asymmetric TSP:

Theorem 5.27. Let 𝛼 : N → R>0. Suppose for every connected undirected
graph 𝐻 = (𝑉, 𝐹) and any point 𝑦 in the spanning tree polytope of 𝐻, there
exists a spanning tree 𝑆 with |𝛿𝑆 (𝑈) | ≤ 𝛼(𝑛) · 𝑦(𝛿(𝑈)) for all 𝑈 ⊆ 𝑉 , where
𝑛 = |𝑉 |. Then the integrality ratio of (3.2) is at most 20

3 𝛼(𝑛). If 𝑆 can be found
in polynomial time, then there is a 20

3 𝛼(𝑛)-approximation algorithm for the
Asymmetric TSP.

Proof. Since every spanning tree is (𝑛 − 1)-thin with repect to 𝑦, we may
assume 𝛼(𝑛) ≤ 𝑛 for 𝑛 ∈ N. Moreover, we may assume 𝑛 ≥ 4.

Take an optimum solution 𝑥 to the LP (3.2) for an instance (𝐺, 𝑐), and let
𝐺 = (𝑉, 𝐸). We may assume that 𝐺 is simple. Let 𝑁 ≥ 50𝑛2. Let 𝐻 = (𝑉, 𝐹)
be the undirected graph with vertex set 𝑉 that contains ⌊𝑁 (𝑥 (𝑣,𝑤) + 𝑥 (𝑤,𝑣) )⌋
copies of edge 𝑒 for all 𝑒 = {𝑣, 𝑤} ∈

(𝑉
2
)
, where we set 𝑥 (𝑣,𝑤) = 0 if (𝑣, 𝑤) ∉ 𝐸 .
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Since |𝛿𝐻 (𝑈) | ≥ 6𝑁
5 for all ∅ ≠ 𝑈 ⊊ 𝑉 (actually initially more than (2− 1

200 )𝑁
because 𝑥(𝛿(𝑈)) ≥ 2 and |𝛿𝐺 (𝑈) | ≤ 𝑛2

4 ≤
𝑁

200 ), the vector 𝑦 ∈ R𝐹≥0 with all
components equal to 5

3𝑁 is in the connector polytope of 𝐻 by Lemma 2.28,
hence in the up-hull of the spanning tree polytope of 𝐻. By our assumption, 𝐻
has a thin tree 𝑆1, with

|𝛿𝑆1 (𝑈) | ≤ 𝛼(𝑛) · 𝑦(𝛿(𝑈))

=
5𝛼(𝑛)

3𝑁 · |𝛿𝐻 (𝑈) |

≤ 5𝛼(𝑛)
3 · 𝑥(𝛿(𝑈))

=
10𝛼(𝑛)

3 · 𝑥(𝛿+ (𝑈)).

(5.8)

Delete the edges of 𝑆1 from 𝐻. By the first line of (5.8), this removes at most
a 5𝛼(𝑛)

3𝑁 fraction of the edges from each cut. Then find a thin tree 𝑆2 in the
remaining graph and iterate this

⌈ 3𝑁
10𝛼(𝑛)

⌉
times. Before the last iteration, there

is still at least a fraction of((
1 − 5𝛼(𝑛)

3𝑁

) 3𝑁
5𝛼(𝑛)

) 1
2

≥ 0.605 (5.9)

left from the (originally more than (2 − 1
200 )𝑁) edges in any cut 𝛿𝐻 (𝑈), in

particular more than 6𝑁
5 edges. In the inequality (5.9), we used 𝛼(𝑛) ≤ 𝑛.

Hence (5.8) holds for all the trees that we get, which are ⌈ 3𝑁
10𝛼(𝑛) ⌉ edge-

disjoint spanning trees in 𝐻 = (𝑉, 𝐹). We can orient all edges of 𝐻 in the
cheaper direction; then 𝑐(𝐹) ≤ 𝑁𝑐(𝑥). The cheapest one among our oriented
thin trees has cost at most 10𝛼(𝑛)

3𝑁 𝑐(𝐹) ≤ 10𝛼(𝑛)
3 𝑐(𝑥). Now apply Lemma 5.1 to

this thin tree. We get a tour with total cost at most 10𝛼(𝑛)
3 𝑐(𝑥) + 10𝛼(𝑛)

3 𝑐(𝑥) =
20
3 𝛼(𝑛) · 𝑐(𝑥). □

The constant 20
3 can be improved slightly (see Exercise 5.17).

If the thin tree conjecture (Open Problem 5.26) holds, this would also imply
a constant-factor approximation algorithm for the Asymmetric Bottleneck
TSP (An, Kleinberg, and Shmoys [2021]; see Exercise 5.5); such an algorithm
is not known.

Exercises

5.1 Let 𝜀 > 0 and consider a minimization problem. We assume that the cost
of any given feasible solution can be computed in polynomial time.

(a) Suppose there is a randomized polynomial-time algorithm such that the
expected cost of the computed solution is at most 𝛼 · OPT. Show that
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then there is a randomized polynomial-time algorithm that computes a
solution with cost at most (𝛼 + 𝜀) · OPT with probability at least 1

2 .
(b) Suppose there is a randomized polynomial-time algorithm that com-

putes a solution with cost at most 𝛼 · OPT with probability at least 1
2 ,

and always computes a solution with cost at most 2𝑛 · OPT (where
𝑛 is the size of the instance). Show that then there is a randomized
polynomial-time algorithm such that the expected cost of the computed
solution is at most (𝛼 + 𝜀) · OPT.

5.2 Show the following strengthening of Lemma 5.1. Let (𝑉, 𝑅) be a connected
spanning subgraph of a digraph 𝐺 = (𝑉, 𝐸) with weights 𝑐 ∈ R𝐸≥0, and let
𝑥 ∈ R𝐸≥0 and 𝛼 > 0 such that |𝑅 ∩ 𝛿− (𝑈) | − |𝑅 ∩ 𝛿+ (𝑈) | ≤ 𝛼𝑥(𝛿+ (𝑈))
for all𝑈 ⊆ 𝑉 . Then one can find a tour 𝐹 in 𝐺 with 𝑐(𝐹) ≤ 𝑐(𝑅) + 𝛼𝑐(𝑥)
in polynomial time.

5.3 Consider an algorithm that computes a minimum-cost oriented spanning
tree and adds a cheapest multi-set of edges to obtain a tour. Show that the
resulting tour can cost 𝑛 − 1 times more than an optimum tour.

5.4 Let (𝐺, 𝑐) be an instance of the Asymmetric TSP with 𝐺 = (𝑉, 𝐸), and
let 𝑥 ∈ R𝐸≥0 be a feasible solution to the LP (3.2). Let (𝑉, 𝑅) be a connected
spanning subgraph of 𝐺, and let 𝛼 > 0 such that |𝑅 ∩ 𝛿(𝑈) | ≤ 𝛼𝑥(𝛿(𝑈))
for all 𝑈 ⊆ 𝑉 . Prove that one can find in polynomial time a tour 𝐹 in 𝐺
with |𝐹 ∩ 𝛿(𝑣) | ≤ 4⌈𝛼 · 𝑥(𝛿(𝑣))⌉ for all 𝑣 ∈ 𝑉 .

5.5 Given an instance (𝑉, 𝑐) of the Asymmetric TSP with Triangle In-
equality, where 𝐸 = {(𝑣, 𝑤) ∈ 𝑉 × 𝑉 : 𝑣 ≠ 𝑤}, the Asymmetric
Bottleneck TSP asks for a Hamiltonian circuit (𝑉,𝐶) in (𝑉, 𝐸) mini-
mizing max𝑒∈𝐶 𝑐(𝑒).

(a) Let 𝑘 ∈ N. Let (𝑉, 𝐹) be a tour in (𝑉, 𝐸) where |𝐹 ∩ 𝛿(𝑣) | ≤ 𝑘

for every 𝑣 ∈ 𝑉 . Prove that one can find a Hamiltonian circuit 𝐶 in
(𝑉, 𝐸) such that every edge in 𝐶 has length at most 𝑘 · max𝑒∈𝐹 𝑐(𝑒)
in polynomial time.

(b) Let 𝛼 ≥ 1. Suppose that for every feasible solution 𝑥 to the LP (2.2),
we can compute in polynomial time an 𝛼-thin spanning tree with
respect to 𝑥 in the support graph of 𝑥. Prove that then there is a
8⌈𝛼⌉-approximation algorithm for the Asymmetric Bottleneck TSP.

Hint: For (a), partition an Eulerian walk into segments containing at most
⌈ 𝑘2 ⌉ vertices each (with at most one segment containing fewer than ⌈ 𝑘2 ⌉
vertices) and use Hall’s bipartite matching theorem (cf. Theorem 3.13).
For (b), apply Exercise 5.4 to a suitable subgraph (𝑉, 𝐸 ′) of (𝑉, 𝐸) and
then use (a).
(An, Kleinberg, and Shmoys [2021])
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5.6 Consider the following randomized algorithm for the Asymmetric TSP:
Starting with a solution 𝑥 to (3.1), make 100 log 𝑛 copies of each edge 𝑒,
then sample every copy of every edge 𝑒 independently with probability 𝑥𝑒.
Finally, apply Lemma 5.1 to the resulting edge set 𝑅 (if (𝑉, 𝑅) is con-
nected, otherwise output an arbitrary tour). Show that this is a randomized
𝑂 (log 𝑛)-approximation algorithm.
Hint: Show that (𝑉, 𝑅) is very likely connected and thin, using Theo-
rem 4.25 similarly as in the proof of Theorem 5.7.
(Goemans et al. [2009])

5.7 Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph and 𝜆 ∈ R𝐸
>0. Show that

Reff (𝑠, 𝑢) ≤ Reff (𝑠, 𝑡) + Reff (𝑡, 𝑢) for all 𝑠, 𝑡, 𝑢 ∈ 𝑉 .
Hint: Use the max-flow min-cut theorem and Exercise 2.3.

5.8 Let𝐺 = (𝑉, 𝐸) be an undirected circuit and 𝜇 a probability distribution of
spanning trees in 𝐺 such that every spanning tree has positive probability.
Prove that then 𝜇 is a 𝜆-uniform distribution for some 𝜆 : 𝐸 → R>0.

5.9 Describe an undirected graph 𝐺 and a probability distribution 𝜇 of
spanning trees in 𝐺 such that every spanning tree has positive probability
and the random variables |{𝑒} ∩ 𝑆 | are negatively correlated, but 𝜇 is not
a 𝜆-uniform distribution for any 𝜆 : 𝐸 → R>0.

5.10 Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph and (𝑉, 𝑆) a spanning
tree sampled according to a 𝜆-uniform distribution. Let 𝐹 ⊆ 𝐸 . Prove that
P[𝐹 ∩ 𝑆 = ∅] ≤ ∏

𝑓 ∈𝐹 P[ 𝑓 ∉ 𝑆].
Hint: Let 𝑋 ⊆ 𝐸 , and let 𝜏 denote the event that 𝑋 ∩ 𝑆 = ∅. Prove that
P[𝜏 | 𝑒] ≤ P[𝜏] for every 𝑒 ∈ 𝐸 \ 𝑋 that is not a bridge, similarly to the
proof of Corollary 5.17.

5.11 Give a direct proof of Theorem 5.19, not using Theorem 5.15. Use
induction and Λ(𝐺) = 𝜆𝑒Λ(𝐺/𝑒) + Λ(𝐺 − 𝑒). Show that Theorem 5.19
implies Theorem 5.15.
Hint: Review the proof of Theorem 5.19.

5.12 (a) Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑞 be a vector in the
spanning tree polytope of 𝐺. Let 𝛾 ∈ R𝐸 and 𝜇(𝑆) := 𝑒𝛾 (𝑆) for all
𝑆 ∈ S. Suppose

∑
𝑆∈S:𝑒∈𝑆 𝜇(𝑆) = 𝑞𝑒 for all 𝑒 ∈ 𝐸 . Show that then

𝜇 is a probability distribution and maximizes the entropy over all
probability distributions 𝜇′ : S → [0, 1] with

∑
𝑆∈S:𝑒∈𝑆 𝜇

′ (𝑆) = 𝑞𝑒
for all 𝑒 ∈ 𝐸 .

(b) Describe an undirected graph 𝐺 = (𝑉, 𝐸) and a vector 𝑞 in the
spanning tree polytope of 𝐺 with 0 < 𝑞𝑒 < 1 for all 𝑒 ∈ 𝐸 such that
there exists no 𝛾 ∈ R𝐸 and 𝜇(𝑆) := 𝑒𝛾 (𝑆) for all 𝑆 ∈ S for which∑
𝑆∈S:𝑒∈𝑆 𝜇(𝑆) = 𝑞𝑒 for all 𝑒 ∈ 𝐸 .

Hint: Such a 𝛾 is only guaranteed to exist if 𝑞 is in the relative interior of
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the spanning tree polytope – that is, all constraints 𝑥(𝐸 [𝑈]) ≤ |𝑈 | − 1
for 2 ≤ |𝑈 | < 𝑛 are satisfied strictly.

5.13 Let (𝑉, 𝑆1) and (𝑉, 𝑆2) be two different trees on the same vertex set.
Show that there are edges 𝑒1 ∈ 𝑆1 \ 𝑆2 and 𝑒2 ∈ 𝑆2 \ 𝑆1 such that
(𝑉, (𝑆1 \ {𝑒1}) ∪ {𝑒2}) and (𝑉, (𝑆2 \ {𝑒2}) ∪ {𝑒1}) are trees. (See also
Exercise 13.10.)

5.14 Let𝐺 = (𝑉, 𝐸) be an undirected graph, and let 𝑞 be a vector in the spanning
tree polytope 𝑃 of 𝐺. Call a set𝑊 ⊆ 𝑉 tight if 𝑞(𝐸 [𝑊]) = |𝑊 | − 1.

(a) Let 𝑒, 𝑓 ∈ 𝐸 such that 𝑞𝑒 and 𝑞 𝑓 are strictly between 0 and 1. Show
that finding a number 𝛿 ≥ 0 and a set 𝑋 ⊊ 𝑉 with 𝑒 ∈ 𝐸 [𝑋] and
𝑓 ∉ 𝐸 [𝑋] such that 𝑞′ := 𝑞 + 𝛿

(
𝜒{𝑒} − 𝜒{ 𝑓 }

)
∈ 𝑃 and 𝑋 is tight for

𝑞′ reduces to submodular function minimization (cf. Exercise 4.7).
(b) Let 𝑊 ⊆ 𝑉 be a tight set such that there is an edge (and thus two

edges) 𝑒 ∈ 𝐸 [𝑊] with 0 < 𝑞𝑒 < 1. Show that (a) (and an algorithm for
submodular function minimization) can be used to compute a vector
𝑞′ ∈ 𝑃 such that one of the following holds:

• 𝑞′𝑒 = 1.
• 𝑞′

𝑓
= 0 for some edge 𝑓 in the support of 𝑞.

• We find a proper subset𝑊 ′ ⊊ 𝑊 with 𝑒 ∈ 𝐸 [𝑊 ′] and 𝑞′ (𝐸 [𝑊 ′]) =
|𝑊 ′ | − 1.

Hint: Use Exercise 2.6.
(c) Using that there is a polynomial-time algorithm for submodular func-

tion minimization, conclude that pipage rounding can be implemented
to run in polynomial time.

5.15 Suppose we have a probability distribution 𝜇 over points in the spanning
tree polytope 𝑃 of a graph, and we obtain another probability distribution
by reducing the probability for some point 𝑥 ∈ 𝑃 and increasing it for
𝑥 + 𝛿

(
𝜒{𝑒} − 𝜒{ 𝑓 }

)
∈ 𝑃 and 𝑥 − 𝛿

(
𝜒{𝑒} − 𝜒{ 𝑓 }

)
∈ 𝑃 so that the marginals

remain the same.

(a) Show that then, for any 𝐹 ⊆ 𝐸 , the expectation of
∑
𝑥∈𝑃 𝜇(𝑥)

∏
𝑒′∈𝐹 𝑥𝑒′

does not increase.
(b) Conclude that if we start with 𝜇(𝑥) = 1 for some 𝑥 ∈ 𝑃, apply such

operations, and end with a probability distribution of (the incidence
vectors of) spanning trees, then the random variables |{𝑒} ∩ 𝑆 | (𝑒 ∈ 𝐸)
are negatively correlated, where 𝑆 is a random spanning tree sampled
from the final distribution.

(Chekuri, Vondrák, and Zenklusen [2010])
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Exercises 113

5.16 Suppose we can compute in polynomial time max
{ | 𝛿𝑆 (𝑈) |
| 𝛿𝐺 (𝑈) | : ∅ ≠ 𝑈 ⊊ 𝑉

}
for a given undirected graph𝐺 = (𝑉, 𝐸) and a spanning tree 𝑆 in𝐺. Show
that then we can solve the Sparsest Cut Problem in polynomial time:
Given an undirected graph (𝑉, 𝐸), compute min

{ | 𝛿 (𝑈) |
|𝑈 | · |𝑉\𝑈 | : ∅ ≠ 𝑈 ⊊ 𝑉

}
.

Hint: Let 𝐺 = (𝑉, 𝐸) be a graph for which we want to compute a sparsest
cut. If 𝑘𝑣,𝑤 denotes the number of parallel edges between 𝑣 and 𝑤 and
𝐾 = 1 + max{𝑘𝑣,𝑤 : 𝑣, 𝑤 ∈ 𝑉, 𝑣 ≠ 𝑤}, let �̄� denote the graph that has
𝐾 − 𝑘𝑣,𝑤 parallel edges between 𝑣 and 𝑤. Now we define a new graph 𝐻.
For sufficiently large 𝑁 , make 𝑁 copies of every element of 𝑉 . Connect
any two copies of the same vertex by many parallel edges. For each pair
{𝑣, 𝑤} ∈

(𝑉
2
)
, add a matching of 𝑁 edges between the copies of 𝑣 and the

copies of 𝑤. Call this graph 𝐻. Define a spanning tree 𝑆 in 𝐻 such that
after contracting the copies of each vertex, 𝑆 becomes �̄�.
Note: The Sparsest Cut Problem is NP-hard (Matula and Shahrokhi
[1990]).

5.17 Improve the constant in the integrality gap upper bound of Theorem 5.27
from 20

3 to less than 5.
Hint: In the 𝑖-th iteration, set 𝑦𝑒 = 1

𝑁−(𝑖−1)𝛼 for all 𝑒 ∈ 𝐻𝑖−1, where
𝐻0 = 𝐻 and 𝐻𝑖 results from 𝐻𝑖−1 by removing the edges of the tree 𝑆𝑖 ,
which is 𝛼-thin with respect to 𝑦. Show that |𝛿𝐻𝑖

(𝑈) | ≥ 2(𝑁 − 𝑖𝛼) for all
∅ ≠ 𝑈 ⊊ 𝑉 and all 𝑖. Assuming that the tour resulting from tree 𝑆𝑖 costs at
least 𝑟𝛼𝑐(𝑥), deduce a lower bound on the total cost of 𝑆1, . . . , 𝑆 1

𝛼
(1− 2

𝑟
)𝑁 .
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6

Asymmetric Graph TSP

A major step towards the first constant-factor approximation algorithm for the
Asymmetric TSP was made by Svensson [2015]. He devised a constant-factor
approximation algorithm for the Asymmetric Graph TSP, which is the special
case of the Asymmetric TSP with 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸 .

In this chapter, we present Svensson’s [2015] algorithm for the Asymmetric
Graph TSP. We also incorporate some improvements, mostly from Traub and
Vygen [2022] and Traub [2020a], who gave a variant of Svensson’s algorithm
with improved approximation ratio. Moreover, we present an improved algorithm
for finding a graph subtour cover, which is the main subroutine of Svensson’s
algorithm. Overall, we will obtain an approximation ratio of 8 + 𝜀 for every
𝜀 > 0. Almost all the techniques presented in this chapter will be used again in
Chapters 7 and 8 for the general Asymmetric TSP.

6.1 Preliminaries on Asymmetric Graph TSP

Let us formally define the problem that we deal with in this chapter.

Problem 6.1 (Asymmetric Graph TSP).

Instance: A strongly connected directed graph 𝐺 = (𝑉, 𝐸).

Task: Compute a tour in 𝐺 with a minimum number of edges.

We will compare the result of the algorithm to the value of the linear
programming relaxation (3.2), which we restate here for the special case of
Asymmetric Graph TSP (where 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸):

114
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6.1 Preliminaries on Asymmetric Graph TSP 115

min 𝑥(𝐸)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥(𝛿+ (𝑣)) = 𝑥(𝛿− (𝑣)) (𝑣 ∈ 𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸)

(6.1)

Theorem 3.18 says that this linear program has integrality ratio at least 2, and
no worse example is known even for the general Asymmetric TSP.

Table 6.1 summarizes the history of the Asymmetric Graph TSP. In fact,
Svensson [2015] considered node-weighted instances, but these are essentially
equivalent (see Exercise 6.2).

Let us start with a very simple observation.

Proposition 6.2. For every instance 𝐺 = (𝑉, 𝐸) of the Asymmetric Graph TSP
with 𝑛 vertices, we have 𝑛 ≤ LP ≤ OPT ≤ 𝑛2, where LP denotes the value of
the linear program (6.1).

Proof. For any instance𝐺 = (𝑉, 𝐸) and an optimum solution 𝑥 to the LP (6.1),
we have 𝑛 ≤ 1

2
∑
𝑣∈𝑉 𝑥(𝛿(𝑣)) = 𝑥(𝐸) = LP ≤ OPT ≤ 𝑛(𝑛 − 1), where the last

inequality follows since OPT is the minimum cost of a Hamiltonian circuit in the
metric closure (cf. Proposition 1.12), and in a strongly connected unweighted
digraph, the distance of any pair of vertices is at most 𝑛 − 1. □

This upper bound can be improved by a constant factor (see Exercise 6.3),
but we will not need this.

Instances of the Asymmetric Graph TSP are strongly connected, but we
will also deal with digraphs that are not. The strongly connected components
of a directed graph 𝐺 = (𝑉, 𝐸) are its maximal strongly connected (induced)
subgraphs. Their vertex sets form a partition of 𝑉 . The following simple fact
will be used several times:

Proposition 6.3. Let𝐺 be a digraph and𝐺 [𝑈] a strongly connected component
of 𝐺. Let (𝑊, 𝐹) be a strongly connected subgraph of 𝐺. Then 𝑊 ⊆ 𝑈 or
𝑊 ∩𝑈 = ∅.

Proof. Suppose there exist vertices 𝑣 ∈ 𝑊 ∩𝑈 and 𝑤 ∈ 𝑊 \𝑈. Then (𝑊, 𝐹)
and thus also 𝐺 contains a path from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣. Hence, 𝑣
and 𝑤 are in the same strongly connected component of 𝐺, contradicting 𝑣 ∈ 𝑈
and 𝑤 ∉ 𝑈. □

Contracting each strongly connected component results in an acyclic digraph:
a digraph that contains no (directed) circuit. The following is well-known:
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Table 6.1 Approximation ratios and upper bounds on the integrality ratio
of (6.1) for Asymmetric Graph TSP in the order of their discovery. Only results
that are (or were) better than for general Asymmetric TSP are shown. Again, 𝜀
stands for an arbitrarily small positive constant.

Approximation Ratio Integrality Ratio Year Reference Chapter

27 + 𝜀 13 2015 Svensson [2015] 6
13 + 𝜀 13 2019 Traub [2020a] 6
8 + 𝜀 8 2021 this book 6

Proposition 6.4. A digraph 𝐺 = (𝑉, 𝐸) is acyclic if and only if it has a
topological order – that is, 𝑉 = {𝑣1, . . . , 𝑣𝑛} such that 𝑖 < 𝑗 for all (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 .
Every digraph𝐺 has a strongly connected component𝐺 [𝑈] such that 𝛿− (𝑈) = ∅,
and such a set𝑈 can be found in polynomial time.

Proof. Clearly, a digraph with a topological order is acyclic. We prove the
converse by induction on 𝑛 = |𝑉 |, the case 𝑛 = 1 being trivial. So, let 𝐺 be an
acyclic digraph with 𝑛 ≥ 2. Start at any vertex and follow an outgoing arc as
long as there is one. We never return to any vertex because 𝐺 is acyclic, so
this terminates at a vertex 𝑢 with 𝛿+ (𝑢) = ∅. Let 𝑣𝑛 := 𝑢 and append this to a
topological order of 𝐺 − 𝑢, which exists by induction.

For the second statement, note that contracting the vertex set of each strongly
connected component of𝐺 yields an acyclic digraph𝐺′, which has a topological
order 𝑤1, . . . , 𝑤𝑛′ by the first part. Then the strongly connected component of
𝐺 that corresponds to 𝑤1 has no entering arc. □

In fact, the strongly connected components and a topological order of the
digraph that results from contracting them can be found in linear time. We call
this order a topological order of the strongly connected components.

6.2 Covering Subtours for Asymmetric Graph TSP

Like the cycle cover algorithm (Algorithm 1.35) by Frieze, Galbiati, and Maffioli
[1982], Svensson’s [2015] algorithm always maintains an Eulerian multi-set
𝐻 of edges. It repeatedly computes another Eulerian multi-set 𝐹 of edges such
that 𝐹 enters and leaves every connected component of (𝑉, 𝐻) at least once.
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Definition 6.5 (graph subtour cover). Given a digraph 𝐺 = (𝑉, 𝐸) and an
Eulerian multi-subset 𝐻 of 𝐸 , a graph subtour cover of 𝐻 in 𝐺 is an Eulerian
multi-subset 𝐹 of 𝐸 such that 𝐹 ∩ 𝛿(𝑊) ≠ ∅ for all vertex sets𝑊 of connected
components of (𝑉, 𝐻).

An essential difference of Svensson’s algorithm is that, in contrast to the
cycle cover algorithm, it adds only a carefully selected subset of 𝐹 to 𝐻. To
analyze Svensson’s algorithm, it is therefore not sufficient to have a bound on
the total cardinality of 𝐹. Instead, 𝐹 needs to fulfill certain “local” bounds. The
following was proved by Svensson [2015] with the constant 3 instead of 2.

Theorem 6.6. Given a directed graph 𝐺 = (𝑉, 𝐸), a solution 𝑥 to the LP (6.1),
and an Eulerian multi-subset 𝐻 of 𝐸 , we can compute in polynomial time a
graph subtour cover 𝐹 of 𝐻 such that for every connected component 𝐷 of
(𝑉, 𝐹), we have

|𝐸 (𝐷) | ≤
∑︁

𝑣∈𝑉 (𝐷)
2 · 𝑥(𝛿− (𝑣)).

Proof. Let 𝑊1, . . . ,𝑊𝑘 be the vertex sets of the connected components of
(𝑉, 𝐻). First, we make the support of 𝑥 inside each set𝑊𝑖 acyclic: While there is
a circuit 𝐶 in 𝐺 [𝑊𝑖] with 𝛾 := min{𝑥𝑒 : 𝑒 ∈ 𝐸 (𝐶)} > 0, reduce 𝑥𝑒 by 𝛾 for all
𝑒 ∈ 𝐶. Let the resulting circulation be 𝑥. We have 𝑥(𝛿− (𝑊𝑖)) = 𝑥(𝛿− (𝑊𝑖)) ≥ 1
for 𝑖 = 1, . . . , 𝑘 .

The idea is to round 𝑥 to an integral circulation while guaranteeing that we
use at least one edge of 𝛿− (𝑊𝑖) for each 𝑖 = 1, . . . , 𝑘 . We say that 𝑤 ∈ 𝑉 is
a high-throughput vertex if 𝑥(𝛿− (𝑤)) ≥ 1. If 𝑊𝑖 contains a high-throughput
vertex 𝑤, we will enforce routing at least one unit of flow through 𝑤 and hence
through𝑊𝑖; here, we use that the support of 𝑥 inside𝑊𝑖 is acyclic. If𝑊𝑖 contains
no high-throughput vertex, we enforce a unit of flow through𝑊𝑖 by an auxiliary
vertex.

To this end, we construct an auxiliary digraph �̄� from 𝐺 and transform
𝑥 to a circulation 𝑥 in �̄� (cf. Figure 6.1). Start with �̄� = 𝐺 and 𝑥 = 𝑥. Let
𝑖 ∈ {1, . . . , 𝑘} such that 𝑊𝑖 contains no high-throughput vertex. We add an
auxiliary vertex 𝑎𝑖 and add an edge 𝑒′ = (𝑣, 𝑎𝑖) for each 𝑒 = (𝑣, 𝑤) ∈ 𝛿− (𝑊𝑖)
and an edge 𝑒′ = (𝑎𝑖 , 𝑣) for each 𝑒 = (𝑤, 𝑣) ∈ 𝛿+ (𝑊𝑖). We take one unit of flow
that goes through 𝑊𝑖 and reroute it through 𝑎𝑖 , scaling down the flow inside
𝑊𝑖 . More precisely, we set 𝛼 := 1

�̄� (𝛿− (𝑊𝑖 ) ) , define 𝑥𝑒′ = 𝛼 · 𝑥𝑒 for all edges
𝑒 ∈ 𝛿(𝑊𝑖), and then 𝑥𝑒 = (1 − 𝛼) · 𝑥𝑒 for all edges 𝑒 with at least one endpoint
in𝑊𝑖 .

After doing this transformation successively for all 𝑖 ∈ {1, . . . , 𝑘} for which
𝑊𝑖 contains no high-throughput vertex, we end up with a circulation 𝑥 in �̄�
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1

(d)

𝑠1𝑡1 𝑠2

𝑡2

𝑊1 𝑊2

𝑊3

Figure 6.1 An example of the construction of a graph subtour cover (proof of
Theorem 6.6). Let𝑊1,𝑊2, and𝑊3 be the vertex sets of the connected components
of (𝑉, 𝐻 ); note that 𝐻 itself is not shown. (a): An LP solution 𝑥. Single edges 𝑒
have 𝑥𝑒 = 1

3 , double edges 𝑒 have 𝑥𝑒 = 2
3 . After deleting the red dotted circulation,

the remaining circulation �̃� (green, solid) is acyclic within each 𝑊𝑖 . The set 𝑊3
contains a vertex 𝑤 with �̃� (𝛿− (𝑤) ) ≥ 1 (the blue square). (b): For the other sets,
𝑊1 and𝑊2, we reroute one unit of flow through the auxiliary vertices 𝑎1 and 𝑎2,
respectively. This yields the circulation �̄� in �̄�. (c): A possible integer circulation
�̄�∗ in �̄�. (d): Mapping �̄�∗ back to the original edges, we get the solid green edges.
Together with the dashed brown paths inside𝑊1 and𝑊2, this yields a graph subtour
cover 𝐹.
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that satisfies the following throughput bounds: First, 𝑥(𝛿− (𝑎𝑖)) = 1 for each 𝑖 ∈
{1, . . . , 𝑘} for which the auxiliary vertex 𝑎𝑖 was created; second, ⌊𝑥(𝛿− (𝑣))⌋ ≤
𝑥(𝛿− (𝑣)) ≤ ⌈𝑥(𝛿− (𝑣))⌉ for all 𝑣 ∈ 𝑉 (note that the lower bound is zero unless 𝑣
is a high-throughput vertex). By Corollary 3.12, there is an integral circulation
𝑥∗ in the support graph of 𝑥 satisfying the same throughput bounds, and such a
circulation can be computed in polynomial time.

We now construct 𝐹. First, taking 𝑥∗𝑒 copies of every edge yields an Eulerian
multi-set �̄� in �̄�. Since we route one unit of flow through every high-throughput
vertex, and all the flow is routed in the support graph of 𝑥, which is acyclic
within each 𝑊𝑖 , we have �̄� ∩ 𝛿− (𝑊𝑖) ≠ ∅ for all 𝑖 for which no vertex 𝑎𝑖 was
added. For each new vertex 𝑎𝑖 , we replace the two edges incident to 𝑎𝑖 by their
corresponding original edges in 𝛿(𝑊𝑖) and obtain a multi-set 𝐹 of edges in
𝐺. For all 𝑖 = 1, . . . , 𝑘 , we have |𝐹 ∩ 𝛿− (𝑊𝑖) | = |𝐹 ∩ 𝛿+ (𝑊𝑖) | ≥ 1. Moreover,
|𝐹 ∩ 𝛿− (𝑣) | = |𝐹 ∩ 𝛿+ (𝑣) | for all 𝑣 ∈ 𝑊𝑖 , except possibly for one pair of vertices
𝑠𝑖 , 𝑡𝑖 ∈ 𝑊𝑖 with |𝐹∩𝛿− (𝑠𝑖) | = |𝐹∩𝛿+ (𝑠𝑖) |+1 and |𝐹∩𝛿− (𝑡𝑖) | = |𝐹∩𝛿+ (𝑡𝑖) |−1,
in which case we take an 𝑠𝑖-𝑡𝑖-path in 𝐺 [𝑊𝑖] and add it to 𝐹. (Note that such a
path exists because 𝐺 [𝑊𝑖] is strongly connected since𝑊𝑖 induces a connected
component of the Eulerian digraph (𝑉, 𝐻).) We end up with a graph subtour
cover 𝐹 of 𝐻 in 𝐺.

For all 𝑖 for which𝑊𝑖 contains no high-throughput vertex, we rerouted the
unit of flow that went through 𝑎𝑖 to enter and leave 𝑊𝑖 , and we have, for all
𝑣 ∈ 𝑊𝑖 ,

|𝐹 ∩ 𝛿− (𝑣) | ≤ |�̄� ∩ 𝛿− (𝑣) | + 1
= 𝑥∗ (𝛿− (𝑣)) + 1 ≤ ⌈𝑥(𝛿− (𝑣))⌉ + 1 ≤ 2 ≤ 2 · 𝑥(𝛿− (𝑣)).

For all 𝑖 for which𝑊𝑖 contains a high-throughput vertex 𝑤, we enforced at
least one unit of flow through 𝑤 and needed no rerouting. Hence, for every
𝑣 ∈ 𝑊𝑖 ,

|𝐹 ∩ 𝛿− (𝑣) | = |�̄� ∩ 𝛿− (𝑣) |
= 𝑥∗ (𝛿− (𝑣)) ≤ ⌈𝑥(𝛿− (𝑣))⌉ ≤ ⌈𝑥(𝛿− (𝑣))⌉ < 2 · 𝑥(𝛿− (𝑣)),

where the last inequality follows from 𝑥(𝛿− (𝑣)) ≥ 1. □

The algorithm in this proof will be generalized in Chapter 8.

6.3 Outline of Svensson’s Algorithm

In this section, we outline Svensson’s algorithm. It maintains an Eulerian
multi-set 𝐻 of edges and stops once 𝐻 is a tour. In each iteration, the algorithm
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computes a graph subtour cover 𝐹 of 𝐻 and adds a carefully selected subset of
𝐹 to 𝐻. Theorem 6.6 says that for every connected component 𝐷 of (𝑉, 𝐹), we
have |𝐸 (𝐷) | ≤ ∑

𝑣∈𝑉 (𝐷) 2 · 𝑥(𝛿− (𝑣)); such a graph 𝐷 (and also such an edge
set 𝐹) will be called 2𝑥-light in this outline section.

We will start Svensson’s algorithm with an Eulerian multi-set �̃� of edges
that is 4𝑥-light (such an �̃� will be called an initialization). So if �̃�1, . . . , �̃�𝑘

are the vertex sets of the connected components of (𝑉, �̃�), then we have
|�̃� [�̃�𝑖] | ≤

∑
𝑣∈�̃�𝑖

4 · 𝑥(𝛿− (𝑣)) for 𝑖 = 1, . . . , 𝑘 . The empty set would be a
feasible initialization, but we aim at a better one, already forming large connected
components. We order the connected components so that

∑
𝑣∈�̃�1

𝑥(𝛿− (𝑣)) ≥
· · · ≥ ∑

𝑣∈�̃�𝑘
𝑥(𝛿− (𝑣)). Call an initialization �̃� optimal if (among all possible

4𝑥-light Eulerian multi-sets)
∑
𝑣∈�̃�1

𝑥(𝛿− (𝑣)) is as large as possible, then among
all those

∑
𝑣∈�̃�2

𝑥(𝛿− (𝑣)) is as large as possible, and so on.
We do not know how to find an optimal initialization in polynomial time, but

let us assume for now that we can. For proving an upper bound on the integrality
ratio, polynomial running time is irrelevant anyway. For a fixed initialization,
we say that a graph has index 𝑖 if it contains a vertex of �̃�𝑖 but no vertex of
�̃�1 ∪ · · · ∪ �̃�𝑖−1.

Recall that we compute a 2𝑥-light graph subtour cover 𝐹 for a superset 𝐻 of
�̃� in each iteration of the algorithm. Given 𝐹, let us denote by 𝐹𝑖 the union of
the connected components of (𝑉, 𝐹) with index 𝑖. A key property of �̃� and 𝐹 is
the following:

Proposition 6.7. |𝐸 (𝐹𝑖) | ≤ 4
∑
𝑣∈�̃�𝑖

𝑥(𝛿− (𝑣)).

Proof. Suppose this is not true. Then (since 𝐹 is 2𝑥-light)

2
∑︁

𝑣∈𝑉 (𝐹𝑖 )
𝑥(𝛿− (𝑣)) ≥ |𝐸 (𝐹𝑖) | > 4

∑︁
𝑣∈�̃�𝑖

𝑥(𝛿− (𝑣)) ≥ |�̃� [�̃�𝑖] |,

and therefore |�̃� [�̃�𝑖] | + |𝐸 (𝐹𝑖) | ≤ 4
∑
𝑣∈𝑉 (𝐹𝑖 ) 𝑥(𝛿− (𝑣)). We conclude that

�̃� [�̃�𝑖] ∪𝐸 (𝐹𝑖) is 4𝑥-light. But then 𝐸 (𝐹𝑖) ∪ �̃�
[
𝑉 \ (�̃�𝑖+1∪· · ·∪�̃�𝑘)

]
is a better

initialization because
∑
𝑣∈�̃�𝑖∪𝑉 (𝐹𝑖 ) 𝑥(𝛿

− (𝑣)) > ∑
𝑣∈�̃�𝑖

𝑥(𝛿− (𝑣)), contradicting
our choice of the initialization �̃�. □

Now assume for a moment the following lucky property: For all subtour
covers 𝐹 that we compute for intermediate Eulerian multi-sets 𝐻 throughout
the algorithm, 𝐻 ∪ 𝐸 (𝐹𝑖) connects all of �̃�𝑖 ∪ · · · ∪ �̃�𝑘 (but 𝐻 alone does not),
for the largest 𝑖 for which 𝐹𝑖 is nonempty. Then we will buy 𝐹𝑖 (add its edges to
𝐻) and make �̃�𝑖 pay for 𝐹𝑖 (recall the bound in Proposition 6.7). Note that later
the same set �̃�𝑖 will never pay again for anything, so the total number of edges
that we added is at most

∑𝑘−1
𝑖=1 4

∑
𝑣∈�̃�𝑖

𝑥(𝛿− (𝑣)) ≤ 4
∑
𝑣∈𝑉 𝑥(𝛿− (𝑣)) = 4 LP.
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In addition, we have the edges in the initialization, but this was 4𝑥-light, so it
cannot have more than 4 LP edges. Our tour then has at most 8 LP edges.

Unfortunately, we cannot expect to be so lucky. Nevertheless, we consider a
connected component of (𝑉, 𝐻 ∪ 𝐹) with maximum index, say index 𝑖. If there
is a “cheap” circuit 𝐶 that connects this component to some other component,
we tentatively add the edges of 𝐶 to the pool 𝐹 from which we will eventually
buy edges. This circuit will also be paid for by �̃�𝑖 if we end up buying this
new larger connected component of (𝑉, 𝐹) that contains 𝐶. Since this new
component must have smaller index, only one circuit 𝐶 will be paid for by �̃�𝑖 .

We iterate until no such cheap circuit exists for the connected component with
largest index (in the graph consisting of edges from𝐻∪𝐹 and possibly additional
circuits). Only then do we buy the edges of this (and only this) component (add
them to 𝐻). Now we reduced the number of connected components of (𝑉, 𝐻),
and we iterate the entire procedure until (𝑉, 𝐻) is connected.

One can argue that every �̃�𝑖 still pays at most once for some 𝐹𝑖 , as in the
lucky case: If at a later stage 𝐹𝑖 is nonempty, it must contain a cheap circuit that
we would have added to the pool (as we will show in Lemma 6.15).

The assumption that we start with an optimal initialization only works if
we do not care about the running time (i.e., when only proving an upper
bound on the integrality ratio). However, one can simply start with an arbitrary
initialization (for example, the empty set) and assume that it is optimal. Either
the algorithm works essentially as described above, or we find a “significantly
better” initialization. In the latter case, we can simply restart.

We will now describe all this in detail. In order to arrive at essentially the
same bound of 8 LP as in the lucky case, we will pay the circuits 𝐶 from slack
that we have because �̃� may contain fewer edges than is allowed for 4𝑥-light
sets. This will require a slightly different definition of “optimal initialization,”
but the overall idea remains the same.

6.4 Initializing Svensson’s Algorithm

Svensson’s algorithm is initialized with an Eulerian multi-set �̃� of 𝐸 and then
computes either a “better” initialization �̃�′ or extends �̃� to a tour 𝐻. The overall
algorithm for Asymmetric Graph TSP starts with �̃� = ∅ and repeatedly applies
Svensson’s algorithm until it outputs a tour 𝐻. In this section, we discuss how
to find a better initialization �̃�′ in certain cases.

The initialization �̃� of the algorithm will always be light (see Definition 6.8).
To define what a light edge set is, we fix a function ℓ : 𝑉 → R≥0. We will make
a particular choice for the function ℓ later (in (6.9)), but at the moment, we
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don’t make any further assumptions on ℓ. This will be useful when we adapt
Svensson’s algorithm for the general Asymmetric TSP in Chapter 7. There, we
will apply some results from this section (in particular Lemma 6.9) for a different
choice of ℓ. For this reason, we also work with a cost function 𝑐 : 𝐸 → R≥0
here, although for Asymmetric Graph TSP, we have 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸 .

Definition 6.8 (light). Let �̃� be an Eulerian multi-subset of 𝐸 . We call �̃� light
if 𝑐(𝐸 (𝐷)) ≤ ℓ(𝑉 (𝐷)) for every connected component 𝐷 of (𝑉, �̃�).

To measure what a “better” initialization for Svensson’s algorithm is, we
introduce a potential function Φ. For a subset �̃� of 𝑉 and a multi-subset �̃� of 𝐸 ,
we write

slack(�̃� , �̃�) := ℓ(�̃�) − 𝑐(�̃� [�̃�]).

When we apply this notation, �̃� will normally be the vertex set of a connected
component of (𝑉, �̃�).

For a multi-subset �̃� of 𝐸 such that the connected components of (𝑉, �̃�)
have vertex sets �̃�1, . . . , �̃�𝑘 , we write

Φ(�̃�) :=
𝑘∑︁
𝑖=1

slack(�̃�𝑖 , �̃�)1+𝑝 ,

where 𝑝 := log1+𝜀′ ( 1+𝜀′
𝜀′ ) and 0 < 𝜀′ ≤ 1

4 is an arbitrary but fixed constant.
Since �̃� will always be light,

0 ≤ Φ(�̃�) ≤ ℓ(𝑉)1+𝑝 .

We will choose ℓ such that ℓ(𝑉) is 𝑂 (LP), where LP denotes the value of
(3.2) (which is (6.1) for Asymmetric Graph TSP). Then 𝑐(�̃�) = 𝑂 (LP), again
because �̃� is light.

We sort the connected components �̃�1, . . . , �̃�𝑘 of (𝑉, �̃�) such that

slack(�̃�1, �̃�) ≥ · · · ≥ slack(�̃�𝑘 , �̃�).

In the limit for 𝜀′ → 0 and thus 𝑝 →∞, we then have Φ(�̃�′) > Φ(�̃�) whenever
the sorted slack vector

(
slack(�̃�1, �̃�), . . . , slack(�̃�𝑘 , �̃�)

)
is lexicographically

larger for �̃�′ than for �̃�. Working with this limit potential would be sufficient
for showing the integrality ratio upper bound (as Svensson [2015] showed; cf.
Exercise 6.4) but not for a polynomial-time algorithm.

We will start with the initialization �̃� = ∅. When Svensson’s algorithm
computes an improved initialization, Φ(�̃�) increases significantly. This will
imply that after a polynomial number of steps, no further significant improvement
is possible.
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Let �̃� be a light Eulerian multi-edge set, which we fix for the rest of this
section. Let again �̃�1, . . . , �̃�𝑘 be the vertex sets of the connected components
of (𝑉, �̃�), ordered so that slack(�̃�1, �̃�) ≥ · · · ≥ slack(�̃�𝑘 , �̃�). For a connected
multi-subgraph 𝐷 of 𝐺, we define the index of 𝐷 to be

ind(𝐷) := min{ 𝑗 ∈ {1, . . . , 𝑘} : 𝑉 (𝐷) ∩ �̃� 𝑗 ≠ ∅}.

We now prove the main lemma that we will use to find a better initialization
�̃�′. We are able to find such a better initialization whenever we have a connected
Eulerian multi-subgraph 𝐷 of 𝐺 that has significantly larger slack than every
connected component of (𝑉, �̃�) it intersects:

Lemma 6.9. Let 𝐷 be a connected Eulerian multi-subgraph of 𝐺 = (𝑉, 𝐸)
such that

slack(𝑉 (𝐷), 𝐸 (𝐷)) > slack(�̃�ind(𝐷) , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)). (6.2)

Then we can compute in polynomial time a light Eulerian multi-set �̃�′ ⊆ �̃�
.
∪

𝐸 (𝐷) such that

Φ(�̃�′) −Φ(�̃�) > min
{
ℓ(𝑣)1+𝑝 : 𝑣 ∈ �̃�ind(𝐷)

}
. (6.3)

Proof. If slack(�̃�ind(𝐷) , �̃�) < min{ℓ(𝑣) : 𝑣 ∈ �̃�ind(𝐷) }, we simply set �̃�′ :=
�̃�\�̃� [�̃�ind(𝐷) ], which does the job because we replace the connected component
induced by �̃�ind(𝐷) by at least two singletons, each of which has slack at
least min{ℓ(𝑣) : 𝑣 ∈ �̃�ind(𝐷) }. Henceforth, we assume slack(�̃�ind(𝐷) , �̃�) ≥
min{ℓ(𝑣) : 𝑣 ∈ �̃�ind(𝐷) }.

Let 𝐼 := { 𝑗 ∈ {1, . . . , 𝑘} : 𝑉 (𝐷) ∩ �̃� 𝑗 ≠ ∅} and 𝑖 := min 𝐼 = ind(𝐷). We
will compute a subset 𝐽 of 𝐼 and replace the components �̃� [�̃� 𝑗 ] for 𝑗 ∈ 𝐼 by
one new component that is the union of 𝐸 (𝐷) and all �̃� [�̃� 𝑗 ] with 𝑗 ∈ 𝐽, as
well as possibly some singleton components. More precisely, we set

�̃�′ :=
⋃

ℎ∈{1,...,𝑘}\𝐼
�̃� [�̃�ℎ]

.
∪ 𝐸 (𝐷)

.
∪

⋃
𝑗∈𝐽

�̃� [�̃� 𝑗 ] .

See Figure 6.2. Let 𝐷∗ be the connected component of (𝑉, �̃�′) with edge set

𝐸 (𝐷)
.
∪

⋃
𝑗∈𝐽

�̃� [�̃� 𝑗 ] .

Choose

𝐽 :=
{
𝑗 ∈ 𝐼 : ℓ(�̃� 𝑗 ∩𝑉 (𝐷)) ≤ slack(�̃� 𝑗 , �̃�)

}
. (6.4)
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�̃�1

�̃�5

�̃�7

�̃�2 �̃�4

�̃�3

�̃�6𝑉 (𝐷)

Figure 6.2 Illustration of the proof of Lemma 6.9. The gray and blue rectangles
show the partition of 𝑉 into �̃�1, . . . , �̃�7. In red, we see the vertex set 𝑉 (𝐷) of the
given connected graph 𝐷 with ind(𝐷) = 2. The rectangles with blue boundaries
show the sets �̃�𝑖 with 𝑖 ∈ 𝐼 . In this example, 𝐼 = {2, 3, 4, 6}. The filled areas
show vertex sets of connected components of (𝑉, �̃� ′ ) . In this example, we have
𝐽 = {2, 4}. The connected components �̃� [�̃�1 ], �̃� [�̃�5 ], and �̃� [�̃�7 ] remain
unchanged, and we get a new component 𝐷∗ with vertex set 𝑉 (𝐷) ∪ �̃�2 ∪ �̃�4;
we also get singleton components (without edges) for all vertices in �̃�3 \ 𝑉 (𝐷)
and �̃�6 \ 𝑉 (𝐷) . This picture is taken from Traub and Vygen [2022].

Then

slack(𝑉 (𝐷∗), 𝐸 (𝐷∗)) = slack(𝑉 (𝐷), 𝐸 (𝐷))

+
∑︁
𝑗∈𝐽

(
slack(�̃� 𝑗 , �̃�) − ℓ(�̃� 𝑗 ∩𝑉 (𝐷))

)
≥ slack(𝑉 (𝐷), 𝐸 (𝐷)),

(6.5)

so 𝐸 (𝐷∗) is light, and hence �̃�′ is also light.
We will now show (6.3). To this end, we will first prove two lower bounds on

slack(𝑉 (𝐷∗), 𝐸 (𝐷∗)). Using the definition of 𝐽 and (6.2), we get

slack(𝑉 (𝐷∗), 𝐸 (𝐷∗))

= slack(𝑉 (𝐷), 𝐸 (𝐷)) +
∑︁
𝑗∈𝐽

(
slack(�̃� 𝑗 , �̃�) − ℓ(�̃� 𝑗 ∩𝑉 (𝐷))

)
≥ slack(𝑉 (𝐷), 𝐸 (𝐷)) + 𝜀′

1+𝜀′
∑︁
𝑗∈𝐽

(
slack(�̃� 𝑗 , �̃�) − ℓ(�̃� 𝑗 ∩𝑉 (𝐷))

)
≥ slack(𝑉 (𝐷), 𝐸 (𝐷)) + 𝜀′

1+𝜀′
∑︁
𝑗∈𝐼

(
slack(�̃� 𝑗 , �̃�) − ℓ(�̃� 𝑗 ∩𝑉 (𝐷))

)
> slack(�̃�𝑖 , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷))

+ 𝜀′

1+𝜀′
∑︁
𝑗∈𝐼

(
slack(�̃� 𝑗 , �̃�) − ℓ(�̃� 𝑗 ∩𝑉 (𝐷))

)
= slack(�̃�𝑖 , �̃�) + 𝜀′

1+𝜀′
∑︁
𝑗∈𝐼

slack(�̃� 𝑗 , �̃�). (6.6)
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For the second lower bound on slack(𝑉 (𝐷∗), 𝐸 (𝐷∗)), we first observe that from
(6.2) we also get

slack(�̃�𝑖 , �̃�) < slack(𝑉 (𝐷), 𝐸 (𝐷)) − 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷))
≤ 1

1+𝜀′ ℓ(𝑉 (𝐷)).
(6.7)

From (6.5) and (6.2) and (6.7), we obtain

slack(𝑉 (𝐷∗), 𝐸 (𝐷∗)) ≥ slack(𝑉 (𝐷), 𝐸 (𝐷))
> slack(�̃�𝑖 , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷))
> (1 + 𝜀′) · slack(�̃�𝑖 , �̃�).

(6.8)

Combining the two lower bounds (6.6) and (6.8) for slack(𝑉 (𝐷∗), 𝐸 (𝐷∗))
and the definition of 𝑝 = log1+𝜀′ ( 1+𝜀′

𝜀′ ), we get

slack(𝑉 (𝐷∗), 𝐸 (𝐷∗))1+𝑝

> (1+𝜀′) 𝑝 · slack(�̃�𝑖 , �̃�) 𝑝
(
slack(�̃�𝑖 , �̃�) + 𝜀′

1+𝜀′
∑︁
𝑗∈𝐼

slack(�̃� 𝑗 , �̃�)
)

= 1+𝜀′
𝜀′

(
slack(�̃�𝑖 , �̃�)1+𝑝 + slack(�̃�𝑖 , �̃�) 𝑝 · 𝜀′

1+𝜀′
∑︁
𝑗∈𝐼

slack(�̃� 𝑗 , �̃�)
)

≥ slack(�̃�𝑖 , �̃�)1+𝑝 +
∑︁
𝑗∈𝐼

slack(�̃� 𝑗 , �̃�)1+𝑝 ,

where we used slack(�̃�𝑖 , �̃�) ≥ slack(�̃� 𝑗 , �̃�) for all 𝑗 ∈ 𝐼.
We conclude

Φ(�̃�′) −Φ(�̃�) ≥ slack(𝑉 (𝐷∗), 𝐸 (𝐷∗))1+𝑝 −
∑︁
𝑗∈𝐼

slack(�̃� 𝑗 , �̃�)1+𝑝

> slack(�̃�𝑖 , �̃�)1+𝑝 ,

which is sufficient since slack(�̃�𝑖 , �̃�) ≥ min{ℓ(𝑣) : 𝑣 ∈ �̃�ind(𝐷) }. □

For the rest of this chapter, we will deal with Asymmetric Graph TSP only.
Here, we set

ℓ(𝑣) := 4(1 + 𝜀′) · 𝑥(𝛿− (𝑣)) (6.9)

for all 𝑣 ∈ 𝑉 , where 𝑥 is an optimum solution to the LP (6.1). Then we have
ℓ(𝑣) ≥ 4(1 + 𝜀′) for all 𝑣 ∈ 𝑉 . Moreover,

ℓ(𝑉) = 4(1 + 𝜀′) · 𝑥(𝐸) = 4(1 + 𝜀′) · LP, (6.10)
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where LP denotes the value of (6.1). By Proposition 6.2, this also implies
ℓ(𝑉) ≤ 4(1 + 𝜀′) · 𝑛2. Thus, Lemma 6.9 guarantees

Φ(�̃�′) −Φ(�̃�) > min
{
ℓ(𝑣)1+𝑝 : 𝑣 ∈ 𝑉

}
≥ (4(1 + 𝜀′))1+𝑝

≥
(
ℓ(𝑉)
𝑛2

)1+𝑝
.

(6.11)

Since 0 ≤ Φ(�̃�) ≤ ℓ(𝑉)1+𝑝, this shows that we can apply Lemma 6.9 at most
𝑛2(1+𝑝) times until there exists no connected Eulerian multi-subgraph 𝐷 with
(6.2). For such an initialization �̃�, Svensson’s algorithm will complete �̃� to a
tour.

Let us now explain how we obtain the graphs 𝐷 to which we apply Lemma 6.9
during Svensson’s algorithm. First, we will apply Theorem 6.6 to obtain a graph
subtour cover 𝐹 of 𝐻. For 𝑖 ∈ {1, . . . , 𝑘}, we denote by 𝐹𝑖 the union of the
connected components 𝐷′ of (𝑉, 𝐹) with ind(𝐷′) = 𝑖. We will find a better
initialization for Svensson’s algorithm whenever 𝐹 violates any of the following
two conditions:

|𝐸 (𝐹𝑖) | ≤ ℓ(�̃�𝑖) for all 𝑖 ∈ {1, . . . , 𝑘}; (6.12)

slack(𝑉 (𝐷), 𝐸 (𝐷)) ≤ slack(�̃�ind(𝐷) , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷))
for every connected component 𝐷 of (𝑉, 𝐹). (6.13)

The fact that we can find an improved initialization and thus make progress
whenever any of (6.12) and (6.13) is violated will allow us to assume that we
always obtain a set 𝐹 fulfilling both (6.12) and (6.13).

Figure 6.3 illustrates the two different ways of obtaining 𝐷 as in Lemma 6.9
whenever (6.12) or (6.13) is violated. This is trivial if (6.13) is violated and
follows from Lemma 6.10 if (6.12) is violated.

Lemma 6.10. Let 𝐹 be an Eulerian multi-edge set such that |𝐸 (𝐷′) | ≤∑
𝑣∈𝑉 (𝐷′ ) 2 · 𝑥(𝛿− (𝑣)) for every connected component 𝐷′ of (𝑉, 𝐹). For 𝑖 ∈
{1, . . . , 𝑘}, let the graph 𝐹𝑖 be the union of the connected components 𝐷′ of
(𝑉, 𝐹) with ind(𝐷′) = 𝑖.

Suppose we have |𝐸 (𝐹𝑖) | > ℓ(�̃�𝑖) for some 𝑖 ∈ {1, . . . , 𝑘}. Then

𝐷 :=
(
�̃�𝑖 ∪𝑉 (𝐹𝑖), �̃� [�̃�𝑖]

.
∪ 𝐸 (𝐹𝑖)

)
fulfills the conditions of Lemma 6.9 – that is, 𝐷 is a connected Eulerian
multi-subgraph of 𝐺 with (6.2).
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�̃�1

�̃�2

�̃�3

�̃�4

�̃�5

�̃�6

�̃�7

�̃�8

�̃�9

�̃�10

𝐹1

Figure 6.3 Illustration of the two possibilities for obtaining a better initialization
via Lemma 6.9 when (6.12) or (6.13) is violated. Here, the filled ellipses show the
partition �̃�1, . . . , �̃�10 of 𝑉 (the connected components of (𝑉, �̃� )). The curves
depict an Eulerian edge set 𝐹 resulting from Theorem 6.6 for some 𝐻. (The set 𝐻
is not shown here.) In blue, we see a subgraph 𝐷 as in (6.13): Here 𝐷 is a single
connected component of (𝑉, 𝐹 ) , and in this example, we have ind(𝐷) = 2. In red,
we see a subgraph 𝐷 as in Lemma 6.10: Here the red curves constitute the graph
𝐹1, and 𝐷 is the disjoint union of 𝐸 (𝐹1 ) and �̃� [�̃�1 ]. This picture is taken from
Traub and Vygen [2022].

Proof. We have

1
2+2𝜀′ · ℓ(𝑉 (𝐷)) ≥

1
2+2𝜀′ · ℓ(𝑉 (𝐹𝑖))

=
∑︁

𝑣∈𝑉 (𝐹𝑖 )
2 · 𝑥(𝛿− (𝑣))

≥ |𝐸 (𝐹𝑖) |
> ℓ(�̃�𝑖).

(6.14)

We get

|𝐸 (𝐷) | = |�̃� [�̃�𝑖] | + |𝐸 (𝐹𝑖) |
= ℓ(�̃�𝑖) + |𝐸 (𝐹𝑖) | − slack(�̃�𝑖 , �̃�)
< 1

2+2𝜀′ · ℓ(𝑉 (𝐷)) +
1

2+2𝜀′ · ℓ(𝑉 (𝐷)) − slack(�̃�𝑖 , �̃�)
= ℓ(𝑉 (𝐷)) − 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)) − slack(�̃�𝑖 , �̃�),

where we used (6.14) twice (once to bound |𝐸 (𝐹𝑖) | and once to bound ℓ(�̃�𝑖)).
This proves (6.2). □
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6.5 Svensson’s Algorithm

In this section, we present Svensson’s algorithm. The following lemma states its
result:

Lemma 6.11. Given an instance 𝐺 = (𝑉, 𝐸) of Asymmetric Graph TSP and a
light Eulerian multi-set �̃� ⊆ 𝐸 , we can compute in polynomial time

(i) a tour 𝐻 in 𝐺 with

|𝐻 | ≤ 2 · ℓ(𝑉) (6.15)

or
(ii) a light Eulerian multi-subset �̃�′ of 𝐸 such that

Φ(�̃�′) −Φ(�̃�) >
(

1
𝑛2 · ℓ(𝑉)

)1+𝑝
. (6.16)

From Lemma 6.11, we can derive the main result of this chapter.

Theorem 6.12. Let 𝜀 > 0. Then there is a polynomial-time algorithm that
computes a solution of cardinality at most (8 + 𝜀) times the value of the LP (6.1)
for every instance of Asymmetric Graph TSP.

Proof. We may assume 𝜀 ≤ 2. Let 𝜀′ := 𝜀
8 and define 𝑝, ℓ, and Φ as in

Section 6.4. We start with �̃� = ∅ and apply Lemma 6.11. If we obtain a set �̃�′ as
in Lemma 6.11 (ii), we set �̃� := �̃�′ and iterate – that is, we apply Lemma 6.11
again until we finally obtain a tour 𝐻 as in Lemma 6.11 (i).

Since 0 ≤ Φ(�̃�) ≤ ℓ(𝑉)1+𝑝 , we need at most 𝑛2(1+𝑝) iterations. At the end,
the algorithm guaranteed by Lemma 6.11 returns a solution 𝐻 to the instance 𝐺
such that

|𝐻 | ≤ 2 · ℓ(𝑉) = 2 · 4(1 + 𝜀′) · LP = (8 + 𝜀) · LP,

where we used (6.10) in the first equation. □

In the remaining part of this chapter, we prove Lemma 6.11. To this end,
we consider Algorithm 6.13. We maintain an Eulerian edge set 𝐻, which
is initialized with 𝐻 = �̃�. We iterate the following steps. First, we apply
Theorem 6.6 to obtain a graph subtour cover 𝐹. Then we try to find an improved
initialization �̃�′ as discussed in Section 6.4, and finally, if we could not find a
better initialization, we extend the set 𝐻. The careful update of 𝐻 in Step (6) of
Algorithm 6.13 is illustrated in Figure 6.4 (see also the outline in Section 6.3).

Notice that Step (4b) is just a cleanup step that removes unnecessary parts;
it maintains a graph subtour cover with |𝐸 (𝐷) | ≤ ∑

𝑣∈𝑉 (𝐷) 2 · 𝑥(𝛿− (𝑣)) for
every connected component 𝐷 of (𝑉, 𝐹′). (This cleanup step is actually not
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Algorithm 6.13: Svensson’s Algorithm
Input: a directed graph 𝐺 with 𝐺 = (𝑉, 𝐸),

a light Eulerian multi-subset �̃� of 𝐸
Output: either 𝐻 as in Lemma 6.11 (i) or �̃�′ as in Lemma 6.11 (ii)

(1) Let �̃�1, . . . , �̃�𝑘 be the vertex sets of the connected components of (𝑉, �̃�)
such that slack(�̃�1, �̃�) ≥ slack(�̃�2, �̃�) ≥ · · · ≥ slack(�̃�𝑘 , �̃�).

(2) Set 𝐻 := �̃�.
(3) while (𝑉, 𝐻) is not connected do

(4) Compute a graph subtour cover 𝐹:
(4a) Apply Theorem 6.6 to 𝐻 to obtain a graph subtour cover 𝐹′ with

|𝐸 (𝐷) | ≤ ∑
𝑣∈𝑉 (𝐷) 2 · 𝑥(𝛿− (𝑣)) for every connected component 𝐷

of (𝑉, 𝐹′).
(4b) Let 𝐹 result from 𝐹′ by deleting all edges of connected components

of (𝑉, 𝐹′) whose vertex sets are contained in a connected
component of (𝑉, 𝐻).

(5) Try to find a better initialization �̃�′:
For 𝑖 ∈ {1, . . . , 𝑘}, let the graph 𝐹𝑖 be the union of the connected
components 𝐷′ of (𝑉, 𝐹) with ind(𝐷′) = 𝑖.

(5a) If for some 𝑖 ∈ {1, . . . , 𝑘} we have |𝐸 (𝐹𝑖) | > ℓ(�̃�𝑖), apply
Lemma 6.9 to 𝐷 =

(
�̃�𝑖 ∪𝑉 (𝐹𝑖), �̃� [�̃�𝑖]

.
∪ 𝐸 (𝐹𝑖)

)
to obtain a better

initialization �̃�′. Then return �̃�′.
(5b) If (𝑉, 𝐹) has a connected component 𝐷 with

slack(𝑉 (𝐷), 𝐸 (𝐷)) > slack(�̃�ind(𝐷) , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)),
apply Lemma 6.9 to obtain a better initialization �̃�′. Then return �̃�′.

(6) Extend 𝐻:
(6a) Set 𝑋 := ∅.
(6b) Select the connected component 𝑍 of (𝑉, 𝐻

.
∪ 𝐹

.
∪ 𝑋) for which

ind(𝑍) is largest.
(6c) If there is a circuit 𝐶 with

• 𝐸 (𝐶) ∩ 𝛿(𝑉 (𝑍)) ≠ ∅ and
• |𝐸 (𝐶) | ≤ slack(�̃�ind(𝑍 ) , �̃�),
then add 𝐸 (𝐶) to 𝑋 and go to Step (6b).

(6d) Add the edges (𝐹
.
∪ 𝑋) [𝑉 (𝑍)] to 𝐻.

(7) Return 𝐻.
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�̃�1 �̃�2 �̃�3 �̃�4 �̃�5 �̃�6 �̃�7 �̃�8 �̃�9

Figure 6.4 An illustration of Step (6) in the first iteration of Svensson’s algorithm.
The edge set 𝐹 is shown in red (solid and dashed). First, the component 𝑍 with
vertex set �̃�7 ∪ �̃�8 and ind(𝑍 ) = 7 is considered. We may find the blue circuit 𝐶
with |𝐸 (𝐶 ) | ≤ slack(�̃�7, �̃� ) . After adding 𝐸 (𝐶 ) to 𝑋, the component 𝑍 with
vertex set �̃�3 ∪ �̃�5 and ind(𝑍 ) = 3 is considered next. Then we may find the green
circuit 𝐶′ with |𝐸 (𝐶′ ) | ≤ slack(�̃�3, �̃� ) . Then 𝐸 (𝐶′ ) is added to 𝑋, and now
(𝑉, 𝐻

.

∪ 𝐹
.

∪ 𝑋) has two connected components. The component 𝑍 with vertex
set �̃�2 ∪ �̃�3 ∪ �̃�4 ∪ �̃�5 ∪ �̃�9 and ind(𝑍 ) = 2 is considered next. Suppose there is
no circuit 𝐶′′ connecting it to the rest and with |𝐸 (𝐶′′ ) | ≤ slack(�̃�2, �̃� ) . Then
the edges drawn as solid curves are added to 𝐻, concluding the first iteration. This
picture is taken from Traub and Vygen [2022].

necessary when using the graph subtour cover algorithm from Section 6.2; see
Exercise 6.5.)

To show that in Step (5a) the application of Lemma 6.9 is indeed possible, we
apply Lemma 6.10. To implement Step (6c), consider each edge 𝑒 = (𝑣, 𝑤) ∈
𝛿+ (𝑉 (𝑍)) and compute a shortest 𝑤-𝑣-path 𝑃 in𝐺 (cf. Theorem 1.14) and check
whether 1 + |𝐸 (𝑃) | ≤ slack(�̃�ind(𝑍 ) , �̃�).

Note that adding 𝐸 (𝐶) to 𝑋 in Step (6c) decreases the number of connected
components of (𝑉, 𝐻

.
∪ 𝐹

.
∪ 𝑋), and adding edges to 𝐻 in Step (6d) decreases

the number of connected components of (𝑉, 𝐻). Thus, the procedure terminates
after a polynomial number of steps.

If Algorithm 6.13 returns a multi-set �̃�′ in Step (5), we haveΦ(�̃�′)−Φ(�̃�) >(
1
𝑛2 · ℓ(𝑉)

)1+𝑝
as we observed in (6.11). Therefore, in this case, �̃�′ is a multi-set

as in Lemma 6.11 (ii).
Now suppose the algorithm does not terminate in Step (5). Since 𝐻 remains

Eulerian throughout the algorithm and (𝑉, 𝐻) is connected at the end of
Algorithm 6.13, the returned edge set 𝐻 is a tour. It remains to show the upper
bound (6.15) on the number of edges in 𝐻. Initially, we have |𝐻 | = |�̃� | ≤ ℓ(𝑉).
We bound the number of 𝑋-edges and the number of 𝐹-edges added to 𝐻
separately.
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𝑍 𝑡1

ind(𝑍 𝑡1 ) ≤ 𝑖

�̃�𝑖

𝑪𝐷

𝐹
𝑡2
𝑖

ind(𝐷) = 𝑖

Figure 6.5 Proof of Lemma 6.15: An example of the graph 𝐹𝑡2
𝑖

is shown in red.
The circuit 𝐶 contains an edge of 𝛿 (𝑉 (𝑍 𝑡1 ) ) , and 𝐷 is the connected component
containing 𝐶. This picture is taken from Traub and Vygen [2022].

Lemma 6.14. The total number of all 𝑋-edges that are added to 𝐻 is at most
ℓ(𝑉) − |�̃� |.

Proof. A circuit 𝐶 that is selected in Step (6c) and will later be added to
𝐻 connects 𝑍 to another connected component 𝑌 with ind(𝑌 ) < ind(𝑍).
We say that it marks ind(𝑍). It has at most slack(�̃�ind(𝑍 ) , �̃�) edges. No
circuit added later can mark ind(𝑍) because the new connected component
of (𝑉, 𝐻

.
∪ 𝐹

.
∪ 𝑋) containing both 𝑌 and 𝑍 will have smaller index by the

choice of 𝑍 . Hence, the total number of edges in the added circuits is at most∑𝑘
𝑖=1 slack(�̃�𝑖 , �̃�) = ℓ(𝑉) − |�̃� |. □

Lemma 6.15. The total number of all 𝐹-edges that are added to 𝐻 is at most
ℓ(𝑉).

Proof. Let 𝑍 𝑡 denote 𝑍 at the end of iteration 𝑡 of the while-loop. Let 𝐹𝑡
𝑖

be
the graph 𝐹𝑖 in iteration 𝑡 if the set of edges of 𝐹𝑖 is nonempty and is added to
𝐻 at the end of this iteration, and let 𝐹𝑡

𝑖
= ∅ otherwise.

If 𝐹𝑡
𝑖

is nonempty for some 𝑖 and 𝑡, then |𝐸 (𝐹𝑡
𝑖
) | ≤ ℓ(�̃�𝑖) by Step (5a). We

claim that for any 𝑖, at most one of the 𝐹𝑡
𝑖

is nonempty. Then summing over all 𝑖
and 𝑡 concludes the proof.

Suppose there are 𝑡1 < 𝑡2 such that 𝐹𝑡1
𝑖

≠ ∅ and 𝐹𝑡2
𝑖

≠ ∅. Then 𝑉 (𝐹𝑡1
𝑖
) ⊆

𝑉 (𝑍 𝑡1 ) and thus �̃�𝑖 ⊆ 𝑉 (𝑍 𝑡1 ). Moreover, 𝐹𝑡2
𝑖

contains a vertex of �̃�𝑖 and is not
completely contained in 𝑍 𝑡1 by Step (4b) of the algorithm. Thus, 𝐹𝑡2

𝑖
contains a

circuit 𝐶 with 𝐸 (𝐶) ∩ 𝛿(𝑉 (𝑍 𝑡1 )) ≠ ∅.
If |𝐸 (𝐶) | ≤ slack(�̃�ind(𝑍 𝑡1 ) , �̃�), due to Step (6c), this is a contradiction to

reaching Step (6d) in iteration 𝑡1 with the component 𝑍 𝑡1 . Otherwise, let 𝐷
be the connected component of 𝐹𝑡2

𝑖
containing 𝐶 (cf. Figure 6.5). Note that

ind(𝐷) = 𝑖 ≥ ind(𝑍 𝑡1 ). We get

|𝑉 (𝐶) | = |𝐸 (𝐶) | > slack(�̃�ind(𝑍 𝑡1 ) , �̃�) ≥ slack(�̃�ind(𝐷) , �̃�).
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Moreover, using the facts that |𝐸 (𝐷) | ≤ ∑
𝑣∈𝑉 (𝐷) 2𝑥(𝛿− (𝑣)) < 1

2ℓ(𝑉 (𝐷)), that
𝐷 contains 𝐶, that 𝜀′ ≤ 1

4 , and that 𝑙 (𝑣) ≥ 4(1 + 𝜀′) for all 𝑣 ∈ 𝑉 , we get

slack(𝑉 (𝐷), 𝐸 (𝐷)) > 1
2 · ℓ(𝑉 (𝐷))

> 1
4 · ℓ(𝑉 (𝐶)) +

𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷))
> |𝑉 (𝐶) | + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)).

Together, we obtain

slack(𝑉 (𝐷), 𝐸 (𝐷)) > slack(�̃�ind(𝐷) , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)).

Due to Step (5b), this is a contradiction to reaching Step (6) in iteration 𝑡2 and
adding 𝐹𝑡2

𝑖
there. □

Using Lemmas 6.14 and 6.15, we conclude that the returned edge set 𝐻 has
cardinality at most 2 · ℓ(𝑉). This concludes the proof of Lemma 6.11.

This (8 + 𝜀)-approximation algorithm is the best known today. However,
there is no reason to believe that a factor 2 is impossible (this is the known
lower bound on the integrality ratio by Theorem 3.18). Note that the factor 2
also appeared in Theorem 6.6. We leave the following as a challenging open
problem:

Open Problem 6.16. Devise a 2-approximation algorithm for the Asymmetric
Graph TSP.

Exercises

6.1 Let 𝜀 > 0. Let (𝐺, 𝑐) be an Asymmetric TSP instance with 𝑛 vertices,
such that there are nonnegative node weights 𝑐𝑣 ≥ 0 (𝑣 ∈ 𝑉) determining
the edge weights via 𝑐(𝑒) = 𝑐𝑣 + 𝑐𝑤 for each edge 𝑒 = (𝑣, 𝑤). Such
instances are called node-weighted. Show that given a node-weighted
Asymmetric TSP instance with 𝑛 vertices, we can find in polynomial
time a number 𝑀 > 0 and an unweighted digraph 𝐺′ with 𝑂 ( 𝑛2

𝜀
) vertices

such that

• LP(𝐺, 𝑐) ≤ 𝑀 · LP(𝐺′) ≤ (1 + 𝜀) · LP(𝐺, 𝑐),
• OPT(𝐺, 𝑐) ≤ 𝑀 · OPT(𝐺′) ≤ (1 + 𝜀) · OPT(𝐺, 𝑐), and
• for every tour 𝐹′ in the unweighted digraph𝐺′, there is a corresponding

tour 𝐹 in 𝐺 such that 𝑐(𝐹) ≤ 𝑀 · |𝐹′ |, and 𝐹 can be obtained from 𝐹′

in polynomial time.
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Here, LP(I) refers to the value of the LP (3.2) or (6.1), respectively, and
OPT(I) to the cost of an optimum tour for an instance I.
(Köhne, Traub, and Vygen [2020])

6.2 Conclude from Exercise 6.1 that the integrality ratio of (3.2) is the
same whether we restrict it to unweighted or to node-weighted instances.
Moreover, every 𝛼-approximation algorithm for unweighted instances
implies an (𝛼 + 𝜀)-approximation algorithm for node-weighted instances,
for every 𝜀 > 0.
(Köhne, Traub, and Vygen [2020])

6.3 The bounds in Proposition 6.2 are tight up to a constant factor: Show
that OPT ≤ (𝑛+1)2

4 , and for every odd 𝑛 ≥ 3, there is an instance with
LP =

(𝑛+1)2
4 .

6.4 Show that in the situation of Lemma 6.9, one immediately gets Φ(�̃�′) >
Φ(�̃�) for the limit potential Φ (for 𝑝 → ∞). More precisely, show
that the sorted slack vector (slack(�̃�1, �̃�), . . . , slack(�̃�𝑘 , �̃�)) increases
lexicographically. Deduce that to prove the upper bound on the integrality
ratio, one can simply start Svensson’s algorithm with a light Eulerian
multi-subset �̃� of 𝐸 for which the sorted slack vector is lexicographically
maximal.

6.5 Show that Step (4b) in Algorithm 6.13 is not needed (we can set 𝐹 = 𝐹′)
if we compute the graph subtour cover in Step (4a) as in the proof of
Theorem 6.6.

6.6 Show that in Step (6c) in Algorithm 6.13, one can replace the inequality
|𝐸 (𝐶) | ≤ slack(�̃�ind(𝑍 ) , �̃�) by |𝐸 (𝐶) | ≤ 1

2 slack(�̃�ind(𝑍 ) , �̃�) and still
obtain the same bound on the number of 𝐹-edges as in Lemma 6.15;
the bound on the number of 𝑋-edges from Lemma 6.14 improves by a
factor 2.



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

7

Constant-Factor Approximation for the
Asymmetric TSP

In this and the following chapter, we describe a constant-factor approximation
algorithm for the Asymmetric TSP. Such an algorithm was first devised by
Svensson, Tarnawski, and Végh [2020]. We present the improved version by
Traub and Vygen [2022], with an additional improvement that has not been
published before.

The overall algorithm consists of four main components, three of which we
will present in this chapter. First, we show that we can restrict attention to
instances whose cost function is given by a solution to the dual LP with laminar
support and an additional strong connectivity property. Second, we reduce such
instances to so-called vertebrate pairs. Third, we will adapt Svensson’s algorithm
from Chapter 6 to deal with vertebrate pairs.

7.1 Outline of the Asymmetric TSP Algorithm

An obvious idea would be to try to reduce the problem to the Asymmetric
Graph TSP and apply the result of the previous chapter. However, such a
reduction is not known; the structure of general Asymmetric TSP instances is
more complicated. Instead, we show a reduction to what Svensson, Tarnawski,
and Végh [2020] called vertebrate pairs. We will see that the Asymmetric
Graph TSP techniques can be extended to work also for vertebrate pairs.

The first step reduces Asymmetric TSP to so-called strongly laminar instances
by exploiting properties of a dual LP solution and complementary slackness.
In particular, we will work with a dual solution with laminar support as in
Lemma 4.13. We will strengthen this further and obtain that the sets in the
support induce strongly connected subgraphs.

Then we define vertebrate pairs, which consist of a strongly laminar instance
and a subtour visiting all non-singleton sets in the support of the dual LP solution.

134
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7.1 Outline of the Asymmetric TSP Algorithm 135

Table 7.1 Approximation ratios and upper bounds on the integrality ratio
of (3.2) for Asymmetric TSP in the order of their discovery. The third and fourth
papers do not mention the integrality ratio explicitly. (R) means randomized;
this algorithm computes a random tour, and the approximation ratio compares
its expected cost to OPT. Moreover, 𝜀 is an arbitrarily small positive constant.

Approximation Integrality
Ratio Ratio Year Reference Chapter

log2 𝑛 – 1980 Frieze, Galbiati,
and Maffioli [1982]

1.5

– log2 𝑛 1990 Williamson [1990] 3.5
0.99 log2 𝑛 0.99 log2 𝑛 2002 Bläser [2008] –
0.842 log2 𝑛 0.842 log2 𝑛 2003 Kaplan et al. [2005] –
2
3 log2 𝑛

2
3 log2 𝑛 2006 Feige and Singh [2007] –

𝑂 ( log 𝑛
log log 𝑛 ) (R) 𝑂 ( log 𝑛

log log 𝑛 ) 2009 Asadpour et al. [2017] 5
– (log log 𝑛)𝑂 (1) 2014 Anari and Oveis Gharan

[2015]
–

506 319 2017 Svensson, Tarnawski,
and Végh [2020]

6–8

22 + 𝜀 22 2019 Traub and Vygen [2022] 6–8
17 + 𝜀 17 2021 this book 6–8

By a subtour, we mean the edge set of a connected Eulerian multi-subgraph,
which however does not necessarily contain all vertices. In the reduction to
vertebrate pairs, we will repeatedly contract sets that are not visited so far, apply
an algorithm for vertebrate pairs, and iterate until we have a tour. See Figure 7.1
for the overall structure of our algorithm for Asymmetric TSP.

Overall, we will present a (17 + 𝜀)-approximation algorithm for the Asym-
metric TSP. Most of our presentation is based on Traub and Vygen [2022]. We
again summarize the history in Table 7.1.

ATSP strongly
laminar ATSP

vertebrate
pairs

subtour
cover Ch. 8Sec. 7.2 Sec. 7.5 Sec. 7.8

Figure 7.1 The sequence of reductions of our Asymmetric TSP algorithm.
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7.2 Reducing to Strongly Laminar Instances

In this section, we show how to reduce the Asymmetric TSP to a special case
where the instance has a particular structure. We already showed in Lemma 4.13
that we can assume a dual LP solution with laminar support. This will play a
key role in this section. We strengthen this property as follows:

Definition 7.1 (strongly laminar support). Let (𝐺, 𝑐) be an instance of Asym-
metric TSP. Moreover, let (𝑎, 𝑦) be a dual LP solution (i.e., a solution to (4.5)).
We say that 𝑦 or (𝑎, 𝑦) has strongly laminar support if

• L := {𝑈 : 𝑦𝑈 > 0} is a laminar family, and
• for every set𝑈 ∈ L, the digraph 𝐺 [𝑈] is strongly connected.

The following lemma allows us to assume that our optimum dual solution
has strongly laminar support:

Lemma 7.2. Let (𝐺, 𝑐) be an instance of the Asymmetric TSP. Moreover, let
(𝑎, 𝑦) be an optimum solution to (4.5) with laminar support. Then we can
compute in polynomial time (𝑎′, 𝑦′) such that

• (𝑎′, 𝑦′) is an optimum solution to (4.5), and
• (𝑎′, 𝑦′) has strongly laminar support.

Proof. As long as there is a set 𝑈 with 𝑦𝑈 > 0, but 𝐺 [𝑈] is not strongly
connected, we do the following. Let𝑈 be a minimal set with 𝑦𝑈 > 0 such that
𝐺 [𝑈] is not strongly connected. Moreover, let 𝐺 [𝑆] be a strongly connected
component of 𝐺 [𝑈] with 𝛿−

𝐺
(𝑆) ⊆ 𝛿−

𝐺
(𝑈); note that 𝑆 exists and can be

computed by Proposition 6.4.
Define a dual solution (𝑎′, 𝑦′) as follows (see Figure 7.2). We set 𝑦′

𝑈
:= 0,

𝑦′
𝑆

:= 𝑦𝑆 + 𝑦𝑈 , and 𝑦′
𝑊

:= 𝑦𝑊 for all other sets𝑊 . Moreover, 𝑎′𝑣 := 𝑎𝑣 − 𝑦𝑈 for
𝑣 ∈ 𝑈 \ 𝑆 and 𝑎′𝑣 := 𝑎𝑣 for all other vertices 𝑣. The only edges 𝑒 = (𝑣, 𝑤) for
which

𝑎′𝑤 − 𝑎′𝑣 +
∑︁

𝑊 :𝑒∈ 𝛿 (𝑊 )
𝑦′𝑊 > 𝑎𝑤 − 𝑎𝑣 +

∑︁
𝑊 :𝑒∈ 𝛿 (𝑊 )

𝑦𝑊

are edges from 𝑈 \ 𝑆 to 𝑆. However, such edges do not exist by choice of 𝑆.
Hence, (𝑎′, 𝑦′) is a feasible dual solution. Since

∑
∅≠𝑊⊊𝑉 2𝑦′

𝑊
=

∑
∅≠𝑊⊊𝑉 2𝑦𝑊 ,

it is also optimum.
We now show that the support of 𝑦′ is laminar. Suppose there is a set𝑊 in

the support of 𝑦′ that crosses 𝑆. Then𝑊 must be in the support of 𝑦 and hence
a subset of𝑈 because the support of 𝑦 is laminar. By the minimal choice of𝑈,
the digraph 𝐺 [𝑊] is strongly connected. But this implies that 𝐺 contains an
edge from𝑊 \ 𝑆 to𝑊 ∩ 𝑆, contradicting 𝛿−

𝐺
(𝑆) ⊆ 𝛿−

𝐺
(𝑈).
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𝑈

𝑆

−𝑦𝑈
+𝑦𝑈

−𝑦𝑈

Figure 7.2 Illustration of the proof of Lemma 7.2. A nonempty set 𝑈 ⊊ 𝑉 is
shown in blue. The vertex set 𝑆 of a strongly connected component of 𝐺 [𝑈 ] with
𝛿− (𝑆) ⊆ 𝛿− (𝑈) is shown in red. We modify our dual solution by increasing the
dual variable corresponding to 𝑆, decreasing the dual variable corresponding to𝑈
(blue), and decreasing the variables corresponding to the vertices in𝑈 \ 𝑆 (green).

We have now decreased the number of sets𝑈 in the support for which 𝐺 [𝑈]
is not strongly connected. Because the support of 𝑦 is laminar, it has at most
2|𝑉 | elements by Proposition 4.8. Therefore, after iterating the above procedure
at most 2|𝑉 | times, the dual solution has the desired properties. □

Definition 7.3 (strongly laminar Asymmetric TSP instance). A strongly laminar
Asymmetric TSP instance is a quadruple (𝐺,L, 𝑥, 𝑦), where

• 𝐺 = (𝑉, 𝐸) is a strongly connected digraph,
• L is a laminar family of subsets of 𝑉 such that 𝐺 [𝑈] is strongly connected

for all𝑈 ∈ L,
• 𝑥 is a feasible solution to the linear program (3.2) such that 𝑥(𝛿(𝑈)) = 2 for

all𝑈 ∈ L and 𝑥𝑒 > 0 for all 𝑒 ∈ 𝐸 , and
• 𝑦 : L → R≥0.

This induces the Asymmetric TSP instance (𝐺, 𝑐𝑦), where 𝑐𝑦 is the induced
cost function defined by 𝑐𝑦 (𝑒) :=

∑
𝑈∈L:𝑒∈ 𝛿 (𝑈) 𝑦𝑈 for all 𝑒 ∈ 𝐸 .

See Figures 7.3 and 7.4. In the following, 𝑐𝑦 will always denote the induced
cost function of the given strongly laminar Asymmetric TSP instance. The cost
𝑐𝑦 (𝐹) of a tour 𝐹 in 𝐺 is

∑
𝑈∈L |𝛿𝐹 (𝑈) | · 𝑦𝑈 . By complementary slackness

(Corollary 4.2), 𝑥 and (0, 𝑦) are optimum solutions to the LPs (3.2) and (4.5)
for (𝐺, 𝑐𝑦). For a strongly laminar instance I, we denote by LP(I) = 𝑐𝑦 (𝑥) =∑
𝑈∈L 2 · 𝑦𝑈 the value of these LPs.
We now prove that for Asymmetric TSP, it is sufficient to consider strongly

laminar Asymmetric TSP instances.
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Figure 7.3 Structure of the cost function 𝑐𝑦 induced by a strongly laminar Asym-
metric TSP instance. The cost of the edge 𝑒 shown in black is the sum of the values
𝑦𝑈 for the sets𝑈 ∈ L with 𝑒 ∈ 𝛿 (𝑈); these elements of the laminar family L
are shown in red.

9

3

3

5

11 6

3

8

5

3
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3

1
1

3
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Figure 7.4 An example of a cost function (left) induced by a vector 𝑦 whose
support is a laminar family of vertex sets (right).

Theorem 7.4. Let 𝛼 ≥ 1. If there is a polynomial-time algorithm that computes
for every strongly laminar Asymmetric TSP instance (𝐺,L, 𝑥, 𝑦) a solution of
cost at most 𝛼 · 𝑐𝑦 (𝑥), then there is a polynomial-time algorithm that computes
for every Asymmetric TSP instance a solution of cost at most 𝛼 times the value
of the linear program (3.2).

Proof. Let (𝐺, 𝑐) be an arbitrary instance of the Asymmetric TSP. We
compute an optimum solution 𝑥 to (3.2) and an optimum solution (𝑎, 𝑦) to
(4.5) such that the support of 𝑦 is a laminar family L. This is possible by
Proposition 3.1 and Lemma 4.13.

Now let 𝐸 ′ be the support of 𝑥 and define 𝐺′ := (𝑉, 𝐸 ′). Let 𝑥′ be the vector
𝑥 restricted to its support 𝐸 ′. Then apply Lemma 7.2 to𝐺′ and (𝑎, 𝑦). We obtain
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an optimum dual solution (𝑎′, 𝑦′) to (4.5) with strongly laminar support L. By
complementary slackness (Corollary 4.2), we have 𝑥′ (𝛿(𝑈)) = 2 for all𝑈 ∈ L.

Then the induced weight function of the strongly laminar Asymmetric TSP
instance (𝐺′,L, 𝑥′, 𝑦′) is given by 𝑐𝑦′ (𝑒) = ∑

𝑈∈L:𝑒∈ 𝛿 (𝑈) 𝑦
′
𝑈
= 𝑐(𝑒) + 𝑎′𝑣 − 𝑎′𝑤

for all 𝑒 = (𝑣, 𝑤) ∈ 𝐸 ′ (by complementary slackness). Because every tour in
𝐺′ is Eulerian, it has the same cost with respect to 𝑐 and with respect to 𝑐𝑦′ .
Moreover, 𝑐(𝑥) = 𝑐𝑦′ (𝑥′), and thus the theorem follows. □

7.3 Nice Paths

One advantage of the strongly laminar structure is that it implies the existence
of nice paths (see Figure 7.5):

Lemma 7.5. Let 𝐺 = (𝑉, 𝐸) be a strongly connected directed graph and let L
be a laminar family such that 𝐺 [𝑈] is strongly connected for every𝑈 ∈ L. Let
𝑣, 𝑤 ∈ 𝑉 and let �̃� be the minimal set in L ∪ {𝑉} with 𝑣, 𝑤 ∈ �̃�.

Then there is a 𝑣-𝑤-path in 𝐺 [�̃�] that enters every set𝑈 ∈ L at most once
and leaves every set𝑈 ∈ L at most once; we will call such a path nice. A nice
𝑣-𝑤-path can be found in polynomial time.

Proof. Let 𝑃 be a path from 𝑣 to 𝑤 in 𝐺 [�̃�]. Now repeat the following until
𝑃 enters and leaves every set in L at most once. Let𝑈 be a maximal set with
𝑈 ∈ L that 𝑃 enters or leaves more than once. Let 𝑣′ be the first vertex that
𝑃 visits in 𝑈, and let 𝑤′ be the last vertex that 𝑃 visits in 𝑈. Since 𝐺 [𝑈] is
strongly connected, we can replace the 𝑣′-𝑤′-subpath of 𝑃 by a path in 𝐺 [𝑈].
After at most |L| iterations, 𝑃 is a nice 𝑣-𝑤-path. Because L is laminar, we
have |L| < 2|𝑉 | by Proposition 4.8. □

Let (𝐺,L, 𝑥, 𝑦) be a strongly laminar Asymmetric TSP instance and 𝑐𝑦 the
induced cost function. In the following, we fix for every 𝑢, 𝑣 ∈ 𝑉 a nice 𝑢-𝑣-path
𝑃𝑢,𝑣 . Such paths can be computed in polynomial time by Lemma 7.5. The fact
that the path 𝑃𝑢,𝑣 is nice allows us to express its cost as follows:

Lemma 7.6. Let𝑊 ∈ L ∪ {𝑉} and let 𝑢, 𝑣 ∈ 𝑊 . Then

𝑐𝑦 (𝐸 (𝑃𝑢,𝑣)) =
∑︁

𝐿∈L: 𝐿⊊𝑊,𝐿∩𝑉 (𝑃𝑢,𝑣 )≠∅
2𝑦𝐿 −

∑︁
𝐿∈L:𝑢∈𝐿⊊𝑊

𝑦𝐿 −
∑︁

𝐿∈L: 𝑣∈𝐿⊊𝑊
𝑦𝐿 .

Proof. Since the path 𝑃𝑢,𝑣 is nice, it is contained in 𝐺 [𝑊]. Moreover, it leaves
every set 𝐿 ∈ L at most once and enters every set 𝐿 ∈ L at most once. A set
𝐿 ∈ L with 𝑢 ∈ 𝐿 is never entered by 𝑃𝑢,𝑣 , and a set 𝐿 ∈ L with 𝑣 ∈ 𝐿 is never
left by 𝑃𝑢,𝑣 . □



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

140 Constant-Factor Approximation for the Asymmetric TSP

𝑣

𝑤

𝑣′

𝑤′

Figure 7.5 A nice path from 𝑣 to 𝑤 is shown in green. The laminar family L is
shown in gray. The edges of 𝐺 are not shown. The red path from 𝑣′ to 𝑤′ is not
nice because it re-enters a set from L that it has previously left.

We define

value(𝑊) :=
∑︁

𝐿∈L:𝐿⊊𝑊
2𝑦𝐿

and

𝐷𝑊 (𝑢, 𝑣) :=
∑︁

𝐿∈L:𝑢∈𝐿⊊𝑊
𝑦𝐿 +

∑︁
𝐿∈L: 𝑣∈𝐿⊊𝑊

𝑦𝐿 + 𝑐𝑦 (𝐸 (𝑃𝑢,𝑣)) (7.1)

for 𝑢, 𝑣 ∈ 𝑊 . Intuitively, 𝐷𝑊 (𝑢, 𝑣) is the cost for entering and leaving proper
subsets of𝑊 , when entering𝑊 by an edge from 𝑉 \𝑊 to 𝑢, following the path
𝑃𝑢,𝑣 , and leaving𝑊 by an edge from 𝑣 to𝑉 \𝑊 . Note that 𝐷𝑊 (𝑢, 𝑣) ≤ value(𝑊)
by Lemma 7.6. We write

𝐷𝑊 := max{𝐷𝑊 (𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑊}.

On the one hand, it can be useful if 𝐷𝑊 is small: Then we can enter the set
𝑊 at some vertex 𝑠 ∈ 𝑊 and leave it at some other vertex 𝑡 ∈ 𝑊 , following a
cheap 𝑠-𝑡-path inside 𝐺 [𝑊] to get from 𝑠 to 𝑡. On the other hand, we can also
gain from 𝐷𝑊 being large: We can find a nice path inside𝑊 that visits many
sets 𝐿 ∈ L (more precisely, sets of high total weight in the dual solution 𝑦)
without paying more than necessary. Such paths will be useful (for constructing
so-called backbones) in the following section.

7.4 Vertebrate Pairs

If the laminar family L of our given strongly laminar Asymmetric TSP instance
consists of singletons only, the instance is a node-weighted instance, which is
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essentially equivalent to an Asymmetric Graph TSP instance (see Exercise 6.2).
However, this assumption is too strong.

A natural idea is to contract the maximal non-singleton sets in L and solve the
resulting node-weighted instance. After uncontracting, our tour will often enter
a set at a vertex 𝑢 and leave it at another vertex 𝑣; then we need to add a 𝑢-𝑣-path
to obtain an Eulerian edge set again. One could use a cheapest 𝑢-𝑣-path for this
purpose, which will not cost more than a nice path. We can define the node
weights of the vertices corresponding to contracted sets so that visiting these
vertices incurs a cost that is sufficient to pay for the 𝑢-𝑣-path after uncontracting.

We will normally still not visit all the vertices in an uncontracted set, so
we will apply the algorithm recursively to every such set. This algorithm will
not lead to a constant approximation guarantee unless the laminar family has
constant depth (Exercise 7.4). However, the approach can be adapted, leading to
a reduction to vertebrate pairs, which is a generalization of the node-weighted
asymmetric TSP that we will introduce shortly. For this reduction, we exploit
that a nice 𝑢-𝑣-path in 𝑈 is either cheap or visits many subsets of 𝑈 in the
laminar family. In the latter case, we can avoid contracting many of the subsets
of𝑈 when applying the algorithm to𝑈 recursively. More precisely, we will not
contract any subset that is already visited by a given “backbone.”

For a strongly laminar Asymmetric TSP instance (𝐺,L, 𝑥, 𝑦), let L≥2 :=
{𝐿 ∈ L : |𝐿 | ≥ 2} be the family of all non-singleton elements of L. We show
how to reduce Asymmetric TSP to the case where we have already a given
subtour 𝐵, called backbone, that visits all elements of L≥2 (see Figure 7.6).
We call a strongly laminar Asymmetric TSP instance together with a given
backbone a vertebrate pair.

Definition 7.7 (vertebrate pair). A vertebrate pair consists of

• a strongly laminar Asymmetric TSP instance I = (𝐺,L, 𝑥, 𝑦) and
• a connected Eulerian multi-subgraph 𝐵 of 𝐺 (the backbone) such that
𝑉 (𝐵) ∩ 𝐿 ≠ ∅ for all 𝐿 ∈ L≥2.

A solution of the vertebrate pair (I, 𝐵) is a multi-set 𝐹 of edges such that
𝐸 (𝐵)

.
∪ 𝐹 is a tour. Let 𝜅, 𝜂 ≥ 0. A (𝜅, 𝜂)-algorithm for vertebrate pairs is a

polynomial-time algorithm that computes, for any given vertebrate pair (I, 𝐵),
a solution 𝐹 such that

𝑐𝑦 (𝐹) ≤ 𝜅 · LP(I) + 𝜂 ·
∑︁

𝑣∈𝑉\𝑉 (𝐵):{𝑣}∈L
2𝑦{𝑣} .

In the following, we will show that a (𝜅, 𝜂)-algorithm for vertebrate pairs
(for any constants 𝜅 and 𝜂) implies a (3𝜅 + 𝜂 + 2)-approximation algorithm for
Asymmetric TSP.
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Figure 7.6 Example of a vertebrate pair (I, 𝐵) . The laminar family L of I is
shown in gray, and a backbone 𝐵 is shown in blue. The edges of 𝐺 are not shown.
This picture is taken from Traub and Vygen [2022].

7.5 Reducing to Vertebrate Pairs

Algorithm 7.8 is our reduction to vertebrate pairs. It is a recursive algorithm that,
given a set𝑊 ∈ L ∪ {𝑉}, constructs a tour in 𝐺 [𝑊]. See Figures 7.7 and 7.8
for an illustration. First, we observe that the algorithm indeed returns a tour in
𝐺 [𝑊].

Lemma 7.9. Let 𝜅, 𝜂 ≥ 0. Suppose we have a (𝜅, 𝜂)-algorithmA for vertebrate
pairs. Then Algorithm 7.8 has polynomial running time and returns a tour in
𝐺 [𝑊] for any given strongly laminar Asymmetric TSP instanceI = (𝐺,L, 𝑥, 𝑦)
and any given𝑊 ∈ L ∪ {𝑉}.

Proof. We apply induction on |𝑊 |. For |𝑊 | = 1, the algorithm returns 𝐹 = ∅.
Now let |𝑊 | > 1. Note that Steps (1) and (2) indeed construct a strongly
laminar Asymmetric TSP instance I′; in particular, 𝑥 is a feasible primal LP
solution (since it results from the original 𝑥 by contracting subsets of 𝑉). At
the end of Step (3), we have that 𝐹′ is Eulerian and 𝐹′

.
∪ 𝐸 (𝐵) is a tour in the

instance I′. In Step (4), the set 𝐹′ remains Eulerian, and 𝐹′
.
∪ 𝐸 (𝐵) remains

connected. Moreover, the subtour 𝐹′
.
∪ 𝐸 (𝐵) visits all sets in L�̄� (i.e., we have

𝐹′ ∩ 𝛿(𝐿) ≠ ∅ for all 𝐿 ∈ L�̄�). The subtour 𝐹′
.
∪ 𝐸 (𝐵) also visits all vertices

in𝑊 that are not contained in any set 𝐿 ∈ L�̄� (i.e., for these vertices 𝑣, we have
𝛿(𝑣) ∩ (𝐹′ ∪ 𝐸 (𝐵)) ≠ ∅). After Step (4), we have 𝐹′ ⊆ 𝐸 [𝑊]. We conclude
that the graph (𝑊, 𝐹′′

.
∪ 𝐸 (𝐵)) is connected and Eulerian; here we applied the

induction hypothesis to the sets 𝐿 ∈ L�̄� and use that 𝐹′ visits every 𝐿 ∈ L�̄�.
To see that the runtime of the algorithm is polynomially bounded, we observe

that by Proposition 4.8, there are in total at most |L| + 1 < 2|𝑉 | recursive calls
of the algorithm because L is a laminar family with ∅, 𝑉 ∉ L. □
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Algorithm 7.8: Recursive Algorithm to Reduce to Vertebrate Pairs
Input: a strongly laminar Asymmetric TSP instance I = (𝐺,L, 𝑥, 𝑦)

with 𝐺 = (𝑉, 𝐸),
a set𝑊 ∈ L ∪ {𝑉}, and
a (𝜅, 𝜂)-algorithm A for vertebrate pairs (for some constants
𝜅, 𝜂 ≥ 0)

Output: a tour 𝐹 in 𝐺 [𝑊]

(1) Contract 𝑽 \𝑾: If𝑊 ≠ 𝑉 , contract 𝑉 \𝑊 into a single vertex 𝑣�̄� and
redefine 𝑦𝑊 := 𝐷𝑊

2 .

(2) Construct a vertebrate pair: Let 𝑢∗, 𝑣∗ ∈ 𝑊 such that
𝐷𝑊 (𝑢∗, 𝑣∗) = 𝐷𝑊 . Let 𝐵 be the multi-graph corresponding to the closed
walk that results from appending 𝑃𝑢∗,𝑣∗ and 𝑃𝑣∗,𝑢∗ .
Let L�̄� denote the set of all maximal sets 𝐿 ∈ L with 𝐿 ⊊ 𝑊 and
𝐿 ∩𝑉 (𝐵) = ∅. Contract each set 𝐿 ∈ L�̄� to a single vertex 𝑣𝐿 and let 𝐺′
be the resulting graph.
Let L′ be the laminar family of subsets of 𝑉 (𝐺′) that contains singletons
{𝑣𝐿} for 𝐿 ∈ L�̄� and all the sets arising from 𝐿 ∈ L with 𝐿 ⊆ 𝑊 and
𝐿 ∩𝑉 (𝐵) ≠ ∅.
Set 𝑦{𝑣𝐿 } := 𝑦𝐿 + 𝐷𝐿

2 for all 𝐿 ∈ L�̄�.
Let I′ = (𝐺′,L′, 𝑥, 𝑦) be the resulting strongly laminar instance.

(3) Compute a solution for the vertebrate pair: Apply the given algorithm
A to the vertebrate pair (I′, 𝐵). Let 𝐹′ be the resulting Eulerian edge set.

(4) Lift the solution to a subtour: Fix an Eulerian walk in every connected
component of 𝐹′. Now uncontract every 𝐿 ∈ L�̄�. Whenever an Eulerian
walk passes through 𝑣𝐿 , we get two edges (𝑢′, 𝑢) ∈ 𝛿− (𝐿) and
(𝑣, 𝑣′) ∈ 𝛿+ (𝐿). To connect 𝑢 and 𝑣 within 𝐿, add the path 𝑃𝑢,𝑣 .
Moreover, if𝑊 ≠ 𝑉 , do the following. Whenever an Eulerian walk passes
through 𝑣�̄� using the edges (𝑢, 𝑣�̄� ) and (𝑣�̄� , 𝑣), replace them by the path
𝑃𝑢,𝑣 .

(5) Recurse to complete to a tour of the original instance: For every set
𝐿 ∈ L�̄�, apply Algorithm 7.8 recursively to obtain a tour 𝐹𝐿 in 𝐺 [𝐿]. Let
𝐹′′ be the disjoint union of 𝐹′ and all these tours 𝐹𝐿 for 𝐿 ∈ L�̄�.

(6) Return 𝐹 := 𝐹′′
.
∪ 𝐸 (𝐵).
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(a)

𝑢∗

𝑣∗
𝐵

𝑊

L�̄�

(b1)

𝑣�̄�

(b2)

𝑣�̄�

Figure 7.7 Illustration of Algorithm 7.8. The ellipses show the laminar family L.
Picture (a) shows the set 𝑊 (orange), the subtour 𝐵 (blue), and the elements of
L�̄� (red). The subtour 𝐵 is the union of the paths 𝑃𝑢∗ ,𝑣∗ and 𝑃𝑣∗ ,𝑢∗ . Picture (b1)
shows the resulting vertebrate pair as constructed in Step (2) of Algorithm 7.8.
The vertices resulting from the contraction of elements of L�̄� are shown in red,
and the vertex 𝑣�̄� that results from the contraction of 𝑉 \𝑊 is shown in orange.
Picture (b2) shows in green a possible solution to this vertebrate pair as computed
in Step (3). Step (4) of Algorithm 7.8 is illustrated by Figure 7.8. This picture is
taken from Traub and Vygen [2022].
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𝑊

Figure 7.8 Illustration of Step (4) of Algorithm 7.8, continuing Figure 7.7. The
green edges are those that arise from the vertebrate pair solution from Figure 7.7 (b2)
by undoing the contraction of the sets in L�̄�. The red edges are the paths that we
add to connect within 𝐿 ∈ L�̄� when uncontracting 𝐿. The orange edges show the
𝑢-𝑣-path in 𝐺 [𝑊 ] that we add to replace the edges (𝑢, 𝑣�̄� ) and (𝑣�̄� , 𝑣) in the
vertebrate pair solution from Figure 7.7 (b2). This picture is taken from Traub and
Vygen [2022].

Next, we observe that our backbone 𝐵 visits many sets 𝐿 ∈ L inside 𝑊 if
𝐷𝑊 is large.

Lemma 7.10. Let I = (𝐺,L, 𝑥, 𝑦) be a strongly laminar Asymmetric TSP
instance, and let𝑊 ∈ L∪{𝑉}. Moreover, let 𝐵 be as in Step (2) of Algorithm 7.8.
Then ∑︁

𝐿∈L�̄�

(2𝑦𝐿 + value(𝐿)) ≤ value(𝑊) − 𝐷𝑊 . (7.2)

Proof. By the choice of 𝑢∗ and 𝑣∗ in Step (2) and Lemma 7.6, we have

𝐷𝑊 = 𝐷𝑊 (𝑢∗, 𝑣∗)

= 𝑐𝑦 (𝐸 (𝑃𝑢∗,𝑣∗ )) +
∑︁

𝐿∈L:𝑢∗∈𝐿⊊𝑊
𝑦𝐿 +

∑︁
𝐿∈L: 𝑣∗∈𝐿⊊𝑊

𝑦𝐿

=
∑︁

𝐿∈L: 𝐿⊊𝑊, 𝐿∩𝑉 (𝑃𝑢∗,𝑣∗ )≠∅
2𝑦𝐿

≤
∑︁

𝐿∈L: 𝐿⊊𝑊, 𝐿∩𝑉 (𝐵)≠∅
2𝑦𝐿

= value(𝑊) −
∑︁
𝐿∈L�̄�

(2𝑦𝐿 + value(𝐿)). □
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Now, we analyze the cost of the tour 𝐹 in 𝐺 [𝑊] computed by Algorithm 7.8.
Note that the bound in the following lemma becomes smaller the larger 𝐷𝑊 is.
Hence, the more expensive it can be to visit 𝑊 (entering 𝑊 at some vertex 𝑠,
following the nice path 𝑃𝑠,𝑡 , and leaving it at 𝑡), the cheaper is the tour in 𝐺 [𝑊]
that we compute.

Lemma 7.11. Let 𝜅, 𝜂 ≥ 0. Suppose we have a (𝜅, 𝜂)-algorithmA for vertebrate
pairs. Let I = (𝐺,L, 𝑥, 𝑦) be a strongly laminar Asymmetric TSP instance, 𝑐𝑦

the induced cost function, and𝑊 ∈ L ∪ {𝑉}. Then the tour 𝐹 in 𝐺 [𝑊] returned
by Algorithm 7.8 has cost at most

𝑐𝑦 (𝐹) ≤ (2𝜅 + 2) · value(𝑊) + (𝜅 + 𝜂) · (value(𝑊) − 𝐷𝑊 ).

Proof. By induction on |𝑊 |. The statement is trivial for |𝑊 | = 1 since then
𝑐𝑦 (𝐹) = 0 (because 𝐹 ⊆ 𝐸 [𝑊] = ∅). Let now |𝑊 | ≥ 2. By definition of 𝐷𝑊 ,
we have

𝑐𝑦 (𝐸 (𝐵)) = 𝑐𝑦 (𝐸 (𝑃𝑢∗,𝑣∗ )) + 𝑐𝑦 (𝐸 (𝑃𝑣∗,𝑢∗ )) ≤ 2 · 𝐷𝑊 . (7.3)

We now analyze the cost of 𝐹′ in Step (3) of Algorithm 7.8. Since 𝐹′ is
the output of a (𝜅, 𝜂)-algorithm applied to the vertebrate pair (I′, 𝐵), we
have 𝑐𝑦 (𝐹′) ≤ 𝜅 · LP(I′) + 𝜂 · ∑𝐿∈L�̄�

2𝑦{𝑣𝐿 } . Using
∑
𝐿∈L�̄�

2𝑦{𝑣𝐿 } =∑
𝐿∈L�̄�

(2𝑦𝐿 + 𝐷𝐿) and

LP(I′) ≤ 𝐷𝑊 +
∑︁

𝐿∈L, 𝐿⊊𝑊,
𝐿∩𝑉 (𝐵)≠∅

2𝑦𝐿 +
∑︁
𝐿∈L�̄�

2𝑦{𝑣𝐿 } ,

this implies

𝑐𝑦 (𝐹′) ≤ 𝜅 · 𝐷𝑊 +
∑︁

𝐿∈L, 𝐿⊊𝑊,
𝐿∩𝑉 (𝐵)≠∅

𝜅 · 2𝑦𝐿 +
∑︁
𝐿∈L�̄�

(𝜅 + 𝜂) · (2𝑦𝐿 + 𝐷𝐿) (7.4)

at the end of Step (3). The lifting and all the amendments of 𝐹′ in Step (4) do
not increase the cost of 𝐹′ by Lemma 7.6 and the choices of the values 𝑦{𝑣𝐿 }
in Step (2) and 𝑦𝑊 in Step (1). (Here we use that whenever an Eulerian walk
passes through 𝑣�̄� , we leave and enter𝑊 .)

To bound the cost increase in Step (5), we apply the induction hypothesis.
Adding the edges resulting from a single recursive call of Algorithm 7.8 in
Step (5) for some 𝐿 ∈ L�̄� increases the cost by at most

𝑐𝑦 (𝐹𝐿) ≤ (2𝜅 + 2) · value(𝐿) + (𝜅 + 𝜂) · (value(𝐿) − 𝐷𝐿).
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Using (7.4), we obtain the following bound:

𝑐𝑦 (𝐹′′) ≤ 𝜅 · 𝐷𝑊 +
∑︁

𝐿∈L,𝐿⊊𝑊,𝐿∩𝑉 (𝐵)≠∅
𝜅 · 2𝑦𝐿

+
∑︁
𝐿∈L�̄�

(
(2𝜅 + 2)value(𝐿) + (𝜅 + 𝜂) (2𝑦𝐿 + value(𝐿))

)
≤ 𝜅 · 𝐷𝑊 + 𝜅 · value(𝑊)

+
∑︁
𝐿∈L�̄�

(
(𝜅 + 2)value(𝐿) + (𝜅 + 𝜂) (2𝑦𝐿 + value(𝐿))

)
≤ 𝜅 · 𝐷𝑊 + 𝜅 · value(𝑊)
+ (𝜅 + 2) (value(𝑊) − 𝐷𝑊 ) + (𝜅 + 𝜂) (value(𝑊) − 𝐷𝑊 )

= (2𝜅 + 2)value(𝑊) − 2𝐷𝑊 + (𝜅 + 𝜂) (value(𝑊) − 𝐷𝑊 ),

(7.5)

where we used the definition of L�̄� for the second inequality and Lemma 7.10
for the third inequality. Together with (7.3), this implies the claimed bound on
𝑐𝑦 (𝐹). □

Now we prove the main result of this section.

Theorem 7.12. Let 𝜅, 𝜂 ≥ 0. Suppose we have a (𝜅, 𝜂)-algorithm for vertebrate
pairs. Then there is a polynomial-time algorithm that computes a solution of
cost at most

3𝜅 + 𝜂 + 2

times the value of the LP (3.2) for any given Asymmetric TSP instance.

Proof. By Theorem 7.4, it suffices to show that there is a polynomial-time
algorithm that computes a solution of cost at most (3𝜅 + 𝜂 + 2) · LP(I) for any
given strongly laminar Asymmetric TSP instance I = (𝐺,L, 𝑥, 𝑦). Given such
an instance, we apply Algorithm 7.8 to𝑊 = 𝑉 , where 𝑉 is the vertex set of 𝐺.
By Lemma 7.9 and Lemma 7.11, this algorithm computes in polynomial time a
tour of cost at most

𝑐𝑦 (𝐹) ≤ (2𝜅 + 2) · value(𝑉) + (𝜅 + 𝜂) · (value(𝑉) − 𝐷𝑉 )
= (2𝜅 + 2) · LP(I) + (𝜅 + 𝜂) · (LP(I) − 𝐷𝑉 )
≤ (3𝜅 + 𝜂 + 2) · LP(I). □

See Exercises 7.5–7.7 for a small improvement of this bound. In the following,
we will present a (2, 9 + 𝜀)-algorithm for vertebrate pairs for any 𝜀 > 0.

In Chapter 9, we will apply a slight modification of Algorithm 7.8 to a more
general problem, the Asymmetric Path TSP. This modification works with a
given 𝐵 instead of constructing it in Step (2). We will need:
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Lemma 7.13. Let 𝜅, 𝜂 ≥ 0. Suppose we have a (𝜅, 𝜂)-algorithmA for vertebrate
pairs. Let I = (𝐺,L, 𝑥, 𝑦) be a strongly laminar Asymmetric TSP instance,𝑊 ∈
L ∪ {𝑉}, and 𝐵 a connected Eulerian multi-subgraph of 𝐺 with 𝑉 (𝐵) ∩𝑊 ≠ ∅.
Let 𝐹′′

.
∪ 𝐸 (𝐵) be the tour in 𝐺 [𝑊 ∪𝑉 (𝐵)] that is computed by the variant of

Algorithm 7.8 that does not compute 𝐵 in Step (2) but works with the given 𝐵.
Then 𝐹′′ has cost at most

𝑐𝑦 (𝐹′′) ≤ 𝜅 · 𝐷𝑊 + 𝜅 · value(𝑊) + (2𝜅 + 𝜂 + 2) ·
∑︁

𝐿∈L:𝐿⊊𝑊, 𝑉 (𝐵)∩𝐿=∅
2𝑦𝐿 .

Proof. Directly from the bound (7.5) in the proof of Lemma 7.11. □

7.6 Subtour Cover

In the first part of this chapter, we showed that the Asymmetric TSP reduces
to vertebrate pairs. Svensson, Tarnawski, and Végh [2020] showed that an
algorithm for vertebrate pairs can be designed similarly to the algorithm for
Asymmetric Graph TSP. To this end, we will adapt Algorithm 6.13 (Svensson’s
algorithm for Asymmetric Graph TSP) to vertebrate pairs.

In Chapter 6, we used an algorithm to find a graph subtour cover as subroutine.
Here, we need a more general subroutine: an algorithm to find a subtour cover.
Recall that we had an Eulerian multi-subset 𝐻 of the edge set 𝐸 of our digraph
𝐺 = (𝑉, 𝐸), and a graph subtour cover for 𝐻 is an Eulerian multi-subset set
𝐹 of 𝐸 that enters and leaves every connected component of (𝑉, 𝐻). Now,
we have a strongly laminar Asymmetric TSP instance (𝐺,L, 𝑥, 𝑦) with a
backbone 𝐵, and 𝐻 is a local Eulerian multi-subset 𝐻 of 𝐸 , where local means
that 𝐻 does not contain any edge from 𝛿(𝐿) for any 𝐿 ∈ L≥2 (recall that
L≥2 = {𝐿 ∈ L : |𝐿 | ≥ 2} is the family of all non-singleton elements of L).
For a subtour cover, we require in addition that every connected component of
(𝑉, 𝐹) is local or connected to the backbone.

Definition 7.14 (local, subtour cover). Let (I, 𝐵) be a vertebrate pair with
I = (𝐺,L, 𝑥, 𝑦) and 𝐺 = (𝑉, 𝐸). We call a multi-subset 𝐻 of 𝐸 (and a graph
with edge set 𝐻) local if 𝐻 ∩ 𝛿(𝐿) = ∅ for all 𝐿 ∈ L≥2.

A subtour cover instance (I, 𝐵, 𝐻) consists of a vertebrate pair (I, 𝐵) and a
local Eulerian multi-subset 𝐻 of 𝐸 [𝑉 \𝑉 (𝐵)]. A subtour cover for (I, 𝐵, 𝐻) is
an Eulerian multi-subset 𝐹 of 𝐸 satisfying the following two conditions:

(i) 𝐹 ∩ 𝛿(𝑊) ≠ ∅ for all vertex sets𝑊 of connected components of the graph
(𝑉 \𝑉 (𝐵), 𝐻).
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(ii) For every connected component 𝐷 of (𝑉, 𝐹), the edge set 𝐸 (𝐷) is local or
𝑉 (𝐷) ∩𝑉 (𝐵) ≠ ∅.

See Figure 7.9 for an example. In the following, we write 𝑦𝑣 := 𝑦{𝑣} if
{𝑣} ∈ L and 𝑦𝑣 := 0 otherwise. In Chapter 8, we will give a polynomial-time
algorithm that computes, for any given subtour cover instance (I, 𝐵, 𝐻), a
subtour cover 𝐹 such that

𝑐𝑦 (𝐹) ≤ 2 · LP(I) +
∑︁

𝑣∈𝑉\𝑉 (𝐵)
2𝑦𝑣 , (7.6)

and for every connected component 𝐷 of (𝑉, 𝐹) with 𝑉 (𝐷) ∩ 𝑉 (𝐵) = ∅, we
have

𝑐𝑦 (𝐸 (𝐷)) ≤ 2 ·
∑︁

𝑣∈𝑉 (𝐷)
2𝑦𝑣 . (7.7)

Again, 𝑐𝑦 denotes the induced cost function of the strongly laminar Asymmetric
TSP instance I.

While adapting Svensson’s algorithm to vertebrate pairs requires only rela-
tively small changes compared to the algorithm for Asymmetric Graph TSP,
generalizing the algorithm for graph subtour cover from Section 6.2 to subtour
cover requires substantially new techniques.

We remark that requiring property (ii) would not be necessary to obtain a
constant-factor approximation algorithm for Asymmetric TSP. However, an
inequality like (7.7) is crucial. Since we will prove (7.7) using property (ii)
anyway, and requiring this property explicitly yields a better approximation
ratio, we defined subtour covers as in Definition 7.14.

Figure 7.9 Example of a vertebrate pair (I, 𝐵) , a local Eulerian edge set 𝐻, and
a subtour cover for (I, 𝐵, 𝐻 ) . The laminar family L of I is shown in gray, and
the backbone 𝐵 is shown in blue. The edge set 𝐻 is shown in green, and a subtour
cover consists of the dotted red edges.
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In order to exhibit the dependence of the approximation guarantee of Svens-
son’s algorithm for vertebrate pairs on the subtour cover algorithm, we introduce
the notion of an (𝛼, 𝜅, 𝛽)-algorithm for subtour cover. In Chapter 8, we will
describe a (2, 2, 1)-algorithm for subtour cover.

Definition 7.15 (algorithm for subtour cover). Let 𝛼, 𝜅, 𝛽 ≥ 0 be constants.
An (𝛼, 𝜅, 𝛽)-algorithm for subtour cover is a polynomial-time algorithm that
computes a subtour cover 𝐹 for any given subtour cover instance (I, 𝐵, 𝐻) such
that

𝑐𝑦 (𝐹) ≤ 𝜅 · LP(I) + 𝛽 ·
∑︁

𝑣∈𝑉\𝑉 (𝐵)
2𝑦𝑣 , (7.8)

and for every connected component 𝐷 of (𝑉, 𝐹) with 𝑉 (𝐷) ∩ 𝑉 (𝐵) = ∅, we
have

𝑐𝑦 (𝐸 (𝐷)) ≤ 𝛼 ·
∑︁

𝑣∈𝑉 (𝐷)
2𝑦𝑣 . (7.9)

Let 𝛼 > 1 and 𝜅, 𝛽 ≥ 0 be constants such that there is an (𝛼, 𝜅, 𝛽)-algorithm
A for subtour cover, and let 𝜀 > 0 be a fixed constant. The goal of the rest of this
chapter is to show that then there is a (𝜅, 4𝛼 + 𝛽 + 𝜀)-algorithm for vertebrate
pairs.

To this end, we adapt Svensson’s algorithm from Chapter 6 to vertebrate
pairs. While most of the algorithm and analysis are the same, there are a few
essential differences. Most importantly, there is a backbone, and a subtour cover
can connect to it, but we will never buy edges that connect to the backbone
except for the very last iteration. Until then, we will only consider local edges
(here, we exploit property (ii) of Definition 7.14). The cost of any local edge
𝑒 = (𝑣, 𝑤) is 𝑦𝑣 + 𝑦𝑤 . Hence, as long as we buy only local edges, the algorithm
behaves like for node-weighted instances, which are essentially equivalent to
unweighted instances by Exercise 6.1.

7.7 Initializing Svensson’s Algorithm for Vertebrate Pairs

Let (I, 𝐵) be a vertebrate pair. Svensson’s algorithm for vertebrate pairs is
initialized with a local Eulerian multi-set �̃� ⊆ 𝐸 [𝑉 \𝑉 (𝐵)] and then computes
either a “better” initialization �̃�′ or extends �̃� to a solution 𝐻 of the given
vertebrate pair (I, 𝐵).

As in Svensson’s algorithm for Asymmetric Graph TSP, the initialization
�̃� of the algorithm will always be light. However, we use a different function
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ℓ : 𝑉 → R≥0 for defining what a light edge set is. For 𝑣 ∈ 𝑉 , we set

ℓ(𝑣) :=

(1 + 𝜀′) · 2𝛼 · 2𝑦𝑣 + 𝜀′

𝑛
·∑𝑢∈𝑉\𝑉 (𝐵) 2𝑦𝑢 if 𝑣 ∈ 𝑉 \𝑉 (𝐵)

𝜅 ·LP(I)+𝛽 ·∑𝑢∈𝑉\𝑉 (𝐵) 2𝑦𝑢
|𝑉 (𝐵) | if 𝑣 ∈ 𝑉 (𝐵),

(7.10)

where 𝜀′ := min{ 𝜀
2+4𝛼 , 1 −

1
𝛼
} and 𝑛 := |𝑉 |.

Recall that an Eulerian multi-subset �̃� of 𝐸 is light if 𝑐𝑦 (𝐸 (𝐷)) ≤ ℓ(𝑉 (𝐷))
for every connected component 𝐷 of (𝑉, �̃�).

Note that for 𝑣 ∈ 𝑉 \ 𝑉 (𝐵), the first term of the definition of ℓ(𝑣) is
proportional to the corresponding dual variable 𝑦𝑣 . We need the small additional
term 𝜀′

𝑛
· ∑𝑢∈𝑉\𝑉 (𝐵) 2𝑦𝑢 to guarantee that the numbers ℓ(𝑣) (𝑣 ∈ 𝑉 \ 𝑉 (𝐵))

cannot differ by a too large factor; this will allow us to bound the progress when
we find a better initialization as in Lemma 6.9. For vertices in 𝑉 (𝐵), we will
only need that ℓ(𝑉 (𝐵)) = 𝜅 · LP(I) + 𝛽 ·∑𝑢∈𝑉\𝑉 (𝐵) 2𝑦𝑢.

As in Asymmetric Graph TSP, we use a potential functionΦ to measure what
a “better” initialization for Svensson’s algorithm is. For a light Eulerian multi-
subset �̃� of 𝐸 [𝑉 \𝑉 (𝐵)] such that the connected components of (𝑉 \𝑉 (𝐵), �̃�)
have vertex sets �̃�1, . . . , �̃�𝑘 , we write

Φ(�̃�) =

𝑘∑︁
𝑖=1

slack(�̃�𝑖 , �̃�)1+𝑝 ,

where again 𝑝 := log1+𝜀′ ( 1+𝜀′
𝜀′ ) and slack(�̃� , �̃�) = ℓ(�̃�) − 𝑐𝑦 (�̃� [�̃�]).

As for Asymmetric Graph TSP, we will use Lemma 6.9 to find improved
initializations for Svensson’s algorithm. We will apply it to connected Eulerian
multi-subgraphs 𝐷 of 𝐺 [𝑉 \𝑉 (𝐵)].

We again order the connected components of (𝑉 \ 𝑉 (𝐵), �̃�) such that
slack(�̃�1, �̃�) ≥ · · · ≥ slack(�̃�𝑘 , �̃�). Moreover, we define �̃�0 := 𝑉 (𝐵). Then,
for a connected multi-subgraph 𝐷 of 𝐺, we again define its index by ind(𝐷) :=
min{ 𝑗 ∈ {0, . . . , 𝑘} : 𝑉 (𝐷) ∩ �̃� 𝑗 ≠ ∅}.

During Svensson’s algorithm for vertebrate pairs, we obtain 𝐷 from a subtour
cover 𝐹. For 𝑖 ∈ {0, 1, . . . , 𝑘}, we denote by 𝐹𝑖 the union of the connected
components 𝐷′ of (𝑉, 𝐹) with ind(𝐷′) = 𝑖. We will find a better initialization
for Svensson’s algorithm for vertebrate pairs whenever 𝐹 violates any of the
following two conditions:

𝑐𝑦 (𝐸 (𝐹𝑖)) ≤ ℓ(�̃�𝑖) for all 𝑖 ∈ {1, . . . , 𝑘}; (7.11)

slack(𝑉 (𝐷), 𝐸 (𝐷)) ≤ slack(�̃�ind(𝐷) , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷))
for every connected component 𝐷 of (𝑉, 𝐹) with ind(𝐷) > 0.

(7.12)
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Next, we show that we can indeed find an improved initialization if (7.11) or
(7.12) is violated. We show that we can then find a connected Eulerian multi-
subgraph 𝐷 of 𝐺 [𝑉 \ 𝑉 (𝐵)] with (6.2). This allows for applying Lemma 6.9
to 𝐷. While this is trivial if (7.12) is violated, we need a lemma similar to
Lemma 6.10 for the case when (7.11) is violated:

Lemma 7.16. Let 𝐹 be an Eulerian multi-edge set such that 𝑐𝑦 (𝐸 (𝐷′)) ≤
𝛼 · ∑𝑣∈𝑉 (𝐷′ ) 2𝑦𝑣 for every connected component 𝐷′ of (𝑉, 𝐹) with 𝑉 (𝐷′) ∩
𝑉 (𝐵) = ∅. For 𝑖 ∈ {0, . . . , 𝑘}, let the graph 𝐹𝑖 be the union of the connected
components 𝐷′ of (𝑉, 𝐹) with ind(𝐷′) = 𝑖.

Suppose we have 𝑐𝑦 (𝐸 (𝐹𝑖)) > ℓ(�̃�𝑖) for some 𝑖 ∈ {1, . . . , 𝑘}. Then

𝐷 :=
(
�̃�𝑖 ∪𝑉 (𝐹𝑖), �̃� [�̃�𝑖]

.
∪ 𝐸 (𝐹𝑖)

)
is a connected Eulerian multi-subgraph of 𝐺 [𝑉 \𝑉 (𝐵)] with (6.2).

Proof. Let 𝑖 ∈ {1, . . . , 𝑘} such that 𝑐𝑦 (𝐸 (𝐹𝑖)) > ℓ(�̃�𝑖). Then

1
2(1+𝜀′ ) · ℓ(𝑉 (𝐷)) ≥

1
2(1+𝜀′ ) · ℓ(𝑉 (𝐹𝑖)) ≥ 𝑐𝑦 (𝐸 (𝐹𝑖)) > ℓ(�̃�𝑖), (7.13)

where the second inequality follows from 𝑐𝑦 (𝐸 (𝐹𝑖)) ≤ 𝛼 ·
∑
𝑣∈𝑉 (𝐹𝑖 ) 2𝑦𝑣 and

the definition of ℓ (see (7.10)). We get

𝑐𝑦 (𝐸 (𝐷)) = 𝑐𝑦 (�̃� [�̃�𝑖]) + 𝑐𝑦 (𝐸 (𝐹𝑖))
= ℓ(�̃�𝑖) + 𝑐𝑦 (𝐸 (𝐹𝑖)) − slack(�̃�𝑖 , �̃�)
< 1

2(1+𝜀′ ) · ℓ(𝑉 (𝐷)) +
1

2(1+𝜀′ ) · ℓ(𝑉 (𝐷)) − slack(�̃�𝑖 , �̃�)

= ℓ(𝑉 (𝐷)) − 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)) − slack(�̃�𝑖 , �̃�),

where we used (7.13) twice (once to bound 𝑐𝑦 (𝐸 (𝐹𝑖)) and once to bound ℓ(�̃�𝑖)).
This proves (6.2). □

7.8 Adapting Svensson’s Algorithm to Vertebrate Pairs

The following lemma states the result of Svensson’s algorithm for vertebrate
pairs:

Lemma 7.17. Let 𝛼 > 1, 𝜅, 𝛽 ≥ 0 such that there is an (𝛼, 𝜅, 𝛽)-algorithm
for subtour cover, and let 𝜀′ be a fixed constant with 0 < 𝜀′ ≤ 1 − 1

𝛼
. Given a

vertebrate pair (I, 𝐵) with I = (𝐺,L, 𝑥, 𝑦) and 𝐺 = (𝑉, 𝐸) and a light local
Eulerian multi-subset �̃� of 𝐸 [𝑉 \𝑉 (𝐵)], we can compute in polynomial time
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(i) a solution 𝐻 for the vertebrate pair (I, 𝐵) such that

𝑐𝑦 (𝐻) ≤ ℓ(𝑉 (𝐵)) + 2 · ℓ(𝑉 \𝑉 (𝐵)) (7.14)

or
(ii) a light local Eulerian multi-subset �̃�′ of 𝐸 [𝑉 \𝑉 (𝐵)] such that

Φ(�̃�′) −Φ(�̃�) > min{ℓ(𝑣)1+𝑝 : 𝑣 ∈ 𝑉 \𝑉 (𝐵)}. (7.15)

From Lemma 7.17, we can derive the main result of this section.

Theorem 7.18. Let 𝛼 > 1, 𝜅, 𝛽 ≥ 0 such that there is an (𝛼, 𝜅, 𝛽)-algorithm for
subtour cover, and let 𝜀 > 0 be a fixed constant.

Then there is a (𝜅, 4𝛼 + 𝛽 + 𝜀)-algorithm for vertebrate pairs.

Proof. Define 𝜀′ := min{ 𝜀
2+4𝛼 , 1 −

1
𝛼
}, 𝑝, ℓ, and Φ as earlier. We start with

�̃� = ∅ and apply Lemma 7.17. If we obtain a set �̃�′ as in Lemma 7.17 (ii), we
set �̃� := �̃�′ and restart – that is, we apply Lemma 7.17 again until we finally
obtain a set 𝐻 as in Lemma 7.17 (i).

To bound the number of restarts, note that

ℓ(𝑉 \𝑉 (𝐵)) ≤ (1 + 𝜀′) · 2𝛼 ·
∑︁

𝑢∈𝑉\𝑉 (𝐵)
2𝑦𝑢 + 𝜀′ ·

∑︁
𝑢∈𝑉\𝑉 (𝐵)

2𝑦𝑢

= ((1 + 𝜀′) · 2𝛼 + 𝜀′) ·
∑︁

𝑢∈𝑉\𝑉 (𝐵)
2𝑦𝑢,

which implies that for every vertex 𝑣 ∈ 𝑉 \𝑉 (𝐵), we have

ℓ(𝑣) ≥ 𝜀′

𝑛
·

∑︁
𝑢∈𝑉\𝑉 (𝐵)

2𝑦𝑢 ≥
𝜀′

((1 + 𝜀′) · 2𝛼 + 𝜀′) · 𝑛 · ℓ(𝑉 \𝑉 (𝐵)).

Since 0 ≤ Φ(�̃�) ≤ ℓ(𝑉 \𝑉 (𝐵))1+𝑝 , we need at most(
((1 + 𝜀′) · 2𝛼 + 𝜀′) · 𝑛

𝜀′

)1+𝑝

restarts, which is bounded by a polynomial in 𝑛 as 𝑝, 𝛼, and 𝜀′ are constants.
At the end, the algorithm guaranteed by Lemma 7.17 returns a solution 𝐻 for

the vertebrate pair (I, 𝐵) such that

𝑐𝑦 (𝐻) ≤ ℓ(𝑉 (𝐵)) + 2 · ℓ(𝑉 \𝑉 (𝐵))

≤ 𝜅 · LP(I) + (𝛽 + 2 · ((1 + 𝜀′) · 2𝛼 + 𝜀′)) ·
∑︁

𝑣∈𝑉\𝑉 (𝐵)
2𝑦𝑣

≤ 𝜅 · LP(I) + (4𝛼 + 𝛽 + 𝜀) ·
∑︁

𝑣∈𝑉\𝑉 (𝐵)
2𝑦𝑣 ,

where we used 𝜀′ ≤ 𝜀
2+4𝛼 in the last inequality. □
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In the remaining part of this section, we prove Lemma 7.17. To this end, we
consider Algorithm 7.19, which is a variant of Algorithm 6.13.

To implement Step (6c), consider each local edge 𝑒 = (𝑣, 𝑤) ∈ 𝛿+ (𝑉 (𝑍)) and
compute a shortest 𝑤-𝑣-path 𝑃 in

(
𝑉 \ 𝑉 (𝐵), 𝐸 [𝑉 \ 𝑉 (𝐵)] \

(
∪𝐿∈L≥2 𝛿(𝐿)

) )
(cf. Theorem 1.14) and check whether 𝑐𝑦 (𝑒) + 𝑐𝑦 (𝐸 (𝑃)) ≤ slack(�̃�ind(𝑍 ) , �̃�).

Note that adding 𝐸 (𝐶) to 𝑋 in Step (6c) decreases the number of connected
components of (𝑉, 𝐻

.
∪ 𝐹

.
∪ 𝑋), and adding edges to 𝐻 in Step (6d) decreases

the number of connected components of (𝑉, 𝐻). Thus, the procedure terminates
after a polynomial number of steps.

The following observation implies that (I, 𝐵, 𝐻) is indeed a subtour cover
instance in Step (4a) of Algorithm 7.19.

Lemma 7.20. As long as (𝑉, 𝐸 (𝐵) ∪ 𝐻) is not connected in Algorithm 7.19, 𝐻
is a local Eulerian multi-subset of 𝐸 [𝑉 \𝑉 (𝐵)].

Proof. In Step (2) of Algorithm 7.19, we set 𝐻 := �̃� and thus 𝐻 is a local
Eulerian multi-subset of 𝐸 [𝑉 \ 𝑉 (𝐵)]. The circuits that we find in Step (6c)
neither contain a vertex from the backbone nor an edge in 𝛿(𝐿) for any
𝐿 ∈ L≥2 by construction. Moreover, by (ii) of the definition of a subtour cover
(Definition 7.14), 𝐹𝑖 is local for every 𝑖 ∈ {1, . . . , 𝑘}. By the choice of 𝑍 in
Step (6b) of Algorithm 7.19, the component 𝑍 contains edges from 𝐹0 only
if (𝑉, 𝐸 (𝐵)

.
∪ 𝐻

.
∪ 𝐹

.
∪ 𝑋) is connected, and in this case, (𝑉, 𝐸 (𝐵)

.
∪ 𝐻)

becomes connected when the edges in 𝐹
.
∪ 𝑋 are added to 𝐻. □

Also notice that Step (4b) maintains a subtour cover with (7.8) and (7.9).
Therefore, we can apply Lemma 7.16 for Step (5a) to show that the application
of Lemma 6.9 is indeed possible (in Step (5b), this is trivial). Moreover, 𝐸 (𝐷)
is local in Steps (5a) and (5b) because 𝐹𝑖 is local for all 𝑖 > 0 and �̃� is local.
Hence, if Algorithm 7.19 returns a multi-set �̃�′ in Step (5), then �̃�′ is local and
thus it is a multi-set as in Lemma 7.17 (ii).

Otherwise, the returned edge set 𝐻 is a solution for the vertebrate pair (I, 𝐵).
To show the upper bound (7.14) on the cost of 𝐻, we proceed analogously to
Chapter 6. Initially, we have 𝑐𝑦 (𝐻) = 𝑐𝑦 (�̃�). Then we bound the cost of the
𝑋-edges and the cost of the 𝐹-edges added to 𝐻 separately.

We need the following observation:

Lemma 7.21. For every local circuit 𝐶 in 𝐺 [𝑉 \𝑉 (𝐵)], we have

𝑐𝑦 (𝐸 (𝐶)) ≤ 1
(1 + 𝜀′) · 2𝛼 · ℓ(𝑉 (𝐶)).
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Algorithm 7.19: Svensson’s Algorithm for Vertebrate Pairs
Input: a vertebrate pair (I, 𝐵) with I = (𝐺,L, 𝑥, 𝑦) and 𝐺 = (𝑉, 𝐸),

a light local Eulerian multi-subset �̃� ⊆ 𝐸 [𝑉 \𝑉 (𝐵)],
an (𝛼, 𝜅, 𝛽)-algorithm A for subtour cover

Output: either 𝐻 as in Lemma 7.17 (i) or �̃�′ as in Lemma 7.17 (ii)

(1) Let �̃�0 := 𝑉 (𝐵) and let �̃�1, . . . , �̃�𝑘 be the vertex sets of the connected
components of (𝑉 \𝑉 (𝐵), �̃�) such that
slack(�̃�1, �̃�) ≥ · · · ≥ slack(�̃�𝑘 , �̃�).

(2) Set 𝐻 := �̃�.
(3) while (𝑉, 𝐸 (𝐵)

.
∪ 𝐻) is not connected do

(4) Compute a subtour cover 𝐹:
(4a) Apply A to the subtour cover instance (I, 𝐵, 𝐻) to obtain a subtour

cover 𝐹′.
(4b) Let 𝐹 result from 𝐹′ by deleting all edges of connected components

of (𝑉, 𝐹′) whose vertex sets are contained in a connected
component of (𝑉, 𝐸 (𝐵) ∪ 𝐻).

(5) Try to find a better initialization �̃�′:
For 𝑖 ∈ {0, . . . , 𝑘}, let the graph 𝐹𝑖 be the union of the connected
components 𝐷′ of (𝑉, 𝐹) with ind(𝐷′) = 𝑖.

(5a) If for some 𝑖 ∈ {1, . . . , 𝑘} we have 𝑐𝑦 (𝐸 (𝐹𝑖)) > ℓ(�̃�𝑖), apply
Lemma 6.9 to 𝐷 =

(
�̃�𝑖 ∪𝑉 (𝐹𝑖), �̃� [�̃�𝑖]

.
∪ 𝐸 (𝐹𝑖)

)
to obtain a better

initialization �̃�′. Then return �̃�′.
(5b) If (𝑉, 𝐹) has a connected component 𝐷 with ind(𝐷) > 0 and

slack(𝑉 (𝐷), 𝐸 (𝐷)) > slack(�̃�ind(𝐷) , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)),
apply Lemma 6.9 to obtain a better initialization �̃�′. Then return �̃�′.

(6) Extend 𝐻:
(6a) Set 𝑋 := ∅.
(6b) Select the connected component 𝑍 of (𝑉, 𝐸 (𝐵)

.
∪ 𝐻

.
∪ 𝐹

.
∪ 𝑋) for

which ind(𝑍) is largest.
(6c) If there is a circuit 𝐶 in 𝐺 [𝑉 \𝑉 (𝐵)] with

• 𝐸 (𝐶) ∩ 𝛿(𝑉 (𝑍)) ≠ ∅,
• 𝐶 is local, and
• 𝑐𝑦 (𝐸 (𝐶)) ≤ slack(�̃�ind(𝑍 ) , �̃�),
then add 𝐸 (𝐶) to 𝑋 and go to Step (6b).

(6d) Add the edges (𝐹
.
∪ 𝑋) [𝑉 (𝑍)] to 𝐻.

(7) Return 𝐻.
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Proof. Let 𝐶 be a circuit with 𝐸 (𝐶) ∩ 𝛿(𝐿) = ∅ for all 𝐿 ∈ L≥2. Then we
have 𝑐𝑦 (𝐸 (𝐶)) = ∑

𝑣∈𝑉 (𝐶 ) 2𝑦𝑣 ≤ 1
(1+𝜀′ ) ·2𝛼 · ℓ(𝑉 (𝐶)), using the definition of ℓ

(see (7.10)). □

The following proofs are very similar to the proofs of Lemmas 6.14 and 6.15.

Lemma 7.22. The total cost of all 𝑋-edges that are added to 𝐻 is at most
ℓ(𝑉 \𝑉 (𝐵)) − 𝑐𝑦 (�̃�).

Proof. A circuit 𝐶 that is selected in Step (6c) and will later be added to 𝐻
connects 𝑍 to another connected component𝑌 with ind(𝑌 ) < ind(𝑍). We say that
it marks ind(𝑍). It has cost at most slack(�̃�ind(𝑍 ) , �̃�). No circuit added later can
mark ind(𝑍) because the new connected component of (𝑉, 𝐸 (𝐵)

.
∪ 𝐻

.
∪ 𝐹

.
∪ 𝑋)

containing𝑌∪𝑍 will have a smaller index by the choice of 𝑍 . Hence, the total cost
of the added circuits is at most

∑𝑘
𝑖=1 slack(�̃�𝑖 , �̃�) = ℓ(𝑉 \𝑉 (𝐵)) − 𝑐𝑦 (�̃�). □

Lemma 7.23. The total cost of all 𝐹-edges that are added to 𝐻 is at most ℓ(𝑉).

Proof. Let 𝑍 𝑡 denote 𝑍 at the end of iteration 𝑡 of the while-loop. Let 𝐹𝑡
𝑖

be
the graph 𝐹𝑖 in iteration 𝑡 if the set of edges of 𝐹𝑖 is nonempty and is added to
𝐻 at the end of this iteration, and let 𝐹𝑡

𝑖
= ∅ otherwise.

For 𝑖 = 1, . . . , 𝑘 , the total cost of 𝐹𝑡
𝑖

is 𝑐𝑦 (𝐸 (𝐹𝑡
𝑖
)) ≤ ℓ(�̃�𝑖) by Step (5a).

Moreover,

𝑐𝑦 (𝐸 (𝐹𝑡0)) ≤ 𝑐𝑦 (𝐹) ≤ 𝜅 · LP(I) + 𝛽 ·
∑︁

𝑣∈𝑉\𝑉 (𝐵)
2𝑦𝑣 = ℓ(�̃�0)

because A is an (𝛼, 𝜅, 𝛽)-algorithm for subtour cover and thus 𝐹 satisfies (7.8).
We claim that for any 𝑖, at most one of the 𝐹𝑡

𝑖
is nonempty. Then summing

over all 𝑖 and 𝑡 concludes the proof.
Suppose there are 𝑡1 < 𝑡2 such that 𝐹𝑡1

𝑖
≠ ∅ and 𝐹𝑡2

𝑖
≠ ∅. We have 𝑖 > 0

because otherwise the algorithm would terminate after iteration 𝑡1 by the choice
of 𝑍 𝑡1 . Then 𝑉 (𝐹𝑡1

𝑖
) ⊆ 𝑉 (𝑍 𝑡1 ) and thus �̃�𝑖 ⊆ 𝑉 (𝑍 𝑡1 ). Moreover, 𝐹𝑡2

𝑖
contains

a vertex of �̃�𝑖 and is not completely contained in 𝑍 𝑡1 by Step (4b) of the
algorithm. Thus, 𝐹𝑡2

𝑖
contains a circuit 𝐶 with 𝐸 (𝐶) ∩ 𝛿(𝑉 (𝑍 𝑡1 )) ≠ ∅. Note that

𝑉 (𝐹𝑡2
𝑖
) ∩ 𝑉 (𝐵) = ∅ (since 𝑖 > 0). Hence, 𝐶 is a circuit in 𝐺 [𝑉 \ 𝑉 (𝐵)], and

moreover 𝐶 is local because it is a subset of 𝐸 (𝐹𝑡2
𝑖
) and 𝐹 is a subtour cover (cf.

item (ii) of Definition 7.14).
If 𝑐𝑦 (𝐸 (𝐶)) ≤ slack(�̃�ind(𝑍 𝑡1 ) , �̃�), due to Step (6c), this is a contradiction

to reaching Step (6d) in iteration 𝑡1 with the component 𝑍 𝑡1 . Otherwise, let 𝐷 be
the connected component of 𝐹𝑡2

𝑖
containing 𝐶. Note that ind(𝐷) = 𝑖 ≥ ind(𝑍 𝑡1 )

(cf. Figure 6.5).
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Since 𝐶 is a circuit in 𝐺 [𝑉 \𝑉 (𝐵)] and 𝐶 is local, we can apply Lemma 7.21
to obtain

1
(1+𝜀′ ) ·2𝛼 · ℓ(𝑉 (𝐶)) ≥ 𝑐𝑦 (𝐸 (𝐶)) > slack(�̃�ind(𝑍 𝑡1 ) , �̃�)

≥ slack(�̃�ind(𝐷) , �̃�).

Moreover, using the facts that 𝑐𝑦 (𝐸 (𝐷)) ≤ 𝛼∑
𝑣∈𝑉 (𝐷) 2𝑦𝑣 ≤ 1

2ℓ(𝑉 (𝐷)), that
𝐷 contains 𝐶, and that 1

𝛼
≤ 1 − 𝜀′ (by the choice of 𝜀′),

slack(𝑉 (𝐷), 𝐸 (𝐷)) ≥ 1
2 · ℓ(𝑉 (𝐷)) ≥

1
(1+𝜀′ ) ·2𝛼 · ℓ(𝑉 (𝐶)) +

𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)).

Together, we obtain

slack(𝑉 (𝐷), 𝐸 (𝐷)) > slack(�̃�ind(𝐷) , �̃�) + 𝜀′

1+𝜀′ · ℓ(𝑉 (𝐷)).

Due to Step (5b), this is a contradiction to reaching Step (6) in iteration 𝑡2 and
adding 𝐹𝑡2

𝑖
there. □

Using Lemmas 7.22 and 7.23, we conclude that the cost of the returned
edge set 𝐻 is at most ℓ(𝑉 (𝐵)) + 2 · ℓ(𝑉 \ 𝑉 (𝐵)). This concludes the proof of
Lemma 7.17.

Exercises

7.1 Show that the set 𝑆 in the proof of Lemma 7.2 is unique.
7.2 Define strongly laminar Symmetric TSP instances analogously to Defini-

tion 7.3, but replacing “strongly connected” with “connected.” Conclude
an analogous statement to Theorem 7.4.

7.3 Let (𝐺,L, 𝑥, 𝑦) be a strongly laminar Asymmetric TSP instance with
𝐺 = (𝑉, 𝐸), and let 𝑊 ∈ L. Show that the value of the LP (3.2) on the
instance (𝐺 [𝑊], 𝑐𝑦) is at most

∑
𝑒∈𝐸 [𝑊 ] 𝑐

𝑦 (𝑒)𝑥𝑒 + 𝐷𝑊 .
Hint: Use splitting off (Theorem 3.3).

7.4 Let 𝜀 > 0 be a constant. Given a strongly laminar Asymmetric TSP
instance I = (𝐺,L, 𝑥, 𝑦) such that no vertex is contained in more than 𝑘
sets ofL, show how to compute a solution of cost at most (16𝑘+𝜀) ·LP(I)
in polynomial time.
Hint: Proceed as indicated at the beginning of Section 7.4. Contract the
elements of L≥2. Use that if L contains only singletons, one can compute
a solution of cost at most (8+𝜀) ·LP(I) in polynomial time by Exercise 6.1
and Theorem 6.12. When recursing, also contract the outside as in Step (1)
of Algorithm 7.8.
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7.5 In this and the following two exercises, we will show how to obtain a
slightly better approximation ratio for Asymmetric TSP. Let 0 < 𝛿 < 1.
Modify Algorithm 7.8 as follows. As in Lemma 7.13, it also takes a
connected Eulerian multi-subgraph 𝐵 with 𝑉 (𝐵) ∩𝑊 ≠ ∅ as input, and
uses this as the backbone instead of computing a backbone in Step (2).
Call a set 𝐿 ∈ L�̄� busy if 𝐷𝐿 (𝑢, 𝑣) ≥ (1 − 𝛿)𝐷𝐿 for at least one of the
paths 𝑃𝑢,𝑣 that we add within this set 𝐿 in Step (4). For the recursive calls,
use 𝐹′ as the backbone for 𝐿 whenever 𝐿 is busy; otherwise, construct a
new backbone for 𝐿 by appending 𝑃𝑢∗ ,𝑣∗ and 𝑃𝑣∗ ,𝑢∗ , where 𝑢∗ and 𝑣∗ are
chosen such that 𝐷𝐿 (𝑢∗, 𝑣∗) = 𝐷𝐿 , and add this new backbone to 𝐹′. In
the end, return only 𝐹′′.

(a) Show that, for any input (I,𝑊, 𝐵), the set 𝐹′′ returned by the modified
algorithm, together with the given backbone 𝐵, forms a tour in the
subgraph 𝐺 [𝑊 ∪𝑉 (𝐵)].

(b) Show that for any input (I,𝑊, 𝐵) to the modified algorithm, we have∑
𝐿∈L�̄�

(2𝑦𝐿 + value(𝐿)) ≤ value(𝑊) − 𝐷𝑊 (𝐵), where 𝐷𝑊 (𝐵) :=∑
𝐿∈L: 𝐿⊊𝑊, 𝐿∩𝑉 (𝐵)≠∅ 2𝑦𝐿 .

7.6 Let 0 < 𝛿 < 1 with (2𝜅 +𝜂+1− 𝛿)𝛿 ≤ 2− 𝛿. Show that then, for any input
(I,𝑊, 𝐵), the cost of the output 𝐹′′ of the modified algorithm described
in Exercise 7.5 can be bounded by

𝑐𝑦 (𝐹′′) ≤ 𝜅(value(𝑊) + 𝐷𝑊 ) + (2𝜅 + 𝜂 + 2 − 𝛿) (value(𝑊) − 𝐷𝑊 (𝐵)),

where 𝐷𝑊 (𝐵) =
∑
𝐿∈L: 𝐿⊊𝑊, 𝐿∩𝑉 (𝐵)≠∅ 2𝑦𝐿 as defined in Exercise 7.5 (b).

Hint: In the induction step, bound the cost that we pay for each 𝐿 ∈ L�̄�
in addition to (7.4). We possibly save when uncontracting and lifting,
we may have to pay a new backbone, and we pay for the recursive call.
Distinguish the cases when 𝐿 is busy or not busy and obtain a bound of
(3𝜅+𝜂+2−𝛿)value(𝐿)−(𝜅+𝜂)𝐷𝐿 in both cases. Then use Exercise 7.5 (b).

7.7 Conclude from Exercise 7.6 that any (𝜅, 𝜂)-algorithm for vertebrate pairs
implies a (3𝜅 + 𝜂 + 2− 𝛿)-approximation algorithm for Asymmetric TSP,
where 𝛿 = 1

2
(
2𝜅 + 𝜂 + 2 −

√︁
(2𝜅 + 𝜂 + 2)2 − 8

)
. For 𝜅 = 2 and 𝜂 = 9, this

saves 𝛿 ≈ 0.13454.
7.8 Assume 𝛼 ≥ 2. Suppose the third condition in Step (6c) of Algorithm 7.19

is strengthened to 𝑐𝑦 (𝐸 (𝐶)) ≤ 1
2 slack(�̃�ind(𝑍 ) , �̃�).

(a) Show that then Lemma 7.23 would still hold.
(b) Conclude that for 𝛼 = 2, the bound in (7.14) could be strengthened by

1
2 · slack(𝑉 \𝑉 (𝐵), �̃�).
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8

Algorithms for Subtour Cover

In this chapter, we will present an algorithm for the subtour cover problem, which
we defined in Chapter 7. This will complete the constant-factor approximation
algorithm for the Asymmetric TSP. The subtour cover problem was introduced
(in a slightly different form) by Svensson, Tarnawski, and Végh [2020], who gave
a (4, 2, 1)-algorithm for subtour cover. Traub and Vygen [2022] strengthened
this to a (3, 2, 1)-algorithm. Based on this work, we further improve this here to
a (2, 2, 1)-algorithm. Our subtour cover algorithm builds on the algorithm for
the graph subtour cover problem that we presented in Section 6.2.

We will first describe a (3, 2, 1)-algorithm (Sections 8.1–8.5). In Section 8.6,
we then strengthen this to a (2, 2, 1)-algorithm. As a consequence, we obtain a
(17 + 𝜀)-approximation for the Asymmetric TSP for any fixed 𝜀 > 0.

8.1 The Split Graph

The most important difference to a graph subtour cover is property (ii) of the
definition of a subtour cover 𝐹 (Definition 7.14), which requires that every
connected component of (𝑉, 𝐹) must be local or connected to the backbone 𝐵.
Due to the structure of the cost function 𝑐𝑦 , this will also be crucial to obtain
the following property of solutions returned by an (𝛼, 𝜅, 𝛽)-algorithm: we must
have

𝑐𝑦 (𝐸 (𝐷)) ≤ 𝛼 ·
∑︁

𝑣∈𝑉 (𝐷)
2𝑦𝑣 (8.1)

for every connected component 𝐷 of (𝑉, 𝐹) with 𝑉 (𝐷) ∩𝑉 (𝐵) = ∅.
To achieve that each connected component of (𝑉, 𝐹) is local or connected to

the backbone, the key tool is the split graph. The concept of the split graph was
first suggested by Svensson, Tarnawski, and Végh [2018], albeit in a slightly

159
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𝑟 (𝑣) = 2

𝑉 = 𝐿1

𝐿2 𝐿3

𝐿6

𝐿4

𝐿9

𝐿5

𝐿11 𝐿8

𝐿10

𝐿7

forward

backward

neutral

Figure 8.1 The laminar family L≥2 ∪ {𝑉 } = {𝐿1, . . . , 𝐿11}. In this example, the
set 𝐿2 \ (𝐿6 ∪ 𝐿4 ) is the set of all vertices 𝑣 with 𝑟 (𝑣) = 2; it is shown in blue.
On the right, we see examples of a forward edge (green), a backward edge (red),
and a neutral edge (gray). This picture is adapted from Traub and Vygen [2022].

different context. To define the split graph, we number the non-singleton elements
of our laminar family L as follows. Number L≥2 ∪ {𝑉} = {𝐿1, . . . , 𝐿𝑟max } such
that |𝑉 | = |𝐿1 | ≥ · · · ≥ |𝐿𝑟max | ≥ 2. For 𝑣 ∈ 𝑉 , let 𝑟 (𝑣) := max{𝑖 : 𝑣 ∈ 𝐿𝑖}, and
call an edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 forward if 𝑟 (𝑣) < 𝑟 (𝑤), backward if 𝑟 (𝑣) > 𝑟 (𝑤),
and neutral if 𝑟 (𝑣) = 𝑟 (𝑤). See Figure 8.1. An edge 𝑒 is neutral if and only if
for all 𝐿 ∈ L≥2, we have 𝑒 ∉ 𝛿(𝐿).

We will need the following simple observation:

Lemma 8.1. Let 𝐶 be the edge set of a cycle. If 𝐶 is not local, then 𝐶 contains
a forward edge and a backward edge.

Proof. If 𝐶 is not local, there exists an edge 𝑒 = (𝑣, 𝑤) ∈ 𝐶 ∩ 𝛿+ (𝐿) for some
𝐿 ∈ L≥2. By the choice of the numbering 𝐿1, . . . , 𝐿𝑟max , we have 𝐿𝑟 (𝑣) ⊆ 𝐿
and hence 𝑤 ∉ 𝐿𝑟 (𝑣) . Therefore, the cycle with edge set 𝐶 contains vertices 𝑣, 𝑤
with 𝑟 (𝑣) ≠ 𝑟 (𝑤). Hence, 𝐶 contains both a forward and a backward edge. □

Next, we define the split graph 𝐺01 of 𝐺 (see Figure 8.2).

• For every vertex 𝑣 ∈ 𝑉 , the split graph 𝐺01 contains two vertices 𝑣0 and 𝑣1

(on the lower and upper level).
• For every 𝑣 ∈ 𝑉 , it contains an edge 𝑒↓𝑣 = (𝑣1, 𝑣0) with 𝑐𝑦 (𝑒↓𝑣) = 0.
• For every 𝑣 ∈ 𝑉 (𝐵), it also contains an edge 𝑒↑𝑣 = (𝑣0, 𝑣1) with 𝑐𝑦 (𝑒↑𝑣) = 0.
• For every forward edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 , it contains an edge 𝑒0 = (𝑣0, 𝑤0)

with 𝑐𝑦 (𝑒0) = 𝑐𝑦 (𝑒).
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8.1 The Split Graph 161

Figure 8.2 Construction of the split graph. The digraph on the left with the laminar
family indicated by the two ellipses and the backbone shown in blue results in the
split graph on the right (with the lower level in green and the upper level in red).
Forward edges (green on the left) are mapped to the lower level, backward edges
(red on the left) are mapped to the upper level. Neutral edges (gray on the left) are
mapped to both levels. Additional edges (black) connect the two layers.

• For every backward edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 , it contains an edge 𝑒1 = (𝑣1, 𝑤1)
with 𝑐𝑦 (𝑒1) = 𝑐𝑦 (𝑒).
• For every neutral edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 , it contains edges 𝑒0 = (𝑣0, 𝑤0) and
𝑒1 = (𝑣1, 𝑤1) with 𝑐𝑦 (𝑒0) = 𝑐𝑦 (𝑒1) = 𝑐𝑦 (𝑒).

We write 𝑉0 := {𝑣0 : 𝑣 ∈ 𝑉} and call 𝐺01 [𝑉0] the lower level of the split graph
𝐺01. Similarly, we write 𝑉1 := {𝑣1 : 𝑣 ∈ 𝑉} and call 𝐺01 [𝑉1] the upper level of
𝐺01. For a set𝑊 ⊆ 𝑉 we denote by𝑊01 := {𝑣 𝑗 : 𝑣 ∈ 𝑊, 𝑗 ∈ {0, 1}} the vertex
set of 𝐺01 that corresponds to𝑊 .

For any subgraph of 𝐺01, we obtain a subgraph of 𝐺 (its image) by replacing
both 𝑣0 and 𝑣1 by 𝑣 and removing loops. Then, obviously, the image of a circuit
is an Eulerian graph. The next lemma shows how we can use the split graph to
achieve property (ii) of a subtour cover (cf. Definition 7.14).

Lemma 8.2. If the image of a connected Eulerian multi-subgraph of 𝐺01 is not
local, it contains a vertex of the backbone 𝐵.

Proof. Let 𝐷01 be a connected Eulerian multi-subgraph of 𝐺01 such that its
image 𝐷 (a connected Eulerian multi-subgraph of 𝐺) is not local. Then 𝐷
contains a cycle 𝐶 that is not local. By Lemma 8.1, 𝐶 (and hence also 𝐷)
contains a forward edge and a backward edge. Therefore, 𝐷01 visits both levels
of 𝐺01 and thus contains an edge 𝑒↑𝑣 for some 𝑣 ∈ 𝑉 (𝐵). □
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The general idea of the subtour cover algorithm is as follows. First, we map
the circulation 𝑥 (stemming from the given strongly laminar Asymmetric TSP
instance (𝐺,L, 𝑥, 𝑦)) to a circulation 𝑧 in the split graph. Then, we round the
circulation 𝑧 in the split graph using a procedure similar to the algorithm for the
graph subtour cover problem from Section 6.2. Finally, we consider the image
of the edge set that results from the rounding in the split graph. Lemma 8.2 will
guarantee that every connected component of this image is local or connected
to the backbone.

8.2 Witness Flows

Similarly as we can map subgraphs of 𝐺01 to 𝐺, we can also map every flow 𝑧′ :
𝐸 (𝐺01) → R≥0 to a flow 𝑥′ : 𝐸 → R≥0 in𝐺 by setting 𝑥′ (𝑒) := 𝑧′ (𝑒0) + 𝑧′ (𝑒1),
where we set 𝑧′ (𝑒1) := 0 for forward edges 𝑒 and 𝑧′ (𝑒0) := 0 for backward
edges 𝑒. If 𝑧′ is a circulation, then its image 𝑥′ is also a circulation. However,
while we can map every circulation in the split graph 𝐺01 to a circulation in 𝐺,
not every circulation in 𝐺 is the image of a circulation in 𝐺01 (cf. Exercise 8.1).
Nevertheless, it turns out that any solution 𝑥 to the linear program (3.2) is the
image of a circulation 𝑧 in 𝐺01. Proving this and showing how we can compute
such a circulation 𝑧 is the topic of this section.

First, we define a flow 𝑓 ≤ 𝑥, which we will call a witness flow. In the
construction of 𝑧, we will map the witness flow 𝑓 to the lower level of 𝐺01 and
map the remaining flow 𝑥 − 𝑓 to the upper level of 𝐺01. See Figure 8.3.

Definition 8.3 (witness flow). Let 𝑥′ be a circulation in 𝐺. Then we call a flow
𝑓 ′ in 𝐺 a witness flow (for 𝑥′) if

(i) 𝑓 ′ (𝑒) = 0 for every backward edge 𝑒;
(ii) 𝑓 ′ (𝑒) = 𝑥′ (𝑒) for every forward edge 𝑒;
(iii) 0 ≤ 𝑓 ′ (𝑒) ≤ 𝑥′ (𝑒) for every neutral edge 𝑒; and
(iv) 𝑓 ′ (𝛿+ (𝑣)) ≥ 𝑓 ′ (𝛿− (𝑣)) for all 𝑣 ∈ 𝑉 \𝑉 (𝐵).

The concept of a witness flow was introduced by Svensson, Tarnawski, and
Végh [2020]. We now show that the pairs (𝑥′, 𝑓 ′) where 𝑓 ′ is a witness flow for
the circulation 𝑥′ in 𝐺 correspond to circulations in the split graph 𝐺01, and
vice versa.

For a circulation 𝑧′ in 𝐺01, define 𝜋(𝑧′) := (𝑥′, 𝑓 ′), where 𝑥′ is the image of
𝑧′ in 𝐺 and 𝑓 ′ is the image of the restriction of 𝑧′ to the lower level 𝐺01 [𝑉0] of
the split graph.
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(a)

𝐿4 𝐿3

𝐿2

(b)

(c)

Figure 8.3 An example of the construction of the circulation 𝑧 in 𝐺01. Picture
(a) shows the laminar family L≥2 = {𝐿2, 𝐿3, 𝐿4} and, in blue, the backbone 𝐵.
Picture (b) shows a solution 𝑥 to (3.2) where we have 𝑥𝑒 = 1

2 for all edges; a
witness flow 𝑓 is shown in green. The vertices in 𝑉 (𝐵) are shown as squares.
Every cycle crossing the boundary of a set 𝐿 ∈ L≥2 contains both a green and
a red edge. Picture (c) shows the resulting circulation 𝑧 in 𝐺01, where we have
𝑧𝑒 > 0 for every thick edge 𝑒 and 𝑧𝑒 = 0 for all thin edges. The flow 𝑥 − 𝑓 is
mapped to the upper level of the split graph (red), and the flow 𝑓 is mapped to the
lower level (green). This picture is taken from Traub and Vygen [2022].

Lemma 8.4. Let 𝑧′ be a circulation in 𝐺01 and (𝑥′, 𝑓 ′) := 𝜋(𝑧′). Then 𝑥′ is a
circulation in 𝐺 with 𝑐𝑦 (𝑥′) = 𝑐𝑦 (𝑧′), and 𝑓 ′ is a witness flow for 𝑥′.

Proof. The first claim being obvious, we show that 𝑓 ′ is a witness flow for 𝑥′.
Property (i) holds because for a backward edge 𝑒, the graph𝐺01 does not contain
an edge 𝑒0. Similarly, (ii) holds because for a forward edge 𝑒, the graph 𝐺01

does not contain an edge 𝑒1. Property (iii) is obvious by construction, and (iv)
holds because 𝑧′ is a circulation and because for 𝑣 ∈ 𝑉 \𝑉 (𝐵), the split graph
does not contain an edge 𝑒↑𝑣 . □
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Conversely, for a circulation 𝑥′ in 𝐺 and a witness flow 𝑓 ′ for 𝑥′, there is a
circulation 𝑧′ in 𝐺01 with 𝜋(𝑧′) = (𝑥′, 𝑓 ′).

Lemma 8.5. Given a circulation 𝑥′ in 𝐺 and a witness flow 𝑓 ′ for 𝑥′, we can
compute a circulation 𝑧′ in 𝐺01 with 𝜋(𝑧′) = (𝑥′, 𝑓 ′) in linear time.

Proof. We define 𝑧′ as follows.

• For every edge 𝑒0 of the lower level of 𝐺01, let 𝑧′ (𝑒0) = 𝑓 ′ (𝑒).
• For every edge 𝑒1 of the upper level of 𝐺01, let 𝑧′ (𝑒1) = 𝑥′ (𝑒) − 𝑓 ′ (𝑒).
• For every edge 𝑒↑𝑣 (for 𝑣 ∈ 𝑉 (𝐵)), let 𝑧′ (𝑒↑𝑣) = max{0, 𝑓 ′ (𝛿− (𝑣))− 𝑓 ′ (𝛿+ (𝑣))}.
• For every edge 𝑒↓𝑣 (for 𝑣 ∈ 𝑉), let 𝑧′ (𝑒↓𝑣) = max{0, 𝑓 ′ (𝛿+ (𝑣)) − 𝑓 ′ (𝛿− (𝑣))}.

Notice that 𝑥′ (𝑒) = 𝑧′ (𝑒0) for every forward edge 𝑒 and 𝑥′ (𝑒) = 𝑧′ (𝑒1) for
every backward edge 𝑒. Moreover, 𝑥′ (𝑒) = 𝑧′ (𝑒0) + 𝑧′ (𝑒1) for every neutral
edge 𝑒. Furthermore, 𝑧′ indeed defines a circulation in𝐺01 because 𝑓 ′ (𝛿+ (𝑣)) ≥
𝑓 ′ (𝛿− (𝑣)) for all 𝑣 ∈ 𝑉 \𝑉 (𝐵). □

We have seen that pairs (𝑥′, 𝑓 ′) where 𝑓 ′ is a witness flow for 𝑥′ correspond
to circulations in the split graph. The following lemma states a key property of
witness flows and can be viewed as the analogue of Lemma 8.2. Recall that 𝜒𝐹
denotes the incidence vector of 𝐹.

Lemma 8.6. Let 𝐹 be an Eulerian multi-subset of 𝐸 such that there exists a
witness flow 𝑓 for 𝜒𝐹 . Then every connected component 𝐷 of (𝑉, 𝐹) is local or
contains a vertex of the backbone 𝐵.

Proof. Let 𝐷 be a connected component of (𝑉, 𝐹) with 𝑉 (𝐷) ∩ 𝑉 (𝐵) = ∅.
Since 𝑓 ≤ 𝜒𝐹 , we have

∑
𝑣∈𝑉 (𝐷) 𝑓 (𝛿− (𝑣)) =

∑
𝑣∈𝑉 (𝐷) 𝑓 (𝛿+ (𝑣)), and hence

property (iv) of a witness flow (Definition 8.3) implies 𝑓 (𝛿+ (𝑣)) = 𝑓 (𝛿− (𝑣))
for all 𝑣 ∈ 𝑉 (𝐷). In other words, 𝑓 restricted to 𝐸 (𝐷) is a circulation in 𝐷.

Suppose that 𝐷 is not local. Then by Lemma 8.1, 𝐸 (𝐷) contains a forward
edge 𝑒 = (𝑣, 𝑤). By property (ii), we have 𝑓 (𝑒) = 𝜒𝐹𝑒 ≥ 1. Let 𝑅𝑣 := {𝑢 ∈ 𝑉 :
𝑟 (𝑢) ≤ 𝑟 (𝑣)}. Then 𝑒 ∈ 𝛿+ (𝑅𝑣). Since 𝑓 restricted to 𝐸 (𝐷) is a circulation in
𝐷, there is an edge 𝑒′ ∈ 𝛿− (𝑅𝑣) with 𝑓 (𝑒′) > 0. However, by the definition of
𝑅𝑣 , all edges entering 𝑅𝑣 are backward edges, and hence property (i) requires
𝑓 (𝑒′) = 0. This is a contradiction, implying that 𝐷 is local. □

Now we prove that we can indeed map any solution 𝑥 to (3.2) to a circulation
in the split graph:

Lemma 8.7 (Svensson, Tarnawski, and Végh [2020]). Let (I, 𝐵) be a vertebrate
pair, with I = (𝐺,L, 𝑥, 𝑦). Then there exists a witness flow 𝑓 for 𝑥, and we can
compute one in polynomial time.
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Case 1:

𝐵

𝑎

𝐿𝑖

𝑈

𝑈 \ 𝐿𝑖 𝑈 ∩ 𝐿𝑖

backward

forward

Case 2:

𝐵

𝑎

𝐿𝑖

𝑈

backward

neutral

forward

Figure 8.4 Proof of Lemma 8.7 (Case 1 and Case 2). This picture is taken from
Traub and Vygen [2022].

Proof. Consider the graph 𝐺′ that arises from 𝐺 by adding a new vertex 𝑎 and
edges (𝑎, 𝑣) for all 𝑣 ∈ 𝑉 and edges (𝑣, 𝑎) for all 𝑣 ∈ 𝑉 (𝐵). Set 𝑙 (𝑒′) = 0 and
𝑢(𝑒′) = ∞ for the new edges. Moreover, for 𝑒 ∈ 𝐸 set the lower bound 𝑙 (𝑒) and
the upper bound 𝑢(𝑒) according to the requirements from Definition 8.3 – that
is, set 𝑢(𝑒) = 𝑥(𝑒) if 𝑒 is a forward or neutral edge and 𝑢(𝑒) = 0 otherwise, and
set 𝑙 (𝑒) = 𝑥(𝑒) if 𝑒 is a forward edge and 𝑙 (𝑒) = 0 otherwise.

Then we are looking for a circulation 𝑓 ′ in 𝐺′ with 𝑙 ≤ 𝑓 ′ ≤ 𝑢. By Hoffman’s
circulation theorem (Theorem 3.9), this exists if

𝑙 (𝛿− (𝑈)) ≤ 𝑢(𝛿+ (𝑈)) (8.2)

for all 𝑈 ⊆ 𝑉 ∪ {𝑎}. We show that this is indeed true. Suppose not, and let 𝑈
be a minimal set violating (8.2). Since (8.2) obviously holds whenever 𝑎 ∈ 𝑈
or 𝑉 (𝐵) ∩ 𝑈 ≠ ∅, we have 𝑈 ⊆ 𝑉 \ 𝑉 (𝐵). Let 𝑖 be the largest index so that
𝑈 ∩ 𝐿𝑖 ≠ ∅. Recall that 𝐿𝑖 ∈ L≥2 and thus 𝐿𝑖 ∩𝑉 (𝐵) ≠ ∅. We distinguish two
cases (see Figure 8.4).
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Case 1:𝑈 \ 𝐿𝑖 ≠ ∅.
Then (by the minimality of𝑈) we have 𝑙 (𝛿− (𝑈 ∩ 𝐿𝑖)) ≤ 𝑢(𝛿+ (𝑈 ∩ 𝐿𝑖)) and
𝑙 (𝛿− (𝑈 \ 𝐿𝑖)) ≤ 𝑢(𝛿+ (𝑈 \ 𝐿𝑖)). Since all edges from 𝑈 \ 𝐿𝑖 to 𝑈 ∩ 𝐿𝑖 are
forward edges and all edges from𝑈 ∩ 𝐿𝑖 to𝑈 \ 𝐿𝑖 are backward edges, we get

𝑙 (𝛿− (𝑈)) + 𝑥(𝛿+ (𝑈 \ 𝐿𝑖) ∩ 𝛿− (𝑈 ∩ 𝐿𝑖))
= 𝑙 (𝛿− (𝑈 ∩ 𝐿𝑖)) + 𝑙 (𝛿− (𝑈 \ 𝐿𝑖))
≤ 𝑢(𝛿+ (𝑈 ∩ 𝐿𝑖)) + 𝑢(𝛿+ (𝑈 \ 𝐿𝑖))
= 𝑢(𝛿+ (𝑈)) + 𝑥(𝛿+ (𝑈 \ 𝐿𝑖) ∩ 𝛿− (𝑈 ∩ 𝐿𝑖))

and hence (8.2), which is a contradiction to the choice of𝑈.

Case 2:𝑈 ⊆ 𝐿𝑖 .
Then 𝑟 (𝑢) = 𝑖 for all 𝑢 ∈ 𝑈 and 𝑟 (𝑤) ≥ 𝑖 for all 𝑤 ∈ 𝐿𝑖 . Hence, 𝑙 (𝛿− (𝑈)) ≤
𝑥(𝛿− (𝐿𝑖) ∩ 𝛿− (𝑈)) because we have 𝑙 (𝑒) > 0 only for forward edges and
because all edges in 𝛿− (𝑈) \ 𝛿− (𝐿𝑖) are neutral or backward edges. Moreover,
edges in 𝛿+ (𝑈) \ 𝛿+ (𝐿𝑖) are not backward edges, implying 𝑥(𝛿+ (𝑈) \ 𝛿+ (𝐿𝑖)) =
𝑢(𝛿+ (𝑈) \ 𝛿+ (𝐿𝑖)) ≤ 𝑢(𝛿+ (𝑈)).

Therefore,

𝑙 (𝛿− (𝑈)) ≤ 𝑥(𝛿− (𝐿𝑖) ∩ 𝛿− (𝑈))
= 𝑥(𝛿− (𝐿𝑖)) + 𝑥(𝛿+ (𝑈) \ 𝛿+ (𝐿𝑖)) − 𝑥(𝛿− (𝐿𝑖 \𝑈))
≤ 𝑥(𝛿− (𝐿𝑖)) + 𝑢(𝛿+ (𝑈)) − 𝑥(𝛿− (𝐿𝑖 \𝑈)).

Since 𝐿𝑖 \𝑈 ≠ ∅ (because 𝐿𝑖∩𝑉 (𝐵) ≠ ∅ = 𝑈∩𝑉 (𝐵)), we have 𝑥(𝛿− (𝐿𝑖 \𝑈)) ≥
1. Moreover, 𝐿𝑖 ∈ L∪{𝑉} implies 𝑥(𝛿(𝐿𝑖)) ∈ {0, 2} and hence 𝑥(𝛿− (𝐿𝑖)) ≤ 1.
Hence, (8.2) follows, which is again a contradiction.

By Theorem 3.11 we can compute 𝑓 in polynomial time. □

8.3 Rerouting

The first step of our subtour cover algorithm is to apply Lemma 8.7 and
Lemma 8.5 in order to obtain a circulation 𝑧 in the split graph 𝐺01. Similar to
the proof of Theorem 6.6, before we round to obtain an integral circulation, we
first modify the split graph 𝐺01 to an auxiliary graph �̄�01 and reroute some flow
of 𝑧 through auxiliary vertices. For the rerouting step, we need the following
lemma:

Lemma 8.8. Let 𝐺′ be a directed graph and 𝑧′ a circulation in 𝐺′. Let
𝑈 ⊆ 𝑉 (𝐺′) with 𝑧′ (𝛿(𝑈)) ≥ 2. Then we can compute in polynomial time a
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multi-set P of paths in 𝐺′ [𝑈] and for every 𝑃 ∈ P starting in 𝑠 ∈ 𝑈 and ending
in 𝑡 ∈ 𝑈

• a weight 𝜆𝑃 > 0,
• an edge 𝑒in

𝑃
= (𝑠′, 𝑠) ∈ 𝛿− (𝑈), and

• an edge 𝑒out
𝑃

= (𝑡, 𝑡′) ∈ 𝛿+ (𝑈),

such that
∑
𝑃∈P 𝜆𝑃 = 1 and∑︁

𝑃∈P
𝜆𝑃 ·

(
𝜒𝑒

in
𝑃 + 𝜒𝐸 (𝑃) + 𝜒𝑒out

𝑃

)
≤ 𝑧′.

Proof. Contract 𝑉 (𝐺′) \𝑈 to a vertex 𝑣outside. Then we have 𝑧′ (𝛿(𝑣outside)) =
𝑧′ (𝛿(𝑈)) ≥ 2. Because 𝑧′ remains a circulation, by Proposition 3.7 we can
compute in polynomial time a set C of cycles containing 𝑣outside and weights
𝜆𝐶 > 0 for 𝐶 ∈ C with

∑
𝐶∈C 𝜆𝐶 = 1 such that∑︁
𝐶∈C

𝜆𝐶 · 𝜒𝐸 (𝐶 ) ≤ 𝑧′.

After undoing the contraction, each of these circuits results in an edge 𝑒in =

(𝑠′, 𝑠) ∈ 𝛿− (𝑈), an edge 𝑒out = (𝑡, 𝑡′) ∈ 𝛿+ (𝑈), and an 𝑠-𝑡-path 𝑃 in𝐺′ [𝑈]. □

Recall that a subtour cover instance consists of a vertebrate pair (I, 𝐵)
(with backbone 𝐵) and a local Eulerian multi-subset 𝐻 of 𝐸 [𝑉 \ 𝑉 (𝐵)] (cf.
Definition 7.14). Let𝑊1, . . . ,𝑊𝑞 be the vertex sets of the connected components
of (𝑉 \𝑉 (𝐵), 𝐻). Thus,𝑊1, . . . ,𝑊𝑞 are pairwise disjoint subsets of 𝑉 \𝑉 (𝐵).
Recall that 𝑊01

1 , . . . ,𝑊
01
𝑞 are the corresponding vertex sets in the split graph

𝐺01. First, we make the support of 𝑧 inside each set𝑊01
𝑖

acyclic: While there
is a circuit 𝐶 in 𝐺01 [𝑊01

𝑖
] with 𝛾 := min{𝑧𝑒 : 𝑒 ∈ 𝐸 (𝐶)} > 0, reduce 𝑧𝑒 by

𝛾 for all 𝑒 ∈ 𝐸 (𝐶). Let 𝑧 be the resulting circulation. We have 𝑧(𝛿− (𝑊01
𝑖
)) =

𝑧(𝛿− (𝑊01
𝑖
)) = 𝑥(𝛿− (𝑊𝑖)) ≥ 1 for 𝑖 = 1, . . . , 𝑞.

Later, we will round 2𝑧 to an integer circulation while guaranteeing that
we use at least one edge of 𝛿− (𝑊01

𝑖
) for each 𝑖 = 1, . . . , 𝑞. We call 𝑣 ∈ 𝑉01 a

high-throughput vertex if 𝑧(𝛿− (𝑣)) ≥ 1
2 and a low-throughput vertex otherwise.

If 𝑊01
𝑖

contains a high-throughput vertex 𝑤, we can enforce routing at least
one unit of flow through 𝑤 and hence through𝑊01

𝑖
; here, we will use that the

support of 𝑧 inside𝑊01
𝑖

is acyclic. If𝑊01
𝑖

contains only low-throughput vertices,
we will enforce a unit of flow through𝑊01

𝑖
by introducing an auxiliary vertex,

similar to the proof of Theorem 6.6. See Figure 8.5 for our roadmap.
We construct an auxiliary digraph �̄� from 𝐺 and transform 𝑧 to a circulation

𝑧 in �̄�01. Let 𝑖 ∈ {1, . . . , 𝑞} such that all vertices in 𝑊01
𝑖

are low-throughput
vertices. We add an auxiliary vertex 𝑎𝑖 to 𝐺 and set 𝑟 (𝑎𝑖) := 𝑟 (𝑣) for 𝑣 ∈ 𝑊𝑖;
this is well-defined by the following lemma:
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𝐺 �̄�

𝐺01 �̄�01

add vertices 𝑎𝑖

add vertices 𝑎0
𝑖
, 𝑎1

𝑖

split
graph

split
graph

𝑥 in 𝐺

𝑧 in 𝐺01

𝑥 in 𝐺

𝑧 in 𝐺01

𝑥 in �̄�

𝑧 in �̄�01

𝑥∗ in �̄�

𝑧∗ in �̄�01

make acyclic

in 𝐺01 [𝑊01
𝑖
]

reroute double
and round

Figure 8.5 Overview of the different graphs and circulations occurring in the
subtour cover algorithm. We start with the circulation 𝑥 in 𝐺 stemming from
the strongly laminar Asymmetric TSP instance (𝐺, L, 𝑥, 𝑦) . We map 𝑥 to a
circulation 𝑧 in the split graph𝐺01 and perform three steps, ending with an integral
circulation �̄�∗ in �̄�01. This corresponds to an integral circulation �̄�∗ in �̄�, which
we will map back to 𝐺 in the final step of the subtour cover algorithm. A similar
picture appeared in Traub and Vygen [2022].

Lemma 8.9. Let 𝑖 ∈ {1, . . . , 𝑞} and 𝑣, 𝑤 ∈ 𝑊𝑖 . Then 𝑟 (𝑣) = 𝑟 (𝑤). Moreover,
𝐺 [𝑊𝑖] is strongly connected, and 𝐸 (𝐺 [𝑊𝑖]) is local.

Proof. Because 𝑊𝑖 is a connected component of (𝑉 \ 𝑉 (𝐵), 𝐻) and 𝐻 is
Eulerian, 𝐺 [𝑊𝑖] is strongly connected. Let 𝐿 ∈ L≥2. Since 𝐻 is local, we
have 𝐻 ∩ 𝛿(𝐿) = ∅ and therefore 𝑊𝑖 ⊆ 𝐿 or 𝑊𝑖 ∩ 𝐿 = ∅. This implies
𝑟 (𝑣) = max{ 𝑗 : 𝑣 ∈ 𝐿 𝑗 } = max{ 𝑗 : 𝑤 ∈ 𝐿 𝑗 } = 𝑟 (𝑤) and that 𝐸 (𝐺 [𝑊𝑖]) is
local. □

For every edge (𝑣, 𝑤) ∈ 𝛿− (𝑊𝑖), we add an edge (𝑣, 𝑎𝑖) of the same cost.
Similarly, for every edge (𝑣, 𝑤) ∈ 𝛿+ (𝑊𝑖), we add an edge (𝑎𝑖 , 𝑤) of the same
cost. Note that a new edge is a forward/backward/neutral edge if and only if
its corresponding edge in 𝐺 is forward/backward/neutral. Then the split graph
contains new vertices 𝑎0

𝑖
and 𝑎1

𝑖
, connected by an edge 𝑒↓𝑎𝑖 = (𝑎1

𝑖
, 𝑎0
𝑖
) of cost

zero.
Moreover, in the split graph, we now reroute 1

2 unit of flow of the circulation 𝑧
through one of the auxiliary vertices 𝑎0

𝑖
, 𝑎1
𝑖
. More precisely, we first apply

Lemma 8.8 to the vertex set𝑈 = 𝑊01
𝑖

and the circulation 𝑧. Then we partition
the resulting set P into sets P0 and P1 such that P0 contains the paths 𝑃 ∈ P
for which 𝑒in

𝑃
is contained in the lower level of the split graph, and P1 contains

the paths 𝑃 ∈ P for which 𝑒in
𝑃

is contained in the upper level of the split graph.
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Since
∑
𝑃∈P 𝜆𝑃 = 1, we have

∑
𝑃∈P𝑘 𝜆𝑃 ≥ 1

2 for some 𝑘 ∈ {0, 1}. We can
choose values 0 ≤ 𝜆′

𝑃
≤ 𝜆𝑃 such that

∑
𝑃∈P𝑘 𝜆′𝑃 = 1

2 . For every 𝑃 ∈ P𝑘 , we
do the following (see Figure 8.6 (b)–(c) for an example):

• We decrease the flow on 𝑒in
𝑃

and increase the flow on its corresponding edge
in 𝛿− (𝑎𝑘

𝑖
) by 𝜆′

𝑃
.

• We decrease the flow on every edge 𝑒 ∈ 𝐸 (𝑃) by 𝜆′
𝑃

.
• Let ℎ = 0 if 𝑒out

𝑃
is contained in the lower level of the split graph and

ℎ = 1 otherwise. We decrease the flow on 𝑒out
𝑃

and increase the flow on its
corresponding edge in 𝛿+ (𝑎ℎ

𝑖
) by 𝜆′

𝑃
.

• Because𝑊𝑖 ∩𝑉 (𝐵) = ∅, the path 𝑃 contains no edge from the lower to the
upper level; hence ℎ ≤ 𝑘 . If ℎ < 𝑘 (i.e., 𝑘 = 1 and ℎ = 0), we increase the
flow on 𝑒↓𝑎𝑖 by 𝜆′

𝑃
.

This maintains a circulation in the split graph. We do this transformation
successively for all 𝑖 ∈ {1, . . . , 𝑞} for which all vertices in𝑊01

𝑖
are low-through-

put vertices. Let �̄� be the final graph (resulting from 𝐺 by the modifications
described above), and let �̄�01 be its split graph. Let 𝑧 be the final circulation in
the split graph �̄�01, and let 𝑥 be its image in �̄�. See Figure 8.5. We conclude:

Lemma 8.10. We can compute in polynomial time a circulation 𝑧 in �̄�01 that
satisfies 𝑐𝑦 (𝑧) ≤ 𝑐𝑦 (𝑧) and the following property for each 𝑖 ∈ {1, . . . , 𝑞}: either
𝑊01
𝑖

contains a high-throughput vertex 𝑣 with 𝑧(𝛿− (𝑣)) ≥ 1
2 , or �̄� contains a

vertex 𝑎𝑖 and

• either 𝑧(𝛿− (𝑎1
𝑖
)) = 1

2 and 𝑧(𝛿− (𝑎0
𝑖
) \ {𝑒↓𝑎𝑖 }) = 0

• or 𝑧(𝛿− (𝑎1
𝑖
)) = 0 and 𝑧(𝛿− (𝑎0

𝑖
) \ {𝑒↓𝑎𝑖 }) = 1

2 . □

8.4 Rounding

Because we could only reroute 1
2 unit of flow through 𝑎0

𝑖
or 𝑎1

𝑖
, we consider the

circulation 2𝑧. We round 2𝑧 to an integral circulation 𝑧∗ as follows:

Lemma 8.11. We can compute an integral circulation 𝑧∗ in �̄�01 with

(i) 0 ≤ 𝑧∗ (𝑒) ≤ ⌈2𝑧(𝑒)⌉ for all 𝑒 ∈ 𝐸 (�̄�01),
(ii) 𝑐𝑦 (𝑧∗) ≤ 𝑐𝑦 (2𝑧),
(iii) ⌊2𝑧(𝛿− (𝑣))⌋ ≤ 𝑧∗ (𝛿− (𝑣)) ≤ ⌈2𝑧(𝛿− (𝑣))⌉ for all 𝑣 ∈ 𝑉 (�̄�01), and
(iv) ⌊2𝑧(𝛿− (𝑣0) \ {𝑒↓𝑣})⌋ ≤ 𝑧∗ (𝛿− (𝑣0) \ {𝑒↓𝑣}) ≤ ⌈2𝑧(𝛿− (𝑣0) \ {𝑒↓𝑣})⌉ for all

𝑣 ∈ 𝑉 (�̄�),

in polynomial time.
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(a)
𝑊𝑖

(b)
𝑊𝑖

(c)
𝑊𝑖

𝑎𝑖

(d)
𝑊𝑖

𝑎𝑖

(e)
𝑊𝑖

𝑃𝑖

Figure 8.6 Example of the construction of the subtour cover 𝐹 from the witness
flow 𝑓 . On all pictures, a set 𝑊𝑖 (blue and filled) is shown. The pictures show
only edges with at least one endpoint in𝑊𝑖 . Picture (a) shows (parts of) a possible
solution 𝑥 to (3.2) (green and red) and a witness flow 𝑓 (green). The edges drawn
with a single line have value 1

4 ; the edges drawn with a double line have value 1
2 .

Recall that red edges correspond to flow on the upper level of the split graph, and
green edges correspond to flow on the lower level. Picture (b) shows possible flows
( �̃�, 𝑓 ) = 𝜋 ( �̃�) , where the circulation �̃� in the split graph has acyclic support in
𝐺01 [𝑊01

𝑖
]. Picture (c) shows a possible circulation �̄� in �̄� resulting from the

rerouting of flow through 𝑎𝑖 (blue); the witness flow 𝑓 is again shown in green.
Picture (d) shows in orange a possible integral circulation �̄�∗ in �̄�; the orange
edges are elements of the edge set �̄� with 𝜒�̄� = �̄�∗. Picture (e) shows the result of
mapping �̄� back to 𝐺. In blue, the path 𝑃𝑖 in 𝐺 [𝑊𝑖 ] is shown; it completes the
orange edges to a circulation.

Proof. In order to find an integral circulation with (i), (ii), and (iii), we could
apply Corollary 3.12 to the fractional flow 2𝑧. In order to achieve property (iv),
we modify the flow network as follows.

For every vertex 𝑣0 on the lower level of �̄�01 (including the auxiliary
vertices on the lower level), we add a vertex 𝑣0

− and an edge (𝑣0
− , 𝑣

0). Then
we replace every edge (𝑤, 𝑣0) with 𝑤 ≠ 𝑣1 by an edge (𝑤, 𝑣0

−). Setting
𝑧(𝑣0
− , 𝑣

0) := 𝑧(𝛿− (𝑣0) \ {𝑒↓𝑣}) maintains a circulation. When rounding 2𝑧 to a
circulation, we can impose a lower bound ⌊2𝑧(𝛿− (𝑣0) \ {𝑒↓𝑣})⌋ and an upper
bound ⌈2𝑧(𝛿− (𝑣0) \ {𝑒↓𝑣})⌉ on the flow along (𝑣0

− , 𝑣
0). Applying Corollary 3.12
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to this modified flow network and then contracting the auxiliary edges (𝑣0
− , 𝑣

0)
leads to a circulation fulfilling also (iv). □

Let (𝑥, 𝑓 ) := 𝜋(𝑧) and (𝑥∗, 𝑓 ∗) := 𝜋(𝑧∗); see Figure 8.5. Then by Lemma 8.4,
the flows 𝑓 and 𝑓 ∗ are witness flows for the circulations 𝑥 and 𝑥∗, respectively,
in �̄�. Let �̄� be the multi-set of edges in �̄� with 𝜒�̄� = 𝑥∗ (see Figure 8.6 (d)).
Then �̄� is Eulerian because 𝑥∗ is a circulation.

Next, we observe some important properties of �̄�. First,

𝑐𝑦 (�̄�) = 𝑐𝑦 (𝑥∗) = 𝑐𝑦 (𝑧∗) ≤ 2 · 𝑐𝑦 (𝑧) ≤ 2 · 𝑐𝑦 (𝑧)
≤ 2 · 𝑐𝑦 (𝑧) = 2 · 𝑐𝑦 (𝑥) = 2 · LP(I).

(8.3)

Lemma 8.12. Let 𝑖 ∈ {1, . . . , 𝑞} such that𝑊01
𝑖

contains only low-throughput
vertices. Then �̄� contains an auxiliary vertex 𝑎𝑖 , and we have |𝛿−

�̄�
(𝑎𝑖) | = 1.

Proof. We have

|𝛿−
�̄�
(𝑎𝑖) | = 𝑥∗ (𝛿− (𝑎𝑖)) = 𝑧∗ (𝛿− (𝑎1

𝑖 )) + 𝑧∗ (𝛿− (𝑎0
𝑖 ) \ {𝑒

↓
𝑎𝑖 }).

By Lemma 8.10 and properties (iii) and (iv) of Lemma 8.11, we have either
𝑧∗ (𝛿− (𝑎1

𝑖
)) = 1 or 𝑧∗ (𝛿− (𝑎0

𝑖
) \ {𝑒↓𝑎𝑖 }) = 1, and the other term is 0. □

Lemma 8.13. Let 𝑖 ∈ {1, . . . , 𝑞} such that 𝑊01
𝑖

contains a high-throughput
vertex. Then |𝛿−

�̄�
(𝑊𝑖) | ≥ 1.

Proof. Let 𝑤𝑖 ∈ 𝑊01
𝑖

be a high-throughput vertex. Due to property (iii) of
Lemma 8.11, we have 𝑧∗ (𝛿− (𝑤𝑖)) ≥ ⌊2𝑧(𝛿− (𝑤𝑖))⌋ ≥ 1. Moreover, because the
support of 𝑧 in 𝐺01 [𝑊01

𝑖
] is acyclic by construction, property (i) of Lemma 8.11

implies that the support of 𝑧∗ in 𝐺01 [𝑊01
𝑖
] is acyclic as well. Using that 𝑧∗ is a

circulation, this implies |𝛿−
�̄�
(𝑊𝑖) | = 𝑧∗ (𝛿− (𝑊01

𝑖
)) ≥ 𝑧∗ (𝛿− (𝑤𝑖)) ≥ 1. □

Lemma 8.14. Let 𝑣 ∈ 𝑉 \𝑉 (𝐵) with 𝑦𝑣 > 0. Then |𝛿−
�̄�
(𝑣) | ≤ 3.

Proof. By properties (iii) and (iv) of Lemma 8.11, we have

|𝛿−
�̄�
(𝑣) | = 𝑥∗ (𝛿− (𝑣)) = 𝑧∗ (𝛿− (𝑣1)) + 𝑧∗ (𝛿− (𝑣0) \ {𝑒↓𝑣})

≤ ⌈2𝑧(𝛿− (𝑣1))⌉ + ⌈2𝑧(𝛿− (𝑣0) \ {𝑒↓𝑣})⌉
≤ ⌈2𝑥(𝛿− (𝑣))⌉ + 1,

where we used that 𝑧(𝛿− (𝑣1)) + 𝑧(𝛿− (𝑣0) \ {𝑒↓𝑣}) ≤ 𝑥(𝛿− (𝑣)). Because 𝑦𝑣 > 0,
we have {𝑣} ∈ L and thus 𝑥(𝛿− (𝑣)) = 1. □

In certain cases, we can strengthen the bound from Lemma 8.14.

Lemma 8.15. Let 𝑣 ∈ 𝑉 \𝑉 (𝐵) such that 𝑣0 and 𝑣1 are low-throughput vertices.
Then |𝛿−

�̄�
(𝑣) | ≤ 2.
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Proof. By properties (iii) and (iv) of Lemma 8.11, we have

|𝛿−
�̄�
(𝑣) | = 𝑥∗ (𝛿− (𝑣)) = 𝑧∗ (𝛿− (𝑣1)) + 𝑧∗ (𝛿− (𝑣0) \ {𝑒↓𝑣})

≤ ⌈2𝑧(𝛿− (𝑣1))⌉ + ⌈2𝑧(𝛿− (𝑣0)⌉
≤ ⌈2𝑧(𝛿− (𝑣1))⌉ + ⌈2𝑧(𝛿− (𝑣0))⌉
≤ 2,

where the last inequality holds because 𝑣0 and 𝑣1 are low-throughput vertices. □

8.5 Mapping Back to 𝑮

Finally, we show how we can turn the multi-subset �̄� of 𝐸 (�̄�) into a subtour
cover in 𝐺. See Figure 8.6 (d)–(e). For every 𝑖 ∈ {1, . . . , 𝑞} for which 𝑊01

𝑖

contains no high-throughput vertex and hence �̄� contains an auxiliary vertex 𝑎𝑖 ,
we do the following. By Lemma 8.12, the auxiliary vertex 𝑎𝑖 has exactly one
incoming edge in �̄�, and because �̄� is Eulerian, 𝑎𝑖 also has exactly one outgoing
edge. We replace all the edges in 𝛿�̄� (𝑎𝑖) by their corresponding edges in𝐺. This
replacement removes the two edges in 𝛿�̄� (𝑎𝑖) and adds one edge (𝑣, 𝑠) ∈ 𝛿− (𝑊𝑖)
and one edge (𝑡, 𝑤) ∈ 𝛿+ (𝑊𝑖); to obtain an Eulerian edge set, we add an arbitrary
𝑠-𝑡-path 𝑃𝑖 in 𝐺 [𝑊𝑖]. Since 𝐺 [𝑊𝑖] is strongly connected, such a path exists,
and 𝐸 (𝑃𝑖) is local (cf. Lemma 8.9).

Let 𝐹 be the resulting Eulerian multi-set of edges in 𝐺 after applying this
procedure for all sets 𝑊𝑖 (with 𝑖 ∈ {1, . . . , 𝑞}) that do not contain a high-
throughput vertex. In the following, we show that returning this set 𝐹 yields a
(3, 2, 1)-algorithm for subtour cover.

Lemma 8.16. The Eulerian multi-edge set 𝐹 is a subtour cover for 𝐻 in 𝐺.

Proof. First, we note that 𝐹 ∩ 𝛿(𝑊) ≠ ∅ for every vertex set𝑊 of a connected
component of (𝑉 \𝑉 (𝐵), 𝐻) follows from Lemma 8.12 and Lemma 8.13.

Because 𝑓 ∗ is a witness flow for 𝑥∗ = 𝜒�̄� , Lemma 8.6 implies that every
connected component of (𝑉 (�̄�), �̄�) is local or connected to the backbone. Here,
we consider the auxiliary vertices 𝑎𝑖 as elements of the same sets of L≥2 as all
vertices in𝑊𝑖 (cf. Lemma 8.9).

It remains to show that also every connected component of (𝑉, 𝐹) is local or
connected to the backbone. By Lemma 8.9, the edge sets of the paths 𝑃𝑖 within
𝑊𝑖 (that we used to obtain 𝐹 from �̄�) are local. Because the replacement of
the two edges incident to an auxiliary vertex 𝑎𝑖 by their original edges and the
path 𝑃𝑖 never disconnects vertices that were in the same connected component
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before, we conclude that also every connected component of (𝑉, �̄�) is local or
connected to the backbone. □

Theorem 8.17. There is a (3, 2, 1)-algorithm for subtour cover.

Proof. We return the subtour cover 𝐹 we constructed above. By Lemma 8.16,
it remains to show that

𝑐𝑦 (𝐹) ≤ 2 · LP(I) +
∑︁

𝑣∈𝑉\𝑉 (𝐵)
2𝑦𝑣 , (8.4)

and for every connected component 𝐷 of (𝑉, 𝐹) with 𝑉 (𝐷) ∩ 𝑉 (𝐵) = ∅, we
have

𝑐𝑦 (𝐸 (𝐷)) ≤ 3 ·
∑︁

𝑣∈𝑉 (𝐷)
2𝑦𝑣 . (8.5)

Since the edge set of each path 𝑃𝑖 is within𝑊𝑖 and thus local (cf. Lemma 8.9),

𝑐𝑦 (𝐸 (𝑃𝑖)) =
∑︁

𝑣∈𝑉 (𝑃𝑖 )
|𝐸 (𝑃𝑖) ∩ 𝛿(𝑣) | · 𝑦𝑣 ≤

∑︁
𝑣∈𝑊𝑖

2𝑦𝑣 .

Moreover, the sets𝑊𝑖 (𝑖 = 1, . . . , 𝑞) are pairwise disjoint, and𝑉 (𝐵) ∩𝑊𝑖 = ∅ for
𝑖 = 1, . . . , 𝑞. Therefore, we obtain

∑𝑞

𝑖=1 𝑐
𝑦 (𝐸 (𝑃𝑖)) ≤

∑
𝑣∈𝑉\𝑉 (𝐵) 2𝑦𝑣 . Together

with (8.3), this implies (8.4).
Finally, we prove (8.5). Let 𝐷 be a connected component of (𝑉, 𝐹) with

𝑉 (𝐷) ∩ 𝑉 (𝐵) = ∅. Because 𝐹 is a subtour cover, 𝐸 (𝐷) is local and hence
𝑐𝑦 (𝐸 (𝐷)) = ∑

𝑣∈𝑉 (𝐷) |𝛿−𝐹 (𝑣) | · 2𝑦𝑣 . Moreover, because the sets 𝑊1, . . . ,𝑊𝑞
are pairwise disjoint, we have |𝛿−

𝐹
(𝑣) | ≤ |𝛿−

�̄�
(𝑣) | + 1 for every vertex 𝑣 ∈ 𝑉 (𝐷).

Let 𝑣 ∈ 𝑉 (𝐷) with 𝑦𝑣 > 0, and let 𝑖 ∈ {1, . . . , 𝑞} such that 𝑣 ∈ 𝑊𝑖 . If
𝑣0 and 𝑣1 are low-throughput vertices, we have |𝛿−

𝐹
(𝑣) | ≤ |𝛿−

�̄�
(𝑣) | + 1 ≤ 3

by Lemma 8.15. Otherwise, we have not added an auxiliary vertex 𝑎𝑖 and
thus have not added a path 𝑃𝑖 when transforming �̄� to 𝐹. Thus, in this case
|𝛿−
𝐹
(𝑣) | = |𝛿−

�̄�
(𝑣) | ≤ 3 by Lemma 8.14.

We have shown |𝛿−
𝐹
(𝑣) | ≤ 3 for every vertex 𝑣 ∈ 𝑉 (𝐷) with 𝑦𝑣 > 0, and this

implies 𝑐𝑦 (𝐸 (𝐷)) = ∑
𝑣∈𝑉 (𝐷) |𝛿−𝐹 (𝑣) | · 2𝑦𝑣 ≤

∑
𝑣∈𝑉 (𝐷) 3 · 2𝑦𝑣 . □

This yields a constant-factor approximation algorithm for the Asymmetric
TSP as follows. Theorem 8.17 yields a (3, 2, 1)-algorithm for subtour cover, and
by Theorem 7.18, this implies that there is a (2, 13 + 𝜀)-algorithm for vertebrate
pairs. Using Theorem 7.12, we then obtain a (21 + 𝜀)-approximation algorithm
for the Asymmetric TSP for any fixed 𝜀 > 0. In the next section, we strengthen
this to a (17 + 𝜀)-approximation algorithm.

Let us summarize our subtour cover algorithm: We started with the LP
solution 𝑥, mapped it to a circulation 𝑧 in the split graph (using a witness flow),
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and transformed 𝑧 in several steps (cf. Figure 8.5) to an integral circulation 𝑧∗ in
the extended split graph �̄�01. The image 𝑥∗ of 𝑧∗ corresponds to an Eulerian
multi-edge set �̄�, which we mapped back to a subtour cover 𝐹 in 𝐺. In the
final version of their paper, Svensson, Tarnawski, and Végh [2020] described
an alternative way to transform 𝑥 to 𝑥∗. Instead of working in the split graph
directly, they guarantee that at any stage there exists a witness flow (which is
equivalent); see Exercise 8.3.

8.6 Better Subtour Covers by Acyclic Witness Flows

In this section, we strengthen Theorem 8.17 and present a (2, 2, 1)-algorithm
for subtour cover. The key difference to the subtour algorithm discussed in the
previous sections of this chapter is that we will only work with witness flows with
acyclic support, an idea introduced by Traub and Vygen [2022]. More precisely,
we choose the witness flow 𝑓 such that it has acyclic support, and we will make
sure that the witness flows 𝑓 and 𝑓 ∗ that we obtain after rerouting and rounding
(see Figure 8.5) have acyclic support as well. Then every vertex 𝑣 ∈ 𝑉 for which
the integral circulation 𝑧∗ in the split graph fulfills 𝑧∗ (𝛿− (𝑣0)) > 0 will be
connected to the backbone by the subtour cover 𝐹. This allows us to strengthen
Lemmas 8.14 and 8.15 and thus leads to an improved bound on |𝛿−

𝐹
(𝑣) |.

We first show that we can choose the witness flow 𝑓 with acyclic support.
The second property of 𝑓 in Lemma 8.18 will be needed to maintain an acyclic
support of the witness flow during later steps of the subtour cover algorithm
– in particular, the rerouting. Recall that𝑊1, . . . ,𝑊𝑞 are the vertex sets of the
connected components of (𝑉 \𝑉 (𝐵), 𝐻).

Lemma 8.18. Let (I, 𝐵) be a vertebrate pair, with I = (𝐺,L, 𝑥, 𝑦). Then we
can compute in polynomial time a witness flow 𝑓 for 𝑥 such that

(v) the support of 𝑓 is acyclic, and
(vi)

∑𝑞

𝑖=1 𝑓 (𝛿(𝑊𝑖)) ≤
∑𝑞

𝑖=1 𝑓
′ (𝛿(𝑊𝑖)) for every witness flow 𝑓 ′ for 𝑥.

Proof. We first compute a witness flow 𝑓 by minimizing
∑𝑞

𝑖=1 𝑓 (𝛿(𝑊𝑖))
subject to the constraints (i) – (iv) from Definition 8.3. This linear program is
feasible by Lemma 8.7. Then the flow 𝑓 fulfills property (vi).

To compute the flow 𝑓 , we minimize
∑
𝑒∈𝐸 𝑓 (𝑒) subject to the constraints (i)

– (iv) and 𝑓 (𝑒) ≤ 𝑓 (𝑒) for all 𝑒 ∈ 𝐸 . This linear program is feasible because
𝑓 is a feasible solution. Then 𝑓 is a witness flow for 𝑥 with

∑𝑞

𝑖=1 𝑓 (𝛿(𝑊𝑖)) ≤∑𝑞

𝑖=1 𝑓 (𝛿(𝑊𝑖)). Since the flow 𝑓 fulfills property (vi), the same holds for the
flow 𝑓 .
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Suppose 𝑓 does not fulfill (v) – that is, the support of 𝑓 is not acyclic. Then
there is a cycle 𝐶 ⊆ 𝐸 with 𝑓 (𝑒) > 0 for all 𝑒 ∈ 𝐶. As 𝑓 fulfills (i), the set
𝐶 does not contain any backward edge. This implies that 𝐶 also contains no
forward edge because 𝐶 is a cycle. Let 𝜀 := min𝑒∈𝐶 𝑓 (𝑒). For 𝑒 ∈ 𝐸 , we set
𝑓 ′ (𝑒) := 𝑓 (𝑒) − 𝜀 ≤ 𝑓 (𝑒) if 𝑒 ∈ 𝐶 and set 𝑓 ′ (𝑒) := 𝑓 (𝑒) ≤ 𝑓 (𝑒) otherwise.
Because 𝐶 contains neither forward nor backward edges, 𝑓 ′ fulfills (i) and (ii).
By the choice of 𝜀, we have 𝑓 ′ (𝑒) ≥ 0 for all 𝑒 ∈ 𝐸 , implying (iii). Finally,
𝑓 ′ (𝛿+ (𝑣)) − 𝑓 ′ (𝛿− (𝑣)) = 𝑓 (𝛿+ (𝑣)) − 𝑓 (𝛿− (𝑣)) ≥ 0 for all 𝑣 ∈ 𝑉 \𝑉 (𝐵), where
we used that 𝐶 is a cycle and 𝑓 fulfills (iv). This shows that 𝑓 ′ is a witness flow
and 𝑓 ′ (𝑒) ≤ 𝑓 (𝑒) for all 𝑒 ∈ 𝐸 , but

∑
𝑒∈𝐸 𝑓

′
𝑒 <

∑
𝑒∈𝐸 𝑓𝑒, a contradiction to the

choice of 𝑓 . □

We now work with a flow 𝑓 as in Lemma 8.18. As before, we apply
Lemma 8.5 to construct 𝑧 from 𝑥 and 𝑓 . Again, we first make the support of
𝑧 inside each set 𝑊01

𝑖
acyclic: While there is a circuit 𝐶 in 𝐺01 [𝑊01

𝑖
] with

𝛾 := min{𝑧𝑒 : 𝑒 ∈ 𝐸 (𝐶)} > 0, reduce 𝑧𝑒 by 𝛾 for all 𝑒 ∈ 𝐸 (𝐶). Let the
resulting circulation be 𝑧. Then we again call 𝑣 ∈ 𝑉01 a high-throughput vertex
if 𝑧(𝛿− (𝑣)) ≥ 1

2 and a low-throughput vertex otherwise.
If for some 𝑖 ∈ {1, . . . , 𝑞}, the set𝑊01

𝑖
contains only low-throughput vertices,

we proceed similar to the earlier subtour cover algorithm – that is, we introduce
an auxiliary vertex 𝑎𝑖 and reroute some flow through 𝑎𝑖 . Applying the same
rerouting procedure as earlier could however lead to cycles in the support of
the witness flow (this will become clear in the proof of Lemma 8.20). Thus, in
order to maintain an acyclic witness flow, we use a slightly different rerouting
procedure.

To this end, we denote by 𝐺 𝑓 the residual graph of the witness flow 𝑓 in the
graph 𝐺 with edge capacities 𝑢 = 𝑥 (see Definition 2.4). For 𝑖 ∈ {1, . . . , 𝑞}, let
�̂�𝑖 be the vertex set of the first strongly connected component of 𝐺 𝑓 [𝑊𝑖] in
some topological order – that is, 𝐺 𝑓 [�̂�𝑖] is a strongly connected component of
𝐺 𝑓 [𝑊𝑖] such that no edge of 𝐺 𝑓 [𝑊𝑖] enters �̂�𝑖 (cf. Proposition 6.4). Instead of
rerouting some flow going through 𝑊𝑖 as we did earlier, we will now reroute
flow going through �̂�𝑖 . To show that 𝑧 has at least one unit of flow entering (and
leaving) �̂�01

𝑖
, we observe that reducing 𝑧 to 𝑧 did not reduce the flow on any

edge in 𝛿(�̂�01
𝑖
).

Lemma 8.19. Let 𝐶 be any cycle in 𝐺01 [𝑊01
𝑖
] in the support of 𝑧. Then 𝐶 does

not contain any edge of 𝛿(�̂�01
𝑖
).

Proof. By the definition of �̂�𝑖 ⊆ 𝑉 and the definition of the residual graph
(Definition 2.4), we have 𝑓 (𝑒) = 𝑥(𝑒) for every edge 𝑒 ∈ 𝛿− (�̂�𝑖) ∩ 𝐸 [𝑊𝑖],
which implies 𝑧(𝑒1) = 𝑥(𝑒) − 𝑓 (𝑒) = 0. Similarly, we have 𝑓 (𝑒) = 0 for every
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edge 𝑒 ∈ 𝛿+ (�̂�𝑖) ∩ 𝐸 [𝑊𝑖], which implies 𝑧(𝑒0) = 𝑓 (𝑒) = 0. Hence, every edge
in the support of 𝑧 that enters �̂�01

𝑖
in𝐺01 [𝑊01

𝑖
] is contained in the lower level of

the split graph, and every edge in the support of 𝑧 that leaves �̂�01
𝑖

in 𝐺01 [𝑊01
𝑖
]

is contained in the upper level of the split graph. This shows that any cycle in
𝐺01 [𝑊01

𝑖
] in the support of 𝑧 that contains an edge of 𝛿(�̂�01

𝑖
) must visit both

levels. However, such a cycle cannot exist because𝑊𝑖 contains no vertex of the
backbone and hence 𝐺01 [𝑊01

𝑖
] contains no edge from the lower to the upper

level. □

Now we construct an auxiliary digraph �̄� from 𝐺 and transform 𝑧 to a
circulation 𝑧 in �̄�01 as follows. Let 𝑖 ∈ {1, . . . , 𝑞} such that all vertices in
𝑊01
𝑖

are low-throughput vertices. We add an auxiliary vertex 𝑎𝑖 to 𝐺 and set
𝑟 (𝑎𝑖) := 𝑟 (𝑣) for 𝑣 ∈ 𝑊𝑖; this is well-defined by Lemma 8.9. For every edge
(𝑣, 𝑤) ∈ 𝛿− (�̂�𝑖), we add an edge (𝑣, 𝑎𝑖) of the same cost. Similarly, for every
edge (𝑣, 𝑤) ∈ 𝛿+ (�̂�𝑖), we add an edge (𝑎𝑖 , 𝑤) of the same cost. Then we reroute
1
2 unit of flow of the circulation 𝑧 through one of the auxiliary vertices 𝑎0

𝑖
, 𝑎1
𝑖

in the
split graph. By Lemma 8.19, we have 𝑧(𝛿(�̂�01

𝑖
)) = 𝑧(𝛿(�̂�01

𝑖
)) = 𝑥(𝛿(�̂�𝑖)) ≥ 2.

Hence, we can do this in the same way as described in Section 8.3 except that
we apply Lemma 8.8 to the vertex set𝑈 = �̂�01

𝑖
instead of𝑊01

𝑖
.

We do this transformation successively for all 𝑖 ∈ {1, . . . , 𝑞} for which all
vertices in𝑊01

𝑖
are low-throughput vertices. Let �̄� be the final graph and �̄�01

its split graph. Let 𝑧 be the final circulation in the split graph �̄�01 and let
(𝑥, 𝑓 ) := 𝜋(𝑧). See Figures 8.5 and 8.7.

Then, using Lemma 8.11, we round 2𝑧 to an integral circulation 𝑧∗ with the
properties (i) – (iv) of that lemma. Let (𝑥∗, 𝑓 ∗) := 𝜋(𝑧∗) and let �̄� be the multi-set
of edges in �̄� with 𝜒�̄� = 𝑥∗ (see Figure 8.7 (c)). Then �̄� is Eulerian because 𝑥∗
is a circulation. As before, we have 𝑐𝑦 (�̄�) ≤ 2 · LP(I) (cf. (8.3)), |𝛿−

�̄�
(𝑎𝑖) | = 1

for every 𝑖 ∈ {1, . . . , 𝑞} for which𝑊01
𝑖

contains only low-throughput vertices
(Lemma 8.12), and |𝛿−

�̄�
(𝑊𝑖) | ≥ 1 for every other 𝑖 ∈ {1, . . . , 𝑞} (Lemma 8.13).

Next we show that we maintain acyclic witness flows during the rerouting
and rounding. Here, we crucially use that the witness flow 𝑓 has property (vi)
from Lemma 8.18. See Figure 8.8 (a)–(b) for an illustration.

Lemma 8.20. The flows 𝑓 and 𝑓 ∗ have acyclic support.

Proof. Since the support of 𝑓 ∗ is contained in the support of 𝑓 by (i) of
Lemma 8.11, it suffices to show that 𝑓 has acyclic support. Suppose the
support of 𝑓 contains a cycle �̄�. Then there exists 𝑖 ∈ {1, . . . , 𝑞} such that
𝑎𝑖 ∈ 𝑉 (�̄�) because otherwise �̄� is contained in the support of 𝑓 (which
is acyclic). Let 𝑒 = (𝑎𝑖 , 𝑣) ∈ 𝐸 (�̄�), and let 𝑒 ∈ 𝛿+ (�̂�𝑖) be the edge of 𝐺
corresponding to 𝑒. Then 𝑓 (𝑒) > 0, and hence the residual graph𝐺 𝑓 contains an
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(a)

𝑊𝑖

�̂�𝑖

(b)

𝑊𝑖

�̂�𝑖

𝑎𝑖

(c)

𝑊𝑖

�̂�𝑖

𝑎𝑖

(d)

𝑊𝑖

�̂�𝑖

𝑃𝑖

Figure 8.7 Example of the construction of the solution 𝐹 from the circulation
�̃� in the split graph. In all pictures, a set 𝑊𝑖 (blue with white interior) and the
subset �̂�𝑖 (blue and filled) is shown. The pictures show only edges with at least
one endpoint in𝑊𝑖 . Picture (a) shows (parts of) ( �̃�, 𝑓 ) = 𝜋 ( �̃�) where 𝑓 (green)
is a witness flow for �̃� (green and red). The edges drawn with a single line have
value 1

8 ; the edges drawn with a double line have value 1
4 . Note that𝑊01

𝑖
contains

no high-throughput vertex. Picture (b) shows a possible flow �̄� in �̄� resulting from
rerouting flow through 𝑎𝑖 (blue); the witness flow 𝑓 is shown in green. Picture (c)
shows in orange a possible integral flow �̄�∗ in �̄�. The orange edges are elements
of the edge set �̄� with 𝜒�̄� = �̄�∗. Picture (d) shows the result of mapping �̄� back
to 𝐺. In blue, the path 𝑃𝑖 in 𝐺 [𝑊𝑖 ] is shown; it completes the orange edges to a
circulation. A similar picture appeared in Traub and Vygen [2022].

edge 𝑒← ∈ 𝛿−
𝐺 𝑓
(�̂�𝑖). We have 𝑒← ∈ 𝛿−

𝐺 𝑓
(𝑊𝑖) since �̂�𝑖 is the vertex set of the first

strongly connected component of𝐺 𝑓 [𝑊𝑖]. This shows 𝐸 (�̄�)∩𝛿(𝑊𝑖∪{𝑎𝑖}) ≠ ∅
for some 𝑖 ∈ {1, . . . , 𝑞}.

We claim that we can map �̄� to a closed walk 𝐶 in the residual graph 𝐺 𝑓 . See
Figure 8.8 (b)–(c). We first map every edge of the cycle �̄� to its corresponding
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(a) (b)

(c) (d)

Figure 8.8 Illustration of the proof of Lemma 8.20. Three sets𝑊𝑖 are shown in blue
with white interior; pictures (a)–(c) also show their subsets �̂�𝑖 (blue and filled).
Picture (a) shows (parts of) an arbitrary witness flow 𝑓 (green). The thin edges are
neutral; the thick edges can be neutral or forward edges. This witness flow 𝑓 will
not be chosen by our algorithm; it does not minimize

∑𝑞

𝑖=1 𝑓 (𝛿 (𝑊𝑖 ) ) . Picture (b)
shows what would happen if we chose this flow anyway. We see a possible result
of rerouting this flow through the vertices 𝑎𝑖 ∈ 𝑉 (�̄�) (shown in blue). In this
example, the support of 𝑓 contains a cycle �̄�. Picture (c) shows a corresponding
closed walk 𝐶 in the residual graph 𝐺 𝑓 . The blue edges show paths inside the
sets �̂�𝑖 ; these exist because 𝐺 𝑓 [�̂�𝑖 ] is strongly connected. Picture (d) shows
the flow resulting from 𝑓 by augmenting along 𝐶. The augmentation decreased∑𝑞

𝑖=1 𝑓 (𝛿 (𝑊𝑖 ) ) but did not change the flow on forward edges. This picture is taken
from Traub and Vygen [2022].

edge in 𝐺. Notice that the resulting edge set 𝐷 is not necessarily a cycle: If
𝑎𝑖 ∈ 𝑉 (�̄�) for some 𝑖 ∈ {1, . . . , 𝑞}, then 𝐷 contains an edge entering �̂�𝑖 and
an edge leaving �̂�𝑖 , but it might be disconnected in between.

We have 𝑓 (𝑒) > 0 for every edge 𝑒 ∈ 𝐷. Thus, by reversing all edges in 𝐷,
we obtain edges in 𝐺 𝑓 (with positive residual capacity 𝑢 𝑓 ). Moreover, we can
complete this edge set to a closed walk 𝐶 in 𝐺 𝑓 (with positive residual capacity
𝑢 𝑓 ) by adding only edges of 𝐺 𝑓 [�̂�𝑖] for 𝑖 ∈ {1, . . . , 𝑞}; this is possible because
for every 𝑖 ∈ {1, . . . , 𝑞}, the subgraph 𝐺 𝑓 [�̂�𝑖] is strongly connected by the
choice of �̂�𝑖 . We found a closed walk 𝐶 in 𝐺 𝑓 . Let 𝑖 ∈ {1, . . . , 𝑞} such that
𝐸 (�̄�) ∩ 𝛿(𝑊𝑖 ∪ {𝑎𝑖}) ≠ ∅. Then 𝐸 (𝐶) ∩ 𝛿(𝑊𝑖) ≠ ∅, where 𝐸 (𝐶) denotes the
footprint of 𝐶.
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Also note that 𝑟 (𝑣) ≥ 𝑟 (𝑤) for all edges (𝑣, 𝑤) of 𝐶: Every edge (𝑣, 𝑤) of 𝐶
has a corresponding edge (𝑤, 𝑣) ∈ 𝐸 (𝐺) with 𝑓 (𝑒) > 0, or it has both endpoints
in the same set �̂�𝑖 ⊆ 𝑊𝑖 . In the first case, we can conclude that (𝑤, 𝑣) is not
a backward edge and hence 𝑟 (𝑤) ≤ 𝑟 (𝑣). In the latter case, 𝑟 (𝑣) = 𝑟 (𝑤) by
Lemma 8.9. Since 𝐶 is a closed walk, we conclude that 𝑟 (𝑣) = 𝑟 (𝑤) for all
vertices 𝑣 and 𝑤 in 𝐶.

We augment 𝑓 along the closed walk𝐶 by some sufficiently small but positive
amount. Augmenting 𝑓 along 𝐶 by some 𝜀 > 0 means that for every edge
𝑒 ∈ 𝐸 with 𝑒 ∈ 𝐶, we increase 𝑓 (𝑒) by 𝜀, and for every edge 𝑒 ∈ 𝐸 with
𝑒← ∈ 𝐶, we decrease 𝑓 (𝑒) by 𝜀. Because 𝑟 (𝑣) = 𝑟 (𝑤) for all 𝑣, 𝑤 ∈ 𝑉 (𝐶), this
augmentation changes the flow 𝑓 only on neutral edges. Hence, we can augment
𝑓 by 𝜀 := min𝑒∈𝐶 𝑢 𝑓 (𝑒) > 0 and maintain a witness flow.

We claim that the augmentation decreases
∑𝑞

𝑖=1 𝑓 (𝛿(𝑊𝑖)), which is a contra-
diction to our choice of 𝑓 . See Figure 8.8 (d). All edges of𝐶 that are contained in
a cut 𝛿(𝑊𝑖) for some 𝑖 ∈ {1, . . . , 𝑞} result from mapping the edges of the cycle
�̄� in �̄� to 𝐺 and reversing them; for these edges, the augmentation decreases
the flow value. Therefore, augmenting 𝑓 along 𝐶 decreases the flow value on
all edges in 𝐸 (𝐶) ∩ (𝛿(𝑊1) ∪ · · · ∪ 𝛿(𝑊𝑞)), and we have already shown that
this set is nonempty. □

Next we show how the fact that the witness flow 𝑓 ∗ is acyclic leads to an
improved bound on |𝛿−

�̄�
(𝑣) |. We need the following observation:

Lemma 8.21. Let �̄� be a connected component of the graph (𝑉 (�̄�), �̄�) with
𝑉 (�̄�) ∩𝑉 (𝐵) = ∅. Then 𝑓 ∗ (𝐸 (�̄�)) = 0.

Proof. Because 𝑓 ∗ is a witness flow and 𝑉 (�̄�) ∩ 𝑉 (𝐵) = ∅, we have
𝑓 ∗ (𝛿− (𝑣)) ≤ 𝑓 ∗ (𝛿+ (𝑣)) for every 𝑣 ∈ 𝑉 (�̄�). Since

𝑓 ∗ (𝐸 (�̄�)) =
∑︁

𝑣∈𝑉 (�̄�)
𝑓 ∗ (𝛿− (𝑣)) ≤

∑︁
𝑣∈𝑉 (�̄�)

𝑓 ∗ (𝛿+ (𝑣)) = 𝑓 ∗ (𝐸 (�̄�)),

we have 𝑓 ∗ (𝛿− (𝑣)) = 𝑓 ∗ (𝛿+ (𝑣)) for every 𝑣 ∈ 𝑉 (�̄�). In other words, 𝑓 ∗
restricted to 𝐸 (�̄�) is a circulation. Because the support of 𝑓 ∗ is acyclic by
Lemma 8.20, this implies 𝑓 ∗ (𝐸 (�̄�)) = 0. □

This allows us to strengthen the bounds from Lemmas 8.14 and 8.15 for
vertices that �̄� does not connect to the backbone. Notice that these are the only
vertices for which we applied Lemmas 8.14 and 8.15.

Lemma 8.22. Let �̄� be a connected component of the graph (𝑉 (�̄�), �̄�) with
𝑉 (�̄�) ∩ 𝑉 (𝐵) = ∅, and let 𝑣 ∈ 𝑉 (�̄�) with 𝑦𝑣 > 0. Then |𝛿−

�̄�
(𝑣) | ≤ 2. If 𝑣1 is a

low-throughput vertex, |𝛿−
�̄�
(𝑣) | ≤ 1.
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Proof. We have |𝛿−
�̄�
(𝑣) | = 𝑥∗ (𝛿− (𝑣)) = 𝑧∗ (𝛿− (𝑣1)) + 𝑧∗ (𝛿− (𝑣0) \ {𝑒↓𝑣}) =

𝑧∗ (𝛿− (𝑣1)) + 𝑓 ∗ (𝛿− (𝑣)) = 𝑧∗ (𝛿− (𝑣1)), where we used Lemma 8.21. Therefore,
by (iii) of Lemma 8.11, we get

|𝛿−
�̄�
(𝑣) | = 𝑧∗ (𝛿− (𝑣1)) ≤ ⌈2𝑧(𝛿− (𝑣1))⌉ .

If 𝑣1 is a low-throughput vertex, this implies |𝛿−
�̄�
(𝑣) | ≤ ⌈2𝑧(𝛿− (𝑣1))⌉ ≤ 1.

Otherwise, 𝑦𝑣 > 0 implies {𝑣} ∈ L and hence 𝑥(𝛿− (𝑣)) = 1. Therefore,
|𝛿−
�̄�
(𝑣) | ≤ ⌈2𝑧(𝛿− (𝑣1))⌉ ≤ ⌈2𝑥(𝛿− (𝑣))⌉ = 2. □

Now we show that despite the modification of the rerouting procedure, �̄�
enters and leaves every set𝑊𝑖 ∪{𝑎𝑖} for which𝑊01 contains no high-throughput
vertex.

Lemma 8.23. Let 𝑖 ∈ {1, . . . , 𝑞} such that 𝑊01
𝑖

contains no high-throughput
vertex. Then �̄� ∩ 𝛿(𝑊𝑖 ∪ {𝑎𝑖}) ≠ ∅.

Proof. As in Lemma 8.12, there exists an edge 𝑒 = (𝑣, 𝑎𝑖) ∈ �̄�. If 𝑣 ∉ 𝑊𝑖 , we
have 𝑒 ∈ �̄� ∩ 𝛿(𝑊𝑖 ∪ {𝑎𝑖}). Otherwise, the edge 𝑒 of 𝐺 that corresponds to
𝑒 belongs to 𝛿− (�̂�𝑖) \ 𝛿− (𝑊𝑖). Therefore, we have 𝑓 (𝑒) = 𝑥(𝑒) as otherwise
the residual graph 𝐺 𝑓 contained 𝑒 as well, contradicting the choice of �̂�𝑖 . This
implies

𝑧∗ (𝑒1) ≤ ⌈2𝑧(𝑒1)⌉ ≤ ⌈2𝑧(𝑒1)⌉ ≤ ⌈2𝑧(𝑒1)⌉ = ⌈2(𝑥(𝑒) − 𝑓 (𝑒))⌉ = 0.

But then

𝑓 ∗ (𝑒) = 𝑧∗ (𝑒0) = 𝑧∗ (𝑒0) + 𝑧∗ (𝑒1) = 𝑥∗ (𝑒) ≥ 1

because 𝑒 ∈ �̄�. By Lemma 8.21, this implies that the connected component
�̄� of (𝑉 (�̄�), �̄�) that contains 𝑎𝑖 also contains a vertex 𝑤 ∈ 𝑉 (𝐵). Since
𝑊𝑖 ∩𝑉 (𝐵) = ∅, this completes the proof. □

Due to the improved bound from Lemma 8.22 (replacing the bounds from
Lemma 8.15 and Lemma 8.14), we obtain a (2, 2, 1)-algorithm for subtour cover
instead of a (3, 2, 1)-algorithm:

Theorem 8.24. There is a (2, 2, 1)-algorithm for subtour cover.

Proof. As before (cf. Section 8.5), we can map �̄� as constructed earlier to a
subtour cover solution 𝐹. Note that the path 𝑃𝑖 that we add in 𝐺 [𝑊𝑖] for each 𝑖
for which we rerouted flow through the auxiliary vertex 𝑎𝑖 is not necessarily in
�̂�𝑖 . Lemma 8.23 guarantees that after replacing the edges incident to 𝑎𝑖 (and
adding 𝑃𝑖), we have 𝛿𝐹 (𝑊𝑖) ≠ ∅. For 𝑖 ∈ {1, . . . , 𝑞} for which𝑊01 contains a
high-throughput vertex, we have �̄� ∩ 𝛿(𝑊𝑖) ≠ ∅ as before (cf. Lemma 8.13).
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Again, every connected component of (𝑉, �̄�) is local or connects to the
backbone (due to the witness flow 𝑓 ∗, cf. Lemma 8.6), and the same holds for
every connected component of (𝑉, 𝐹) because the edge sets of the paths 𝑃𝑖 are
local. We conclude that 𝐹 is a subtour cover.

As before, we have the bound (8.3) on the cost of �̄�, and the total cost of the
paths 𝑃𝑖 is at most

∑
𝑣∈𝑉\𝑉 (𝐵) 2𝑦𝑣 . Hence, again,

𝑐𝑦 (𝐹) ≤ 2 · LP(I) +
∑︁

𝑣∈𝑉\𝑉 (𝐵)
2𝑦𝑣 .

Finally, let 𝐷 be a connected component of (𝑉, 𝐹) with 𝑉 (𝐷) ∩ 𝑉 (𝐵) = ∅.
Then 𝐸 (𝐷) is local and hence 𝑐𝑦 (𝐸 (𝐷)) = ∑

𝑣∈𝑉 (𝐷) |𝛿−𝐹 (𝑣) | · 2𝑦𝑣 . If 𝑣1 is a
high-throughput vertex, Lemma 8.22 implies |𝛿−

𝐹
(𝑣) | = |𝛿−

�̄�
(𝑣) | ≤ 2. If 𝑣1 is

a low-throughput vertex, Lemma 8.22 implies |𝛿−
𝐹
(𝑣) | ≤ |𝛿−

�̄�
(𝑣) | + 1 ≤ 2. We

conclude
𝑐𝑦 (𝐸 (𝐷)) ≤ 2 ·

∑︁
𝑣∈𝑉 (𝐷)

2𝑦𝑣

as required. □

From this, we obtain a (17+ 𝜀)-approximation algorithm for the Asymmetric
TSP.

Theorem 8.25. For every 𝜀 > 0, there is a polynomial-time algorithm that
computes for any given instance (𝐺, 𝑐) of the Asymmetric TSP a solution of
cost at most 17 + 𝜀 times the cost of an optimum solution to (3.2).

Proof. Theorem 8.24 yields a (2, 2, 1)-algorithm for subtour cover, and by
Theorem 7.18, this implies that there is a (2, 9 + 𝜀)-algorithm for vertebrate
pairs. Using Theorem 7.12, we then obtain a polynomial-time algorithm that
finds a solution of cost at most 17 + 𝜀 times the value of (3.2) for any given
instance (𝐺, 𝑐) of the Asymmetric TSP. □

An immediate consequence of Theorem 8.25 is an upper bound of 17 on the
integrality ratio of (3.2).

Corollary 8.26. The integrality ratio of (3.2) is at most 17. □

Using the observation from Exercise 7.7, one could slightly improve Theo-
rem 8.25 and Corollary 8.26, but the improvement would be less than 0.2. Can
we at least obtain the approximation ratio that we know for Asymmetric Graph
TSP?

Open Problem 8.27. Obtain an approximation ratio of (8 + 𝜀) or better for the
Asymmetric TSP.
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Exercises

8.1 Show that in general not every circulation in𝐺 is the image of a circulation
in 𝐺01.

8.2 In the algorithm(s) described in this chapter, we first map 𝑥 to a circulation
in the split graph and then make the support of 𝑧 within each𝑊01

𝑖
acyclic,

resulting in 𝑧. Suppose we instead first make the support of 𝑥 within each
𝑊𝑖 acyclic and obtain 𝑥. Show that then it might be impossible to map 𝑥
to a circulation 𝑧 in the split graph.

8.3 Let 𝐺 = (𝑉, 𝐸) be a digraph, 𝑐 : 𝐸 → R, and let 𝑓 , 𝑔 : 𝐸 → R≥0 such
that 𝑓 + 𝑔 is a circulation in 𝐺. Prove that there are 𝑓 ∗, 𝑔∗ : 𝐸 → Z≥0
such that the following properties hold:
• 𝑓 ∗ + 𝑔∗ is a circulation in 𝐺;
• 𝑐( 𝑓 ∗ + 𝑔∗) ≤ 𝑐( 𝑓 + 𝑔);
• 𝑓 ∗ (𝛿+ (𝑣)) ≥ 𝑓 ∗ (𝛿− (𝑣)) for all 𝑣 ∈ 𝑉 with 𝑓 (𝛿+ (𝑣)) ≥ 𝑓 (𝛿− (𝑣));
• ⌊ 𝑓 (𝛿− (𝑣))⌋ ≤ 𝑓 ∗ (𝛿− (𝑣)) ≤ ⌈ 𝑓 (𝛿− (𝑣))⌉ for all 𝑣 ∈ 𝑉 ;
• ⌊𝑔(𝛿− (𝑣))⌋ ≤ 𝑔∗ (𝛿− (𝑣)) ≤ ⌈𝑔(𝛿− (𝑣))⌉ for all 𝑣 ∈ 𝑉 ;
• 𝑓 ∗ (𝑒) = 0 for all 𝑒 ∈ 𝐸 with 𝑓 (𝑒) = 0;
• 𝑔∗ (𝑒) = 0 for all 𝑒 ∈ 𝐸 with 𝑔(𝑒) = 0.
(Svensson, Tarnawski, and Végh [2020])

8.4 Devise a combinatorial polynomial-time algorithm to transform a given
witness flow into a witness flow with acyclic support. Do not use linear
programming or Theorem 3.11.

8.5 Let (𝐺, 𝑙, 𝑢, 𝑐) be an instance of the minimum-cost circulation problem
(cf. Theorem 3.11) with 𝑙 (𝑒) = 0 for all 𝑒 ∈ 𝐸 . Let 𝑓 be a circulation in
𝐺 with 0 ≤ 𝑓 ≤ 𝑢. Show that 𝑓 is a minimum-cost circulation if and only
if the residual graph contains no circuit with negative total weight, where
the weight of 𝑒← is −𝑐(𝑒).

8.6 Consider the (2, 2, 1)-algorithm for subtour cover described in this chapter.
Show that for instances where 𝑧 = 𝑧, this is actually a (2, 2, 0)-algorithm
for subtour cover.
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9

Asymmetric Path TSP

A natural generalization of the (asymmetric) traveling salesman problem arises
when we are given a start vertex 𝑠 and an end vertex 𝑡 and ask for a tour that
begins in 𝑠 and ends in 𝑡, rather than a round trip. As before, there is the version
with triangle inequality where we ask for a path from 𝑠 to 𝑡 that contains every
vertex exactly once, or the equivalent version in which we ask for a walk from 𝑠

to 𝑡 that visits all vertices at least once.
While this problem seems to be harder, we will see in this chapter that it can

be tackled by similar techniques. In particular, we show black-box reductions
to Asymmetric TSP and prove, as new results, the best-known approximation
ratios and bounds on the integrality ratio.

9.1 Overview

Let us first introduce the two equivalent versions of the problem. If the triangle
inequality holds, we can ask for a path from 𝑠 to 𝑡 that visits every vertex exactly
once:

Problem 9.1 (Asymmetric Path TSP with Triangle Inequality).

Instance: A finite set𝑉 (of cities), a distance function 𝑐 : 𝑉×𝑉 → R≥0∪{∞}
such that 𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 , and two
elements 𝑠 and 𝑡 of 𝑉 .

Task: Compute a list 𝑣1, 𝑣2, . . . , 𝑣𝑛 with 𝑣1 = 𝑠 and 𝑣𝑛 = 𝑡 that contains
every element of 𝑉 exactly once and minimizes

∑𝑛
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖).

Note that infinite distances are allowed. For example, it might not be possible
to reach 𝑠 from 𝑡 at finite cost.

183
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Without the triangle inequality, we ask for a walk from 𝑠 to 𝑡 that visits every
vertex at least once. The footprint of such a walk is called an 𝑠-𝑡-tour:

Definition 9.2 (𝑠-𝑡-tour). An 𝑠-𝑡-tour in a digraph 𝐺 = (𝑉, 𝐸) is a multi-subset
𝐹 of 𝐸 such that (𝑉, 𝐹

.
∪ {(𝑡, 𝑠)}) is connected and Eulerian.

By Euler’s Theorem 1.6, the 𝑠-𝑡-tours are precisely the footprints of the walks
from 𝑠 to 𝑡 that visit every vertex at least once (cf. Lemma 1.7). Hence, we can
also define the problem as follows:

Problem 9.3 (Asymmetric Path TSP).

Instance: A directed graph 𝐺 = (𝑉, 𝐸), a cost function 𝑐 : 𝐸 → R≥0, and
two vertices 𝑠, 𝑡 ∈ 𝑉 .

Task: Compute an 𝑠-𝑡-tour in𝐺 with minimum cost (or decide that there
is no 𝑠-𝑡-tour in 𝐺).

It is easy to decide whether a given digraph contains an 𝑠-𝑡-tour (see Exer-
cise 9.2). As in Section 1.2, we note:

Proposition 9.4. Asymmetric Path TSP with Triangle Inequality (Problem 9.1)
and Asymmetric Path TSP (Problem 9.3) are equivalent.

Proof. As in Proposition 1.12, except that we have 𝑠-𝑡-tours instead of tours
and Hamiltonian 𝑠-𝑡-paths instead of Hamiltonian circuits. When constructing
an instance of Asymmetric Path TSP, we only include edges (𝑣, 𝑤) with
𝑐(𝑣, 𝑤) < ∞. □

Let us first describe a very easy 𝑛-approximation algorithm:

Proposition 9.5. There is an 𝑛-approximation algorithm for Asymmetric Path
TSP with Triangle Inequality.

Proof. Starting with the sequence 𝑠, 𝑡, successively insert all other cities in
an arbitrary order: When inserting city 𝑣, choose a position (but not before
𝑠 or after 𝑡) to minimize the cost of the resulting sequence (where the cost
of sequence 𝑣1, . . . , 𝑣𝑘 is

∑𝑘
𝑖=2 𝑐(𝑣𝑖−1, 𝑣𝑖)). Since 𝑣 is between 𝑠 and 𝑡 in an

optimum solution, it is between 𝑣𝑖−1 and 𝑣𝑖 in an optimum solution for some
𝑖 ∈ {2, . . . , 𝑘} for the current sequence 𝑣1, . . . , 𝑣𝑘 . Inserting 𝑣 there increases
the cost by at most 𝑐(𝑣𝑖−1, 𝑣) + 𝑐(𝑣, 𝑣𝑖) ≤ OPT. □

This bound for the cheapest insertion heuristic is essentially tight (see
Exercises 9.3 and 9.4 for details).

In this chapter, we describe relations between the approximation ratios of
Asymmetric Path TSP and Asymmetric TSP as well as their integrality ratios.
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Table 9.1 Approximation ratios and upper bounds on the integrality ratio
of (9.1) for Asymmetric Path TSP in the order of their discovery. The approx-
imation ratios in line 3, 6, 8, and 10 follow from the black-box reduction by
Feige and Singh [2007]; see Section 9.2. (R) means randomized; this algorithm
computes a random 𝑠-𝑡-tour, and the approximation ratio compares its expected
cost to OPT. Moreover, 𝜀 stands for an arbitrarily small positive constant.

Approximation Integrality
Ratio Ratio Year Reference Chapter

2
√
𝑛 – 2005 Lam and Newman [2008] Exercise 9.5

2.78 log2 𝑛 – 2006 Chekuri and Pál [2007] –
1.34 log2 𝑛 – 2006 Feige and Singh [2007] 9.2
– 𝑂 (

√
𝑛) 2008 Nagarajan and

Ravi [2008]
–

– 1 + 2 log2 𝑛 2009 Friggstad, Salavatipour,
and Svitkina [2013]

–

𝑂 ( log 𝑛
log log 𝑛 ) (R) – 2009 Asadpour et al. [2017] 5, 9.2

– 𝑂 ( log 𝑛
log log 𝑛 ) 2012 Friggstad, Gupta,

and Singh [2016]
–

1012 – 2018 Svensson, Tarnawski,
and Végh [2020]

6–8, 9.2

– 1273 2018 Köhne, Traub, and
Vygen [2020]

9.5, 9.6

44 + 𝜀 85 2019 Traub and Vygen [2022] 6–8, 9.2, 9.6
43 + 𝜀 43 2019 Traub [2020a] 9.5, 9.7
17 + 𝜀 17 2021 this book 9.5, 9.7

As far as we know today, Asymmetric Path TSP might be more difficult, but
at most by a small constant factor. We will also derive a direct approximation
algorithm, using results from the previous chapters.

Table 9.1 summarizes the state of the art, also with respect to the integrality
ratio of the natural linear programming relaxation (see Section 9.3). The first
nontrivial approximation algorithms by Lam and Newman [2008] and Chekuri
and Pál [2007] obtained approximation ratios of 𝑂 (

√
𝑛) and 𝑂 (log 𝑛), respec-

tively. Feige and Singh [2007] showed that any 𝛼-approximation algorithm
for Asymmetric TSP implies an 𝛼(2 + 𝜀)-approximation algorithm for Asym-
metric Path TSP; we will prove their result in Section 9.2. Thus, the better
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approximation algorithms for Asymmetric TSP by Feige and Singh [2007],
Asadpour et al. [2017], and Svensson, Tarnawski, and Végh [2020] implied
better approximation algorithms for Asymmetric Path TSP, too.

However, none of these results implied an upper bound on the integrality
ratio of the natural LP relaxation, which we will discuss in Section 9.3. Such
bounds were obtained by Nagarajan and Ravi [2008], Friggstad, Salavatipour,
and Svitkina [2013], and Friggstad, Gupta, and Singh [2016]. Köhne, Traub,
and Vygen [2020] showed that the integrality ratio is at most 4𝜌 − 3, where
𝜌 is the integrality ratio of the Asymmetric TSP LP. We will present this in
Sections 9.5 and 9.6. Together with the results of the previous chapters, this
yields a constant upper bound. Traub [2020a] found a more elegant reduction
that also yields a better upper bound. At the end of this chapter, in Section 9.7,
we improve the bounds further.

9.2 Reduction to Asymmetric TSP

Any 𝛼-approximation algorithm for Asymmetric Path TSP implies an 𝛼-
approximation algorithm for Asymmetric TSP: Simply take an arbitrary city 𝑣
of an Asymmetric TSP instance, split it into two copies 𝑣𝑠 and 𝑣𝑡 , and find an
𝛼-approximate 𝑣𝑠-𝑣𝑡 -tour. In other words, requiring that 𝑠 and 𝑡 are two distinct
vertices is not important in Definition 9.3, but it is sometimes convenient to
simplify notation.

Feige and Singh [2007] showed that, conversely, any 𝛼-approximation algo-
rithm for Asymmetric TSP implies an 𝛼(2 + 𝜀)-approximation algorithm for
Asymmetric Path TSP, for any 𝜀 > 0. The core of their proof is the following
lemma. Figure 9.1 shows an example.

Lemma 9.6 (Feige and Singh [2007]). Let (𝑉, 𝑐, 𝑠, 𝑡) be an instance of Asym-
metric Path TSP with Triangle Inequality whose optimum solution has cost
OPT. Let 𝑃1, . . . , 𝑃𝑘 be 𝑠-𝑡-paths of total cost 𝐿 such that no vertex except 𝑠 and
𝑡 belongs to more than one of them. Then there is an 𝑠-𝑡-path 𝑃 that contains all
vertices of 𝑃𝑖 in the same order as 𝑃𝑖 (for all 𝑖 = 1, . . . , 𝑘) and that has cost at
most 𝐿 + 𝑘 OPT.

Proof. Let 𝑅 be an 𝑠-𝑡-path that contains 𝑉 (𝑃1) ∪ · · · ∪𝑉 (𝑃𝑘) and has cost at
most OPT. Let 𝑅1, . . . , 𝑅𝑘 be 𝑘 copies of 𝑅. We construct a path 𝑃 as desired
as follows. Initially, 𝑃 contains only 𝑠, and all other vertices (that do not yet
belong to 𝑃) are called future vertices. The endpoint of 𝑃 is called the current
vertex. It will always belong to (at least) one of the given paths. The first vertex
of 𝑃 𝑗 that does not yet belong to 𝑃 is called the candidate of 𝑃 𝑗 .
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Figure 9.1 An example for the proof of Lemma 9.6. Here 𝑘 = 3. Left-hand side:
The initial 𝑠-𝑡-paths 𝑃1, 𝑃2, 𝑃3 are shown in black; they go from left to right. The
Hamiltonian 𝑠-𝑡-path 𝑅 (brown) visits the vertices in the order of the numbers.
Right-hand side: In the proof, we combine these to a path that visits 𝑠, 1, 4, 2, 5, 3,
6, 𝑡 in this order. Besides some edges of 𝑃1, 𝑃2, 𝑃3, it uses the segment from 1 to
4 from the first (blue) copy of 𝑅, the segment from 2 to 5 from the second (red)
copy, and the segment from 3 to 6 from the third (green) copy.

Let 𝑣 be the current vertex, and let 𝑗 ∈ {1, . . . , 𝑘} such that 𝑣 ∈ 𝑃 𝑗 . Let
𝑖 ∈ {1, . . . , 𝑘} \ { 𝑗} be the index of the path 𝑃𝑖 whose candidate 𝑥 comes earliest
on 𝑅[𝑣,𝑡 ] (the subpath of 𝑅 from 𝑣 to 𝑡; this will always contain all candidates).
We show how to extend 𝑃. Let 𝑤 be the last vertex of 𝑃 𝑗 that belongs to 𝑅[𝑠,𝑥 ] .
Take 𝑃 𝑗[𝑣,𝑤 ] , append it to 𝑃, and remove it from 𝑃 𝑗 (so that 𝑃 𝑗 now starts with
𝑤; the vertices up to 𝑤 are no longer future vertices). Append the edge (𝑤, 𝑥) to
𝑃 (then 𝑥 is no longer a future vertex) and remove 𝑅[𝑤,𝑥 ] from 𝑅 𝑗 . Now 𝑥 is the
new current vertex.

This procedure maintains the following invariants:

(i) 𝑃 contains exactly the vertices from the original 𝑃ℎ that precede its
candidate, in the same order, for all ℎ ∈ {1, . . . , 𝑘}.

(ii) For the current vertex 𝑣 ∈ 𝑉 (𝑃 𝑗 ), the subpath 𝑅[𝑣,𝑡 ] contains the candidate
of 𝑃ℎ for all ℎ ∈ {1, . . . , 𝑘} \ { 𝑗}.

(iii) 𝑅ℎ contains a path from any future or current vertex of 𝑃ℎ to 𝑡, for all
ℎ ∈ {1, . . . , 𝑘}.

(iv) The total cost of 𝑃, 𝑃1, . . . , 𝑃𝑘 , and 𝑅1, . . . , 𝑅𝑘 is at most 𝐿 + 𝑘 OPT.

Here, (i) is obvious, (ii) follows from the choice of 𝑖 and 𝑥, and (iii) follows
from the choice of 𝑤. For (iv), we use the triangle inequality: Whenever we add
an edge to 𝑃, we remove a corresponding subpath from 𝑃 𝑗 or 𝑅 𝑗 . Invariants (i)
and (iii) imply that these subpaths still exist at that time.

When the procedure terminates, the claim follows from (i) and (iv). □
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𝑠
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4
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𝑡

Figure 9.2 A tight example for Lemma 9.6, based on an almost tight example
by Feige and Singh [2007]. The initial 𝑠-𝑡-paths 𝑃1, . . . , 𝑃𝑘 are shown in black
(going from left to right). A Hamiltonian 𝑠-𝑡-path 𝑅 traverses the light green edges,
then the red edge, then the dark green edges. Note that the red edge is the only one
that goes from right to left. The middle grid (without the vertices 𝑠, 1, 2, 3, 4, 𝑡)
has 𝑘𝑙 vertices; here, 𝑘 = 5 and 𝑙 = 7. Any 𝑠-𝑡-tour in this graph must visit 𝑠, 1,
2, 3, 4, 𝑡 in this order. In between 2 and 3, it will visit the vertices in the grid in
some order but must respect the order of the 𝑃𝑖 . Our 𝑠-𝑡-tour must use the red edge
before visiting any of the (𝑘 − 1) (𝑙 − 1) blue vertices, and then it can visit at most
𝑘 + 𝑙 − 3 of them before using the red edge again. Finally, after visiting the last
of the blue vertices, it will visit the successor on the corresponding path 𝑃𝑖 (in
the rightmost column of the grid), and then it needs to use the red edge again in
order to reach vertex 3. This makes us use the red edge at least 1 + ⌈ (𝑘−1) (𝑙−1)

𝑘+𝑙−3 ⌉
times. For 𝑙 ≥ 𝑘2, this is 𝑘 times. One can also see that an 𝑠-𝑡-tour uses the red
edge more than 𝑘 times unless it uses almost all black edges. Therefore, if the cost
of the red edge equals the total cost of the black edges, and the green edges have
cost 0, the bound in Lemma 9.6 is tight (when considering the metric closure).

The bound in Lemma 9.6 is tight for all 𝑘 ≥ 2: see Figure 9.2. A path 𝑃 as in
Lemma 9.6 can be found by dynamic programming in polynomial time if 𝑘 is a
constant. In general, we get:

Lemma 9.7. Let 𝜀 > 0 be a constant. Let (𝑉, 𝑐, 𝑠, 𝑡) be an instance of Asymmetric
Path TSP with Triangle Inequality whose optimum solution has cost OPT. Let
𝑃1, . . . , 𝑃𝑟 be 𝑠-𝑡-paths of total cost 𝐿. Then one can find an 𝑠-𝑡-path 𝑃 with
vertex set𝑉 (𝑃1) ∪ · · · ∪𝑉 (𝑃𝑟 ) and cost at most 𝐿 + (1+ 𝜀)𝑟 OPT in polynomial
time.
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Proof. Without loss of generality, let 𝜀 ≤ 1. Moreover, by taking shortcuts, we
can assume that every vertex except 𝑠 and 𝑡 appears in at most one of the paths.

If 𝑟 = 1, return 𝑃 = 𝑃1. Otherwise, let 𝑘 := min
{
𝑟, 1 + ⌈ 1

𝜀
⌉
}
. Replace 𝑘 of

the paths, say 𝑃1, . . . , 𝑃𝑘 , by a cheapest 𝑠-𝑡-path that contains all vertices of 𝑃𝑖
in the same order as 𝑃𝑖 (for all 𝑖 = 1, . . . , 𝑘).

This can be found by dynamic programming in 𝑂 (𝑘2𝑛𝑘) time as follows.
For all 𝑛1, . . . , 𝑛𝑘 and all 𝑖 ∈ {1, . . . , 𝑘}, we store a shortest path from 𝑠 to the
𝑛𝑖-th vertex of 𝑃𝑖 that contains, for all 𝑗 ∈ {1, . . . , 𝑘}, the first 𝑛 𝑗 vertices of
𝑃 𝑗 in the same order as 𝑃 𝑗 . We compute these paths in an order of increasing
𝑛1 + · · · + 𝑛𝑘 , each in 𝑂 (𝑘) time using the previously computed information.

By Lemma 9.6, the total cost increases by at most 𝑘 OPT, and the number of
paths decreases by 𝑘 − 1. We iterate this until only one path remains.

If this procedure stops after 𝑙 iterations, the total cost increases by at most
(𝑙 + 𝑟 − 1) OPT, and the total running time is 𝑂 (𝑙𝑘2𝑛𝑘) = 𝑂 (𝑛3+ 1

𝜀 ). Now
𝑙 = ⌈ 𝑟−1

𝑘−1 ⌉ < 1 + 𝜀𝑟 . □

Now we can prove the main result of Feige and Singh [2007]:

Theorem 9.8 (Feige and Singh [2007]). If there is an 𝛼-approximation algorithm
for Asymmetric TSP, then there is an 𝛼(2 + 𝜀)-approximation algorithm for
Asymmetric Path TSP, for any 𝜀 > 0.

Proof. By Proposition 9.4, it suffices to consider instances (𝑉, 𝑐, 𝑠, 𝑡) of
Asymmetric Path TSP with Triangle Inequality. We may assume that there
is a solution of finite cost OPT.

Let 𝛾0 be the cost of an 𝑠-𝑡-tour obtained by an 𝑛-approximation algorithm
(such as cheapest insertion; cf. Proposition 9.5). Then OPT ≤ 𝛾0 ≤ 𝑛OPT. Let
𝜀′ := 𝜀

2 . Starting with 𝛾 = 𝛾0, we will compute ⌈log1+𝜀′ 𝑛⌉ 𝑠-𝑡-tours, each for a
different value of 𝛾. Each time, we decrease 𝛾 by a factor 1 + 𝜀′, so in the end,
𝛾 ≤ 𝑛OPT/(1 + 𝜀′)log1+𝜀′ 𝑛 = OPT. Therefore, for one of the 𝛾-values, we have
OPT ≤ 𝛾 ≤ (1 + 𝜀′) OPT. We output the best of all 𝑠-𝑡-tours and show that the
one computed when OPT ≤ 𝛾 ≤ (1 + 𝜀′) OPT is cheap enough.

Let (𝐺, 𝑐) be the following Asymmetric TSP instance. The digraph 𝐺 has
vertex set𝑉 and edge set 𝐸∪{𝑒back}, where 𝐸 = {(𝑣, 𝑤) ∈ 𝑉×𝑉 : 𝑡 ≠ 𝑣 ≠ 𝑤 ≠ 𝑠,

𝑐(𝑣, 𝑤) < ∞} and 𝑒back = (𝑡, 𝑠). We set 𝑐(𝑒) = 𝑐(𝑣, 𝑤) for 𝑒 = (𝑣, 𝑤) ∈ 𝐸 and
𝑐(𝑒back) = 𝛾. Note that (𝐺, 𝑐) contains a tour of cost OPT + 𝛾.

Use an 𝛼-approximation algorithm for Asymmetric TSP to find a tour
of cost at most 𝛼(OPT + 𝛾). This tour uses 𝑟 ≥ 1 copies of the edge 𝑒back
(at least one because 𝑠 has no other entering edges); removing them and
taking shortcuts (Lemma 1.7) yields 𝑠-𝑡-paths 𝑃1, . . . , 𝑃𝑟 such that every vertex



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

190 Asymmetric Path TSP

belongs to at least one of them. Assuming OPT ≤ 𝛾 ≤ (1 + 𝜀′) OPT, we have
𝑟 = 1

𝛾
𝑟𝛾 ≤ 1

𝛾
𝛼(OPT + 𝛾) = 𝛼(1 + OPT

𝛾
) ≤ 2𝛼.

Then apply Lemma 9.7 with error parameter 𝜀′. The resulting 𝑠-𝑡-path contains
all vertices and has cost at most

𝛼(OPT + 𝛾) − 𝑟𝛾 + (1 + 𝜀′)𝑟 OPT
= 𝛼(OPT + 𝛾) + ((1 + 𝜀′)OPT − 𝛾)𝑟
≤ 𝛼(OPT + 𝛾) + ((1 + 𝜀′)OPT − 𝛾)2𝛼
= 𝛼(OPT − 𝛾) + (1 + 𝜀′)2𝛼OPT
≤ (1 + 𝜀′)2𝛼OPT
= 𝛼(2 + 𝜀) OPT,

where we used 𝛾 ≤ (1+ 𝜀′)OPT and 𝑟 ≤ 2𝛼 in the first inequality and 𝛾 ≥ OPT
in the second inequality. □

For integer weight functions 𝑐 (and constant 𝛼), one can get rid of the 𝜀
in Theorem 9.8 by a kind of binary search (in weakly polynomial time); see
Exercise 9.7.

Feige and Singh [2007] described a ( 2
3 log2 𝑛)-approximation algorithm for

Asymmetric TSP and hence got a (( 4
3 + 𝜀) log2 𝑛)-approximation algorithm

for Asymmetric Path TSP. Moreover, the better approximation algorithms for
Asymmetric TSP discovered later led to better approximation algorithms for
Asymmetric Path TSP immediately (cf. Table 9.1).

9.3 Linear Programming Relaxation

In the rest of this chapter, we will work with the Asymmetric Path TSP
and will not require the triangle inequality. First, it is easy to adapt the linear
programming relaxation (3.2):

min 𝑐(𝑥)

subject to 𝑥(𝛿− (𝑣)) − 𝑥(𝛿+ (𝑣)) =


−1, if 𝑣 = 𝑠
1, if 𝑣 = 𝑡
0, if 𝑣 ∈ 𝑉 \ {𝑠, 𝑡}

𝑥(𝛿(𝑈)) ≥ 2 for ∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑠, 𝑡}

𝑥𝑒 ≥ 0 for 𝑒 ∈ 𝐸.

(9.1)



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

9.3 Linear Programming Relaxation 191

The integral solutions to (9.1) are the incidence vectors of 𝑠-𝑡-tours. It is
obvious that the integrality ratio of (9.1) is no smaller than the integrality ratio
of (3.2). Hence, by Theorem 3.18, it is at least 2. This is also shown by the
simpler example in Figure 9.3, due to Friggstad, Gupta, and Singh [2016].

The constraints 𝑥(𝛿(𝑈)) ≥ 2 for ∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑠, 𝑡} can be replaced
equivalently by 𝑥(𝛿− (𝑈)) ≥ 1 for ∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑠}, or by 𝑥(𝛿+ (𝑈)) ≥ 1 for
∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑡}. This does not change the set of feasible solutions. If 𝐺 is a
complete graph and 𝑐 satisfies the triangle inequality, one could also add degree
constraints without changing the value of the LP (see Exercise 9.8).

The following lemma describes the structure of the support graph 𝐺 of
feasible solutions to (9.1); this will be useful later.

Lemma 9.9 (Svensson, Tarnawski, and Végh [2020]). Let (𝐺, 𝑐, 𝑠, 𝑡) be an
Asymmetric Path TSP instance. Let 𝑉1, . . . , 𝑉𝑙 be the strongly connected compo-
nents of 𝐺 numbered in topological order. Let 𝑥 be a feasible solution to (9.1).
Then we have 𝑠 ∈ 𝑉1, 𝑡 ∈ 𝑉𝑙 , and

𝑥(𝛿+ (𝑉𝑖) ∩ 𝛿− (𝑉 𝑗 )) =

{
1 if 𝑗 = 𝑖 + 1
0 otherwise.

(9.2)

Proof. Let 𝑉1, . . . , 𝑉𝑙 be a topological order of the strongly connected com-
ponents of 𝐺. Then ∅ = 𝛿− (𝑉1) = 𝛿+ (𝑉𝑙). Moreover, we have 𝑥(𝛿− (𝑈)) ≥ 1
for all ∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑠}; hence, every vertex is reachable from 𝑠. Similarly, 𝑡 is
reachable from every vertex. Therefore, we have 𝑠 ∈ 𝑉1 and 𝑡 ∈ 𝑉𝑙 .

We now show (9.2) by induction on 𝑖. For 𝑖 = 1 < 𝑙, we have 𝑥(𝛿+ (𝑉𝑖)) = 1
because 𝛿− (𝑉1) = ∅, 𝑠 ∈ 𝑉1, and 𝑡 ∉ 𝑉1. This implies

1 ≤ 𝑥(𝛿− (𝑉2)) = 𝑥(𝛿+ (𝑉1) ∩ 𝛿− (𝑉2)) ≤ 𝑥(𝛿+ (𝑉1)) = 1,

which settles the base case of the induction.
Now let 𝑖 ∈ {2, . . . , 𝑙 − 1}. We have 𝑥(𝛿− (𝑉𝑖)) = 𝑥(𝛿+ (𝑉𝑖)) because 𝑉𝑖

contains neither 𝑠 nor 𝑡. Moreover, 𝛿− (𝑉𝑖+1) ⊆ 𝛿+ (𝑉1) ∪ · · · ∪ 𝛿+ (𝑉𝑖) because
𝑉1, . . . , 𝑉𝑙 is a topological order. Using the induction hypothesis in the first and
last equation, we get

1 ≤ 𝑥(𝛿− (𝑉𝑖+1)) = 𝑥(𝛿+ (𝑉𝑖) ∩ 𝛿− (𝑉𝑖+1)) ≤ 𝑥(𝛿+ (𝑉𝑖)) = 𝑥(𝛿− (𝑉𝑖)) = 1.

We have equality throughout and conclude

𝑥(𝛿+ (𝑉𝑖) ∩ 𝛿− (𝑉𝑖+1)) = 𝑥(𝛿+ (𝑉𝑖)) = 1. □

The dual LP of (9.1) is the same as (4.5) except for the term 𝑎𝑡 − 𝑎𝑠 in the
objective function and the omission of variables 𝑦𝑈 for sets 𝑈 that contain
exactly one of 𝑠 and 𝑡:
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𝑠 𝑡
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Figure 9.3 Example by Friggstad, Gupta, and Singh [2016] with integrality ratio
approaching 2 as the number of vertices increases. Setting 𝑥𝑒 := 1

2 for all shown
edges defines a feasible solution to (9.1). If the 2𝑘 curved edges have cost 1 and the
dotted edges have cost 0, we have LP = 𝑐 (𝑥 ) = 𝑘, but any 𝑠-𝑡-tour costs at least
2𝑘 − 1. (In the figure, 𝑘 = 4.) Setting 𝑦𝑈 = 1

2 for the vertex sets𝑈 indicated by the
ellipses and 𝑎𝑣 as shown in blue defines an optimum solution to the dual LP (9.3).
This dual solution has strongly laminar support. This picture is taken from Köhne,
Traub, and Vygen [2020] (with permission from Springer Nature).

max 𝑎𝑡 − 𝑎𝑠 +
∑︁

∅≠𝑈⊆𝑉\{𝑠,𝑡 }
2 𝑦𝑈

subject to 𝑎𝑤 − 𝑎𝑣 +
∑︁

∅≠𝑈⊆𝑉\{𝑠,𝑡 }:
𝑒∈ 𝛿 (𝑈)

𝑦𝑈 ≤ 𝑐(𝑒) (𝑒 = (𝑣, 𝑤) ∈ 𝐸)

𝑦𝑈 ≥ 0 (∅ ≠ 𝑈 ⊆ 𝑉 \ {𝑠, 𝑡}).

(9.3)

The primal and the dual LP can be solved in polynomial time, as in Proposi-
tion 4.3.

Almost exactly like in Lemma 7.2, we always have an optimum dual solution
with strongly laminar support – that is, L = {𝑈 : 𝑦𝑈 > 0} is a laminar family
and 𝐺 [𝑈] is strongly connected for every 𝑈 ∈ L. Figure 9.3 also shows an
example of an optimum dual solution that has strongly laminar support.

Lemma 9.10. Let (𝐺, 𝑐, 𝑠, 𝑡) be an instance of the Asymmetric Path TSP.
Moreover, let (𝑎, 𝑦) be an optimum solution to (9.3). Then we can compute in
polynomial time (𝑎′, 𝑦′) such that

• (𝑎′, 𝑦′) is an optimum solution to (9.3),
• (𝑎′, 𝑦′) has strongly laminar support, and
• 𝑎′𝑠 = 𝑎𝑠 and 𝑎′𝑡 = 𝑎𝑡 .

https://www.springer.com/journal/10107
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𝑈

𝑆

−𝑦𝑈
+𝑦𝑈

−𝑦𝑈
𝑠 𝑡

Figure 9.4 Illustration of the proof of Lemma 9.10. A set 𝑈 ⊆ 𝑉 \ {𝑠, 𝑡 } is
shown in blue. The vertex set 𝑆 of a strongly connected component of 𝐺 [𝑈 ] with
𝛿− (𝑆) ⊆ 𝛿− (𝑈) is shown in red. We modify our dual solution by increasing the
dual variable corresponding to 𝑆, decreasing the dual variable corresponding to𝑈
(blue), and decreasing the variables corresponding to the vertices in𝑈 \ 𝑆 (green).

Proof. First, we apply uncrossing to 𝑦 exactly as in the proof of Lemma 4.13.
Henceforth, we may assume that the suppport of 𝑦 is a laminar family of
nonempty subsets of 𝑉 \ {𝑠, 𝑡}.

As long as there is a set𝑈 with 𝑦𝑈 > 0, but 𝐺 [𝑈] is not strongly connected,
we do the following. Let𝑈 be a minimal set with 𝑦𝑈 > 0 and such that 𝐺 [𝑈] is
not strongly connected. Moreover, let 𝐺 [𝑆] be a strongly connected component
of 𝐺 [𝑈] with 𝛿− (𝑆) ⊆ 𝛿− (𝑈); note that 𝑆 exists and can be computed by
Proposition 6.4.

Define a dual solution (𝑎′, 𝑦′) as follows (see Figure 9.4). We set 𝑦′
𝑈

:= 0,
𝑦′
𝑆

:= 𝑦𝑆 + 𝑦𝑈 , and 𝑦′
𝑊

:= 𝑦𝑊 for other sets 𝑊 . Moreover, 𝑎′𝑣 := 𝑎𝑣 − 𝑦𝑈 for
𝑣 ∈ 𝑈 \ 𝑆 and 𝑎′𝑣 := 𝑎𝑣 for all other vertices 𝑣. The only edges 𝑒 = (𝑣, 𝑤) for
which 𝑎′𝑤 −𝑎′𝑣 +

∑
𝑈:𝑒∈ 𝛿 (𝑈) 𝑦

′
𝑈
> 𝑎𝑤 −𝑎𝑣 +

∑
𝑈:𝑒∈ 𝛿 (𝑈) 𝑦𝑈 are edges from𝑈 \ 𝑆

to 𝑆. However, such edges do not exist by choice of 𝑆. Hence, (𝑎′, 𝑦′) is a feasible
dual solution. Since 𝑎′𝑠 = 𝑎𝑠 and 𝑎′𝑡 = 𝑎𝑡 and

∑
∅≠𝑈⊊𝑉 2𝑦′

𝑈
=

∑
∅≠𝑈⊊𝑉 2𝑦𝑈 , it

is also optimum.
We now show that the support of 𝑦′ remains laminar. Suppose there is a set

𝑊 in the support of 𝑦′ that crosses 𝑆. Then𝑊 must be in the support of 𝑦 and
hence a subset of𝑈 because the support of 𝑦 is laminar. By the minimal choice
of 𝑈, 𝐺 [𝑊] is strongly connected. But this implies that 𝐺 contains an edge
from𝑊 \ 𝑆 to𝑊 ∩ 𝑆, contradicting 𝛿− (𝑆) ⊆ 𝛿− (𝑈).

We have now decreased the number of sets𝑈 in the support for which 𝐺 [𝑈]
is not strongly connected. Because the support of 𝑦 is laminar, it has at most
2|𝑉 | elements by Proposition 4.8. Therefore, after iterating the procedure at
most 2|𝑉 | times, the dual solution has the desired properties. □
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9.4 Asymmetric Graph Path TSP

Asymmetric Graph Path TSP is the special case of Asymmetric Path TSP
where 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸 . In this section, we will prove a constant upper
bound on the integrality ratio for such unit-weight instances. Our proof will
also yield a slightly better approximation ratio than what is implied by the
Feige–Singh reduction (Theorem 9.8) combined with Theorem 6.12. We start
with a better black-box reduction:

Theorem 9.11 (Köhne, Traub, and Vygen [2020], Traub [2020a]). Let 𝜌 be the
integrality ratio of the Asymmetric Graph TSP LP (6.1). Then the integrality
ratio of (9.1) for the Asymmetric Graph Path TSP is at most 2𝜌 − 1.

Suppose there exists an 𝛼-approximation algorithm for Asymmetric Graph
TSP. Then there is a (2𝛼 − 1)-approximation algorithm for Asymmetric Graph
Path TSP.

Proof. For an instanceI = (𝐺, 𝑠, 𝑡) of Asymmetric Graph Path TSP, we first
compute a topological order𝑉1, . . . , 𝑉𝑙 of the strongly connected components of
𝐺. By Lemma 9.9, no 𝑠-𝑡-tour can use an edge from𝑉𝑖 to𝑉 𝑗 for any 𝑗 ∉ {𝑖, 𝑖+1};
moreover, such edges cannot belong to the support of any LP solution. Hence,
we delete such edges, which does not change OPT(I) (the minimum cardinality
of an 𝑠-𝑡-tour) or LP(I) (the value of (9.1)).

Let the instance I′ = 𝐺′ of Asymmetric Graph TSP result from this graph
by adding a 𝑡-𝑠-path 𝑃back of length 𝑛 − 1, where all inner vertices of this path
are new vertices not contained in𝐺; here, 𝑛 is the number of vertices of𝐺. Then
LP(I′) ≤ LP(I) + (𝑛 − 1) and OPT(I′) ≤ OPT(I) + (𝑛 − 1), where LP(I′)
and OPT(I′) denote the LP value of (3.2) and the minimum cardinality of a
tour in instance I′.

If we have a tour 𝑅 in 𝐺′ with at most 𝛼 · OPT(I′) or 𝜌 · LP(I′) edges, we
remove the copies of 𝑃back and obtain 𝑟 (at least one) 𝑠-𝑡-walks of total cost at
most 𝛼 · OPT(I′) − 𝑟 (𝑛 − 1) or 𝜌 · LP(I′) − 𝑟 (𝑛 − 1). Note that each of them
visits all the sets 𝑉1, . . . , 𝑉𝑙 in this order (we have removed edges that skip sets
𝑉𝑖).

Next, we iteratively replace two of the walks to a single 𝑠-𝑡-walk until only
one remains. We merge two 𝑠-𝑡-walks 𝑃1 and 𝑃2 to a single 𝑠-𝑡-walk 𝑃 that
contains all vertices of 𝑃1 and 𝑃2 as follows (see Figure 9.5). For odd 𝑖, we
follow 𝑃1 from the first vertex that 𝑃1 visits in 𝑉𝑖 until the last vertex that 𝑃1
visits in 𝑉𝑖 , then add a path to the first vertex that 𝑃2 visits in 𝑉𝑖 , then follow 𝑃2
until the last vertex in 𝑉𝑖 . If 𝑖 < 𝑙, we add the edge of 𝑃2 that goes from 𝑉𝑖 to
𝑉𝑖+1. For even 𝑖, we exchange the roles of 𝑃1 and 𝑃2.
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𝑠 𝑡

Figure 9.5 Construction of the 𝑠-𝑡-walk 𝑃 in the proof of Theorem 9.11. The
𝑠-𝑡-walks 𝑃1 and 𝑃2 are shown with solid and dotted lines. (Here, 𝑃1 is the red
walk at the top, and 𝑃2 is shown in blue at the bottom.) The vertex sets 𝑉1, . . . , 𝑉𝑙

of the strongly connected components are indicated by the green ellipses. The
red and blue solid edges of the walks 𝑃1 and 𝑃2 are those that are used in the
walk 𝑃. The dashed black arrows indicate the paths within the sets 𝑉𝑖 that we add.
This picture is taken from Köhne, Traub, and Vygen [2020] (with permission from
Springer Nature).

The walk 𝑃 that we constructed consists of edges of 𝑃1, edges of 𝑃2, and
vertex-disjoint paths, one in each strongly connected component 𝐺 [𝑉𝑖]. Hence,
|𝐸 (𝑃) | ≤ |𝐸 (𝑃1) | + |𝐸 (𝑃2) | + (𝑛 − 1).

Iterating until only one walk remains yields an 𝑠-𝑡-tour of total cost at most

𝛼 · OPT(I′) − (𝑛 − 1) ≤ 𝛼 · OPT(I) + (𝛼 − 1) (𝑛 − 1)

or at most

𝜌 · LP(I′) − (𝑛 − 1) ≤ 𝜌 · LP(I) + (𝜌 − 1) (𝑛 − 1).

This completes the proof because 𝑛 − 1 ≤ LP(I) ≤ OPT(I). □

We conclude:

Corollary 9.12. The integrality ratio of (9.1) for Asymmetric Graph Path TSP
is at most 15. For every 𝜀 > 0, there is a (15 + 𝜀)-approximation algorithm for
Asymmetric Graph Path TSP.

Proof. By Theorem 6.12, there is an (8 + 𝜀
2 )-approximation algorithm for

Asymmetric Graph TSP, and the integrality ratio of (6.1) is at most 8. Applying
Theorem 9.11 completes the proof. □

Table 9.2 summarizes the history and the state of the art.

https://www.springer.com/journal/10107
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Table 9.2 Approximation ratios and upper bounds on the integrality ratio
of (9.1) for Asymmetric Graph Path TSP in the order of their discovery. Only
results that are better than for general Asymmetric Path TSP are shown. Again,
𝜀 stands for an arbitrarily small positive constant.

Approximation Integrality
Ratio Ratio Year Reference Chapter

54 + 𝜀 – 2015 Svensson [2015] 6, 9.2
– 25 2018 Köhne, Traub, and

Vygen [2020]
6, 9.6

25 + 𝜀 25 2019 Traub [2020a] 6, 9.4
15 + 𝜀 15 2021 this book 6, 9.4

9.5 Reducing to Strongly Laminar Instances

Similar to Asymmetric TSP, we now also define strongly laminar instances of
Asymmetric Path TSP. We will reduce general instances to strongly laminar
instances, albeit this will here lose a factor of 2. This section is based on Traub
[2020a] and Köhne, Traub, and Vygen [2020].

Definition 9.13 (strongly laminar Asymmetric Path TSP instance). A strongly
laminar Asymmetric Path TSP instance is a tuple (𝐺, 𝑠, 𝑡,L, 𝑥, 𝑦), where

• 𝐺 = (𝑉, 𝐸) is a directed graph,
• 𝑠, 𝑡 ∈ 𝑉 with 𝑠 ≠ 𝑡,
• L is a laminar family of subsets of 𝑉 \ {𝑠, 𝑡} such that 𝐺 [𝑈] is strongly

connected for all𝑈 ∈ L,
• 𝑥 is a feasible solution to (9.1) such that 𝑥(𝛿(𝑈)) = 2 for all 𝑈 ∈ L and
𝑥𝑒 > 0 for all 𝑒 ∈ 𝐸 , and
• 𝑦 : L → R≥0.

This induces the Asymmetric Path TSP instance (𝐺, 𝑐𝑦 , 𝑠, 𝑡), where 𝑐𝑦 is the
induced cost function defined by 𝑐𝑦 (𝑒) :=

∑
𝑈∈L:𝑒∈ 𝛿 (𝑈) 𝑦𝑈 for 𝑒 ∈ 𝐸 .

A solution to a strongly laminar Asymmetric Path TSP instance I is a
solution to its induced Asymmetric Path TSP instance I′ = (𝐺, 𝑐𝑦 , 𝑠, 𝑡). Note
that for the induced instance, by complementary slackness (Corollary 4.2), 𝑥
is an optimum solution to (9.1), and (0, 𝑦) is an optimum solution to (9.3).
We define LP(I) := 𝑐𝑦 (𝑥) = ∑

𝐿∈L 2𝑦𝐿 (the equality holds by the LP Duality
Theorem 4.1).
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The goal of this section is to give a reduction of general instances of
Asymmetric Path TSP to strongly laminar ones. However, in contrast to
Asymmetric TSP, this reduction will lose a factor 2 in the approximation
guarantees and integrality ratios. More precisely, if the integrality ratio for
strongly laminar instances is at most 𝜌, then the integrality ratio for general
instances is at most 2𝜌 − 1. The same holds for approximation ratios (see
Theorem 9.18).

This works as follows. For an instance I of Asymmetric Path TSP, let 𝑥 and
𝑦 be optimum primal and dual LP solutions (to (9.1) and (9.3), respectively). We
may assume that the support of 𝑦 is strongly laminar (cf. Lemma 9.10). Delete
all edges outside the support of 𝑥 so that 𝑐(𝑒) = 𝑐𝑦 (𝑒) + 𝑎𝑤 − 𝑎𝑣 for every edge
𝑒 = (𝑣, 𝑤) by complementary slackness. Then for every feasible solution 𝑥′ to
(9.1), we have

𝑐(𝑥′) =
∑︁

𝑒=(𝑣,𝑤) ∈𝐸

(
𝑐𝑦 (𝑒) + 𝑎𝑤 − 𝑎𝑣

)
𝑥′𝑒

=
∑︁
𝑒∈𝐸

𝑐𝑦 (𝑒)𝑥′𝑒 +
∑︁
𝑣∈𝑉

𝑎𝑣
(
𝑥′ (𝛿− (𝑣)) − 𝑥′ (𝛿+ (𝑣))

)
= 𝑐𝑦 (𝑥′) + 𝑎𝑡 − 𝑎𝑠 .

Now if 𝐹 is an 𝑠-𝑡-tour with 𝑐𝑦 (𝐹) ≤ 𝛾 · 𝑐𝑦 (𝑥), then

𝑐(𝐹) = 𝑐𝑦 (𝐹) + 𝑎𝑡 − 𝑎𝑠
≤ 𝛾 · 𝑐𝑦 (𝑥) + 𝑎𝑡 − 𝑎𝑠
= 𝛾 · (𝑐(𝑥) + 𝑎𝑠 − 𝑎𝑡 ) + 𝑎𝑡 − 𝑎𝑠
= 𝛾 · 𝑐(𝑥) + (𝛾 − 1) (𝑎𝑠 − 𝑎𝑡 ).

Hence, the key step will be to bound 𝑎𝑠 − 𝑎𝑡 .
In the rest of this section, we show that there always exists an optimum

dual solution with 𝑎𝑠 − 𝑎𝑡 ≤ LP, where we again denote by LP the value
of the primal and dual LPs. This important lemma will be exploited again
in Section 9.6. However, Figure 9.6 shows that we cannot bound 𝑎𝑠 − 𝑎𝑡
by LP for an arbitrary optimum dual solution (𝑎, 𝑦). Thus, we will work
with an optimum dual solution (𝑎, 𝑦) with 𝑎𝑠 − 𝑎𝑡 minimum. Note that this
minimum is attained because for every feasible dual solution (𝑎, 𝑦), we have
LP ≥ 𝑎𝑡 − 𝑎𝑠 +

∑
∅≠𝑈⊆𝑉\{𝑠,𝑡 } 2𝑦𝑈 ≥ 𝑎𝑡 − 𝑎𝑠 and hence 𝑎𝑠 − 𝑎𝑡 ≥ −LP.

The following lemma describes an important property of optimum dual LP
solutions with minimum 𝑎𝑠 − 𝑎𝑡 . We will later show that this property implies
𝑎𝑠 − 𝑎𝑡 ≤ LP.
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𝑠 𝑣 𝑡

𝑐(𝑠, 𝑣) = 0 𝑐(𝑣, 𝑡) = 0
𝑦{𝑣} = 1

1 0 −1

Figure 9.6 Example of an instance with LP = 0 and an optimum dual solution with
𝑎𝑠 − 𝑎𝑡 = 2. The blue numbers below the vertices show the dual variables 𝑎𝑠 = 1,
𝑎𝑣 = 0, and 𝑎𝑡 = −1. Of course, this instance has another optimum dual solution
in which all variables are zero. This picture is taken from Köhne, Traub, and Vygen
[2020] (with permission from Springer Nature).

Lemma 9.14. Let (𝐺, 𝑐, 𝑠, 𝑡) be an Asymmetric Path TSP instance, where 𝐺 is
the support graph of an optimum solution to (9.1). Moreover, let (𝑎, 𝑦) be an
optimum solution to (9.3) such that 𝑎𝑠 − 𝑎𝑡 is minimum. Let �̄� ⊆ 𝑉 \ {𝑠, 𝑡} such
that every 𝑠-𝑡-path in 𝐺 enters (and leaves) �̄� at least once. Then 𝑦�̄� = 0.

Proof. Suppose 𝑦�̄� > 0 and let 𝜀 := 𝑦�̄� . Let 𝑅 be the set of vertices reachable
from 𝑠 in𝐺 −�̄� (the subgraph of𝐺 induced by𝑉 \�̄�). We define a dual solution
(�̄�, �̄�) as follows:

�̄�𝑈 :=

{
𝑦𝑈 − 𝜀 if𝑈 = �̄�

𝑦𝑈 else

�̄�𝑣 :=


𝑎𝑣 − 𝜀 if 𝑣 ∈ 𝑅
𝑎𝑣 if 𝑣 ∈ �̄�
𝑎𝑣 + 𝜀 else.

See Figure 9.7 for an illustration.
We claim that (�̄�, �̄�) is an optimum (and feasible) solution to (9.3). Note that

𝑡 ∈ 𝑉 \
(
𝑅 ∪ �̄�

)
and thus �̄�𝑡 = 𝑎𝑡 + 𝜀. Since 𝑠 ∈ 𝑅, we have �̄�𝑠 − �̄�𝑡 < 𝑎𝑠 − 𝑎𝑡 .

Thus, if (�̄�, �̄�) is indeed optimum (and feasible), we obtain a contradiction to
our choice of the dual solution (𝑎, 𝑦).

First, we observe that (�̄�, �̄�) and (𝑎, 𝑦) have the same objective value since

�̄�𝑡 − �̄�𝑠 +
∑︁

∅≠𝑈⊆𝑉\{𝑠,𝑡 }
2�̄�𝑈 = (𝑎𝑡 + 𝜀) − (𝑎𝑠 − 𝜀) +

∑︁
∅≠𝑈⊆𝑉\{𝑠,𝑡 }

2𝑦𝑈 − 2𝜀.

By our choice of 𝜀, the vector �̄� will be nonnegative.
Now consider an edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 (𝐺). We need to show that

�̄�𝑤 − �̄�𝑣 +
∑︁

𝑈:𝑒∈ 𝛿 (𝑈)
�̄�𝑈 ≤ 𝑐(𝑒).

https://www.springer.com/journal/10107
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𝑅 �̄� 𝑉 \ (𝑅 ∪ �̄�)
−𝜀

−𝜀 +𝜀

𝑠 𝑡

Figure 9.7 Modifying the dual solution in the proof of Lemma 9.14. The green and
blue numbers in the bottom indicate the change of the dual variables corresponding
to the vertices. In red, the decrease of the variable 𝑦�̄� is indicated. There is no
edge from 𝑅 to 𝑉 \ (𝑅 ∪ �̄�) . This picture is taken from Köhne, Traub, and Vygen
[2020] (with permission from Springer Nature).

The only edges for which �̄�𝑤 − �̄�𝑣 +
∑
𝑈:𝑒∈ 𝛿 (𝑈) �̄�𝑈 is greater than 𝑎𝑤 − 𝑎𝑣 +∑

𝑈:𝑒∈ 𝛿 (𝑈) 𝑦𝑈 (which is at most 𝑐(𝑒)) are those from 𝑅 to𝑉 \ (𝑅∪�̄�). However,
such edges do not exist by definition of 𝑅.

This shows that (�̄�, �̄�) is an optimum dual solution and �̄�𝑠 − �̄�𝑡 < 𝑎𝑠 − 𝑎𝑡 , a
contradiction. Hence, 𝑦�̄� = 0. □

We will need the following variant of Menger’s theorem (Menger [1927], cf.
Exercise 2.2).

Lemma 9.15. Let 𝐺 = (𝑉, 𝐸) be a directed graph and 𝑠, 𝑡 ∈ 𝑉 such that 𝑡 is
reachable from 𝑠 in 𝐺. Let𝑈 ⊆ 𝑉 \ {𝑠, 𝑡} such that for every vertex 𝑢 ∈ 𝑈, there
exists an 𝑠-𝑡-path in 𝐺 − 𝑢. Then there exist two 𝑠-𝑡-paths 𝑃1 and 𝑃2 in 𝐺 such
that no vertex 𝑢 ∈ 𝑈 is contained in both 𝑃1 and 𝑃2.

Proof. We construct a graph 𝐺′ that arises from 𝐺 by processing the vertices
𝑢 ∈ 𝑈 one by one as follows: We split 𝑢 into two vertices 𝑢− and 𝑢+ that
are connected by an edge 𝑒𝑢 := (𝑢− , 𝑢+); moreover, entering edges (𝑣, 𝑢) are
replaced by (𝑣, 𝑢−), and leaving edges (𝑢, 𝑣) are replaced by (𝑢+, 𝑣).

In the graph 𝐺′, we now define integral edge capacities. Every edge 𝑒𝑢 for
𝑢 ∈ 𝑈 has capacity one. All other edges (i.e., all edges corresponding to edges
of 𝐺) have infinite capacity.

Since for every vertex 𝑢 ∈ 𝑈, there exists an 𝑠-𝑡-path in𝐺−𝑢, we conclude that
for every 𝑢 ∈ 𝑈, there exists an 𝑠-𝑡-path in 𝐺′ − 𝑒𝑢. Thus, the minimum capacity
of an 𝑠-𝑡-cut in 𝐺′ is at least two. Hence, by Theorem 2.5 and Corollary 2.6,
there exists an integral 𝑠-𝑡-flow of value 2 in 𝐺′ with the defined edge capacities.
This flow can be decomposed into two 𝑠-𝑡-paths, 𝑃′1 and 𝑃′2, and possibly some
cycles (like in Proposition 3.7). By the choice of the edge capacities, no edge
𝑒𝑢 for 𝑢 ∈ 𝑈 occurs in both paths. Since the edge 𝑒𝑢 is the only outgoing edge

https://www.springer.com/journal/10107
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of 𝑢− and the only incoming edge of 𝑢+, an 𝑠-𝑡-path containing 𝑢− or 𝑢+ must
contain 𝑒𝑢, and at most one of 𝑃′1 and 𝑃′2 can do so.

Hence, contracting the edges 𝑒𝑢 (for 𝑢 ∈ 𝑈) yields two 𝑠-𝑡-paths 𝑃1 and 𝑃2
in 𝐺 such that no vertex 𝑢 ∈ 𝑈 is contained in both 𝑃1 and 𝑃2. □

We will now continue to work with a dual solution (𝑎, 𝑦) that minimizes
𝑎𝑠 − 𝑎𝑡 . By Lemma 9.10, we can assume in addition that (𝑎, 𝑦) has strongly
laminar support. For an illustration of the following lemma, see Figure 9.8.

Lemma 9.16. Let (𝐺, 𝑐, 𝑠, 𝑡) be an Asymmetric Path TSP instance, where 𝐺
is the support graph of an optimum solution to (9.1). Moreover, let (𝑎, 𝑦) be
an optimum solution to (9.3) such that 𝑎𝑠 − 𝑎𝑡 is minimum and 𝑦 has strongly
laminar support.

Then 𝐺 contains two 𝑠-𝑡-paths 𝑃1 and 𝑃2 such that for every set 𝑈 in the
support of 𝑦, we have |𝐸 (𝑃1) ∩ 𝛿(𝑈) | + |𝐸 (𝑃2) ∩ 𝛿(𝑈) | ≤ 2.

Proof. Let L denote the support of 𝑦. By Lemma 9.14, for every set𝑈 ∈ L,
there is an 𝑠-𝑡-path in 𝐺 that visits no vertex in𝑈. We contract each maximal set
of L. Using Lemma 9.15, we can find two 𝑠-𝑡-paths such that no vertex arising
from the contraction of a set is visited by both paths.

Now we revert the contraction operations. We complete the edge sets of the
two 𝑠-𝑡-paths we found before (which are not necessarily connected anymore
after undoing the contraction) to paths 𝑃1 and 𝑃2 with the desired properties.
To see that this is possible, let 𝑣 be the end vertex of the edge 𝑒in entering a
contracted set 𝑈, and let 𝑤 be the start vertex of the edge 𝑒out leaving 𝑈. By
Lemma 7.5, there is a nice 𝑣-𝑤-path 𝑃𝑣,𝑤 . This path is completely contained
in 𝐺 [𝑈] and enters and leaves every set 𝑈′ ∈ L with 𝑈′ ⊊ 𝑈 at most once.
Moreover, if 𝑒in ∈ 𝛿− (𝑈′), then 𝑣 ∈ 𝑈′ and the nice 𝑣-𝑤-path 𝑃𝑣,𝑤 does not
enter𝑈′. Similarly, if 𝑒out ∈ 𝛿+ (𝑈′), then 𝑤 ∈ 𝑈′ and 𝑃𝑣,𝑤 never leaves𝑈′. □

We finally show the key lemma of this section.

Lemma 9.17 (Köhne, Traub, and Vygen [2020]). Let I = (𝐺, 𝑐, 𝑠, 𝑡) be an
Asymmetric Path TSP instance, where 𝐺 is the support graph of an optimum
solution to (9.1). Let LP denote the value of (9.1). Then there is an optimum
solution (𝑎, 𝑦) to (9.3) with strongly laminar support and 𝑎𝑠 − 𝑎𝑡 ≤ LP.

Proof. Let (𝑎, 𝑦) be an optimum solution to (9.3) that has strongly laminar
support and minimum 𝑎𝑠 − 𝑎𝑡 . Note that such an optimum dual solution exists
by Lemma 9.10.

As before, we define the 𝑐𝑦 cost of an edge 𝑒 = (𝑣, 𝑤) to be

𝑐𝑦 (𝑒) =
∑︁

𝑈:𝑒∈ 𝛿 (𝑈)
𝑦𝑈 = 𝑐(𝑒) + 𝑎𝑣 − 𝑎𝑤 . (9.4)
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𝑠 𝑡
𝑃1

𝑃2

Figure 9.8 The paths 𝑃1 and 𝑃2 as in Lemma 9.16. In black, the vertex sets in the
support of 𝑦 are shown. The 𝑠-𝑡-paths 𝑃1 and 𝑃2 are not necessarily internally
disjoint, but they never both visit the same set𝑈 with 𝑦𝑈 > 0. This picture is taken
from Köhne, Traub, and Vygen [2020] (with permission from Springer Nature).

By Lemma 9.16, 𝐺 contains two 𝑠-𝑡-paths 𝑃1 and 𝑃2 such that

𝑐𝑦 (𝐸 (𝑃1)) + 𝑐𝑦 (𝐸 (𝑃2)) ≤
∑︁

∅≠𝑈⊆𝑉\{𝑠,𝑡 }
2𝑦𝑈 .

Then, using (9.4),

0 ≤ 𝑐(𝐸 (𝑃1)) + 𝑐(𝐸 (𝑃2))

=
∑︁

𝑒=(𝑣,𝑤) ∈𝐸 (𝑃1 )
(𝑐𝑦 (𝑒) + 𝑎𝑤 − 𝑎𝑣) +

∑︁
𝑒=(𝑣,𝑤) ∈𝐸 (𝑃2 )

(𝑐𝑦 (𝑒) + 𝑎𝑤 − 𝑎𝑣)

= 𝑐𝑦 (𝐸 (𝑃1)) − (𝑎𝑠 − 𝑎𝑡 ) + 𝑐𝑦 (𝐸 (𝑃2)) − (𝑎𝑠 − 𝑎𝑡 )

≤
∑︁

∅≠𝑈⊆𝑉\{𝑠,𝑡 }
2𝑦𝑈 − 2(𝑎𝑠 − 𝑎𝑡 ),

implying

𝑎𝑠 − 𝑎𝑡 ≤
∑︁

∅≠𝑈⊆𝑉\{𝑠,𝑡 }
2𝑦𝑈 − (𝑎𝑠 − 𝑎𝑡 ) = LP.

□

This bound is tight – for example, for the instance in Figure 9.3 (Exercise 9.12),
in which the integrality ratio is arbitrarily close to the best-known lower bound
of 2.

We remark (although we will not need it) that the above proof can be adapted
to show that Lemma 9.17 also holds for general instances of Asymmetric Path
TSP; this is Exercise 9.10. Moreover, Exercise 9.11 gives a characterization of
the minimum value of 𝑎𝑠 − 𝑎𝑡 .

https://www.springer.com/journal/10107
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Now we obtain the main result of this section:

Theorem 9.18 (Traub [2020a]). Let 𝛼 ≥ 1. Suppose there is a polynomial-time
algorithm that computes a solution of cost at most 𝛼 · LP(I′) for any given
strongly laminar Asymmetric Path TSP instance I′. Then there is a polynomial-
time algorithm that computes a solution of cost at most (2𝛼 − 1) times the
optimum value of (9.1) for any given instance I of Asymmetric Path TSP.

If 𝜌 is the integrality ratio of (9.1) restricted to strongly laminar instances,
then the integrality ratio of (9.1) (for general instances) is at most 2𝜌 − 1.

Proof. Given an Asymmetric Path TSP instanceI = (𝐺, 𝑐, 𝑠, 𝑡), first compute
an optimum solution 𝑥∗ to (9.1). We may assume that the given graph𝐺 = (𝑉, 𝐸)
is the support graph of 𝑥∗, so 𝑥∗𝑒 > 0 for all 𝑒 ∈ 𝐸 . (This is because omitting
edges 𝑒 with 𝑥∗𝑒 = 0 does not change the LP value and can only increase the cost
of an optimum integral solution.) Moreover, let (𝑎, 𝑦) be an optimum solution
to (9.3) with strongly laminar support L and 𝑎𝑠 − 𝑎𝑡 ≤ 𝑐(𝑥∗); this is guaranteed
to exist by Lemma 9.17.

Since 𝑥∗𝑒 > 0 for all 𝑒 ∈ 𝐸 , we have 𝑐(𝑒) = 𝑎𝑤 − 𝑎𝑣 +
∑
𝑈:𝑒∈ 𝛿 (𝑈) 𝑦𝑈

for all 𝑒 = (𝑣, 𝑤) ∈ 𝐸 by complementary slackness (Corollary 4.2). Then
I′ = (𝐺, 𝑠, 𝑡,L, 𝑥∗, 𝑦) is a strongly laminar Asymmetric Path TSP instance
with the induced cost function 𝑐𝑦 , where for 𝑒 = (𝑣, 𝑤) ∈ 𝐸 , we have 𝑐𝑦 (𝑒) =∑
𝑈:𝑒∈ 𝛿 (𝑈) 𝑦𝑈 = 𝑐(𝑒) + 𝑎𝑣 − 𝑎𝑤 .
Now, for every feasible solution 𝑥 to (9.1), we have

𝑐(𝑥) =
∑︁
𝑒∈𝐸

𝑥𝑒 · 𝑐(𝑒) =
∑︁

𝑒=(𝑣,𝑤) ∈𝐸
𝑥𝑒 · (𝑎𝑤 − 𝑎𝑣 + 𝑐𝑦 (𝑒)) = 𝑐𝑦 (𝑥) + 𝑎𝑡 − 𝑎𝑠 ,

where we used that 𝑥 is an 𝑠-𝑡-flow of value 1. Now let 𝛾 ≥ 1 and let 𝑥′ be a
feasible solution to (9.1) such that 𝑐𝑦 (𝑥′) ≤ 𝛾 · 𝑐𝑦 (𝑥∗). Then

𝑐(𝑥′) = 𝑐𝑦 (𝑥′) + 𝑎𝑡 − 𝑎𝑠
≤ 𝛾 · 𝑐𝑦 (𝑥∗) + 𝑎𝑡 − 𝑎𝑠
= 𝛾 · (𝑐(𝑥∗) + 𝑎𝑠 − 𝑎𝑡 ) + 𝑎𝑡 − 𝑎𝑠
= 𝛾 · 𝑐(𝑥∗) + (𝛾 − 1) · (𝑎𝑠 − 𝑎𝑡 )
≤ 𝛾 · 𝑐(𝑥∗) + (𝛾 − 1) · 𝑐(𝑥∗).

This now implies the theorem as follows. For 𝛾 = 𝛼 and 𝑥′ the incidence vector
of a solution to the strongly laminar instance I′ with 𝑐𝑦 (𝑥′) ≤ 𝛼 · 𝑐𝑦 (𝑥∗), we
obtain the claimed bound on the approximation ratio with respect to (9.1).

Moreover, for 𝛾 = 𝜌 and 𝑥′ the incidence vector of an optimum solution to
the strongly laminar instance I′, we obtain the claimed bound on the integrality
ratio. □
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9.6 Another Black-Box Reduction to Asymmetric TSP

In this section, we give another black-box reduction. In contrast to the one
presented in Section 9.2, the one presented here will show that the integrality
ratio for Asymmetric Path TSP is less than four times the integrality ratio for
Asymmetric TSP. This result, due to Köhne, Traub, and Vygen [2020], was the
first proof that the integrality ratio of the LP relaxation (9.1) of Asymmetric
Path TSP is constant. With the preparations from Section 9.5, the proof is now
easy.

The following procedure is similar to one step (“inducing on a tight set”) of
the approximation algorithm for Asymmetric TSP by Svensson, Tarnawski,
and Végh [2020]. For strongly laminar instances, it yields a better bound than
Lemma 9.6.

Lemma 9.19. Let I = (𝐺, 𝑠, 𝑡,L, 𝑥, 𝑦) be a strongly laminar Asymmetric Path
TSP instance. Let 𝑃1 and 𝑃2 be 𝑠-𝑡-walks in 𝐺 with total cost 𝐿. Then there is a
single 𝑠-𝑡-walk 𝑃 in 𝐺 that contains every vertex of 𝑃1 and 𝑃2 and has cost at
most 𝐿 + LP(I).

Proof. We proceed similarly to the proof of Theorem 9.11. Let 𝑉1, . . . , 𝑉𝑙 be
the vertex sets of the strongly connected components of 𝐺 in topological order.
Let 𝑃 𝑗

𝑖
be the section of 𝑃𝑖 that visits vertices in𝑉 𝑗 (for 𝑖 = 1, 2 and 𝑗 = 1, . . . , 𝑙).

By Lemma 9.9 (and since 𝐺 is the support graph of 𝑥 by Definition 9.13), none
of these sections of 𝑃𝑖 is empty. (Such a section might consist of a single vertex
and no edges, but it has to contain at least one vertex.)

Because 𝐺 [𝐿] is strongly connected for every 𝐿 ∈ L and the sets 𝑉𝑖 for
𝑖 ∈ {1, . . . , 𝑙} are the vertex sets of the strongly connected components of 𝐺,
we have that L′ := L ∪ {𝑉1, . . . , 𝑉𝑙} is a laminar family (by Proposition 6.3).
Moreover, 𝐺 [𝐿] is strongly connected for every set 𝐿 ∈ L′. Therefore, we can
apply Lemma 7.5 to the laminar family L′.

We consider nice paths 𝑅 𝑗 in 𝐺 for 𝑗 = 1, . . . , 𝑙 that we will use to connect
the walks 𝑃 𝑗1 and 𝑃 𝑗2 to a single walk visiting all vertices in 𝑉 𝑗 . See Figure 9.5.
If 𝑗 is odd, let 𝑅 𝑗 be a nice path from the last vertex of 𝑃 𝑗1 to the first vertex
of 𝑃 𝑗2 . If 𝑗 is even, let 𝑅 𝑗 be a nice path from the last vertex of 𝑃 𝑗2 to the first
vertex of 𝑃 𝑗1 . (Such paths exist by Lemma 7.5.)

We now construct our 𝑠-𝑡-walk 𝑃 that will visit every vertex of 𝑃1 and 𝑃2.
We start by setting 𝑃 = 𝑠 and then add for 𝑗 = 1, . . . , 𝑙 all the vertices in 𝑉 𝑗 to
𝑃 as follows. If 𝑗 is odd, we append 𝑃 𝑗1 and 𝑅 𝑗 and then 𝑃 𝑗2 . If 𝑗 is even, we
append 𝑃 𝑗2 and 𝑅 𝑗 and then 𝑃 𝑗1 . Note that when moving from one connected
component 𝑉 𝑗 to the next component 𝑉 𝑗+1, we use an edge from either 𝑃1 (if 𝑗
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is even) or 𝑃2 (if 𝑗 is odd). Then 𝑃 is, indeed, an 𝑠-𝑡-walk in 𝐺 and contains
every vertex of 𝑃1 and 𝑃2.

We now bound the cost of the walk 𝑃. It is constructed from pieces of 𝑃1
and 𝑃2 and the paths 𝑅 𝑗 . Each of the paths 𝑅 𝑗 can only contain vertices of 𝑉 𝑗 .
Two paths 𝑅 𝑗 and 𝑅 𝑗′ , such that 𝑗 ≠ 𝑗 ′, can never both enter or both leave the
same element of the laminar family L because otherwise, they would contain
vertices of the same strongly connected component of 𝐺. Thus every element of
L is entered at most once and left at most once on all the paths 𝑅 𝑗 used in the
construction of 𝑃, and the total cost of these paths is at most

∑
𝑈 2𝑦𝑈 = LP(I).

Consequently, we have 𝑐𝑦 (𝐸 (𝑃)) ≤ 𝐿 + LP(I) as claimed. □

Our reduction first transforms an instance and a solution to (9.1) to an
instance and a solution to (3.2) and then works with an integral solution to this
Asymmetric TSP instance. The proof of the following lemma is similar to the
proofs of Theorems 9.8 and 9.11.

Lemma 9.20 (Traub [2020a]). Let 𝜌 be the integrality ratio of (3.2). Then
the integrality ratio of (9.1) restricted to strongly laminar instances is at most
2𝜌 − 1.

Proof. Let I = (𝐺, 𝑠, 𝑡,L, 𝑥, 𝑦) be a strongly laminar Asymmetric Path
TSP instance. Consider the strongly laminar Asymmetric TSP instance I′ =
(𝐺′,L′, 𝑥, 𝑦) that arises from I as follows. We add a new vertex 𝑣 to 𝐺 and
two edges (𝑡, 𝑣) and (𝑣, 𝑠); we set 𝑥 (𝑡 ,𝑣) = 𝑥 (𝑣,𝑠) = 1. Moreover, we add the set
{𝑣} to L and set 𝑦{𝑣} = 1

2 · LP(I). Then LP(I′) = 2 · LP(I). Hence, there is a
tour (a solution to I′) with cost at most 2𝜌 · LP(I).

Let 𝑅 be such a solution. Then 𝑅 has to use (𝑡, 𝑣) and (𝑣, 𝑠) at least once, since
it has to visit 𝑣. By deleting all copies of (𝑡, 𝑣) and (𝑣, 𝑠) from 𝑅, we get 𝑟 ≥ 1
𝑠-𝑡-walks in 𝐺 with total cost at most 2𝜌 · LP(I) − 𝑟 · LP(I) such that every
vertex of 𝐺 is visited by at least one of them. As long as 𝑟 > 1, by Lemma 9.19,
we can replace two of the 𝑠-𝑡-walks by a single one, increasing the cost by at
most LP(I) and decreasing 𝑟 by one. We end up with a single 𝑠-𝑡-walk 𝑃 in 𝐺
that contains every vertex of 𝐺 and has cost 𝑐𝑦 (𝐸 (𝑃)) ≤ 2𝜌 · LP(I) − LP(I).
This walk is an 𝑠-𝑡-tour (a solution to I), and thus the integrality ratio of (9.1)
restricted to strongly laminar instances is at most 2𝜌 − 1. □

We will now prove the main result of this section.

Theorem 9.21 (Köhne, Traub, and Vygen [2020]). Let 𝜌 be the integrality ratio
of (3.2). Then the integrality ratio of (9.1) is at most 4𝜌 − 3.
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Proof. By Lemma 9.20, the integrality ratio of (9.1) restricted to strongly
laminar Asymmetric Path TSP instances is at most 2𝜌 − 1. By Theorem 9.18,
this implies that the integrality ratio of (9.1) is at most 4𝜌 − 3. □

9.7 Algorithms for Asymmetric Path TSP

In this section, largely based on Traub [2020a], we show that the integrality
ratio of (9.1) is at most 17. Here we do not use a black-box reduction to
Asymmetric TSP anymore, but instead we use the algorithm for vertebrate
pairs from Section 7.5.

First we show an approximation algorithm for strongly laminar instances
with the same ratio as for Asymmetric TSP. By Theorem 9.18, this yields a
slightly better approximation ratio for Asymmetric Path TSP than applying the
Feige–Singh reduction (Theorem 9.8): For 𝜅 = 2 and 𝜂 = 9 + 𝜀 (which we have
by Theorems 8.24 and 7.18), we get an approximation ratio 17 + 𝜀 for strongly
laminar Asymmetric Path TSP instances and 33 + 𝜀 for general instances
(instead of 34 + 𝜀 by the Feige–Singh reduction). At the end of this section,
we will improve on this further by dealing directly with general instances (see
Theorem 9.23).

Theorem 9.22 (Traub [2020a]). Let 𝜅, 𝜂 ≥ 0 with 𝜅 + 𝜂 ≥ 1. Suppose we have a
(𝜅, 𝜂)-algorithm for vertebrate pairs. Then there is a polynomial-time algorithm
that computes a solution of cost at most

(3𝜅 + 𝜂 + 2) · LP(I)

for any given strongly laminar Asymmetric Path TSP instance.

Proof. Given an instance I = (𝐺, 𝑠, 𝑡,L, 𝑥, 𝑦), let𝑉1, . . . , 𝑉𝑙 be the vertex sets
of the strongly connected components of 𝐺 numbered in topological order. We
construct a strongly laminar Asymmetric TSP instance I′ = (𝐺′,L′, 𝑥′, 𝑦′).
Let 𝐺′ arise from 𝐺 = (𝑉, 𝐸) by adding a new vertex 𝑣 and two edges (𝑡, 𝑣)
and (𝑣, 𝑠). We set 𝑥′(𝑡 ,𝑣) = 𝑥

′
(𝑣,𝑠) = 1 and 𝑥′𝑒 = 𝑥𝑒 for all 𝑒 ∈ 𝐸 . Then 𝑥′ is a

feasible solution to (3.2). We define L′ = L ∪ {𝑉1, . . . , 𝑉𝑙}. We set 𝑦′
𝑉𝑖

= 0
for all 𝑖 ∈ {1, . . . , 𝑙} with 𝑉𝑖 ∉ L, and 𝑦′

𝐿
= 𝑦𝐿 for 𝐿 ∈ L. The reason that

we add the sets 𝑉𝑖 to L′ is that we will soon call Algorithm 7.8 for 𝑊 = 𝑉𝑖

(𝑖 = 1, . . . , 𝑙).
We claim that I′ is a strongly laminar Asymmetric TSP instance. First,

we observe that ∅ ≠ 𝐿 ⊊ 𝑉 and 𝐺′ [𝐿] is strongly connected for all 𝐿 ∈ L′
by construction and that 𝐺′ is strongly connected by Lemma 9.9. Moreover,
by Lemma 9.9, we have 𝑥′ (𝛿(𝑉𝑖)) = 2 for all 𝑖 ∈ {1, . . . , 𝑙}. Furthermore, for
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𝐿 ∈ L, we have 𝑠, 𝑡 ∉ 𝐿 and hence 𝑥′ (𝛿(𝐿)) = 𝑥(𝛿(𝐿)) = 2. Moreover, L′
is a laminar family by Proposition 6.3 (applied to 𝐺). This shows that I′ is a
strongly laminar Asymmetric TSP instance.

By Lemmas 7.9 and 7.11, we can compute in polynomial time a tour 𝐹𝑖 in
𝐺 [𝑉𝑖] of cost at most

𝑐𝑦 (𝐹𝑖) = 𝑐𝑦
′ (𝐹𝑖) ≤ (2𝜅 + 2) · value(𝑉𝑖) + (𝜅 + 𝜂) · (value(𝑉𝑖) − 𝐷𝑉𝑖 ) (9.5)

for every 𝑖 ∈ {1, . . . , 𝑙}.
By Definition 9.13, we have 𝑥𝑒 > 0 for all 𝑒 ∈ 𝐸 . Therefore, by Lemma 9.9,

any 𝑠-𝑡-path in 𝐺 visits every strongly connected component 𝐺 [𝑉𝑖] of 𝐺 exactly
once. Hence, the union of the edge set of any 𝑠-𝑡-path (for example, a shortest
𝑠-𝑡-path 𝑃) and 𝐹1

.
∪ . . . ,

.
∪ 𝐹𝑙 is an 𝑠-𝑡-tour 𝐹. We now bound the cost of 𝑃.

To this end, we consider the 𝑠-𝑡-path 𝑃′ that results from 𝑃 by replacing, for
each 𝑖 = 1, . . . , 𝑙, the maximal subpath of 𝑃 within 𝑉𝑖 , say from 𝑢𝑖 to 𝑣𝑖 , by the
nice 𝑢𝑖-𝑣𝑖-path 𝑃𝑢𝑖 ,𝑣𝑖 , which satisfies∑︁

𝐿∈L:𝑢𝑖∈𝐿⊊𝑉𝑖
𝑦𝐿 +

∑︁
𝐿∈L: 𝑣𝑖∈𝐿⊊𝑉𝑖

𝑦𝐿 + 𝑐𝑦 (𝐸 (𝑃𝑢𝑖 ,𝑣𝑖 )) ≤ 𝐷𝑉𝑖

(see Section 7.3, in particular (7.1)). We get

𝑐𝑦 (𝐸 (𝑃)) ≤ 𝑐𝑦 (𝐸 (𝑃′)) = 𝑐𝑦
′ (𝐸 (𝑃′)) ≤

𝑙∑︁
𝑖=1

(
𝐷𝑉𝑖 + 𝑦′𝑉𝑖

)
.

Therefore, using (9.5), we obtain

𝑐𝑦 (𝐹) ≤
𝑙∑︁
𝑖=1

(
𝐷𝑉𝑖 + 𝑦′𝑉𝑖 + (2𝜅 + 2) · value(𝑉𝑖) + (𝜅 + 𝜂) · (value(𝑉𝑖) − 𝐷𝑉𝑖 )

)
≤

𝑙∑︁
𝑖=1

(
𝑦′𝑉𝑖 + (3𝜅 + 𝜂 + 2) · value(𝑉𝑖)

)
≤ (3𝜅 + 𝜂 + 2) · LP(I).

Here, we used that LP(I) = ∑
𝐿∈L 2𝑦𝐿 =

∑𝑙
𝑖=1

(
𝑦′
𝑉𝑖
+ value(𝑉𝑖)

)
. □

By the reduction from general to strongly laminar instances (Theorem 9.18),
this yields the ratio 6𝜅 + 2𝜂 + 3 for general Asymmetric Path TSP instances. In
this reduction, we lose essentially a factor of 2, but this is tight only if 𝑎𝑠 − 𝑎𝑡
equals the LP value, where (𝑎, 𝑦) is a solution to the dual LP (9.3) with 𝑎𝑠 − 𝑎𝑡
minimum and strongly laminar support (see the proof of Theorem 9.18). By
the proof of Lemma 9.17, this happens only if there are two 𝑠-𝑡-paths that cost
nothing and visit every set in the support of 𝑦. In this case, however, we will be
able to construct an excellent backbone from these two paths.
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Exploiting this idea, we obtain the same approximation ratio for general
Asymmetric Path TSP instances as for Asymmetric TSP:

Theorem 9.23. Let 𝜅, 𝜂 ≥ 0 with 𝜅 +𝜂 ≥ 1. Suppose we have a (𝜅, 𝜂)-algorithm
for vertebrate pairs. Then there is a polynomial-time algorithm that computes a
solution of cost at most

max{3𝜅 + 𝜂 + 2, 4𝜅 + 7}

times the value of (9.1) for any given Asymmetric Path TSP instance.

Proof. Let (𝐺, 𝑐, 𝑠, 𝑡) be an Asymmetric Path TSP instance with𝐺 = (𝑉, 𝐸),
let 𝑥 be an optimum solution to (9.1), and let (𝑎, 𝑦) be an optimum solution to
(9.3) that has strongly laminar support and minimizes 𝑎𝑠 − 𝑎𝑡 . Note that such
a dual solution exists by Lemma 9.10; furthermore, 𝑥 and 𝑦 can be computed
in polynomial time. Let LP = 𝑐(𝑥) denote the value of those LPs. We may
assume that 𝑥𝑒 > 0 for all 𝑒 ∈ 𝐸 because removing edges 𝑒 with 𝑥𝑒 = 0 does not
change the LP value. Let 𝑉1, . . . , 𝑉𝑙 be the vertex sets of the strongly connected
components of 𝐺 numbered in topological order.

We define a strongly laminar Asymmetric TSP instance I′ = (𝐺′,L′, 𝑥′, 𝑦′).
As in the proof of Theorem 9.22, let𝐺′ arise from𝐺 by adding a new vertex 𝑣 and
edges (𝑡, 𝑣) and (𝑣, 𝑠). We set 𝑥′(𝑡 ,𝑣) = 𝑥

′
(𝑣,𝑠) = 1 and 𝑥′𝑒 = 𝑥𝑒 for all 𝑒 ∈ 𝐸 . Then

𝑥′ is a feasible solution to (3.2) for (𝐺′, 𝑐). We define L′ = L ∪ {𝑉1, . . . , 𝑉𝑙}.
We set 𝑦′

𝑉𝑖
= 0 for all 𝑖 ∈ {1, . . . , 𝑙} with 𝑉𝑖 ∉ L and 𝑦′

𝐿
= 𝑦𝐿 for 𝐿 ∈ L.

Again, I′ is a strongly laminar Asymmetric TSP instance. We again denote by
𝑐𝑦 = 𝑐𝑦

′ the induced cost function.
We first construct an 𝑠-𝑡-walk 𝑄 that is not too expensive but visits many sets

𝐿 ∈ L. This walk 𝑄 will be part of our final 𝑠-𝑡-tour, and it will also be the
essential part of the backbone for the vertebrate pairs algorithm.

To construct𝑄, let 𝑃1 and 𝑃2 be (edge sets of) two 𝑠-𝑡-paths as in Lemma 9.16.
We merge them to a single walk as follows (cf. Figure 9.9). Let 𝑃 𝑗

𝑖
be the section

of 𝑃𝑖 that visits vertices in 𝑉 𝑗 (for 𝑖 = 1, 2 and 𝑗 = 1, . . . , 𝑙). Since 𝑥𝑒 > 0 for
all 𝑒 ∈ 𝐸 , Lemma 9.9 implies that none of these sections of 𝑃𝑖 is empty. (Such
a section might consist of a single vertex and no edges, but it has to contain at
least one vertex.) Let 𝑢∗

𝑖
, 𝑣∗
𝑖
∈ 𝑉𝑖 such that 𝐷𝑉𝑖 (𝑢∗𝑖 , 𝑣∗𝑖 ) = 𝐷𝑉𝑖 (see Section 7.3).

Now we can apply Lemma 7.5 to the laminar family L′ and construct 𝑄 as
follows, starting with the single vertex 𝑠.

If 𝑗 is odd, let 𝑅 𝑗 consist of 𝑃 𝑗1 , a nice path from the last vertex of 𝑃 𝑗1 to 𝑢∗
𝑖
,

the nice path 𝑃𝑢∗
𝑖
,𝑣∗

𝑖
from 𝑢∗

𝑖
to 𝑣∗

𝑖
, a nice path from 𝑣∗

𝑖
to the first vertex of 𝑃 𝑗2 ,

and 𝑃 𝑗2 plus (unless 𝑗 = 𝑙) the following edge of 𝑃2 (that enters 𝑉 𝑗+1). If 𝑗 is
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𝑠 𝑡

Figure 9.9 Construction of the walk 𝑄. The 𝑠-𝑡-paths 𝑃1 (red) and 𝑃2 (blue)
are shown with solid and dotted lines. The vertex sets 𝑉1, . . . , 𝑉𝑙 of the strongly
connected components are indicated by the green ellipses (here 𝑙 = 3, and 𝑉3
contains only 𝑡). The thick green curves illustrate the nice paths 𝑃𝑢∗

𝑖
,𝑣∗

𝑖
that we

include in the backbone. The red and blue solid parts of the paths 𝑃𝑖 are those that
are used for the backbone; the dotted edges are omitted. The dashed black arrows
indicate the paths that we add.

even, we swap the roles of 𝑃1 and 𝑃2, starting with 𝑃 𝑗2 and ending with 𝑃 𝑗1 plus
(unless 𝑗 = 𝑙) the following edge of 𝑃1 (that enters 𝑉 𝑗+1).

We constructed an 𝑠-𝑡-walk 𝑄 with 𝑐𝑦 (𝑄) ≤ 𝑐𝑦 (𝑃1) + 𝑐𝑦 (𝑃2) +
∑𝑙
𝑖=1 3𝐷𝑉𝑖 .

Our backbone 𝐵 is the multi-graph that corresponds to this walk 𝑄 plus the two
auxiliary edges (𝑡, 𝑣) and (𝑣, 𝑠).

Now consider the variant of Algorithm 7.8 that takes 𝐵 as the backbone
instead of recomputing it in Step (2) (see Lemma 7.13). We apply this to𝑊 = 𝑉𝑖

for 𝑖 = 1, . . . , 𝑙 and the cost function 𝑐𝑦 . We get an Eulerian multi-edge set 𝐹𝑖
such that (𝑉 (𝐵), 𝐸 (𝐵) ∪ 𝐹𝑖) [𝑉𝑖] is connected. By Lemma 7.13,

𝑐𝑦 (𝐹𝑖) ≤ 𝜅 · 𝐷𝑉𝑖 + 𝜅 · value(𝑉𝑖) +
∑︁

𝐿∈L:𝐿⊊𝑉𝑖 , 𝑉 (𝐵)∩𝐿=∅
(2𝜅 + 𝜂 + 2) · 2𝑦𝐿

for every 𝑖 ∈ {1, . . . , 𝑙}.
Now

∑
𝐿∈L:𝐿⊊𝑉𝑖 , 𝑉 (𝐵)∩𝐿=∅ 2𝑦𝐿 ≤ value(𝑉𝑖) − 𝐷𝑉𝑖 because 𝐵 contains the

nice 𝑢∗
𝑖
-𝑣∗
𝑖
-path 𝑃𝑢∗

𝑖
,𝑣∗

𝑖
and 𝐷𝑉𝑖 (𝑢∗𝑖 , 𝑣∗𝑖 ) = 𝐷𝑉𝑖 . Thus,

𝑐𝑦 (𝐹𝑖) ≤ (2𝜅 + 3) · value(𝑉𝑖) − 3 · 𝐷𝑉𝑖 +
∑︁

𝐿∈L:𝐿⊊𝑉𝑖 , 𝑉 (𝐵)∩𝐿=∅
(𝜅 + 𝜂 − 1) · 2𝑦𝐿

for 𝑖 = 1, . . . , 𝑙. Recall that 𝑐𝑦 (𝑃1) + 𝑐𝑦 (𝑃2) ≤
∑
𝐿∈L 2𝑦𝐿 = value(𝑉) by

Lemma 9.16. Let 𝜏 ∈ [0, 1] such that 𝑐𝑦 (𝑃1) + 𝑐𝑦 (𝑃2) = 𝜏 · value(𝑉). Then
𝑐𝑦 (𝑄) ≤ 𝜏 · value(𝑉) +∑𝑙

𝑖=1 3𝐷𝑉𝑖 and
𝑙∑︁
𝑖=1

∑︁
𝐿∈L:𝐿⊊𝑉𝑖 ,
𝑉 (𝐵)∩𝐿=∅

2𝑦𝐿 ≤
∑︁

𝐿∈L:𝑉 (𝐵)∩𝐿=∅
2𝑦𝐿 = value(𝑉) − 𝜏 · value(𝑉)
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because the union of two paths 𝑃1 and 𝑃2 does not enter or leave any set in the
support of 𝑦 more than once.

Hence, the disjoint union of 𝑄 and 𝐹1, . . . , 𝐹𝑙 is an 𝑠-𝑡-tour 𝐹 of total cost at
most

𝑐(𝐹) = 𝑐𝑦 (𝐹) − (𝑎𝑠 − 𝑎𝑡 )

= 𝑐𝑦 (𝑄) +
𝑙∑︁
𝑖=1

𝑐𝑦 (𝐹𝑖) − (𝑎𝑠 − 𝑎𝑡 )

≤ 𝜏 · value(𝑉) + (2𝜅 + 3) · value(𝑉) + (𝜅 + 𝜂 − 1) (1 − 𝜏) · value(𝑉)
− (𝑎𝑠 − 𝑎𝑡 )

= LP + (2𝜅 + 3) · value(𝑉) + (𝜅 + 𝜂 − 2) (1 − 𝜏) · value(𝑉).

Here we used 𝜅 + 𝜂 ≥ 1 in the inequality and LP = value(𝑉) − (𝑎𝑠 − 𝑎𝑡 ) in the
last equation. Moreover, 0 ≤ 𝑐(𝑃1) + 𝑐(𝑃2) = 𝑐𝑦 (𝑃1) + 𝑐𝑦 (𝑃2) − 2(𝑎𝑠 − 𝑎𝑡 ) =
𝜏 · value(𝑉) − 2(𝑎𝑠 − 𝑎𝑡 ) = (𝜏 − 2)value(𝑉) + 2 LP yields value(𝑉) ≤ 2

2−𝜏 LP.
We conclude

𝑐(𝐹) ≤ LP +
(
2𝜅 + 3 + (𝜅 + 𝜂 − 2) (1 − 𝜏)

)
· value(𝑉)

≤
(
1 + 2

2−𝜏
(
2𝜅 + 3 + (𝜅 + 𝜂 − 2) (1 − 𝜏)

) )
· LP

=

(
(2𝜅 + 2𝜂 − 3) + 2

2−𝜏 (𝜅 + 5 − 𝜂)
)
· LP.

For 𝜂 ≥ 𝜅 + 5, the right-hand side is maximized for 𝜏 = 0 and hence at most
(3𝜅 + 𝜂 + 2) · LP. For 𝜂 ≤ 𝜅 + 5, the right-hand side is maximized for 𝜏 = 1 and
hence at most (4𝜅 + 7) · LP. □

Corollary 9.24. For every 𝜀 > 0, there is a (17 + 𝜀)-approximation algorithm
for Asymmetric Path TSP. The integrality ratio of (9.1) is at most 17.

Proof. By Theorems 8.24 and 7.18, there is a (2, 9+𝜀)-algorithm for vertebrate
pairs. Hence, Theorem 9.23 implies a (17 + 𝜀)-approximation algorithm for
Asymmetric Path TSP.

Suppose there is an instance I of Asymmetric Path TSP where OPT(I)
LP(I) > 17.

Then there exists an 𝜀 > 0 such that OPT(I)
LP(I) > 17+𝜀. However, by Theorem 9.23,

we can compute an integral solution for I with cost at most (17 + 𝜀) · LP(I) <
OPT(I), a contradiction. □

We currently have the same upper bound on the integrality ratio for (9.1) as
for (3.2). However, we do not know whether the two ratios are the same:
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Open Problem 9.25. Does the LP relaxation (9.1) of the Asymmetric Path
TSP have the same integrality ratio as the LP relaxation (3.2) of the Asymmetric
TSP?

Exercises

9.1 Consider the variants of Asymmetric Path TSP where 𝑠 and/or 𝑡 are not
part of the input but can be chosen among all vertices. Show that all of
them are equivalent to Asymmetric Path TSP.

9.2 Characterize the digraphs 𝐺 that contain an 𝑠-𝑡-tour and describe an
𝑂 (𝑛3)-time algorithm to decide this.
Note: Even a linear-time algorithm exists.

9.3 Show that the cheapest insertion heuristic from Proposition 9.5 yields a
solution of cost at most max{1, (𝑛 − 3)} · OPT for any given instance of
the Asymmetric Path TSP with Triangle Inequality.

9.4 Show that the approximation ratio of the cheapest insertion heuristic from
Proposition 9.5 cannot be bounded by 𝑜(𝑛).
(Frieze, Galbiati, and Maffioli [1982])

9.5 Devise a combinatorial (2
√
𝑛)-approximation algorithm with running

time𝑂 (𝑛3.5) for the Asymmetric Path TSP with Triangle Inequality.
Hint: First compute a cheapest edge set 𝐹 such that 𝐹

.
∪ {(𝑡, 𝑠)} is a cycle

cover, similarly to the proof of Lemma 1.34. If (𝑉, 𝐹) has more than
√
𝑛

connected components, buy all edges in 𝐹 except those on the 𝑠-𝑡-path in
(𝑉, 𝐹), delete all but one vertex from every circuit in (𝑉, 𝐹), and iterate
(like in Algorithm 1.35). Otherwise, successively pick an arbitrary vertex
𝑣 from each circuit in (𝑉, 𝐹) and insert it into the 𝑠-𝑡-path in (𝑉, 𝐹) in a
cheapest possible way.
(Lam and Newman [2008])

9.6 Let 𝛼 be a constant. Prove that if there is an 𝛼-approximation algorithm for
Asymmetric Graph TSP, then there is a (2𝛼)-approximation algorithm
for Asymmetric Graph Path TSP.
Hint: Guess OPT and note that 𝑟 in the proof of Theorem 9.8 is now
bounded by a constant.

9.7 Extend Exercise 9.6 to show that there is a weakly polynomial-time
algorithm for integer weights rather than unit weights. To this end, modify
the proof of Theorem 9.8 by doing a kind of binary search as follows.
Starting with a lower bound 𝐿 = 0 and an upper bound𝑈 ≥ OPT, trying
𝛾 = 𝐿 and 𝛾 = 𝑈 does the job unless we get 𝑟𝐿 > 𝛼 paths for 𝛾 = 𝐿 and
𝑟𝑈 < 𝛼 paths for 𝛾 = 𝑈. Next, try 𝛾 = ⌊ 𝐿+𝑈2 ⌋. If 𝑟𝛾 > 𝛼, update the lower



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

Exercises 211

bound 𝐿 := 𝛾; if 𝑟𝛾 < 𝛼, update the upper bound 𝑈 := 𝛾. Stop when
𝑟𝛾 = 𝛼 or𝑈 = 𝐿 + 1 and output the best solution found.

9.8 Consider the LP (9.1) for instances of the Asymmetric Path TSP with
Triangle Inequality, where 𝐸 = {(𝑣, 𝑤) ∈ 𝑉 × 𝑉 : 𝑐(𝑣, 𝑤) < ∞}.
Show that adding degree constraints 𝑥(𝛿− (𝑣)) = 1 for 𝑣 ∈ 𝑉 \ {𝑠} and
𝑥(𝛿− (𝑠)) = 0 would not change the value of the LP.

9.9 Let𝐺 = (𝑉, 𝐸) be an undirected graph and 1 ≤ 𝑘 < |𝑉 |. Show that𝐺 −𝑈
is connected for all 𝑈 ⊊ 𝑉 with |𝑈 | < 𝑘 if and only if for all 𝑣, 𝑤 ∈ 𝑉 ,
there exist 𝑘 paths from 𝑣 to 𝑤 in 𝐺 such that no pair of these paths shares
any vertex except 𝑣 and 𝑤.
Hint: Proceed similarly as in the proof of Lemma 9.15.
(Whitney [1932b])

9.10 Show that Lemma 9.17 also holds for general instances of Asymmetric
Path TSP.
Hint: To adapt the proof, work with the subgraph of 𝐺 that contains all
edges of 𝐺 for which the dual constraint is tight. This requires adapting
the proof of Lemma 9.14.
(Köhne, Traub, and Vygen [2020])

9.11 Let I = (𝐺, 𝑐, 𝑠, 𝑡) be an Asymmetric Path TSP instance and let 𝛾 ≥ 0.
Now consider the instance I′ = (𝐺 + 𝑒back, 𝑐, 𝑠, 𝑡) where we add an edge
𝑒back = (𝑡, 𝑠) with 𝑐(𝑒back) := 𝛾. Show that LP(I) = LP(I′) if and only
if there exists an optimum solution (𝑎, 𝑦) to (9.3) for the instance I with
𝑎𝑠 − 𝑎𝑡 ≤ 𝛾.
(Köhne, Traub, and Vygen [2020])

9.12 Show that the instance in Figure 9.3 has no optimum dual LP solution
(𝑎, 𝑦) with 𝑎𝑠 − 𝑎𝑡 < LP.
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10

Parity Correction of Random Trees

The random sampling approach described in Chapter 5 that yielded the first
𝑜(log 𝑛)-approximation algorithm for the Asymmetric TSP has also been used
successfully for the Symmetric TSP. First, Oveis Gharan, Saberi, and Singh
[2011] obtained the first algorithm with approximation ratio less than 3

2 for
Graph TSP. More recently, Karlin, Klein, and Oveis Gharan [2021] proved
that essentially the same algorithm has approximation ratio less than 3

2 for
the general Symmetric TSP. The algorithm is simple, but its analysis is very
complicated. While for Graph TSP we know simpler and better algorithms
today (see Chapters 12 and 13), the random sampling algorithm is still the
best-known approximation algorithm for Symmetric TSP.

The algorithm samples a spanning tree from an (approximately) marginal-
preserving 𝜆-uniform distribution and then proceeds with parity correction
like Christofides’ algorithm. In Section 10.1, we discuss the analysis by Oveis
Gharan, Saberi, and Singh [2011] for Graph TSP. Then, in the remaining part
of this chapter, we present the first part of the analysis by Karlin, Klein, and
Oveis Gharan [2021], with some simplifications suggested by Drees [2022].
The main point is to reduce the set of relevant cuts that need to be considered
to bound the cost of parity correction and obtain a nice structure that will be
exploited in Chapter 11.

10.1 Random Sampling for Graph TSP

In Chapter 5, we studied an algorithm for Asymmetric TSP that samples a
spanning tree 𝑆 from the maximum entropy distribution and extends it to a tour.
Essentially the same can be done for Symmetric TSP. This was first analyzed
by Oveis Gharan, Saberi, and Singh [2011] for Graph TSP, for which they
obtained the first improvement upon Christofides’ algorithm.

212
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Their analysis is based on the following observation:

Lemma 10.1. Let (𝑉, 𝑐) be an instance of the Symmetric TSP with Triangle
Inequality, and let 0 < 𝜂 ≤ 1. Let 𝑆 be a random spanning tree, and let 𝑥 be a
feasible solution to the subtour LP (2.2). Call an edge 𝑒 ∈ 𝐸 =

(𝑉
2
)

good if 𝑒
does not belong to any odd(𝑆)-cut 𝐶 with 𝑥(𝐶) ≤ 2 + 𝜂. Then the expected cost
of a minimum-cost odd(𝑆)-join is at most

∑
𝑒∈𝐸 ( 1

2 −
𝜂

6 ·P[𝑒 is good]) · 𝑥𝑒 · 𝑐(𝑒).

Proof. We define a vector 𝑦𝑆 ∈ R𝐸≥0 by setting 𝑦𝑆𝑒 := ( 1
2 −

𝜂

6 )𝑥𝑒 if 𝑒 is
good and setting 𝑦𝑆𝑒 := 1

2𝑥𝑒 otherwise. Then 𝑦𝑆 is a feasible solution to the
odd(𝑆)-join polyhedron (2.9) because for every cut 𝐶 with 𝑥(𝐶) ≥ 2 + 𝜂,
we have 𝑦𝑆 (𝐶) ≥ ( 1

2 −
𝜂

6 ) · 𝑥(𝐶) ≥ 1, and for every odd(𝑆)-cut 𝐶 with
𝑥(𝐶) ≤ 2 + 𝜂, we have 𝑦𝑆 (𝐶) = 1

2𝑥(𝐶) ≥ 1. Therefore, by Theorem 2.19, a
minimum-cost odd(𝑆)-join costs at most 𝑐(𝑦𝑆). The expected cost of 𝑦𝑆 is∑
𝑒∈𝐸 ( 1

2 −
𝜂

6 · P[𝑒 is good]) · 𝑥𝑒 · 𝑐(𝑒). □

If one could show that there is a sufficiently large set of edges that are good
with a constant probability, Lemma 10.1 would imply that for Graph TSP, the
expected cost of completing the spanning tree 𝑆 to a tour is at most ( 1

2 − 𝛿)𝑐(𝑥)
for some constant 𝛿 > 0, leading to an improvement over Christofides’ algorithm.
Oveis Gharan, Saberi, and Singh [2011] showed that for the maximum entropy
distribution (see Section 5.4), this is the case unless there are many edges 𝑒 with
𝑥𝑒 very close to 1. (The constants in Theorem 10.2 are not best possible, but the
improvement is tiny anyway.)

Theorem 10.2 (Oveis Gharan, Saberi, and Singh [2011]). Let (𝑉, 𝑐) be an
instance of the Symmetric TSP with Triangle Inequality and 𝑛 = |𝑉 |. Let 𝑥
be a feasible solution to the subtour LP (2.2), and let (𝑉, 𝑆) be a spanning tree
picked at random according to the maximum entropy distribution 𝜇 on S with∑
𝑆∈S:𝑒∈𝑆 𝜇(𝑆) = 𝑛−1

𝑛
𝑥𝑒 for all 𝑒 ∈ 𝐸 =

(𝑉
2
)
. Call an edge 𝑒 ∈ 𝐸 good if 𝑒 does

not belong to any odd(𝑆)-cut 𝛿(𝑈) with 𝑥(𝛿(𝑈)) ≤ 2+ 10−15. Then at least one
of the following holds:

(i) There is a subset 𝐸∗ of edges with 𝑥(𝐸∗) ≥ 10−12𝑛 such that for each
𝑒 ∈ 𝐸∗, the probability that 𝑒 is good is at least 10−24.

(ii) There are at least 19
20𝑛 edges 𝑒 with 𝑥𝑒 ≥ 1 − 10−7.

The proof of this theorem is very long and not presented here. It uses deep
results about random spanning trees and the structure of near-minimum cuts.
These were the first steps towards the improvement for the general Symmetric
TSP, which we will present in much more detail shortly.

Following Oveis Gharan, Saberi, and Singh [2011], we now show that
Theorem 10.2 implies a better approximation ratio for the Graph TSP:
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Corollary 10.3 (Oveis Gharan, Saberi, and Singh [2011]). There is a randomized
( 3

2 − 10−53)-approximation algorithm for Graph TSP.

Proof. Let 𝐺 be a Graph TSP instance. We work in the metric closure (cf.
Proposition 1.12) and let 𝑥 be an optimum solution to (2.2), where 𝑐(𝑣, 𝑤) =
dist𝐺 (𝑣, 𝑤) for all 𝑣, 𝑤 ∈ 𝑉 .

We first check whether we are in case (ii) of Theorem 10.2. If so, let 𝐼 be the
set of edges 𝑒 with 𝑥𝑒 ≥ 1 − 10−7. The edges in 𝐼 form vertex-disjoint paths
and circuits. Moreover, each circuit in 𝐼 has length at least 107 (or contains all
vertices) because for the vertex set𝑈 of such a circuit, we either have𝑈 = 𝑉 or

2 ≤ 𝑥(𝛿(𝑈)) = 2|𝑈 | −2 ·𝑥(𝐸 [𝑈]) ≤ 2|𝑈 | −2|𝑈 | · (1−10−7) = 2 ·10−7 |𝑈 |.

Remove one edge from each circuit in 𝐼 and add edges of 𝐺 (each of cost 1)
to obtain a spanning tree (𝑉, 𝑆). Note that 𝑐(𝑆 \ 𝐼) = |𝑆 \ 𝐼 | < ( 1

20 + 10−7)𝑛 ≤
( 1

20 + 10−7)𝑐(𝑥). Hence, we can bound the cost of 𝑆 by

𝑐(𝑆) = 𝑐(𝑆 ∩ 𝐼) + 𝑐(𝑆 \ 𝐼) ≤
∑︁
𝑒∈𝑆

𝑥𝑒 · 𝑐(𝑒)
1 − 10−7 +

( 1
20 + 10−7)𝑐(𝑥).

Now we add a minimum-cost odd(𝑆)-join 𝐽. To bound 𝑐(𝐽), let 𝑦𝑒 := 1
3 for

𝑒 ∈ 𝑆 and 𝑦𝑒 := 2
3𝑥𝑒 for 𝑒 ∈

(𝑉
2
)
\ 𝑆. We show that 𝑦 is a feasible solution to

the odd(𝑆)-join polyhedron (2.9). For any vertex set𝑈 with |𝑈 ∩ odd(𝑆) | odd,
we have |𝛿(𝑈) ∩ 𝑆 | odd by Lemma 2.20. If |𝛿(𝑈) ∩ 𝑆 | = 1, then 𝑦(𝛿(𝑈)) ≥
1
3 + 𝑦(𝛿(𝑈) \ 𝑆) ≥

1
3 +

2
3 (𝑥(𝛿(𝑈)) − 1) ≥ 1. If |𝛿(𝑈) ∩ 𝑆 | ≥ 3, then 𝑦(𝛿(𝑈)) ≥

3 · 1
3 = 1. Hence, 𝑦 is a feasible solution to the odd(𝑆)-join polyhedron (2.9)

and thus by Theorem 2.19, we have 𝑐(𝐽) ≤ 𝑐(𝑦) = 1
3𝑐(𝑆) +

2
3
∑
𝑒∈(𝑉2 )\𝑆 𝑐(𝑒)𝑥𝑒.

We conclude

𝑐(𝑆
.
∪ 𝐽) ≤ 4

3𝑐(𝑆) +
2
3

∑︁
𝑒∈(𝑉2 )\𝑆

𝑥𝑒 · 𝑐(𝑒)

≤ 4
3 ·

𝑐 (𝑥 )
1−10−7 + 4

3 ·
( 1

20 + 10−7)𝑐(𝑥)
≤

( 7
5 + 10−6)𝑐(𝑥).

Now assume that we are not in case (ii), so (i) of Theorem 10.2 must hold
for 𝑥. Recall that 𝑛−1

𝑛
𝑥 is in the relative interior of the spanning tree polytope of

the complete graph on 𝑉 (see Proposition 2.17). First assume that we sample a
spanning tree 𝑆 according to the maximum entropy distribution 𝜇 with marginals
exactly 𝑛−1

𝑛
𝑥. Note that this is possible only approximately, and we will bound

the difference in the end.
We add an odd(𝑆)-join to 𝑆 like Christofides’ algorithm. The expected cost

of 𝑆 is less than 𝑐(𝑥), and we now bound the cost of the odd(𝑆)-join. Because
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of (i), we can apply Lemma 10.1 for 𝜂 = 10−15 to bound the expected cost of
the odd(𝑆)-join by ∑︁

𝑒∈(𝑉2 )

( 1
2 − 10−16 · P[𝑒 is good]

)
· 𝑥𝑒 · 𝑐(𝑒)

≤ 1
2 · 𝑐(𝑥) − 10−16 · 10−24 ·

∑︁
𝑒∈𝐸∗

𝑥𝑒 · 𝑐(𝑒)

≤ 1
2 · 𝑐(𝑥) − 10−52𝑛,

where we used 𝑐(𝑒) ≥ 1 for all 𝑒 ∈ 𝐸∗. Moreover, we have 𝑐(𝑥) ≤ OPT ≤ 2𝑛
because for graph metrics, the solution produced by the double tree algorithm
(see Proposition 1.22) costs less than 2𝑛. Then we can bound the expected cost
of the odd(𝑆)-join by 1

2 (1 − 10−52)𝑐(𝑥).
In our algorithm, we actually sample a spanning tree 𝑆 from a 𝜆-uniform

distribution 𝜇𝜆 such that P[𝑒 ∈ 𝑆] ≤ 𝑛−1
𝑛
𝑥𝑒 + 𝑛−410−159 for all 𝑒 (cf. Corol-

lary 5.23 and Theorem 5.25). Then the expected cost of 𝑆 is still less than 𝑐(𝑥).
Moreover, by Theorem 5.24,

∑
𝑆∈S |𝜇𝜆 (𝑆) − 𝜇(𝑆) | ≤ 10−53. Parity correction

never costs more than 𝑛 − 1 in a Graph TSP instance because any spanning tree
contains an odd(𝑆)-join by Proposition 1.27. Hence, the expected cost of parity
correction with respect to the distribution 𝜇𝜆 is at most 10−53𝑛 larger than in
the analysis above. □

Note that we used properties of the Graph TSP in both cases, (i) and (ii).
Although the improvement over Christofides’ algorithm is tiny (in case (i)), this
result received a lot of interest. Czeller and Pap [2014] showed that essentially
the same proof yields an approximation ratio slightly better than 3

2 for metric
closures of graphs with edge weights between 1 and 𝛽, for any fixed constant 𝛽.

The result by Oveis Gharan, Saberi, and Singh [2011] has initiated a sequence
of works on Graph TSP that yielded, within less than a year, much better
approximation ratios with completely different techniques. We will describe
these in Chapters 12 and 13.

Karlin, Klein, and Oveis Gharan [2020] gave a 1.49993-approximation
algorithm for the half-integral TSP, which is the special case of the Symmetric
TSP where an optimum solution 𝑥∗ to the subtour LP (2.2) fulfills 𝑥∗ ∈ {0, 1

2 , 1}
for all 𝑒 ∈

(𝑉
2
)
. For this special case, the algorithm from Karlin, Klein, and Oveis

Gharan [2020] was later improved to a 1.498305-approximation algorithm by
Gupta et al. [2022], using ideas from Haddadan and Newman [2023]. See
Exercise 10.1.

Theorem 10.2 and its proof were also the first step towards an improvement
for the general Symmetric TSP. This result due to Karlin, Klein, and Oveis
Gharan [2021] will be the content of the rest of this chapter and the next chapter.
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10.2 The Karlin–Klein–Oveis Gharan Algorithm

We will now describe the algorithm for which Karlin, Klein, and Oveis Gharan
[2021] proved an approximation ratio better than 3

2 for Symmetric TSP. Before
we present the main algorithm, we describe a small preprocessing step that
allows us to assume that there exists an edge 𝑒0 with 𝑥∗𝑒0 = 1 and 𝑐(𝑒0) = 0 and
to decompose the rest of 𝑥∗ into incidence vectors of spanning trees.

Proposition 10.4. Let (𝑉, 𝑐) be an instance of Symmetric TSP with Triangle
Inequality, and let 𝑥∗ be an optimum solution to the subtour LP (2.2). Take an
arbitrary vertex 𝑟 ∈ 𝑉 and replace it by two copies 𝑢0 and 𝑣0 with 𝑐(𝑢0, 𝑣0) = 0.
Set 𝑥∗{𝑢0 ,𝑣0 } := 1. For each 𝑤 ∈ 𝑉 \ {𝑟}, set 𝑥∗{𝑢0 ,𝑤} = 𝑥

∗
{𝑣0 ,𝑤} =

1
2𝑥
∗
{𝑟 ,𝑤} . Then

𝑥∗ is a feasible solution to the subtour LP (2.2) for the new instance.

Proof. Cuts that do not separate 𝑢0 and 𝑣0 are not affected, 𝑥∗ (𝛿(𝑢0)) =
𝑥∗ (𝛿(𝑣0)) = 2 due to the even split, and for a vertex set 𝑈 with {𝑢0} ⊊ 𝑈 ⊊
𝑉 \ {𝑣0}, we have 2𝑥∗ (𝛿(𝑈)) = 𝑥∗ (𝛿(𝑈 \ {𝑢0}) +𝑥∗ (𝛿(𝑈∪{𝑣0})) −𝑥∗ (𝛿(𝑢0)) −
𝑥∗ (𝛿(𝑣0)) + 4𝑥∗{𝑢0 ,𝑣0 } ≥ 4. □

The new instance has an optimum solution that visits 𝑢0 and 𝑣0 consecutively
(i.e., traverses 𝑒0 = {𝑢0, 𝑣0}). Once we have done the preprocessing, we will
also call the new instance (𝑉, 𝑐). In this and the next chapter, we denote by S
the set of edge sets of trees with vertex set𝑉 that do not contain the edge 𝑒0. The
algorithm samples a tree from S and does parity correction as in Christofides’
algorithm. See Algorithm 10.5 for a detailed description. Recall that 𝑆 ∼ 𝜇
means that 𝑆 is sampled from the probability distribution 𝜇.

The results of Chapter 5 imply that the algorithm can actually be implemented:

Proposition 10.6. Algorithm 10.5 can be implemented to run in polynomial
time.

Proof. Step (1), solving the subtour LP, can be done by Corollary 2.11.
Next, we note that 𝑥∗ (restricted to 𝐸) is in the spanning tree polytope of
(𝑉, 𝐸). Indeed, checking the constraints of (2.8) (cf. Theorem 2.16) is easy:
We have 2𝑥∗ (𝐸) = ∑

𝑣∈𝑉 𝑥
∗ (𝛿(𝑣)) − 2𝑥∗ (𝑒0) = 2𝑛 − 2 and

∑
𝑒∈𝐸 [𝑈 ] 𝑥

∗
𝑒 ≤

1
2
(∑

𝑣∈𝑈 𝑥
∗ (𝛿(𝑣)) − 𝑥∗ (𝛿(𝑈))

)
= 1

2
(
2|𝑈 | − 𝑥∗ (𝛿(𝑈))

)
≤ |𝑈 | − 1 for any ∅ ≠

𝑈 ⊊ 𝑉 .
Hence, we can apply Corollary 5.23 to implement Step (3) – that is, compute

𝜆𝑒 > 0 for 𝑒 ∈ 𝐸 such that the 𝜆-uniform distribution on S preserves the
marginals up to a factor of at most 1 + 𝜀3

𝜇

𝑛4 . Sampling a tree from the 𝜆-uniform
distribution 𝜇𝜆 (Step (4)) is now easy using Theorem 5.25.

Finally, we apply Theorem 1.29 to compute a minimum-cost odd(𝑆)-join
(Step (5)). □
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Algorithm 10.5: Max-Entropy Sampling and Parity Correction
Input: an instance (𝑉, 𝑐) of the Symmetric TSP with Triangle

Inequality, a constant 𝜀𝜇 > 0
Output: a tour in the complete graph on 𝑉

(1) Let 𝑥∗ be an optimum solution to the subtour LP (2.2).
(2) Perform the preprocessing described in Proposition 10.4 so that there

exists an edge 𝑒0 ∈
(𝑉

2
)

with 𝑥∗𝑒0 = 1 and 𝑐(𝑒0) = 0. Let now (𝑉, 𝑐) denote
the new instance, 𝑛 = |𝑉 |, and 𝐸 :=

{
𝑒 ∈

(𝑉
2
)
\ {𝑒0} : 𝑥∗𝑒 > 0

}
.

(3) Let S denote the set of edge sets of spanning trees in (𝑉, 𝐸). Find 𝜆𝑒 > 0
(𝑒 ∈ 𝐸) so that the 𝜆-uniform distribution 𝜇𝜆 on S satisfies
P𝑆∼𝜇𝜆 [𝑒 ∈ 𝑆] ≤

(
1 + 𝜀3

𝜇

𝑛4

)
𝑥∗𝑒 for all 𝑒 ∈ 𝐸 .

(4) Sample a spanning tree 𝑆 ∈ S so that each 𝑆 is sampled with probability
𝜇𝜆 (𝑆).

(5) Compute a minimum-cost odd(𝑆)-join 𝐽 in the complete graph on 𝑉 and
output the tour 𝑆

.
∪ 𝐽.

Since the 𝜆-uniform distribution 𝜇𝜆 obtained in Step (3) is almost marginal-
preserving, it is very close to the maximum entropy distribution 𝜇. Later, we
will choose the constant 𝜀𝜇 > 0 small enough so that the difference between 𝜇𝜆
and 𝜇 is negligible. We will again bound the tiny difference by Theorem 5.24.

All probabilities and expectations in this and the next chapter (unless explicitly
stated otherwise) are with respect to the maximum entropy distribution 𝜇 (with
marginals 𝑥∗). For example, we simply write P[𝑒 ∈ 𝑆] = 𝑥∗𝑒 for 𝑒 ∈ 𝐸 and
E[𝜒𝑆] = 𝑥∗ (in the latter equation, we implicitly restrict 𝑥∗ to 𝐸).

In this chapter, it is actually sufficient to assume that 𝜇 is an arbitrary marginal-
preserving distribution. Only in the next chapter will we need stronger properties
of the maximum entropy distribution.

10.3 An Almost Laminar Family of Near-Minimum Cuts

We now start analyzing the approximation ratio of Algorithm 10.5. Since the
expected cost of the spanning tree 𝑆 is roughly 𝑐(𝑥∗), and 𝑐(𝑥∗) ≤ OPT, our
goal is to bound the cost of parity correction in Step (5) of Algorithm 10.5 by
less than 1

2 OPT.
Let 𝑒0 = {𝑢0, 𝑣0} be the special edge introduced by the preprocessing, and let

𝑣1, . . . , 𝑣𝑛−1, 𝑢0, 𝑣0 be an optimum solution to our instance; we can also view it
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𝑣0 𝑢0

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

𝑂∗
𝑒0

𝐴 𝐵

Figure 10.1 The optimum Hamiltonian cycle𝑂∗ is shown in black. Two intervals
𝐴 = {𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝐵 = {𝑣4, 𝑣5, 𝑣6} are shown in red and green. 𝐴 crosses
𝐵 on the left.

as a Hamiltonian cycle 𝑂∗ in the complete graph on 𝑉 . See Figure 10.1. Let 𝑜∗
be the incidence vector of 𝑂∗.

Following Karlin, Klein, and Oveis Gharan [2021], we will define a parity
correction vector 𝑦𝑆 ∈ R(

𝑉
2 )
≥0 for each 𝑆 ∈ S and start with

𝑦𝑜 = 1
4 (𝑥

∗ + 𝑜∗) + 𝜒𝑒0 . (10.1)

Note that 𝑦𝑜 ≥ 0 and 𝑦𝑜 (𝛿(𝐴)) ≥ 1 for all ∅ ≠ 𝐴 ⊊ 𝑉 , and hence 𝑐(𝑦𝑜)
bounds the cost of parity correction for any tree by Theorem 2.19. We have
𝑐(𝑦𝑜) = 1

4𝑐(𝑥
∗) + 1

4 OPT + 0 ≤ 1
2 OPT. This is a variant of Wolsey’s analysis

and re-proves the approximation ratio 3
2 . To obtain 𝑦𝑆 from 𝑦𝑜, we will add and

subtract three vectors that depend on 𝑆, to be defined later. Ideally we would like
to subtract 𝜂𝑥∗ for some constant 𝜂 > 0 (and add only very little), but we must
make sure that 𝑦𝑆 (𝛿(𝐴)) ≥ 1 whenever |𝐴 ∩ odd(𝑆) | is odd, or equivalently
whenever |𝛿𝑆 (𝐴) | is odd (cf. Lemma 2.20).

Therefore, for a constant 0 < 𝜂 ≤ 1
8 to be fixed later, call a nonempty set

𝐴 ⊆ 𝑉 \ {𝑢0} an 𝜂-mincut if 𝑦𝑜 (𝛿(𝐴)) < 1 + 𝜂. Only constraints 𝑦𝑆 (𝛿(𝐴)) ≥ 1
corresponding to 𝜂-mincuts 𝐴 can become violated if 𝑦𝑆 is similar to 𝑦𝑜. Note
that an 𝜂-mincut 𝐴 is a vertex set, while the induced cut 𝛿(𝐴) is an edge set.

The use of 𝑜∗ in the parity correction vector implies that we have to consider
only cuts with a simple structure. Subsets of the form {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣 𝑗 } for some
1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 − 1 are called intervals. We say that an interval 𝐴 is left of an
interval 𝐵 (and 𝐵 is right of 𝐴) if there are 𝑣𝑖 ∈ 𝐴 \ 𝐵 and 𝑣 𝑗 ∈ 𝐵 \ 𝐴 with 𝑖 < 𝑗 .
(See Figure 10.1.) For an interval 𝐴 = {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣 𝑗 }, we write 𝛿left (𝐴) :=
𝛿(𝐴) ∩ 𝛿({𝑣1, . . . , 𝑣𝑖−1}) and 𝛿right (𝐴) := 𝛿(𝐴) ∩ 𝛿({𝑣 𝑗+1, . . . , 𝑣𝑛−1}) for the
incident edges to the left and to the right, respectively.

Proposition 10.7. All 4𝜂-mincuts are intervals.
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Proof. If a nonempty set 𝐴 ⊊ 𝑉 is not an interval, then 𝑒0 ∈ 𝛿(𝐴) or
𝑜∗ (𝛿(𝐴)) ≥ 4; moreover, 𝑥∗ (𝛿(𝐴)) ≥ 2. Hence, 𝑦𝑜 (𝛿(𝐴)) ≥ 3

2 ≥ 1 + 4𝜂. □

In particular, every 4𝜂-mincut is a subset of 𝑉 \ {𝑢0, 𝑣0}. We say that (for a
tree 𝑆 ∈ S) a nonempty set 𝐴 ⊆ 𝑉 \ {𝑢0, 𝑣0} induces a tree if (𝐴, 𝑆[𝐴]) is a
tree. This is very likely for 𝜂-mincuts:

Proposition 10.8. If 𝐴 is an 𝜂-mincut, then 𝑥∗ (𝛿(𝐴)) < 2 + 4𝜂 and

P[𝐴 induces a tree] > 1 − 2𝜂.

Proof. Let 𝐴 be an 𝜂-mincut. By Proposition 10.7, 𝐴 is an interval and hence
𝑜∗ (𝛿(𝐴)) = 2. We have 𝑥∗ (𝛿(𝐴)) = 4𝑦𝑜 (𝛿(𝐴)) −𝑜∗ (𝛿(𝐴)) < 4(1+𝜂) −2 = 2+
4𝜂 and hence 𝑥∗ (𝐸 [𝐴]) = 1

2
(∑

𝑣∈𝐴 𝑥
∗ (𝛿(𝑣)) − 𝑥∗ (𝛿(𝐴))

)
= |𝐴| − 1

2𝑥
∗ (𝛿(𝐴)) >

|𝐴| − 1 − 2𝜂. Since E[𝜒𝑆] = 𝑥∗ and |𝑆[𝐴] | ≤ |𝐴| − 1 for all 𝑆 ∈ S, we have
|𝑆[𝐴] | < |𝐴| − 1 with probability less than 2𝜂. □

As in Definition 4.6, we say that two subsets 𝐴 and 𝐵 of 𝑉 \ {𝑢0, 𝑣0} cross if
the sets 𝐴 \ 𝐵, 𝐴∩ 𝐵, and 𝐵 \ 𝐴 are all nonempty. If in addition 𝐴 is left of 𝐵, we
say that 𝐴 crosses 𝐵 on the left and 𝐵 crosses 𝐴 on the right (see Figure 10.1).
A family of subsets of 𝑉 \ {𝑢0, 𝑣0} is called almost laminar if for any of its sets
𝐴, 𝐵, 𝐶 such that 𝐴 crosses 𝐵 and 𝐴 crosses 𝐶, we have 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐶. See
the top part of Figure 10.2 for an example.

Proposition 10.9. If 𝐴 is an 𝜂-mincut and 𝐵 is a 𝜁-mincut that crosses 𝐴, then
𝐴 \ 𝐵, 𝐴 ∩ 𝐵, 𝐵 \ 𝐴, and 𝐴 ∪ 𝐵 are all (𝜂 + 𝜁)-mincuts.

Proof. As in the proof of Proposition 4.5, we deduce from Proposition 4.4 and
𝑦𝑜 (𝛿(𝑈)) ≥ 1 for all ∅ ≠ 𝑈 ⊊ 𝑉 that 1 + 1 ≤ 𝑦𝑜 (𝛿(𝐴 ∩ 𝐵)) + 𝑦𝑜 (𝛿(𝐴 ∪ 𝐵)) ≤
𝑦𝑜 (𝛿(𝐴)) + 𝑦𝑜 (𝛿(𝐵)) ≤ 1 + 𝜂 + 1 + 𝜁 , which implies that 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 are
(𝜂 + 𝜁)-mincuts. For 𝐴 \ 𝐵 and 𝐵 \ 𝐴, apply the above to 𝐴 and 𝑉 \ 𝐵. □

An 𝜂-mincut 𝐴 is called 𝑆-ideal for a tree 𝑆 ∈ S if |𝛿left
𝑆
(𝐴) | = |𝛿right

𝑆
(𝐴) | = 1

and 𝛿𝑆 (𝐴) ∩ 𝛿({𝑢0, 𝑣0}) = ∅. In particular, this implies that |𝛿𝑆 (𝐴) | is even. An
𝜂-mincut 𝐴 is called irrelevant if P[𝐴 is 𝑆-ideal] ≥ 1 − 16𝜂. Because irrelevant
cuts are almost always even, they are easy to deal with as we will see in
Theorem 10.12.

Lemma 10.10. If an 𝜂-mincut is crossed on the left and on the right by an
𝜂-mincut and a 2𝜂-mincut, respectively, then it is irrelevant.

Proof. Let 𝐴 be crossed by 𝐿 on the left and 𝑅 on the right and 𝑦𝑜 (𝛿(𝐴)) < 1+𝜂,
𝑦𝑜 (𝛿(𝐿)) < 1 + 𝜂, and 𝑦𝑜 (𝛿(𝑅)) < 1 + 2𝜂. By Proposition 10.8, we have
𝑥∗ (𝛿(𝐴)) < 2 + 4𝜂.
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13

Figure 10.2 Top: The almost laminar family L of the 𝜂-mincuts that are not
irrelevant could look like this. Each set is shown as a horizontal bar representing
the interval. Here there is only one nontrivial component, formed by subsets of
{𝑣2, . . . , 𝑣8}, shown as blue-filled bars. Bottom: The hierarchy H corresponding
to L. The parent–child relation is shown by arrows. This hierarchy contains three
polygons, shown in red. The polygon corresponding to the nontrivial component is
{𝑣2, . . . , 𝑣8}; its atoms are {𝑣2}, {𝑣3}, {𝑣4}, {𝑣5, 𝑣6}, {𝑣7}, and {𝑣8}. The two
green singletons are irrelevant but still part of the hierarchy.

If |𝛿𝑆 (𝐴) | = 1, then 𝐿 or 𝑅 does not induce a tree, which happens with total
probability less than 6𝜂 by Proposition 10.8. Therefore, the probability that
|𝛿𝑆 (𝐴) | > 2 is at most 𝑥∗ (𝛿(𝐴)) − 2 + 6𝜂 < 10𝜂. If 𝐿 and 𝑅 induce a tree
and |𝛿𝑆 (𝐴) | ≤ 2, then 𝐴 is 𝑆-ideal. By the union bound, this happens with
probability at least 1 − 16𝜂. □

Lemma 10.11. The family of 𝜂-mincuts that are not irrelevant is almost laminar.

Proof. Suppose 𝐴, 𝐵, 𝐶 are three sets in this family such that 𝐴 crosses 𝐵 and
𝐶 but 𝐴∪ 𝐵 ≠ 𝐴∪𝐶. Recall that all these sets are intervals by Proposition 10.7.
By Lemma 10.10 and symmetry, we can assume that both 𝐵 and 𝐶 cross 𝐴
at the right, as well as that 𝐵 \ 𝐴 ⊊ 𝐶 \ 𝐴. By Proposition 10.9, 𝐶 \ 𝐴 is a
2𝜂-mincut. Then the 𝜂-mincut 𝐴 crosses 𝐵 on the left and the 2𝜂-mincut 𝐶 \ 𝐴
crosses 𝐵 on the right. By Lemma 10.10, 𝐵 is irrelevant, a contradiction. □

We now show that irrelevant sets can be ignored by adding some slack to the
parity correction vectors. These slack vectors will be very cheap (for small 𝜂).
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Theorem 10.12. There are vectors 𝑠𝑆 ∈ R(
𝑉
2 )
≥0 for 𝑆 ∈ S such that:

• E[𝑠𝑆𝑒 ] ≤ 64𝜂2𝑜∗𝑒 for all 𝑒 ∈
(𝑉

2
)
; and

• 𝑠𝑆 (𝛿(𝐴)) ≥ 𝜂 for every 𝑆 ∈ S and every irrelevant set 𝐴 with |𝛿𝑆 (𝐴) | odd.

Proof. For every edge 𝑒 = {𝑣𝑖 , 𝑣𝑖+1} (𝑖 = 1, . . . , 𝑛−2) of𝑂∗ \ (𝛿(𝑢0) ∪ 𝛿(𝑣0)),
consider the largest irrelevant set 𝐴 with 𝑒 ∈ 𝛿right (𝐴), the smallest irrelevant
set 𝐴 with 𝑒 ∈ 𝛿right (𝐴), the largest irrelevant set 𝐴 with 𝑒 ∈ 𝛿left (𝐴), and the
smallest irrelevant set 𝐴 with 𝑒 ∈ 𝛿left (𝐴). If any of these exists and is not
𝑆-ideal, we set 𝑠𝑆𝑒 := 𝜂, otherwise set 𝑠𝑆𝑒 := 0. The probability of the former
event is at most 4 · 16𝜂, which implies E[𝑠𝑆] ≤ 64𝜂2𝑜∗.

For any irrelevant set 𝐵 with 𝑠𝑆 (𝛿(𝐵)) = 0, consider the smallest and largest
irrelevant sets 𝐴 and 𝐶 with 𝛿left

𝑂∗ (𝐴) = 𝛿
left
𝑂∗ (𝐵) = 𝛿

left
𝑂∗ (𝐶). By the definition of

𝑠𝑆 , we have that 𝐴 and 𝐶 are 𝑆-ideal and hence 𝑆 contains precisely one edge
in 𝛿left (𝐴) and in 𝛿left (𝐶), and this is then also the only edge of 𝑆 in 𝛿left (𝐵).
Similarly, 𝑆 contains exactly one edge in 𝛿right (𝐵). Moreover, 𝑆 contains no
edge in 𝛿(𝐶) ∩ 𝛿({𝑢0, 𝑣0}) ⊇ 𝛿(𝐵) ∩ 𝛿({𝑢0, 𝑣0}). So 𝐵 is 𝑆-ideal, and hence
|𝛿𝑆 (𝐵) | = 2. □

To form the parity correction vector 𝑦𝑆 for a tree 𝑆, we will first add 𝑠𝑆 from
Theorem 10.12 to 𝑦𝑜. Since our goal is to subtract (at least in expectation)
Θ(𝜂𝑥∗𝑒) from every edge 𝑒 in order to make 𝑦𝑆 cheaper, the cost of 𝑠 will be
negligible (on average, for sufficiently small 𝜂). Since we never subtract much,
only 𝜂-mincuts are dangerous, and irrelevant cuts that are odd have enough slack
after having added 𝑠𝑆 .

10.4 Reduction to a Hierarchy of Near-Minimum Cuts

Let L be the almost laminar family of the 𝜂-mincuts that are not irrelevant (cf.
Lemma 10.11). Define a graph with vertex set L and an edge for every pair of
sets that cross. For every connected component of this graph that consists of
more than one set, let 𝑃 be the union of the sets in this connected component,
and let {𝐴1, . . . , 𝐴𝑘} be the coarsest partition of 𝑃 (numbered from left to
right) such that every set in the connected component is 𝐴1 ∪ · · · ∪ 𝐴 𝑗 for some
𝑗 ∈ {2, . . . , 𝑘 − 1} or 𝐴𝑖 ∪ · · · ∪ 𝐴𝑘 for some 𝑖 ∈ {1, . . . , 𝑘 − 1}. This is possible
because L is an almost laminar family of intervals. We call 𝑃 a nontrivial
component of L and call 𝐴1, . . . , 𝐴𝑘 the atoms of 𝑃. We call 𝐴2, . . . , 𝐴𝑘−1 the
inner atoms of 𝑃.
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The hierarchy H consists of all sets in L that do not cross any other set
in L as well as all nontrivial components and their atoms and the irrelevant
singletons. See Figure 10.2.

Proposition 10.13. The hierarchy is a laminar family of intervals. It contains
𝑉 \ {𝑢0, 𝑣0}.

Proof. By construction, the hierarchy is laminar. Since 𝑥∗ (𝛿(𝑉 \ {𝑢0, 𝑣0})) = 2
and 𝑉 \ {𝑢0, 𝑣0} is not irrelevant, it belongs toH . □

The set 𝑉 \ {𝑢0, 𝑣0} is the unique maximal element of the hierarchyH . If 𝐴
is another element ofH and 𝐵 is the minimal proper superset of 𝐴 inH , then 𝐵
is called the parent of 𝐴 and 𝐴 is called a child of 𝐵. The children of a polygon
are its atoms.

A triangle is a set inH with exactly two children. A polygon is a nontrivial
component of L or a triangle. For a polygon 𝑃, let 𝐴1, . . . , 𝐴𝑘 be its children
from left to right. We call the sets 𝐴1∪· · ·∪𝐴 𝑗 ( 𝑗 = 1, . . . , 𝑘−1) the left-relevant
subsets of 𝑃 and the sets 𝐴𝑖 ∪ · · · ∪ 𝐴𝑘 (𝑖 = 2, . . . , 𝑘) the right-relevant subsets
of 𝑃.

Proposition 10.14. Let 𝑃 be a polygon with children 𝐴1, . . . , 𝐴𝑘 from left to
right. Then all sets of the form 𝐴𝑖 ∪ · · · ∪ 𝐴 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 are 4𝜂-mincuts.
The left-relevant and the right-relevant subsets of 𝑃 are 2𝜂-mincuts. Moreover,
𝑥∗ (𝛿(𝑃) \ 𝛿(𝐴1 ∪ 𝐴𝑘)) ≤ 4𝜂.

Proof. This is trivial for triangles, so let 𝑃 be a nontrivial component. Elements
of L are 𝜂-mincuts. If a left-relevant set 𝐿 = 𝐴1 ∪ . . . ∪ 𝐴𝑖 is not in L, then
𝑃 \ 𝐿 is in L (and thus an 𝜂-mincut) and crosses a set 𝐿′ = 𝐴1 ∪ · · · ∪ 𝐴 𝑗 ∈ L
for some 𝑗 > 𝑖. So 𝐿 = 𝐿′ \ (𝑃 \ 𝐿) is a 2𝜂-mincut by Proposition 10.9. By
symmetry, every right-relevant set is a 2𝜂-mincut. Every other set of the form
𝐴𝑖 ∪ · · · ∪ 𝐴 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 is the union (if 𝑖 = 1 and 𝑗 = 𝑘) or the
intersection of a left-relevant and a right-relevant set, and hence a 4𝜂-mincut by
Proposition 10.9.

For the last statement, first note that 𝑃 \ 𝐴1 and 𝑃 \ 𝐴𝑘 are in L and are thus 𝜂-
mincuts. By Proposition 10.8, 𝑥∗ (𝛿(𝑃\𝐴1)) < 2+4𝜂 and 𝑥∗ (𝛿(𝑃\𝐴𝑘)) < 2+4𝜂.
We conclude

2𝑥∗ (𝛿(𝑃) \ 𝛿(𝐴1 ∪ 𝐴𝑘))
= 𝑥∗ (𝛿(𝑃 \ 𝐴1)) + 𝑥∗ (𝛿(𝑃 \ 𝐴𝑘)) − 𝑥∗ (𝛿(𝐴1)) − 𝑥∗ (𝛿(𝐴𝑘))
< (2 + 4𝜂) + (2 + 4𝜂) − 2 − 2
= 8𝜂. □
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Lemma 10.15. Every 𝜂-mincut that is not irrelevant belongs to H or is a
left-relevant or right-relevant subset of a polygon inH .

Proof. Let 𝐴 be an 𝜂-mincut that is not irrelevant. Then 𝐴 belongs to the
almost laminar family L. If 𝐴 ∉ H , then 𝐴 is part of a nontrivial component
and thus left-relevant or right-relevant. □

Call a polygon 𝑃 with children 𝐴1 . . . , 𝐴𝑘 (from left to right) left-happy if
|𝛿𝑆 (𝐴1) ∩ 𝛿(𝑃) | is odd and right-happy if |𝛿𝑆 (𝐴𝑘) ∩ 𝛿(𝑃) | is odd. Our next
goal is to show that we can ignore left-relevant subsets of left-happy polygons
(and right-relevant subsets of right-happy polygons). To this end, we need one
more definition.

A left-relevant or right-relevant set 𝐴 of a polygon 𝑃 is called 𝑆-normal for a
tree 𝑆 ∈ S if 𝛿𝑆 (𝑃) ⊆ 𝛿(𝐴1) ∪ 𝛿(𝐴𝑘) and |𝛿𝑆 (𝐴) \ 𝛿(𝑃) | = 1. If 𝑃 is 𝑆-normal
and left-happy, then |𝛿𝑆 (𝐴) | is even for every left-relevant subset 𝐴. The next
theorem implies that we do not have to consider left-relevant and right-relevant
sets of a polygon unless they are 𝑆-normal. Moreover, we can also ignore inner
atoms of polygons. Again, we add some slack.

Theorem 10.16. There are vectors 𝑠𝑆 ∈ R(
𝑉
2 )
≥0 for 𝑆 ∈ S such that

• E[𝑠𝑆𝑒 ] ≤ 20𝜂2𝑜∗𝑒 for all 𝑒 ∈
(𝑉

2
)
, and

• for every polygon 𝑃, we have 𝑠𝑆 (𝛿(𝐴)) ≥ 𝜂 for every inner atom 𝐴 with
|𝛿𝑆 (𝐴) | odd and for every left-relevant or right-relevant set 𝐴 that is not
𝑆-normal.

Proof. For every edge 𝑒 ∈ 𝑂∗ \ (𝛿(𝑢0) ∪ 𝛿(𝑣0)), let 𝑃 be the smallest set in
H that contains both endpoints. If 𝑃 is not a polygon, set 𝑠𝑒 = 0. Otherwise, let
𝐴1, . . . , 𝐴𝑘 be the children of 𝑃 from left to right, and let 𝑖 ∈ {1, . . . , 𝑘 −1} such
that 𝑒 ∈ 𝛿(𝐴𝑖) ∩𝛿(𝐴𝑖+1). Consider the left-relevant subset 𝐿 = 𝐴1∪· · ·∪ 𝐴𝑖 and
the right-relevant subset 𝑅 = 𝐴𝑖+1∪· · ·∪𝐴𝑘 . We set 𝑠𝑆𝑒 = 0 if |𝛿𝑆 (𝐿)∩𝛿𝑆 (𝑅) | =
|𝛿𝑆 (𝐴𝑖) ∩ 𝛿𝑆 (𝐴𝑖+1) | = 1 and 𝛿𝑆 (𝑃) ⊆ 𝛿(𝐴1) ∪ 𝛿(𝐴𝑘); otherwise, we set 𝑠𝑆𝑒 = 𝜂.

We show that the latter happens with probability at most 20𝜂. Indeed, it
implies one of the following events:

• at least one of the sets 𝐴𝑖 ∪ 𝐴𝑖+1, 𝐿, and 𝑅 does not induce a tree, which
happens with probability at most 16𝜂 by Propositions 10.8 and 10.14, or
• 𝛿𝑆 (𝑃) \ (𝛿(𝐴1) ∪ 𝛿(𝐴𝑘)) ≠ ∅, which happens with probability at most 4𝜂 by

Proposition 10.14.

By construction, 𝑠𝑆 (𝛿(𝐴)) ≥ 𝜂 for every inner atom 𝐴 of 𝑃 with |𝛿𝑆 (𝐴) | ≠ 2
and for every left-relevant or right-relevant set 𝐴 of 𝑃 that is not 𝑆-normal. □
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Here is the main payment theorem for hierarchies of Karlin, Klein, and Oveis
Gharan [2021]. Recall that 𝐸 = {𝑒 ∈

(𝑉
2
)
\ {𝑒0} : 𝑥∗𝑒 > 0}.

Theorem 10.17. Let 𝜇 be the maximum entropy distribution onS with marginals
𝑥∗. There exist constants 𝜀0 > 0 and 0 < 𝜂 ≤ 𝜀0

174 and vectors 𝑠𝑆 ∈ R𝐸 for
𝑆 ∈ S such that for the hierarchyH representing the relevant 𝜂-mincuts:

(i) 𝑠𝑆𝑒 ≥ −𝑥∗𝑒 for all 𝑒 ∈ 𝐸 and all 𝑆 ∈ S;
(ii) For every set 𝐴 ∈ H whose parent is not a polygon and every 𝑆 ∈ S, we

have |𝛿𝑆 (𝐴) | even or 𝑠𝑆 (𝛿(𝐴)) ≥ 0;
(iii) For every polygon 𝑃 and every 𝑆 ∈ S:

• if 𝑃 is not left-happy, then 𝑠𝑆 (𝛿(𝐴)) ≥ 0 for every left-relevant set 𝐴;
• if 𝑃 is not right-happy, then 𝑠𝑆 (𝛿(𝐴)) ≥ 0 for every right-relevant set
𝐴;

(iv) E[𝑠𝑆𝑒 ] ≤ −𝜀0𝑥
∗
𝑒.

The proof of this theorem is very long; see the next chapter. We can now
show that it implies a better approximation ratio than 3

2 rather easily:

Theorem 10.18 (Karlin, Klein, and Oveis Gharan [2021]). There is a randomized
𝛼-approximation algorithm for Symmetric TSP for some 𝛼 < 3

2 .

Proof. Let 𝜀0 and 𝜂 be the constants from Theorem 10.17. Note that 𝜀0 ≤ 1
and 𝜂 ≤ 𝜀0

174 <
1
8 . Run Algorithm 10.5 with 𝜀𝜇 = 𝜂2. Again, let 𝜇𝜆 denote the 𝜆-

uniform distribution for 𝜆 computed by the algorithm, and let 𝜇 be the maximum
entropy distribution (with marginals 𝑥∗). We have P𝑆∼𝜇𝜆 [𝑒 ∈ 𝑆] ≤

(
1 + 𝜀3

𝜇

𝑛4

)
𝑥∗𝑒.

By Theorem 5.24,
∑
𝑆∈S |𝜇𝜆 (𝑆) − 𝜇(𝑆) | ≤ 𝜀𝜇.

For 𝑆 ∈ S let

𝑦𝑆 := 𝑦𝑜 + 𝑠𝑆 + 𝑠𝑆 + ( 𝜂2 − 𝜂
2)𝑠𝑆 (10.2)

according to (10.1) and Theorems 10.12, 10.16, and 10.17, amended by 𝑠𝑆𝑒 = 0
for 𝑒 ∈

(𝑉
2
)
\ 𝐸 . Since 𝑠𝑆 ≥ 0 and 𝑠𝑆 ≥ 0, we have

𝑦𝑆𝑒 ≥
𝑥∗𝑒
4 + (

𝜂

2 − 𝜂
2)𝑠𝑆𝑒 ≥

𝑥∗𝑒
4 −

𝜂

2 𝑥
∗
𝑒 ≥ 0

for all 𝑒 ∈
(𝑉

2
)

by Theorem 10.17 (i). We will show that 𝑦𝑆 is a parity correction
vector for 𝑆 – that is,

𝑦𝑆 (𝛿(𝐴)) ≥ 1 for all 𝐴 ⊆ 𝑉 with |𝛿𝑆 (𝐴) | odd. (10.3)
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Then the expected cost of the tour computed by the algorithm is∑︁
𝑆∈S

𝜇𝜆 (𝑆)
(
𝑐(𝑆) +min{𝑐(𝐽) : 𝐽 is an odd(𝑆)-join}

)
≤

∑︁
𝑆∈S

𝜇𝜆 (𝑆)𝑐(𝑆) +
∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝑦𝑆) +
∑︁
𝑆∈S

��𝜇𝜆 (𝑆) − 𝜇(𝑆)�� 𝑐( 1
2𝑜
∗)

=
∑︁
𝑒∈𝐸

𝑐(𝑒)P𝑆∼𝜇𝜆 [𝑒 ∈ 𝑆] + E𝑆∼𝜇
[
𝑐(𝑦𝑆)

]
+

∑︁
𝑆∈S

��𝜇𝜆 (𝑆) − 𝜇(𝑆)�� 1
2𝑐(𝑜

∗)

≤
(
1 + 𝜀3

𝜇

𝑛4

)
𝑐(𝑥∗) + E𝑆∼𝜇

[
𝑐(𝑦𝑆)

]
+ 𝜀𝜇

2 𝑐(𝑜
∗)

≤
(
1 + 𝜀𝜇

)
𝑐(𝑜∗) + E𝑆∼𝜇

[
𝑐(𝑦𝑆)

]
≤

(
1 + 𝜂2)𝑐(𝑜∗) + 1

4𝑐(𝑥
∗ + 𝑜∗) + 64𝜂2𝑐(𝑜∗) + 20𝜂2𝑐(𝑜∗)

− 𝜀0𝜂
2 𝑐(𝑥∗) + 𝜂2𝜀0𝑐(𝑥∗)

≤
(

3
2 + 86𝜂2 − 𝜀0𝜂

2

)
𝑐(𝑜∗)

≤
(

3
2 − 𝜂

2
)
𝑐(𝑜∗),

where the first inequality follows from (10.3) and Theorem 2.19; moreover,
we used 𝑐(𝑥∗) ≤ 𝑐(𝑜∗) and 𝑐(𝑦𝑜) = 1

4 (𝑐(𝑥
∗) + 𝑐(𝑜∗)) and the bounds from

Theorems 10.12, 10.16, and 10.17 (iv). For 𝛼 := 3
2 − 𝜂

2, this shows the claimed
expected performance ratio 𝛼 < 3

2 .
It remains to show (10.3). Let 𝑆 ∈ S. For sets 𝐴 with 𝑒0 ∈ 𝛿(𝐴), we

have 𝑦𝑆 (𝛿(𝐴)) ≥ 𝑦𝑜 (𝛿(𝐴)) − 𝜂

2 𝑥
∗ (𝛿(𝐴)) ≥ 𝜒𝑒0 (𝛿(𝐴)) = 1 (using Theo-

rem 10.17 (i)), so (10.3) holds for such sets.
Now let 𝐴 be a (nonempty) subset of 𝑉 \ {𝑢0, 𝑣0} with |𝛿𝑆 (𝐴) | odd. If 𝐴 is

not an 𝜂-mincut, then (using Theorem 10.17 (i) again)

𝑦𝑆 (𝛿(𝐴)) ≥ 𝑦𝑜 (𝛿(𝐴)) − 𝜂

2 𝑥
∗ (𝛿(𝐴)) + 𝜂2𝑥∗ (𝛿(𝐴))

= 𝑦𝑜 (𝛿(𝐴)) − 𝜂

2
(
4𝑦𝑜 (𝛿(𝐴)) − 𝑜∗ (𝛿(𝐴))

)
+ 𝜂2𝑥∗ (𝛿(𝐴))

= 𝑦𝑜 (𝛿(𝐴)) (1 − 2𝜂) + 𝜂

2 𝑜
∗ (𝛿(𝐴)) + 𝜂2𝑥∗ (𝛿(𝐴))

≥ (1 + 𝜂) (1 − 2𝜂) + 𝜂 + 2𝜂2

= 1.

Now suppose that 𝐴 is an 𝜂-mincut. Then 𝑥∗ (𝛿(𝐴)) < 2 + 4𝜂 by Proposi-
tion 10.8. If 𝐴 is irrelevant, then 𝑠𝑆 (𝛿(𝐴)) ≥ 𝜂 by Theorem 10.12. Then

𝑦𝑆 (𝛿(𝐴)) ≥ 1 + 𝜂 − 𝜂

2 𝑥
∗ (𝛿(𝐴)) + 𝜂2𝑥∗ (𝛿(𝐴))

> 1 + 𝜂 − 𝜂

2 (2 + 4𝜂) + 2𝜂2

= 1.
(10.4)
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Otherwise, by Lemma 10.15, 𝐴 ∈ H or 𝐴 is a left-relevant or right-relevant
subset of a polygon inH . If 𝐴 is an inner atom of a polygon, or a left-relevant
or right-relevant set that is not 𝑆-normal, then 𝑠𝑆 (𝛿(𝐴)) ≥ 𝜂 by Theorem 10.16,
and (10.4) again holds.

If 𝐴 is an 𝑆-normal left-relevant set of a polygon 𝑃, then 𝑃 is not left-
happy because |𝛿𝑆 (𝐴1) ∩ 𝛿(𝑃) | = |𝛿𝑆 (𝐴) ∩ 𝛿(𝑃) | = |𝛿𝑆 (𝐴) | − 1 is even.
From Theorem 10.17 (iii), we conclude 𝑠𝑆 (𝛿(𝐴)) ≥ 0 and hence 𝑦𝑆 (𝛿(𝐴)) ≥
𝑦𝑜 (𝛿(𝐴)) ≥ 1. The analogous conclusion holds for right-relevant sets.

Finally, if 𝐴 ∈ H and the parent of 𝐴 is not a polygon, then 𝑠𝑆 (𝛿(𝐴)) ≥ 0 by
Theorem 10.17 (ii) and hence 𝑦𝑆 (𝛿(𝐴)) ≥ 𝑦𝑜 (𝛿(𝐴)) ≥ 1. □

Karlin, Klein, and Oveis Gharan [2022] obtained the explicit guarantee
𝛼 = 3

2 − 10−36.

10.5 Bounding the Integrality Ratio

Theorem 10.18 does not imply an upper bound on the integrality ratio of the
subtour LP (2.2) because 𝑜∗ (the incidence vector of an optimum tour) is used
in the basic parity correction vector 𝑦𝑜. This allowed for a relatively simple
structure of the 𝜂-mincuts. In a more recent work, Karlin, Klein, and Oveis
Gharan [2022] managed to also obtain an upper bound less than 3

2 on the
integrality ratio of the subtour LP. To this end, they redefined 𝑦𝑜 = 1

2𝑥
∗ + 𝜒𝑒0 . If

we were then simply considering the cuts 𝛿(𝑈) with 𝑦𝑜 (𝛿(𝑈)) = 1, we could
use the cactus representation by Dinits, Karzanov, and Lomonosov [1976] (see
Exercise 10.6). However, one needs to consider 𝜂-mincuts for some constant
𝜂 > 0, and their structure can be more complicated. Fortunately, for 𝜂 < 1

5 , their
structure can still be described, namely by the polygon representation due to
Benczúr [1995] and Benczúr and Goemans [2008].

Karlin, Klein, and Oveis Gharan [2022] exploited this polygon representation,
proved further properties, again obtained a hierarchy of 𝜂-mincuts, and showed
that the main payment theorem for hierarchies also implies:

Theorem 10.19 (Karlin, Klein, and Oveis Gharan [2022]). The integrality ratio
of the subtour LP (2.2) is less than 3

2 .

Again, Karlin, Klein, and Oveis Gharan [2022] obtained the explicit guarantee
3
2 − 10−36. We conclude this chapter by summarizing again the state of the art
for Symmetric TSP in Table 10.1.
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Table 10.1 Approximation ratios and upper bounds on the integrality ratio
of (2.2) for Symmetric TSP with Triangle Inequality in the order of their
discovery. (R) means randomized; this algorithm computes a random tour, and
the approximation ratio compares its expected cost to OPT.

Approximation Integrality
Ratio Ratio Year Reference Chapter

2 – 1974 Rosenkrantz, Stearns,
and Lewis [1977]

–

3
2 – 1976 Christofides [1976] 1.4
3
2 – 1976 Serdyukov [1978] 1.4
3
2

3
2 1980 Wolsey [1980] 2.4

3
2 − 10−36 (R) – 2020 Karlin, Klein, and

Oveis Gharan [2021]
10–11

3
2 − 10−36 (R) 3

2 − 10−36 2021 Karlin, Klein, and
Oveis Gharan [2022]

10.5

3
2 − 10−36 3

2 − 10−36 2022 Karlin, Klein, and
Oveis Gharan [2023]

11.6

Exercises

10.1 Let (𝑉, 𝑐) be an instance of the Symmetric TSP with Triangle
Inequality, let 𝑥 be an optimum solution to the subtour LP (2.2), and
suppose that 𝑥 is half-integral – that is, 𝑥𝑒 ∈ {0, 1

2 , 1} for all 𝑒 ∈
(𝑉

2
)
.

Further suppose that |𝑉 | is even and there are no non-singleton mincuts
– that is, 𝑥(𝛿(𝑈)) > 2 for all 𝑈 ⊆ 𝑉 with |𝑈 | ≥ 2 and |𝑉 \𝑈 | ≥ 2. Let
𝐺 = (𝑉, 𝐸) be the support graph of 𝑥. We will describe a randomized
algorithm that computes a tour in 𝐺 with expected cost much less than
3
2𝑐(𝑥).
(a) Show that 𝐺 is 4-regular and 4-edge-connected.
(b) Show that the all- 1

4 vector is in the perfect matching polytope of 𝐺,
which is{
𝑥 ∈ R𝐸≥0 : 𝑥(𝛿(𝑣)) = 1 (𝑣 ∈ 𝑉), 𝑥(𝛿(𝑈)) ≥ 1 (𝑈 ⊆ 𝑉, |𝑈 | odd)

}
(cf. Exercise 2.8).

(c) The algorithm begins by choosing a random perfect matching 𝑀
in 𝐺 such that P[𝑒 ∈ 𝑀] = 1

4 for all 𝑒 ∈ 𝐸 . This is possible by (b).
Show that 𝑦 := 1

3 𝜒
𝐸 + 2

3 𝜒
𝑀 is in the subtour polytope.
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(d) Show that the edges of 𝑀 can be colored (greedily) with seven
colors so that for all edges 𝑒 = {𝑣, 𝑤} ∈ 𝐸 \ 𝑀 , the matching edges
incident to 𝑣 and to 𝑤 have different colors.

(e) Consider the subset 𝑀𝑖 ⊆ 𝑀 of matching edges of a color 𝑖 ∈
{1, . . . , 7} chosen uniformly at random. Show that the edge sets in
N := {𝛿(𝑢) \𝑀 : 𝑢 ∈ 𝑉, 𝛿(𝑢) ∩𝑀𝑖 ≠ ∅} are pairwise disjoint, and
hence the edge sets 𝑆 ⊆ 𝐸 with |𝑆 ∩ 𝑁 | ≤ 1 for all 𝑁 ∈ N form a
matroid (cf. Exercise 2.5).

(f) Recall the definition of 1-trees in Exercise 4.3. Suppose we can
sample a 1-tree (𝑉, 𝑆) with |𝑆 ∩ 𝑁 | ≤ 1 for all 𝑁 ∈ N such that
P[𝑒 ∈ 𝑆] = 𝑦𝑒. Conclude that the edges of 𝑀𝑖 are not contained in
any cut 𝛿(𝑈) with 𝑥(𝛿(𝑈)) < 3 and |𝛿(𝑈) ∩ 𝑆 | odd.

(g) Finish the algorithm by adding an odd(𝑆)-join. Show that this costs
at most 𝑐(𝑧), where 𝑧𝑒 = 1

2 for all 𝑒 ∈ 𝑀 \ 𝑀𝑖 and 𝑧𝑒 = 1
6 for all

other edges 𝑒 ∈ 𝐸 .
(h) Conclude that the expected cost of the resulting tour is at most
( 3

2 −
1
42 )𝑐(𝑥).

Notes: Using the integrality of the matroid intersection polytope, sam-
pling essentially as in (f) can be done by splitting one vertex as in
Proposition 10.4. The assumptions that |𝑉 | is even and that there are
no non-singleton mincuts were removed by Gupta et al. [2022], who
obtained a 1.499-approximation algorithm for instances in which 𝑥 is
half-integral (sometimes called half-integral TSP). We remark that Jin,
Klein, and Williamson [2023a] obtained a 4

3 -approximation algorithm
for a special case of half-integral TSP.
(Haddadan and Newman [2023], Gupta et al. [2022])

10.2 Let 𝑥 be a feasible solution to the subtour LP (2.2) and let 𝜂 ≥ 0. Let
𝐴, 𝐵 ⊊ 𝑉 with 𝑥(𝛿(𝐴)) ≤ 2 + 𝜂 and 𝑥(𝛿(𝐵)) ≤ 2 + 𝜂 and suppose 𝐴
and 𝐵 are crossing. Show that 𝑥(𝛿(𝐴 ∩ 𝐵) ∩ 𝛿(𝐴 \ 𝐵)) ≥ 1 − 𝜂

2 and
𝑥(𝛿(𝐴 \ 𝐵) ∩ 𝛿(𝐴 ∪ 𝐵)) ≥ 1 − 𝜂

2 .
10.3 Let 𝑃 be a polygon with children 𝐴1, . . . , 𝐴𝑘 from left to right. Show

that 1 − 8𝜂 ≤ 𝑥∗ (𝛿(𝐴𝑖) ∩ 𝛿(𝐴𝑖+1)) ≤ 1 + 16𝜂 for all 𝑖 = 1, . . . , 𝑘 − 1.
10.4 Show that the almost laminar family L of the 𝜂-mincuts that are not

irrelevant contains less than 3|𝑉 | elements.
10.5 Let 𝐺 = (𝑉, 𝐸) be an undirected graph. Call a set 𝑋 ⊆ 𝑉 tight if

|𝛿(𝑋) | = min{|𝛿(𝑈) | : ∅ ≠ 𝑈 ⊊ 𝑉} =: 𝜆(𝐺) (in other words, 𝛿(𝑋)
is a minimum-cardinality cut in 𝐺). The number 𝜆(𝐺) is called the
edge-connectivity of 𝐺. A tight set 𝑋 is called proper if |𝑋 | ≥ 2 and
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|𝑉 \ 𝑋 | ≥ 2. Suppose that there is a proper tight set and every proper
tight set is crossed by another tight set. Then prove:
(a) All vertices have degree 𝜆(𝐺).
(b) Let 𝑣 ∈ 𝑉 and 𝑋 be a proper tight set containing 𝑣. Then there is a

tight set 𝑌 with exactly two elements and 𝑣 ∈ 𝑌 ⊆ 𝑋 .
(c) Every vertex is contained in two two-element tight sets containing 𝑣.
(d) If {𝑥, 𝑦} is tight, then there are 1

2𝜆(𝐺) parallel edges between 𝑥
and 𝑦.

(e) 𝐺 arises from a circuit by replacing every edge with 1
2𝜆(𝐺) parallel

edges.
(Fleiner and Frank [2009], Frank [2011])

10.6 A cactus is an undirected connected graph in which every edge belongs
to exactly one circuit. Using Exercise 10.5, our goal is to show the
following theorem:

For every connected undirected graph 𝐺, there is a cactus 𝐶
and a map 𝜑 :𝑉 (𝐺)→𝑉 (𝐶) such that
(i) if 𝑌 is tight in 𝐶, then 𝜑−1 (𝑌 ) is tight in 𝐺, and
(ii) if 𝑋 is tight in 𝐺, then there is a tight 𝑌 in 𝐶 with 𝑋 = 𝜑−1 (𝑌 ).

(10.5)

The pair (𝐶, 𝜑) is called a cactus representation of the minimum-
cardinality cuts of 𝐺. Prove:
(a) Every cactus with more than one vertex has edge-connectivity 2,

and the minimum-cardinality cuts of a cactus are precisely those
pairs of edges that belong to the same circuit.

(b) (10.5) holds if 𝐺 has no proper tight set.
(c) (10.5) holds if every proper tight set in 𝐺 is crossed by another

proper tight set.
(d) (10.5) holds in general (use induction on |𝑉 (𝐺) |).
(e) Show that the theorem extends to positive edge weights: For every

connected undirected graph 𝐺 = (𝑉, 𝐸) with weights 𝑥 : 𝐸 → R>0,
there is a cactus representation of the minimum-weight cuts.

(Dinits, Karzanov, and Lomonosov [1976])
10.7 Consider the Graph TSP instance shown in Figure 10.3: a “donut graph”

with 𝑛 = 4𝑘 vertices. Note that these graphs are Hamiltonian. Consider
the solution 𝑥∗ to the subtour LP as shown in the figure. Show that based
on this, 1

𝑛
times the expected cost of the tour produced by Algorithm 10.5

converges to 11
8 as 𝑘 →∞.

Hint: Assume 𝜀𝜇 = 0. Show that for almost every edge from the inside
to the outside of the donut (except near 𝑒0), exactly one vertex has
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Figure 10.3 A donut graph (for 𝑘 = 6). Consider the LP solution 𝑥∗ with 𝑥∗𝑒 = 1
for every solid green edge 𝑒 and 𝑥∗𝑒 = 1

2 for every dotted red edge 𝑒.

odd degree in the sampled spanning tree, and the events which one are
independent. To this end, apply Lemma 5.18 to sets𝑈 with 𝑥∗ (𝛿(𝑈)) = 2.
Use that the sum of Bernoulli random variables is strongly concentrated
around its expectation (see, e.g., Lemma 5.6).
(Jin, Klein, and Williamson [2023b])
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11

Proving the Main Payment Theorem for
Hierarchies

This chapter is about the proof of the main payment theorem for hierarchies
(Theorem 10.17) from Karlin, Klein, and Oveis Gharan [2021]. Because the
proof is very long and technical, we will not give a complete proof here, but
rather focus on explaining the key combinatorial ideas. This chapter is structured
as follows. First, in Section 11.1, we describe the general proof strategy and
prove the theorem in an idealized setting. Then, in Section 11.2, we discuss
a few crucial properties of 𝜆-uniform distributions. Sections 11.3–11.5 focus
on the main ideas needed to address the hurdles we ignored in the idealized
setting described in Section 11.1. Finally, in Section 11.6, we show how the
Karlin–Klein–Oveis Gharan algorithm can be derandomized.

11.1 Outline of the Proof

Throughout this chapter, we let 𝜇 be a 𝜆-uniform distribution that almost
preserves the marginals 𝑥∗ (up to an arbitrarily small error) and is hence
almost identical to the maximum entropy distribution on S (with marginals 𝑥∗).
The maximum entropy distribution itself may not be 𝜆-uniform as shown in
Exercise 5.12 (b), but we can get arbitrarily close (cf. Theorem 5.24). In the
following, we ignore the arbitrarily small difference in the marginals.

Moreover, 𝑆 will denote the edge set of a random spanning tree sampled
from this distribution 𝜇. We consider the hierarchyH representing the relevant
𝜂-mincuts, as constructed in Section 10.4, where 𝜂 is a tiny positive constant that
we choose later. In order to explain the main ideas of the proof of Theorem 10.17,
let us assume for now that the hierarchyH contains no polygons. We will explain
how the proof can be extended to handle polygons in Section 11.5.

We will use the following notation, which is illustrated in Figure 11.1:
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𝑣0 𝑢0

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

Figure 11.1 A hierarchy without polygons. Assume that the optimum tour visits
𝑣1, . . . , 𝑣9, 𝑢0, 𝑣0 in this order and the LP solution 𝑥∗ puts 𝑥∗𝑒 = 1

3 on every edge
in the figure; when two or three parallel edges are drawn, the value is 2

3 or 1,
respectively. In this example, the family of 𝜂-mincuts is laminar, shown by the
ellipses in the figure (including the singletons {𝑣1}, . . . , {𝑣9}). One can see that
here none of the 𝜂-mincuts is irrelevant, so this laminar family is identical to
the hierarchy. The thick red edges {𝑣1, 𝑣6} and {𝑣5, 𝑣6} both have the top cuts
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and {𝑣6}.

Definition 11.1 (top cuts). For an edge 𝑒 ∈ 𝐸 , we call the (up to) two maximal
sets in H that contain exactly one endpoint of 𝑒 the top cuts of the edge 𝑒.
We say that an element 𝑈 of the hierarchy is even if |𝛿𝑆 (𝑈) | is even (and odd
otherwise).

We need to show that there exist slack vectors 𝑠𝑆′ for 𝑆′ ∈ S fulfilling
properties (i) – (iv) of Theorem 10.17. To this end, we will describe a random
slack vector 𝑠, where the randomness depends not only on the random tree
𝑆 (sampled from the distribution 𝜇) but also on further random events that
we will introduce along the way. To prove Theorem 10.17, we can obtain
vectors 𝑠𝑆′ for 𝑆′ ∈ S that depend deterministically only on the tree 𝑆′ by
setting 𝑠𝑆′𝑒 := E

[
𝑠𝑒

�� 𝑆 = 𝑆′
]
. Our random slack vector 𝑠 and the random tree

𝑆 are strongly correlated; they will always satisfy properties (i) – (iii) and
E[𝑠𝑒] ≤ −𝜀0𝑥

∗
𝑒. Hence, we get properties (i) – (iv) for the deterministic vectors

𝑠𝑆
′ (𝑆′ ∈ S).
In order to define the random slack vector 𝑠, we will define a nonnegative

reduction vector 𝑟 ∈ R𝐸≥0 and a nonnegative increase vector 𝑖 ∈ R𝐸≥0. Then we
set 𝑠 := 𝑖 − 𝑟. The basic idea is to reduce the entries of the parity correction
vector for an edge 𝑒 (i.e., to set 𝑟𝑒 to a positive value) when both of its top cuts
are even. This does not lead to a feasible slack vector (i.e., it will often violate
(ii) and (iii) of Theorem 10.17), which is why we need the vector 𝑖.
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𝑎

𝑏

𝑐

𝑑

𝑢0 𝑣0 𝑤1
2

1
2

1
2

1
2

1
2

1
2

1

𝑒0 1

1

Figure 11.2 An example in which there exist edges 𝑒 for which the probability
that both top cuts of 𝑒 are simultaneously even is zero. We have 𝑥𝑒 = 1

2 for each
dashed edge 𝑒 and 𝑥𝑒 = 1 for each solid edge 𝑒. Suppose the optimum tour visits
the vertices 𝑎, 𝑏, 𝑤, 𝑐, 𝑑, 𝑢0, 𝑣0 in this order. Then the hierarchy consists only
of singleton cuts and the set 𝑉 \ {𝑢0, 𝑣0}. Every spanning tree that is sampled
with positive probability contains the edges {𝑎, 𝑐}, {𝑣0, 𝑤}, {𝑏, 𝑑}. Moreover, it
contains precisely one of the edges {𝑎, 𝑢0} and {𝑏, 𝑢0} (since it must connect 𝑢0
and does not contain 𝑒0) and precisely one of the edges {𝑐, 𝑤} and {𝑑, 𝑤}. Thus,
for the two red edges, the top cuts – which are {𝑎} and {𝑏} for the edge {𝑎, 𝑏}
and {𝑐} and {𝑑} for the edge {𝑐, 𝑑} – are simultaneously even with probability
zero.

Definition 11.2 (𝛾-good). An edge in 𝐸 is 𝛾-good if the probability that all of
its top cuts are even is at least 𝛾.

Edges that have 𝑉 \ {𝑢0, 𝑣0} as its only top cut are always 𝛾-good (see
Exercise 11.1). The interesting edges have exactly two top cuts. Note that
𝛿𝑆 (𝑈) contains an even number of edges with constant probability for every
𝜂-mincut𝑈 (and thus every𝑈 ∈ H ) simply because 𝑥∗ (𝛿(𝑈)) ≈ 2 and because
of concentration properties similar to Lemma 5.6. In fact, the probability is
more than 40 % (but this requires stronger arguments; see Exercise 11.5). For
some edges, however, its two top cuts might never be even simultaneously
(Figure 11.2 shows an example). We will explain how to handle such bad edges
in Section 11.3. Let us suppose for the remainder of Section 11.1 that for some
constant 𝛾 > 0, all edges are 𝛾-good. We may assume 𝛾 ≤ 1

5 .
Assuming that all edges are 𝛾-good, we can define for every edge 𝑒 a reduction

event 𝑅𝑒 with probability exactly 𝛾 that is a subevent of the event that both top
cuts of 𝑒 are even. More precisely, let 𝑏𝑒 be a Bernoulli variable with success
probability 𝛾

P[both top cuts of 𝑒 are even] that is independent of 𝑆 and all other 𝑏𝑒′ ,
and let 𝑅𝑒 be the event that both top cuts of 𝑒 are even and 𝑏𝑒 = 1. We set

𝑟𝑒 := 𝑥∗𝑒 · 1𝑅𝑒
, (11.1)
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𝑈

𝐸→ (𝑈)

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

Figure 11.3 A set 𝑈 ∈ H (the large ellipse, corresponding to {𝑣1, . . . , 𝑣5} in
Figure 11.1) with its three children. The edges in 𝐸→ (𝑈) are shown in green;
the edges in 𝛿 (𝑈) are shown in red. The dotted blue arrows show a possible
assignment of the green edges to the vertices: In this case, each green edge pays for
exactly one incident red edge. In general, the assignment can be fractional.

where 1𝑅𝑒
denotes the indicator variable of the reduction event 𝑅𝑒. Then 𝑟𝑒 ≤ 𝑥∗𝑒

for all 𝑆 ∈ S, and by the choice of the reduction event 𝑅𝑒, we have E[𝑟𝑒] = 𝛾 ·𝑥∗𝑒.
We remark that we will choose the constant 𝜂 much smaller than 𝛾.

Simply setting 𝑠 = −𝑟 would not be feasible (i.e., it would violate condition (ii)
of Theorem 10.17) because 𝑢 ∈ H might be odd although 𝑟𝑒 is negative for
some edges 𝑒 ∈ 𝛿(𝑢) for which 𝑢 is not a top cut. To ensure 𝑠(𝛿(𝑢)) ≥ 0
also in this case, we need the increase vector 𝑖. The basic idea is that we will
make some edges for which 𝑢 is a top cut “responsible for compensating the
reduction 𝑟 (𝛿(𝑢))” by ensuring 𝑖(𝛿(𝑢)) ≥ 𝑟 (𝛿(𝑢)) whenever |𝛿𝑆 (𝑢) | is odd. In
order to decide which edges will be increased for the compensation, we use the
responsibility assignment described in the next lemma (cf. Figure 11.3). This
lemma does not apply to triangles (i.e., cuts with exactly two children in the
hierarchy). However, recall that triangles are polygons and we assumed that our
hierarchy does not contain polygons. (We will describe the main ideas needed
to handle polygons and in particular triangles in Section 11.5.)

We use the following notation. For a set𝑈 ∈ H , let C (𝑈) denote the set of its
children inH (i.e., the set of maximal proper subsets of𝑈 that belong toH ). For
𝑢 ∈ H with parent 𝑈 in H (i.e., 𝑢 ∈ C (𝑈)), we define 𝛿↑ (𝑢) := 𝛿(𝑢) ∩ 𝛿(𝑈)
and 𝛿→ (𝑢) := 𝛿(𝑢) \ 𝛿(𝑈). Note that 𝛿→ (𝑢) is the set of edges for which 𝑢 is a
top cut. Define 𝐸→ (𝑈) := 𝐸 [𝑈] \⋃𝑢∈C (𝑈) 𝐸 [𝑢] =

⋃
𝑢∈C (𝑈) 𝛿

→ (𝑢).
Recall that we will choose 𝜂 > 0 to be a tiny constant. In particular, we will

choose 𝜂 ≤ 1
10 .
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Lemma 11.3. For every𝑈 ∈ H that is not a triangle, there exists a responsibility
assignment 𝑎 : C (𝑈) × 𝐸→ (𝑈) → R≥0 such that

• 𝑎(𝑢, 𝑒) = 0 if 𝑒 is not contained in 𝛿𝐸 (𝑢),
• 𝑎(𝑢, 𝑒) + 𝑎(𝑣, 𝑒) ≤ 𝑥∗𝑒 · (1 + 5𝜂) for every edge 𝑒 ∈ 𝐸→ (𝑈) with top cuts 𝑢

and 𝑣, and
• ∑

𝑒∈ 𝛿→ (𝑢) 𝑎(𝑢, 𝑒) = 𝑥∗ (𝛿↑ (𝑢)) for all 𝑢 ∈ C (𝑈).

Proof. For a set U ⊆ C (𝑈), let 𝐸U :=
⋃
𝑢∈U 𝛿

→ (𝑢). By Theorem 3.13, a
responsibility assignment 𝑎 as claimed exists if and only if for allU ⊆ C (𝑈),∑︁

𝑒∈𝐸U
(1 + 5𝜂) · 𝑥∗𝑒 ≥

∑︁
𝑢∈U

𝑥∗ (𝛿↑ (𝑢)). (11.2)

Recall that Proposition 10.8 implies 𝑥∗ (𝛿(𝐴)) ≤ 2+4𝜂 for all 𝐴 ∈ H (since there
are no polygons, all elements ofH are 𝜂-mincuts). Moreover, 𝑥∗ (𝛿(𝐴)) ≥ 2.

We first prove (11.2) forU = {𝑢} with 𝑢 ∈ C (𝑈). Using

2 · 𝑥∗ (𝛿→ (𝑢)) = 𝑥∗ (𝛿(𝑢)) + 𝑥∗ (𝛿(𝑈 \ 𝑢)) − 𝑥∗ (𝛿(𝑈))
≥ 𝑥∗ (𝛿(𝑢)) + 2 − (2 + 4𝜂)

and
2 · 𝑥∗ (𝛿↑ (𝑢)) = 𝑥∗ (𝛿(𝑢)) + 𝑥∗ (𝛿(𝑈)) − 𝑥∗ (𝛿(𝑈 \ 𝑢))

≤ 𝑥∗ (𝛿(𝑢)) + (2 + 4𝜂) − 2,
(11.3)

we can bound the ratio by

𝑥∗ (𝛿↑ (𝑢))
𝑥∗ (𝐸U)

=
𝑥∗ (𝛿↑ (𝑢))
𝑥∗ (𝛿→ (𝑢)) ≤

𝑥∗ (𝛿(𝑢)) + 4𝜂
𝑥∗ (𝛿(𝑢)) − 4𝜂

≤ 2 + 4𝜂
2 − 4𝜂

≤ 1 + 5𝜂,

which yields (11.2) in this case.
Let us now consider the remaining case |U| ≥ 2 and let 𝑢, 𝑣 ∈ U. Then

𝑥∗ (𝐸U) ≥ 1
2

(
𝑥∗ (𝛿(𝑢)) + 𝑥∗ (𝛿(𝑣)) + 𝑥∗ (𝛿(𝑈 \ (𝑢 ∪ 𝑣)) − 𝑥∗ (𝛿(𝑈))

)
≥ 1

2
(
2 + 2 + 2 − (2 + 4𝜂)

)
= 2 − 2𝜂.

Because
∑
𝑢∈U 𝑥

∗ (𝛿↑ (𝑢)) ≤ 𝑥∗ (𝛿(𝑈)) ≤ 2 + 4𝜂, this implies (11.2). □

Using the responsibility assignment from Lemma 11.3, we can now define
the increase vector 𝑖. For an edge 𝑒 with top cuts 𝑢 and 𝑣, we set

𝑖𝑒 :=
𝑎(𝑢, 𝑒)
𝑥∗ (𝛿↑ (𝑢))

·
∑︁

𝑓 ∈ 𝛿↑ (𝑢)
𝑟 𝑓 · 1[|𝛿𝑆 (𝑢) | is odd]

+ 𝑎(𝑣, 𝑒)
𝑥∗ (𝛿↑ (𝑣))

·
∑︁

𝑓 ∈ 𝛿↑ (𝑣)
𝑟 𝑓 · 1[|𝛿𝑆 (𝑣) | is odd],

(11.4)
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where 1[|𝛿𝑆 (𝑢) | is odd] and 1[|𝛿𝑆 (𝑣) | is odd] are the indicator functions of
|𝛿𝑆 (𝑢) | and |𝛿𝑆 (𝑢) | being odd, respectively.

This ensures the properties (i) and (ii) of Theorem 10.17:

Lemma 11.4. Let 𝑠 := 𝑖 − 𝑟, where 𝑟 and 𝑖 are defined by (11.1) and (11.4).
Then the following always holds: For all 𝑒 ∈ 𝐸 , we have 𝑠𝑒 ≥ −𝑥∗𝑒, and for
every set 𝐴 ∈ H , we have |𝛿𝑆 (𝐴) | even or 𝑠(𝛿(𝐴)) ≥ 0.

Proof. The first property is guaranteed by 𝑟𝑒 ≤ 𝑥∗𝑒 and 𝑖𝑒 ≥ 0.
We show that for every set 𝑢 ∈ H , we have 𝑠(𝛿(𝑢)) ≥ 0 or |𝛿𝑆 (𝑢) | even.

Indeed, for 𝑢 ∈ H with |𝛿𝑆 (𝑢) | odd, we have

𝑟 (𝛿(𝑢)) =
∑︁

𝑓 ∈ 𝛿↑ (𝑢)
𝑟 𝑓

because 𝑢 is a top cut for edges 𝑓 ∈ 𝛿(𝑢) \𝛿↑ (𝑢) and hence 𝑟 𝑓 = 0 for such edges
whenever |𝛿𝑆 (𝑢) | is odd. Moreover, because |𝛿𝑆 (𝑢) | is odd and by Lemma 11.3
we have

∑
𝑒∈ 𝛿→ (𝑢) 𝑎(𝑢, 𝑒) = 𝑥∗ (𝛿↑ (𝑢)), we have

𝑖(𝛿(𝑢)) ≥
∑︁

𝑒∈ 𝛿→ (𝑢)

𝑎(𝑢, 𝑒)
𝑥∗ (𝛿↑ (𝑢))

·
∑︁

𝑓 ∈ 𝛿↑ (𝑢)
𝑟 𝑓 =

∑︁
𝑓 ∈ 𝛿↑ (𝑢)

𝑟 𝑓 = 𝑟 (𝛿(𝑢)),

implying 𝑠(𝛿(𝑢)) = 𝑖(𝛿(𝑢)) − 𝑟 (𝛿(𝑢)) ≥ 0. □

Property (iii) of Theorem 10.17 applies only to polygon cuts, and for the
purpose of this overview, we assumed that the hierarchyH contains no polygon
cuts.

Therefore, it remains to discuss the property (iv), which states that the
expectation of 𝑠𝑒 is negative for all 𝑒 ∈ 𝐸 . More precisely, we need E[𝑠𝑒] ≤
−𝜀0 · 𝑥∗𝑒 for every 𝑒 ∈ 𝐸 and some constant 𝜀0 ≥ 174𝜂 (for this inequality, we
can choose 𝜂 sufficiently small if 𝜀0 > 0).

For an edge 𝑒 with top cuts 𝑢 and 𝑣, we have E[𝑠𝑒] = E[𝑖𝑒] − E[𝑟𝑒] =
E[𝑖𝑒] − 𝛾𝑥∗𝑒. Using Lemma 11.3 and upper bounding 1[|𝛿𝑆 (𝑢) | is odd] and
1[|𝛿𝑆 (𝑣) | is odd] in the definition of the increase vector by 1, we obtain the
bound E[𝑠𝑒] ≤ 𝛾(𝑎(𝑢, 𝑒) + 𝑎(𝑣, 𝑒)) − 𝛾𝑥∗𝑒 ≤ 5𝜂𝛾𝑥∗𝑒. To improve on this, we
would like to show that for an edge 𝑒 with top cut 𝑢, the cut size |𝛿𝑆 (𝑢) | is not
always odd when edges 𝑓 ∈ 𝛿↑ (𝑢) are reduced (i.e., when 𝑟 𝑓 > 0).
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Recall that for an edge 𝑓 , we have 𝑟 𝑓 = 𝑥∗
𝑓
· 1𝑅𝑒

, where 𝑅 𝑓 denotes the
reduction event for 𝑓 , which occurs with probability 𝛾. Thus,

E[𝑖𝑒] =
𝑎(𝑢, 𝑒)
𝑥∗ (𝛿↑ (𝑢))

·
∑︁

𝑓 ∈ 𝛿↑ (𝑢)
𝛾 · 𝑥∗𝑓 · P

[
|𝛿𝑆 (𝑢) | is odd

�� 𝑅 𝑓 ]
+ 𝑎(𝑣, 𝑒)
𝑥∗ (𝛿↑ (𝑣))

·
∑︁

𝑓 ∈ 𝛿↑ (𝑢)
𝛾 · 𝑥∗𝑓 · P

[
|𝛿𝑆 (𝑣) | is odd

�� 𝑅 𝑓 ] .
Hence, if we could bound P

[
|𝛿𝑆 (𝑢) | is odd

�� 𝑅 𝑓 ] and P
[
|𝛿𝑆 (𝑣) | is odd

�� 𝑅 𝑓 ]
from above by some constant 𝑝 ≤ 1 − 175𝜂

𝛾
, we would get

E[𝑖𝑒] =
𝑎(𝑢, 𝑒)
𝑥∗ (𝛿↑ (𝑢))

· 𝑥∗ (𝛿↑ (𝑢)) · 𝛾 · 𝑝 + 𝑎(𝑣, 𝑒)
𝑥∗ (𝛿↑ (𝑣))

· 𝑥∗ (𝛿↑ (𝑣)) · 𝛾 · 𝑝

= (𝑎(𝑢, 𝑒) + 𝑎(𝑣, 𝑒)) · 𝛾 · 𝑝
≤ (1 + 5𝜂) · 𝑥∗𝑒 · 𝛾 · 𝑝
≤ (1 + 5𝜂) · 𝑥∗𝑒 · (𝛾 − 175𝜂)
≤ (𝛾 − 174𝜂) · 𝑥∗𝑒,

implying E[𝑠𝑒] = E[𝑖𝑒] − 𝛾𝑥∗𝑒 ≤ −174𝜂𝑥∗𝑒, which yields (iv) of Theorem 10.17
for 𝜀0 := 174𝜂.

We now show that if 𝑥∗ (𝛿↑ (𝑢)) is “sufficiently fractional” for all sets 𝑢 ∈ H ,
then we can indeed show P

[
|𝛿𝑆 (𝑢) | is odd

�� 𝑅 𝑓 ] < 1 − 175𝜂
𝛾

for all 𝑢 ∈ H and
𝑓 ∈ 𝛿↑ (𝑢). More precisely, we assume that there exists some constant 𝜀𝐹 > 0
such that

𝜀𝐹 < 𝑥∗ (𝛿↑ (𝑢)) < 1 − 𝜀𝐹 for all sets 𝑢 ∈ H , (11.5)

and 𝜂 is chosen small enough so that 𝜂 ≤ 𝜀𝐹 ·𝛾
200 . Note that we always have

0 ≤ 𝑥∗ (𝛿↑ (𝑢)) ≤ 1 + 4𝜂 (cf. (11.3)), and we will discuss how to get rid of the
assumption (11.5) and deal with the cases 𝑥∗ (𝛿↑ (𝑢)) ≈ 0 and 𝑥∗ (𝛿↑ (𝑢)) ≈ 1 in
Section 11.4.

We first argue that |𝛿→
𝑆
(𝑢) | and the reduction event 𝑅 𝑓 for 𝑓 ∈ 𝛿↑ (𝑢) are

approximately independent. Let𝑈 be the parent of 𝑢 in the hierarchyH . One of
the top cuts of 𝑓 is a superset of𝑈 (possibly𝑈 itself), and the other one is disjoint
from𝑈. The parity of these top cuts (and hence 𝑅 𝑓 if we choose the reduction
event appropriately) depends only on the edges in 𝑆/𝑈. These are approximately
independent from the edges in 𝑆[𝑈], which contains 𝛿→

𝑆
(𝑢). More precisely, we

recall that by Proposition 10.8, P
[
(𝑈, 𝑆[𝑈]) is a tree

]
≥ 1 − 2𝜂. Conditioning

on this event, the random variable 𝑟 𝑓 is independent of 𝑆[𝑈] due to Lemma 5.18.
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Let �̃� be the distribution we obtain from 𝜇 by conditioning on (𝑈, 𝑆[𝑈])
being a tree. Then by Proposition 10.8 and Lemma 5.18, we have

P𝑆∼𝜇
[
|𝛿𝑆 (𝑢) | is odd

�� 𝑅 𝑓 ]
≤ P𝑆∼�̃�

[
|𝛿𝑆 (𝑢) | is odd

�� 𝑅 𝑓 ] · (1 − 2𝜂) + 2𝜂 (11.6)

≤ max
{
P𝑆∼�̃�

[
|𝛿→𝑆 (𝑢) | is odd

]
, P𝑆∼�̃�

[
|𝛿→𝑆 (𝑢) | is even

]}
· (1 − 2𝜂) + 2𝜂,

where we used that the event 𝑅 𝑓 depends only on 𝑆/𝑈 and that |𝛿→
𝑆
(𝑢) | depends

only on 𝑆[𝑈].
Next we show that the expected value of |𝛿→

𝑆
(𝑢) | does not differ much between

𝜇 and �̃�:

Lemma 11.5. E𝑆∼𝜇
[
|𝛿→
𝑆
(𝑢) |

]
≤ E𝑆∼�̃�

[
|𝛿→
𝑆
(𝑢) |

]
≤ E𝑆∼𝜇

[
|𝛿→
𝑆
(𝑢) |

]
+ 2𝜂.

Proof. The lower bound follows from applying Corollary 5.17 to 𝐴 = 𝛿→ (𝑢).
Applying it to 𝐴 = 𝐸 [𝑈] \ 𝛿→ (𝑢) yields the upper bound via

E𝑆∼�̃�
[
|𝛿→𝑆 (𝑢) |

]
= ( |𝑈 | − 1) − E𝑆∼�̃�

[
|𝐴 ∩ 𝑆 |

]
≤ (|𝑈 | − 1) − E𝑆∼𝜇

[
|𝐴 ∩ 𝑆 |

]
< 𝑥∗ (𝐸 [𝑈 |) + 2𝜂 − E𝑆∼𝜇

[
|𝐴 ∩ 𝑆 |

]
= 2𝜂 + E𝑆∼𝜇

[
|𝛿→𝑆 (𝑢) |

]
.

In the strict inequality, we used 𝑥∗ (𝐸 [𝑈]) = |𝑈 | − 1
2𝑥
∗ (𝛿(𝑈)) > |𝑈 | − 1 − 2𝜂

(cf. Proposition 10.8). □

Now we can prove:

Lemma 11.6. Assuming (11.5) for some 0 < 𝜀𝐹 ≤ 1
10 and 𝜂 ≤ 𝜀𝐹 ·𝛾

200 , we have
for all 𝑢 ∈ H and all 𝑓 ∈ 𝛿↑ (𝑢):

P𝑆∼𝜇
[
|𝛿𝑆 (𝑢) | is odd

�� 𝑅 𝑓 ] < 1 − 175𝜂
𝛾

.

Proof. Using our assumption 𝜀𝐹 < 𝑥∗ (𝛿↑ (𝑢)) < 1 − 𝜀𝐹 together with the
inequalities 2 ≤ 𝑥∗ (𝛿(𝑢)) < 2 + 4𝜂 (cf. Proposition 10.8), we obtain the bounds
1 + 𝜀𝐹 < 𝑥∗ (𝛿→ (𝑢)) < 2 + 4𝜂 − 𝜀𝐹 . Thus, using Lemma 11.5,

1 + 𝜀𝐹 < E𝑆∼�̃�
[
|𝛿→𝑆 (𝑢) |

]
< 2 + 6𝜂 − 𝜀𝐹 .

This shows that E𝑆∼�̃�
[
|𝛿→
𝑆
(𝑢) |

]
has distance at least 𝜀𝐹 − 6𝜂 ≥ 194𝜂

𝛾
to the

nearest integer, where we used that we chose 𝜂 ≤ 𝜀𝐹 ·𝛾
200 . Using properties of the

𝜆 |𝐸 [𝑈 ]-uniform distribution on the spanning trees of 𝐺 [𝑈] (cf. Lemma 5.18),
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this implies

P𝑆∼�̃�
[
|𝛿→𝑆 (𝑢) | is odd

]
≥ 1

2

(
1 − 𝑒−388𝜂/𝛾

)
P𝑆∼�̃�

[
|𝛿→𝑆 (𝑢) | is even

]
≥ 1

2

(
1 − 𝑒−388𝜂/𝛾

)
,

(11.7)

as we will show in Section 11.2 (see Lemma 11.13). Then we conclude

max
{
P𝑆∼�̃�

[
|𝛿→𝑆 (𝑢) | is odd

]
, P𝑆∼�̃�

[
|𝛿→𝑆 (𝑢) | is even

]}
= 1 −min

{
P𝑆∼�̃�

[
|𝛿→𝑆 (𝑢) | is odd

]
, P𝑆∼�̃�

[
|𝛿→𝑆 (𝑢) | is even

]}
≤ 1 − 1

2

(
1 − 𝑒−388𝜂/𝛾

)
and thus (using (11.6) and 𝑒−388𝜂/𝛾 < 1 − 352𝜂

𝛾
for 𝜂

𝛾
≤ 1

2000 ):

P𝑆∼𝜇
[
|𝛿𝑆 (𝑢) | is odd

�� 𝑅 𝑓 ] ≤ (
1 − 1

2

(
1 − 𝑒−388𝜂/𝛾

) )
· (1 − 2𝜂) + 2𝜂

≤ (1 − 176𝜂
𝛾
) · (1 − 2𝜂) + 2𝜂

= 1 − 176𝜂
𝛾
+ 352𝜂2

𝛾

< 1 − 175𝜂
𝛾
,

as required. □

This completes our proof of Theorem 10.17 under several simplifying
assumptions. The following sections will provide more details and sketch the
main ideas needed to get rid of the assumptions we made. Specifically, in
Section 11.2, we discuss some properties of 𝜆-uniform distributions in more
detail, in particular proving (11.7). Then we describe the main ideas used to get
rid of the various simplifying assumptions we made in this overview. Section 11.3
describes how edges that are not 𝛾-good can be handled. Section 11.4 addresses
the case when 𝑥∗ (𝛿↑ (𝑢)) is not “sufficiently fractional.” Finally, Section 11.5
discusses polygons (including triangles, i.e., cuts with exactly two children in
the hierarchy).

11.2 Strongly Rayleigh Distributions

In this section, we show that 𝜆-uniform distributions have much stronger
properties than negative correlation, and these are crucial for the proof of the
main payment theorem by Karlin, Klein, and Oveis Gharan [2021]. Borcea,
Brändén, and Liggett [2009] defined strongly Rayleigh distributions and showed
that 𝜆-uniform distributions are strongly Rayleigh.
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Definition 11.7 (generating polynomial, stable, strongly Rayleigh distribution).
Let 𝐸 be a finite set, and let 𝜇 be a probability distribution on 2𝐸 . Then the
generating polynomial of 𝜇 is

𝑔(𝑧) =
∑︁
𝐴⊆𝐸

𝜇(𝐴) ·
∏
𝑒∈𝐴

𝑧𝑒 .

A polynomial 𝑔 : C𝐸 → C is called stable if 𝑔(𝑧) ≠ 0 for every 𝑧 ∈ C𝐸 with
Im(ze) > 0 for all 𝑒 ∈ 𝐸 . The probability distribution 𝜇 is called strongly
Rayleigh if its generating polynomial is stable.

To show that 𝜆-uniform distributions are strongly Rayleigh, we need a
well-known lemma from complex analysis, which we cite without proof:

Lemma 11.8. Let (𝑔𝑘)𝑘∈N be a sequence of stable polynomials that converges
uniformly on compact subsets to a polynomial 𝑔. Then 𝑔 is stable or constant
zero.

Theorem 11.9 (Borcea, Brändén, and Liggett [2009]). Let 𝐺 = (𝑉, 𝐸) be a
connected graph and 𝜆𝑒 > 0 for 𝑒 ∈ 𝐸 . Let 𝜇𝜆 denote the 𝜆-uniform distribution
of the spanning trees of 𝐺 (and 𝜇𝜆 (𝑆) := 0 if 𝑆 is not the edge set of a spanning
tree). Then 𝜇𝜆 is strongly Rayleigh.

Proof. By Definition 11.7, the generating polynomial of 𝜇𝜆 is

𝑔(𝑧) =
∑︁
𝑆∈S

𝜇𝜆 (𝑆) ·
∏
𝑒∈𝑆

𝑧𝑒 =
1
Λ

∑︁
𝑆∈S

∏
𝑒∈𝑆

𝜆𝑒𝑧𝑒,

where Λ =
∑
𝑆∈S

∏
𝑒∈𝑆 𝜆𝑒. Kirchhoff’s matrix tree theorem (Theorem 5.19)

implies that for all 𝑧 ∈ R𝐸
>0 we have

Λ · 𝑔(𝑧) = det(𝐿1..𝑛−1
𝑧 ), (11.8)

where 𝐿𝑧 is the weighted Laplacian of 𝐺 for edge weights 𝜆𝑒𝑧𝑒, and 𝐿1..𝑛−1
𝑧

arises by deleting the 𝑛-th row and column. We claim that (11.8) holds for all
𝑧 ∈ C𝐸 .

To prove this claim, we note that both sides of (11.8) are given by polynomials
in 𝑧 with real coefficients. Considering the difference of the two polynomials
and substituting 𝑧 = 𝑣 + 1, where 1 is the all-1 vector, we obtain a polynomial 𝑝
defined by

𝑝(𝑣) = Λ · 𝑔(𝑣 + 1) − det(𝐿1..𝑛−1
𝑣+1 ) =

∑︁
𝐹⊆𝐸

𝛼𝐹

∏
𝑒∈𝐹

𝑣𝑒

for some real coefficients 𝛼𝐹 . We show that 𝛼𝐹 is zero for all 𝐹 ⊆ 𝐸 . To this
end, we interpret 𝑝 as a function from R𝐸 to R. Because (11.8) holds for all
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𝑧 ∈ R𝐸
>0, this function 𝑝 is constant zero in a neighborhood of the origin (here

we use the shift by 1). Since 𝑝(0) = 0, we have 𝛼∅ = 0. To show that 𝛼𝐹 = 0 for
a nonempty set 𝐹 ⊆ 𝐸 , we use that all partial derivatives are 0 at the origin. So
𝛼𝐹 =

𝜕|𝐹 | 𝑝∏
𝑒∈𝐹 𝜕𝑣𝑒

(0) = 0. This proves the claim.
Having established (11.8), we note that for all 𝑧 ∈ C𝐸 :

Λ·𝑔(𝑧) = det(𝐿1..𝑛−1
𝑧 ) = det(𝐿𝑧 + 𝑒𝑛𝑒⊤𝑛) = det

(
𝑒𝑛𝑒

⊤
𝑛 +

∑︁
𝑒∈𝐸

𝑧𝑒𝐿𝑒

)
, (11.9)

where 𝑒𝑛 = (0, . . . , 0, 1)⊤ denotes the 𝑛-th unit vector and 𝐿𝑒 = 𝜆𝑒 (𝜒{𝑣} −
𝜒{𝑤}) (𝜒{𝑣} − 𝜒{𝑤})⊤ for 𝑒 = {𝑣, 𝑤} ∈ 𝐸 . We used that det 𝐿𝑧 = 0 (every
column sum of 𝐿𝑧 is zero).

To show that the 𝑔 is stable, we construct a sequence of stable polynomials
converging uniformly on compact subsets to Λ · 𝑔 and apply Lemma 11.8. For
𝑘 ∈ N, let

𝑔𝑘 (𝑧) := det

(
𝑒𝑛𝑒

⊤
𝑛 +

∑︁
𝑒∈𝐸

𝑧𝑒𝐿𝑒 +
1
𝑘
𝑖𝐼

)
,

where 𝐼 denotes the 𝑛 × 𝑛 identity matrix. The sequence (𝑔𝑘)𝑘∈N converges
uniformly on compact subsets to Λ · 𝑔. Since 𝑔 is not constant zero (e.g.,
𝑔(1) = 1), it remains to show that every 𝑔𝑘 is stable.

Now fix 𝑘 ∈ N and some 𝑧 = Re(𝑧) + 𝑖 Im(𝑧) ∈ C𝐸 with Im(𝑧) ∈ R𝐸
>0 (and

Re(𝑧) ∈ R𝐸). We show 𝑔𝑘 (𝑧) ≠ 0.
Since 𝑀 := 1

𝑘
𝐼 + ∑

𝑒∈𝐸 Im(𝑧𝑒)𝐿𝑒 is positive definite, it has a square root
𝑀1/2 (i.e., a symmetric nonsingular real matrix with 𝑀1/2𝑀1/2 = 𝑀). Define

𝐻 = −𝑀−1/2

(
𝑒𝑛𝑒

⊤
𝑛 +

∑︁
𝑒∈𝐸

Re(𝑧𝑒)𝐿𝑒

)
𝑀−1/2

and note that 𝐻 is a symmetric real matrix. Then (11.9) can be written as

𝑔𝑘 (𝑧) = det
(
𝑀1/2 (𝑖𝐼 − 𝐻)𝑀1/2

)
= (det𝑀) · (det(𝑖𝐼 − 𝐻)).

Since 𝑥 ↦→ det(𝑥𝐼 −𝐻) is the characteristic polynomial (in the single variable
𝑥) of the real symmetric matrix 𝐻, its roots are the eigenvalues of 𝐻, which are
all real. Hence det(𝑖𝐼 − 𝐻) ≠ 0. Since det𝑀 > 0, we conclude 𝑔𝑘 (𝑧) ≠ 0. □

In the rest of this section, we will explain how Theorem 11.9 can be used to
derive good bounds on the probability of cuts having a certain parity. We will
use the fact that the strongly Rayleigh property is maintained under projections.
This allows us to restrict our attention to the probability distribution on a subset
of the edges (e.g., the edges in a particular cut) while maintaining the property
that the distribution is strongly Rayleigh.
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Definition 11.10 (projection). Let 𝐸 be a finite set, and let 𝜇 be a strongly
Rayleigh probability distribution on 2𝐸 . Let 𝐹 ⊆ 𝐸 . The projection of 𝜇 onto 𝐹
is the probability distribution 𝜇𝐹 defined by

𝜇𝐹 (𝐵) :=
∑︁

𝐴⊆𝐸:𝐴∩𝐹=𝐵
𝜇(𝐴).

Lemma 11.11. Let 𝐸 be a finite set and let 𝜇 be a strongly Rayleigh probability
distribution on 2𝐸 . Let 𝐹 ⊆ 𝐸 . Then the projection of 𝜇 onto 𝐹 is strongly
Rayleigh.

Proof. Let 𝑔 denote the generating polynomial of 𝜇, and let 𝑔𝐹 denote the
generating polynomial of the projection 𝜇𝐹 of 𝜇 onto 𝐹. For 𝑧 ∈ C𝐹 and 𝑐 ∈ C,
let 𝑧 |𝑐 be the vector in C𝐸 for which (𝑧 |𝑐)𝑒 = 𝑧𝑒 for 𝑒 ∈ 𝐹 and (𝑧 |𝑐)𝑒 = 𝑐 for
𝑒 ∈ 𝐸 \ 𝐹. Then

∏
𝑒∈𝐵 𝑧𝑒 =

∏
𝑒∈𝐴(𝑧 |1)𝑒 whenever 𝐴 ∩ 𝐹 = 𝐵 and hence

𝑔𝐹 (𝑧) =
∑︁
𝐵⊆𝐹

𝜇𝐹 (𝐵) ·
∏
𝑒∈𝐵

𝑧𝑒

=
∑︁
𝐵⊆𝐹

∑︁
𝐴⊆𝐸:𝐴∩𝐹=𝐵

𝜇(𝐴) ·
∏
𝑒∈𝐵

𝑧𝑒

=
∑︁
𝐴⊆𝐸

𝜇(𝐴) ·
∏
𝑒∈𝐴
(𝑧 |1)𝑒

= 𝑔(𝑧 |1).

To show that 𝑔𝐹 is stable, we again construct a sequence of stable polynomials
(𝑔𝑘)𝑘∈N that converges uniformly on compact subsets to 𝑔𝐹 . For 𝑘 ∈ N, let
𝑔𝑘 : C𝐹 → C be defined by 𝑔𝑘 (𝑧) = 𝑔

(
𝑧 | (1 + 1

𝑘
𝑖)
)

for 𝑧 ∈ C𝐹 . Indeed,
the sequence converges uniformly on compact subsets to 𝑔𝐹 . Moreover, each
polynomial 𝑔𝑘 is stable because 𝑔 is stable. By Lemma 11.8, the generating
polynomial 𝑔𝐹 is stable, and hence 𝜇𝐹 is strongly Rayleigh. □

Using Lemma 11.11, we now show that the number of elements sampled
from a fixed subset of the edges (e.g., from a particular cut) obeys the law of
a sum of independent Bernoulli random variables (random variables that take
values 0 or 1 only), also known as Poisson binomial distribution. This allows us
to prove strong bounds on the probability that this edge set contains an even or
odd number of edges.

Lemma 11.12. Let 𝐸 be a finite set, and let 𝜇 be a strongly Rayleigh probability
distribution on 2𝐸 . Let 𝐹 ⊆ 𝐸 . Then there exist independent Bernoulli random
variables 𝐵1, . . . , 𝐵 |𝐹 | such that

P𝑆∼𝜇 [|𝑆 ∩ 𝐹 | = 𝑘] = P[𝐵1 + · · · + 𝐵 |𝐹 | = 𝑘]

for all 𝑘 ∈ Z≥0.
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Proof. Consider the univariate polynomial

𝑓 (𝑧) :=
|𝐹 |∑︁
𝑘=0
P𝑆∼𝜇 [|𝑆 ∩ 𝐹 | = 𝑘] · 𝑧𝑘 = 𝑔𝐹 (𝑧, 𝑧, . . . , 𝑧),

where 𝑔𝐹 is the generating polynomial of the projection of 𝜇 onto 𝐹. Because by
Lemma 11.11 the projection of 𝜇 onto 𝐹 is strongly Rayleigh, all (complex) roots
of the polynomial 𝑓 have a nonpositive imaginary part. Since 𝑓 is a univariate
polynomial with real coefficients, its complex zeros come in conjugate pairs.
We conclude that 𝑓 is real rooted. Thus, we can write

𝑓 (𝑧) = 𝑏 ·
𝑙∏
𝑗=1
(𝑎 𝑗 + 𝑧)

for some numbers 𝑏, 𝑎1, . . . , 𝑎𝑙 ∈ R and 𝑙 ≤ |𝐹 |. Because all coefficients of
𝑓 are nonnegative by definition and 𝑓 ≠ 0, we have 𝑏 > 0 and 𝑎 𝑗 ≥ 0 for all
𝑗 ∈ {1, . . . , 𝑙}. Define Bernoulli random variables 𝐵 𝑗 with success probability
P[𝐵 𝑗 = 1] = 𝑝 𝑗 := 1

1+𝑎 𝑗
for 𝑗 = 1, . . . , 𝑙. Note that 0 < 𝑝 𝑗 ≤ 1. Then we have

1 =

|𝐹 |∑︁
𝑘=0
P𝑆∼𝜇 [|𝑆 ∩ 𝐹 | = 𝑘] = 𝑓 (1) = 𝑏 ·

𝑙∏
𝑗=1
(𝑎 𝑗 + 1) = 𝑏 ·

𝑙∏
𝑗=1

1
𝑝 𝑗
,

implying 𝑏 =
∏𝑙
𝑗=1 𝑝 𝑗 . We can read off the probability that |𝑆 ∩ 𝐹 | = 𝑘 from

the coefficient of 𝑧𝑘 in 𝑓 (𝑧), which is

P𝑆∼𝜇 [|𝑆 ∩ 𝐹 | = 𝑘] =
∑︁

𝐼⊆{1,...,𝑙}
|𝐼 |=𝑘

𝑏 ·
∏
𝑗∉𝐼

𝑎 𝑗 =
∑︁

𝐼⊆{1,...,𝑙}
|𝐼 |=𝑘

∏
𝑗∈𝐼

𝑝 𝑗 ·
∏
𝑗∉𝐼

(1 − 𝑝 𝑗 ),

where we used 𝑎 𝑗 =
1−𝑝 𝑗

𝑝 𝑗
in the last equation. □

Using this, we show the following:

Lemma 11.13. Let 𝐸 be a finite set, 𝜇 a strongly Rayleigh probability distribution
on 2𝐸 , and 𝐹 ⊆ 𝐸 . Let 𝑞 := E𝑆∼𝜇 [|𝑆 ∩ 𝐹 |], and let 𝛿 := min{𝑞 − ⌊𝑞⌋, ⌈𝑞⌉ − 𝑞}
be the distance of the expectation to the nearest integer. Then

P𝑆∼𝜇 [|𝑆∩𝐹 | odd] ≥ 1
2

(
1 − 𝑒−2𝛿

)
and P𝑆∼𝜇 [|𝑆∩𝐹 | even] ≥ 1

2

(
1 − 𝑒−2𝛿

)
.

Proof. By Lemma 11.12, it suffices to show that for any set of Bernoulli
random variables 𝐵1, . . . , 𝐵𝑛 with E[𝐵1 + · · · + 𝐵𝑛] = 𝑞, the sum is even and
odd each with probability at least 1

2
(
1 − 𝑒−2𝛿 ) .

Fix 𝑛 ∈ N. By an observation of Hoeffding [1956], the expectation of
any function of the number of successes, including P[𝐵1 + · · · + 𝐵𝑛 odd] and
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P[𝐵1+· · ·+𝐵𝑛 even], is minimized when all the Bernoulli variables have success
probabilities 0, 1, or 𝑝, for some 0 < 𝑝 < 1. Indeed, if two Bernoulli variables
have success probabilities 𝑝 and 𝑞 with 0 < 𝑝 < 𝑞 < 1, then P[𝐵1+· · ·+𝐵𝑛 odd]
is 𝛼(𝑝(1−𝑞) +𝑞(1− 𝑝)) + (1−𝛼) (1− 𝑝(1−𝑞) −𝑞(1− 𝑝)) for some 0 ≤ 𝛼 ≤ 1.
This is 1 − 𝛼 + (2𝛼 − 1) (𝑝 + 𝑞 − 2𝑝𝑞). If 𝛼 ≥ 1

2 , this becomes no greater if we
change the two success probabilities to 𝑝+𝑞

2 and 𝑝+𝑞
2 , and it becomes no smaller

if we change the two success probabilities to 0 and 𝑝 + 𝑞 (if 𝑝 + 𝑞 ≤ 1) or to
𝑝 + 𝑞 − 1 and 1 (if 𝑝 + 𝑞 ≥ 1). If 𝛼 ≤ 1

2 , the opposite holds.
So let all the Bernoulli variables have success probabilities 0, 1, or 𝑝 (for

some 0 < 𝑝 < 1). Then it is sufficient to show the claim when all success
probabilities are 𝑝. In this case,

P[𝐵1 + · · · + 𝐵𝑛 even] =
1
2
(1 + (1 − 2𝑝)𝑛) . (11.10)

Indeed, adding (𝑝 + (1 − 𝑝))𝑛 = ∑𝑛
𝑗=0

(𝑛
𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑛− 𝑗 and (−𝑝 + (1 − 𝑝))𝑛 =∑𝑛

𝑗=0
(𝑛
𝑗

)
(−𝑝) 𝑗 (1 − 𝑝)𝑛− 𝑗 yields 1𝑛 + (1 − 2𝑝)𝑛 = 2

∑
𝑗 even

(𝑛
𝑗

)
(𝑝) 𝑗 (1 − 𝑝)𝑛− 𝑗 .

Dividing by 2 yields (11.10).
Hence P[𝐵1+· · ·+𝐵𝑛 odd] = 1−P[𝐵1+· · ·+𝐵𝑛 even] = 1

2 (1 − (1 − 2𝑝)𝑛).
So it suffices to show that | (1 − 2𝑝)𝑛 | ≤ 𝑒−2𝛿 . This is easy: If 𝑝 ≤ 1

2 , we have
0 ≤ (1 − 2𝑝)𝑛 ≤ 𝑒−2𝑝𝑛 = 𝑒−2𝑞 ≤ 𝑒−2𝛿 . If 𝑝 ≥ 1

2 , we have | (1 − 2𝑝)𝑛 | =
| (1 − (2 − 2𝑝))𝑛 | ≤ 𝑒−2(𝑛−𝑞) ≤ 𝑒−2𝛿 . □

Note that the Chernoff bound (Lemma 5.6) that we get from negative correla-
tion is not sufficient to obtain this result. In fact, there exist negatively correlated
Bernoulli random variables whose sum is always odd. See Exercise 11.6 for an
example.

The proof of Lemma 11.13 also yields:

Lemma 11.14. Let 𝐵1, . . . , 𝐵𝑛 be independent Bernoulli random variables
with E[𝐵1 + · · · + 𝐵𝑛] = 1. Then P[𝐵1 + · · · + 𝐵𝑛 even] < 0.5677.

Proof. As in the proof of Lemma 11.13, we may assume that all Bernoulli
variables have success probability 𝑝. Then we have (cf. (11.10)):

P[𝐵1 + · · · + 𝐵𝑛 even] =
1
2
(1 + (1 − 2𝑝)𝑛) .

If 𝑝 > 1
2 , then 𝑛 = 1 and the assertion is trivial. Otherwise, 1

2 (1 + (1 − 2𝑝)𝑛) ≤
1
2 (1 + 𝑒

−2𝑝𝑛) = 1
2 (1 + 𝑒

−2) < 0.5677. □
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11.3 Bad Edges

In this section, we discuss how one can address the issue that in general there
does not exist a 𝛾 > 0 such that all edges are 𝛾-good. An edge that is not 𝛾-good
is called 𝛾-bad. (Recall Figure 11.2 for an example.)

The basic idea to deal with such 𝛾-bad edges is to neither reduce nor increase
the parity correction vector for them – that is, for every 𝛾-bad edge 𝑒, we set
𝑟𝑒 := 0 and 𝑖𝑒 := 0 and thus 𝑠𝑒 = 𝑖𝑒−𝑟𝑒 = 0. This choice of the slack vector does
not have the properties required by the main payment theorem (Theorem 10.17)
because we would need E[𝑠𝑒] < −𝜀0𝑥

∗
𝑒 for every edge 𝑒, including the bad

edges. Therefore, Karlin, Klein, and Oveis Gharan [2021] showed the following
variant of Theorem 10.17, which implies Theorem 10.17 as we prove below.

Theorem 11.15 (Karlin, Klein, and Oveis Gharan [2021]). Let 𝜇 be the maximum
entropy distribution on S. There exist constants 𝜀0 > 0 and 0 < 𝜂 ≤ 𝜀0

522 , a
set 𝐸good ⊆ 𝐸 , and a random vector 𝑠 ∈ R𝐸 such that for the hierarchy H
representing the relevant 𝜂-mincuts, the following always holds:

(i) 𝑠𝑒 ≥ −𝑥∗𝑒 for all 𝑒 ∈ 𝐸;
(ii) For every set 𝐴 ∈ H whose parent is not a polygon, we have |𝛿𝑆 (𝐴) | even

or 𝑠(𝛿(𝐴)) ≥ 0;
(iii) For every polygon 𝑃, we have:

• if 𝑃 is not left-happy, then 𝑠(𝛿(𝐴)) ≥ 0 for every left-relevant set 𝐴;
• if 𝑃 is not right-happy, then 𝑠(𝛿(𝐴)) ≥ 0 for every right-relevant set 𝐴;

(iv) E[𝑠𝑒] ≤ −𝜀0𝑥
∗
𝑒 for every edge 𝑒 ∈ 𝐸good;

(v) 𝑠𝑒 = 0 for all 𝑒 ∈ 𝐸 \ 𝐸good;
(vi) 𝑥∗ (𝛿(𝐴) ∩ 𝐸good) ≥ 3

4 if

• 𝐴 is contained inH , or
• 𝐴 is a left-relevant or right-relevant set of a polygon 𝑃 ∈ H .

We now show that Theorem 11.15 implies Theorem 10.17. The idea is to
transfer part of the reduction from good to bad edges.

Proof of Theorem 10.17 We apply Theorem 11.15 to obtain a constant 𝜀0, an
edge set 𝐸good, and a random slack vector 𝑠. Then we define slack vectors 𝑠𝑆′

for 𝑆′ ∈ S by

𝑠𝑆
′
𝑒 :=

{
E[𝑠𝑒 | 𝑆 = 𝑆′] + 2

3𝜀0 · 𝑥∗𝑒 if 𝑒 ∈ 𝐸good

E[𝑠𝑒 | 𝑆 = 𝑆′] − 1
3𝜀0 · 𝑥∗𝑒 if 𝑒 ∈ 𝐸 \ 𝐸good.

We claim that these slack vectors fulfill the conditions of Theorem 10.17 for the
constant 𝜀0 := 1

3𝜀0. Indeed, we have 𝑠𝑆′𝑒 ≥ −𝑥∗𝑒 for all 𝑒 ∈ 𝐸 by Theorem 11.15 (i)
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and (v). Moreover, if 𝐴 ∈ H or 𝐴 is a left-relevant or right-relevant set of a
polygon 𝑃 ∈ H , then by Theorem 11.15 (vi), we have

𝑠𝑆
′ (𝛿(𝐴)) ≥ E[𝑠(𝛿(𝐴)) | 𝑆 = 𝑆′]

+ 2
3𝜀0 · 𝑥∗ (𝛿(𝐴) ∩ 𝐸good) − 1

3𝜀0 · 𝑥∗ (𝛿(𝐴) \ 𝐸good)
≥ E[𝑠(𝛿(𝐴)) | 𝑆 = 𝑆′] + 2

3𝜀0 · 3
4 −

1
3𝜀0 · (2 + 4𝜂 − 3

4 )
≥ E[𝑠(𝛿(𝐴)) | 𝑆 = 𝑆′],

which together with (ii) and (iii) from Theorem 11.15 implies that the slack
vectors 𝑠𝑆′ fulfill (ii) and (iii) from Theorem 10.17. Finally, for 𝑒 ∈ 𝐸good, we
have E𝑆′∼𝜇 [𝑠𝑆

′
𝑒 ] ≤ −𝜀0𝑥

∗
𝑒 + 2

3𝜀0 · 𝑥∗𝑒 = − 1
3𝜀0 · 𝑥∗𝑒 = −𝜀0𝑥

∗
𝑒, and for 𝑒 ∈ 𝐸 \𝐸good,

we have E𝑆′∼𝜇 [𝑠𝑆
′
𝑒 ] = − 1

3𝜀0 · 𝑥∗𝑒 = −𝜀0𝑥
∗
𝑒 by Theorem 11.15 (v). □

To prove Theorem 11.15, one could fix some (small-enough) constant 𝛾 > 0
and choose 𝐸good to be the set of 𝛾-good edges. However, it is more convenient
to strengthen the condition a little and choose 𝐸good to be the set of 2-2-good
edges:

Definition 11.16 (2-2-happy, 2-2-good). For a tree 𝑆 ∈ S, we say that an edge
𝑒 with top cuts 𝑣 and 𝑤 is 2-2-happy if

• |𝛿𝑆 (𝑣) | = 2 and |𝛿𝑆 (𝑤) | = 2, and
• (𝑣, 𝑆[𝑣]) and (𝑤, 𝑆[𝑤]) are trees.

An edge 𝑒 is 2-2-good if the probability that 𝑒 is 2-2-happy is at least 𝛾. We call
an edge bad if it is not 2-2-good.

Exploiting properties of strongly Rayleigh distributions, one can then prove
Theorem 11.15 (vi). We remark that in contrast to the previous definition of
𝛾-good edges, we now require the set 𝛿𝑆 (𝑢) for a top cut 𝑢 of a 2-2-happy edge
to contain exactly two edges, rather than any even number. Moreover, we have
the additional requirement that (𝑣, 𝑆[𝑣]) and (𝑤, 𝑆[𝑤]) are trees. Both of these
differences are not crucial for the proof and are simply more convenient to work
with.

In order to follow the proof approach described in Section 11.1 for good
edges despite the fact that we set 𝑠𝑒 = 0 for bad edges 𝑒, one needs a stronger
version of Lemma 11.3 that assigns only good edges in 𝐸→ (𝑈) to children of
𝑈. This makes it necessary to prove strong properties on the structure of bad
edges. For example, let us consider a set𝑈 ∈ H with exactly three children; then
𝑥∗ (𝐸→ (𝑈)) ≈ 2 and

∑
𝑢∈C (𝑈) 𝑥

∗ (𝛿↑ (𝑢)) ≈ 2. If a significant fraction of the
edges in 𝑥∗ (𝐸→ (𝑈)) were bad, the desired assignment would not exist because
then 𝑥∗ (𝐸→ (𝑈) ∩ 𝐸good) would be much smaller than

∑
𝑢∈C (𝑈) 𝑥

∗ (𝛿↑ (𝑢)).
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Karlin, Klein, and Oveis Gharan [2021] proved that in this case, where𝑈 has
exactly three children, none of the edges in 𝐸→ (𝑈) is bad.

However, 𝐸→ (𝑈) can contain bad edges if 𝑈 has more than three children.
To describe the structure of bad edges, it is useful to partition the edges into
bundles:

Definition 11.17 (edge bundle). For two distinct sets𝑈,𝑊 ∈ H , we say that the
set of edges with top cuts𝑈 and𝑊 is an edge bundle and denote it by {𝑈,𝑊}.

Either all edges of a bundle are 2-2-good (then we also call the edge bundle
2-2-good) or all of them are bad (then we also call the edge bundle bad). For
edges 𝑒 in the same edge bundle, the corresponding entries in the slack vector
can be chosen to be the same fraction of 𝑥∗𝑒. For an edge bundle 𝑓 , we define 𝑥∗

𝑓

to be the sum of the values 𝑥∗𝑒 over all edges 𝑒 in the edge bundle 𝑓 .
An edge bundle 𝑓 with 𝑥∗

𝑓
≈ 1

2 is also called a half-edge bundle. A key
property is that every bad edge bundle is a half-edge bundle. This was essentially
shown already by Oveis Gharan, Saberi, and Singh [2011].

Moreover, if a set𝑈 ∈ H has more than three children, there might be bad
edges, but the bad edge bundles in 𝐸→ (𝑈) form a matching, and for every top
cut 𝑢 of a bad edge we have 𝑥↑ (𝑢) ≲ 1

2 . To prove this, Karlin, Klein, and Oveis
Gharan [2021] used probabilistic arguments exploiting further properties of
the 𝜆-uniform distribution 𝜇. These properties imply that the desired stronger
version of Lemma 11.3 holds (see Exercise 11.7).

11.4 Insufficient Fractionality

Recall that in the analysis described in Section 11.1, we defined a reduction event
𝑅 𝑓 for every edge 𝑓 . In Lemma 11.6, we considered 𝑢 ∈ H with 𝑓 ∈ 𝛿↑ (𝑢)
and bounded P𝑆∼𝜇

[
|𝛿𝑆 (𝑢) | is odd | 𝑅 𝑓

]
by a constant less than 1 under the

assumption that 𝑥∗ (𝛿↑ (𝑢)) is “sufficiently fractional.” We used this to obtain a
good upper bound on the increase 𝑖𝑒 for edges 𝑒 ∈ 𝛿→ (𝑢).

In this section, we discuss how Karlin, Klein, and Oveis Gharan [2021]
handled the fact that the assumption (11.5) of “sufficient fractionality” is not
necessarily fulfilled. There are two ways how this assumption can be violated:
either 𝑥∗ (𝛿↑ (𝑢)) ≤ 𝜀𝐹 or 𝑥∗ (𝛿↑ (𝑢)) ≥ 1− 𝜀𝐹 . (Karlin, Klein, and Oveis Gharan
[2021] chose 𝜀𝐹 = 1

10 , but the precise value is irrelevant for our discussion.)
The first of these two cases (𝑥∗ (𝛿↑ (𝑢)) ≤ 𝜀𝐹) is easier to deal with than the

second one. Let us first assume the parent𝑈 of 𝑢 has at least four children. Then
one can prove a strengthening of the responsibility assignment from Lemma 11.3.
More precisely, one ensures that compared to Lemma 11.3, twice as many edges
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𝑢

𝑣 𝑤

≈ 1 ≈ 1

≈ 0

𝑈

≈ 0

≈ 1 ≈ 1

Figure 11.4 Suppose 𝑈 ∈ H has exactly three children 𝑢, 𝑣, and 𝑤 and
𝑥∗ (𝛿↑ (𝑢) ) ≈ 0. Then 𝑥∗ (𝛿↑ (𝑣) ) ≈ 1 and 𝑥∗ (𝛿↑ (𝑤) ) ≈ 1. Moreover, 𝑥∗{𝑢,𝑣} ≈ 1
and 𝑥∗{𝑢,𝑤} ≈ 1.

from 𝛿→ (𝑢) are assigned to 𝑢, namely 2𝑥∗ (𝛿↑ (𝑢)) instead of just 𝑥∗ (𝛿↑ (𝑢)). This
allows for replacing the term

∑
𝑓 ∈ 𝛿↑ (𝑢) 𝑟 𝑓 · 1[|𝛿𝑆 (𝑢) | is odd] in the definition

of the increase vector (11.4) by
∑
𝑓 ∈ 𝛿↑ (𝑢)

1
2𝑟 𝑓 whenever 𝑥∗ (𝛿↑ (𝑢)) ≤ 𝜀𝐹 .

Now consider the case where 𝑥∗ (𝛿↑ (𝑢)) ≤ 𝜀𝐹 and the parent𝑈 of 𝑢 has exactly
three children, say 𝑢, 𝑣, and 𝑤. Then the above strengthening of Lemma 11.3
does not work, but this is actually an easier case. Indeed, the situation must then
look as depicted in Figure 11.4. Here, we can ensure that every edge in 𝐸→ (𝑈)
is mostly responsible for 𝑣 and 𝑤, and at most to a minor extent for 𝑢. Then
we can afford to have a positive increase 𝑖𝑒 always when the reduction event
𝑅 𝑓 for some 𝑓 ∈ 𝛿↑ (𝑢) occurs (instead of only with probability 1 − 175𝜂

𝛾
as in

Lemma 11.6).
Let us now consider the case where 𝑥∗ (𝛿↑ (𝑢)) ≈ 1. BecauseH is a laminar

family, the family of sets 𝑈 ∈ H with 𝑢 ⊊ 𝑈 form a chain: We can number
them as𝑈1, . . . ,𝑈ℎ with 𝑢 ⊊ 𝑈1 ⊊ . . . ⊊ 𝑈ℎ. We define

𝛿 𝑗 (𝑢) :=

{
𝛿↑ (𝑢) ∩ 𝛿(𝑈 𝑗 ) \ 𝛿(𝑈 𝑗+1) if 𝑗 ∈ {1, . . . , ℎ − 1}
𝛿↑ (𝑢) ∩ 𝛿(𝑈ℎ) if 𝑗 = ℎ.

See Figure 11.5. If 𝑥∗ (𝛿 𝑗 (𝑢)) is much less than 1 for all 𝑗 ∈ {1, . . . , ℎ},
then let 𝑘 be an index such that

∑𝑘
𝑗=1 𝑥

∗ (𝛿 𝑗 (𝑢)) and
∑ℎ
𝑗=𝑘+1 𝑥

∗ (𝛿 𝑗 (𝑢)) are
both sufficiently far away from 0 and 1. Then we show that with constant
probability, no increase is needed in the reduction event 𝑅 𝑓 for 𝑓 ∈ ⋃ℎ

𝑗=𝑘+1 𝛿
𝑗 (𝑢)

because P𝑆∼𝜇
[
|𝛿𝑆 (𝑢) | is odd | 𝑅 𝑓

]
is much smaller than 1 for such edges 𝑓 .

To see this, note that the parities of |𝑆 ∩⋃ℎ
𝑗=𝑘+1 𝛿

𝑗 (𝑢) | and |𝑆 ∩⋃𝑘
𝑗=1 𝛿

𝑗 (𝑢) |
and |𝑆 ∩ 𝛿→ (𝑢) | are approximately independent; this follows from applying
Lemma 5.18 once to 𝑈𝑘+1 and once to 𝑈1. Since

∑𝑘
𝑗=1 𝑥

∗ (𝛿 𝑗 (𝑢)) is far away
from 0 and 1, |𝑆∩⋃𝑘

𝑗=1 𝛿
𝑗 (𝑢) | is odd and even both with constant probability by
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𝑢

. . .

𝛿ℎ (𝑢)

𝛿1 (𝑢)

𝛿ℎ−1 (𝑢)

𝑈1

𝑈2

𝑈ℎ−1
𝑈ℎ

Figure 11.5 Illustration of the partition of 𝛿↑ (𝑢) , shown as dashed edges, into the
sets 𝛿 𝑗 (𝑢) for 𝑗 ∈ {1, . . . , ℎ}.

Lemma 11.13. Because |𝑆 ∩⋃𝑘
𝑗=1 𝛿

𝑗 (𝑢) | is independent of 𝑅 𝑓 , this also holds
when conditioning on 𝑅 𝑓 .

It remains to handle the case where there is an index 𝑗 ∈ {1, . . . , ℎ} with
𝑥∗ (𝛿 𝑗 (𝑢)) ≈ 1. Because 𝑥∗ (𝛿↑ (𝑢)) ≈ 1, we have 𝑥∗ (𝛿→ (𝑢)) ≈ 1. By Propo-
sition 10.8, (𝑢, 𝑆[𝑢]) is a tree with probability at least 1 − 2𝜂 and thus the
probability that |𝑆 ∩ 𝛿→ (𝑢) | = 1 is close to 1. For this reason, it is desirable to
have 𝑟 𝑓 > 0 for edge bundles 𝑓 ∈ 𝛿 𝑗 (𝑢) when |𝑆 ∩ 𝛿↑ (𝑢) | is odd rather than
when |𝑆 ∩ 𝛿↑ (𝑢) | is even. Karlin, Klein, and Oveis Gharan [2021] showed that
it is possible to achieve that one of the following two things happens:

• at least for approximately half of the edge bundles 𝑓 ∈ 𝛿 𝑗 (𝑢) (in terms of 𝑥∗
value), we can achieve that at least approximately half of the times when the
reduction event 𝑅 𝑓 happens, |𝑆 ∩ 𝛿↑ (𝑢) | is odd, or
• there is at least one bad half-edge bundle in 𝛿↑ (𝑢).

Note that in the latter case, the bad half-edge bundle is never reduced and thus
no compensation for this is needed. In order to prove that the first condition
is fulfilled whenever 𝛿↑ (𝑢) does not contain a bad half-edge bundle, a more
careful definition of the reduction vector 𝑟 is needed.

To define the reduction vector 𝑟 , we now distinguish between different types
of good edges. In particular, we will distinguish between so-called 2-1-1-good
edges and edges that are 2-2-good, but not 2-1-1-good. In order to define
2-1-1-good edges, we first fix a small constant 𝜀partition > 0 and construct a
partition 𝐴

.
∪ 𝐵

.
∪ 𝐶 of every cut 𝛿(𝑊) with𝑊 ∈ H as in the following lemma.

See Figure 11.6 for an illustration.
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𝐴 𝐵

𝐶

𝐴 𝐵

𝐶

Figure 11.6 The figure shows two examples of a set𝑊 (black), the sets 𝑤 ∈ H
(green) with 𝑥∗ (𝛿 (𝑤) ∩ 𝛿 (𝑊 ) ) ≥ 1 − 𝜀partition and 𝑤 ⊆ 𝑊 . The dashed lines
show the edges in 𝛿 (𝑊 ) partitioned into sets 𝐴 (red), 𝐵 (blue), and 𝐶 (gray).

Lemma 11.18. Let 6𝜂 < 𝜀partition <
1−4𝜂

3 . For every 𝑊 ∈ H , there exists a
partition {𝐴, 𝐵, 𝐶} of 𝛿(𝑊) (possibly after splitting an edge into two copies)
such that

(i) 1 − 𝜀partition ≤ 𝑥∗ (𝐴) ≤ 1,

(ii) 1 − 𝜀partition ≤ 𝑥∗ (𝐵) ≤ 1, and

(iii) for every 𝑤 ∈ H with 𝑤 ⊊ 𝑊 and 𝑥∗ (𝛿(𝑤) ∩ 𝛿(𝑊)) ≥ 1 − 𝜀partition, we
have either 𝐴 ⊆ 𝛿(𝑤) ∩ 𝛿(𝑊) ⊆ 𝐴 ∪ 𝐶 or 𝐵 ⊆ 𝛿(𝑤) ∩ 𝛿(𝑊) ⊆ 𝐵 ∪ 𝐶.

Proof. We consider the minimal sets 𝑤 ∈ H with 𝑤 ⊆ 𝑊 and 𝑥∗ (𝛿(𝑤) ∩
𝛿(𝑊)) ≥ 1 − 𝜀partition. Because 𝑥∗ (𝛿(𝑊)) ≤ 2 + 4𝜂 and H is laminar, there
are at most two such sets 𝑤 ∈ H . If two such cuts exist, let 𝑎, 𝑏 ∈ H be
these sets, and let 𝐴 ⊆ 𝛿(𝑎) ∩ 𝛿(𝑊) with (i), 𝐵 ⊆ 𝛿(𝑏) ∩ 𝛿(𝑊) with (ii), and
𝐶 = 𝛿(𝑊) \ (𝐴 ∪ 𝐵).

If only one such set exists, let 𝑎 ∈ H be this set, and let 𝐴 ⊆ 𝛿(𝑎) ∩ 𝛿(𝑊)
with (i). Moreover, let 𝑎′ ∈ H be maximal with 𝑎 ⊆ 𝑎′ ⊊ 𝑊 . Then 𝑥∗ (𝛿(𝑎′) ∩
𝛿(𝑊)) ≤ 1 + 6𝜂 by Proposition 10.8 and thus 𝑥∗ (𝛿(𝑊) \ 𝛿(𝑎′)) ≥ 1 − 6𝜂 ≥
1− 𝜀partition. We choose 𝐵 ⊆ 𝛿(𝑊) \ 𝛿(𝑎′) with (ii) and let 𝐶 = 𝛿(𝑊) \ (𝐴∪ 𝐵).

If no set 𝑤 ∈ H with 𝑤 ⊊ 𝑊 and 𝑥∗ (𝛿(𝑤) ∩ 𝛿(𝑊)) ≥ 1 − 𝜀partition exists,
let {𝐴, 𝐵, 𝐶} be an arbitrary partition of 𝛿(𝑊) with (i) and (ii). This may
require replacing an edge 𝑒 by two copies 𝑒1, 𝑒2 with the same endpoints and
𝑥∗
𝑒1 + 𝑥∗𝑒2 = 𝑥

∗
𝑒. □

A partition 𝐴, 𝐵, 𝐶 of 𝛿(𝑊) as in Lemma 11.18 is called an 𝜀partition-degree
partition of 𝛿(𝑊). Because 𝛿(𝑊) is an 𝜂-mincut, in an 𝜀partition-degree partition
{𝐴, 𝐵, 𝐶}, we have 𝑥∗ (𝐶) ≤ 4𝜂 + 2𝜀partition. In the following, we fix for every
𝑊 ∈ H some 𝜀partition-degree partition 𝐴𝑊 , 𝐵𝑊 , 𝐶𝑊 .
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Definition 11.19 (2-1-1-happy, 2-1-1-good). For a tree 𝑆 ∈ S, we say that an
edge bundle 𝑒 = {𝑣, 𝑤} (and every edge of this bundle) is 2-1-1-happy with
respect to 𝑤 if

• |𝛿𝑆 (𝑣) | = 2,

• |𝑆 ∩ 𝐴𝑤 | = |𝑆 ∩ 𝐵𝑤 | = 1 and |𝑆 ∩ 𝐶𝑤 | = 0, and

• (𝑣, 𝑆[𝑣]) and (𝑤, 𝑆[𝑤]) are trees.

An edge bundle 𝑒 = {𝑣, 𝑤} (end every edge of this bundle) is 2-1-1-good with
respect to 𝑤 if the probability that 𝑒 is 2-1-1-happy with respect to 𝑤 is at least 𝛾.

Now we define the reduction 𝑟 𝑓 for an edge bundle 𝑓 = {𝑣, 𝑤}. If 𝑓 is a bad
edge bundle, we define 𝑟 𝑓 = 0 as before. Otherwise, we define events 𝑅 𝑓 ,𝑣 and
𝑅 𝑓 ,𝑤 of probability 𝛾 as follows. If 𝑓 is 2-1-1-good with respect to 𝑣, then 𝑅 𝑓 ,𝑣
is a subevent of probability 𝛾 of the event that 𝑓 is 2-1-1-happy with respect to 𝑣.
If 𝑓 is not 2-1-1-good with respect to 𝑣, then 𝑅 𝑓 ,𝑣 is a subevent of probability 𝛾
of the event that 𝑓 is 2-2-happy. Such an event exists, because 𝑓 is not a bad
edge. 𝑅 𝑓 ,𝑤 is defined analogously. These subevents are defined by additional
independent Bernoulli variables as in the original definition of the reduction
events in Section 11.1. Finally, we define

𝑟 𝑓 := 𝑥∗𝑒 · 1
2 ·

(
1𝑅 𝑓 ,𝑣

+ 1𝑅 𝑓 ,𝑤

)
. (11.11)

Note that we still have E[𝑟 𝑓 ] = 𝛾 · 𝑥∗𝑓 for every 2-2-good edge bundle 𝑓 and
that the two top cuts of 𝑓 are even whenever 𝑟 𝑓 > 0,

Let us now discuss how the refined definition (11.11) of the reduction vector 𝑟
allows us to handle the remaining case where for some 𝑗 ∈ {1, . . . , ℎ}, we have
𝑥∗ (𝛿↑ (𝑢)) ≈ 𝑥∗ (𝛿 𝑗 (𝑢)) ≈ 1. By Lemma 11.18, we have 𝐴𝑈 𝑗 ⊆ 𝛿(𝑢) ∩ 𝛿(𝑈 𝑗 ) ⊆
𝐴𝑈 𝑗 ∪ 𝐶𝑈 𝑗 or 𝐵𝑈 𝑗 ⊆ 𝛿(𝑢) ∩ 𝛿(𝑈 𝑗 ) ⊆ 𝐵𝑈 𝑗 ∪ 𝐶𝑈 𝑗 . See Figure 11.7.

Therefore, if an edge 𝑓 ∈ 𝛿 𝑗 (𝑢) is 2-1-1-good with respect to𝑈 𝑗 , then in the
event 𝑅 𝑓 ,𝑈 𝑗

, we have |𝐴𝑈 𝑗 ∩ 𝑆 | = |𝐵𝑈 𝑗 ∩ 𝑆 | = 1 and |𝐶𝑈 𝑗 ∩ 𝑆 | = 0 and thus
|𝛿(𝑢) ∩ 𝛿(𝑈 𝑗 ) ∩ 𝑆 | = 1. Moreover, conditioned on 𝑅 𝑓 ,𝑈 𝑗

, the graph (𝑈 𝑗 , 𝑆[𝑈 𝑗 ])
is a spanning tree, and this tree is sampled independently from 𝑆 \ 𝑆[𝑈 𝑗 ]
(Lemma 5.18). Using 𝑥∗ (𝛿(𝑢) \ 𝛿(𝑈 𝑗 )) ≈ 1, one can conclude that conditioned
on the event 𝑅 𝑓 ,𝑈 𝑗

, the probability that |𝛿𝑆 (𝑢) | = 2 is close to 1. Therefore, it
suffices to show that a large-enough fraction of the edges in 𝛿 𝑗 (𝑢) is bad or
2-1-1-good with respect to𝑈 𝑗 . Karlin, Klein, and Oveis Gharan [2021] proved
that this is indeed the case, relying again on the fact that the distribution 𝜇 is
strongly Rayleigh.
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𝑢

𝑈 𝑗

𝑈 𝑗+1

𝐴𝑈 𝑗

𝐵𝑈 𝑗

𝐶𝑈 𝑗

Figure 11.7 The figure shows an example of the sets 𝑢 ,𝑈 𝑗 , and𝑈 𝑗+1 together
with the edges in 𝛿 (𝑢) and in 𝛿 (𝑈 𝑗 ) . The edges in 𝛿 (𝑢) ∩ 𝛿 (𝑈 𝑗 ) are dashed,
while other edges are dotted. The colors of the edges indicate the 𝜀partition-degree
partition of 𝛿 (𝑈 𝑗 ) into 𝐴𝑈 𝑗 (red), 𝐵𝑈 𝑗 (orange), and 𝐶𝑈 𝑗 (blue).

11.5 Polygons

So far, we have assumed that the hierarchyH does not contain polygons. In this
section, we discuss how Karlin, Klein, and Oveis Gharan [2021] removed this
assumption.

Recall that a triangle is a set𝑈 ∈ H in the hierarchy with exactly two children
𝑣, 𝑤 ∈ H . Then we have 𝑥∗ (𝛿(𝑈)) ≈ 2, and for the edge bundle {𝑢, 𝑤}, we
have 𝑥∗{𝑢,𝑤} ≈ 1. Triangles are a special case of polygons, but it turns out
that all polygons can be treated analogously to triangles. Recall that a polygon
𝑃 ∈ H has children 𝐴1, . . . , 𝐴𝑘 (numbered from left to right), and for all
𝑗 ∈ {1, . . . , 𝑘 − 1}, the set 𝐴 𝑗 ∪ 𝐴 𝑗+1 is a 4𝜂-mincut by Proposition 10.14. Thus,
we have 𝑥∗ ({𝐴 𝑗 , 𝐴 𝑗+1}) ≈ 1 for all 𝑗 ∈ {1, . . . , 𝑘 − 1} (see Figure 11.8 and
Exercise 10.3).

We will define the slack vector 𝑠𝑒 to be the same on all edge bundles
𝑒 = {𝐴 𝑗 , 𝐴 𝑗+1} for 𝑗 = 1, . . . , 𝑘 − 1. Then the slack of 𝛿(𝑊) for every left-
relevant set𝑊 is almost equal to the slack of 𝛿(𝐴1), and the slack of 𝛿(𝑊) for
every right-relevant set 𝑊 is almost equal to the slack of 𝛿(𝐴𝑘). In order to
obtain (iii) of Theorem 11.15, it therefore essentially suffices to consider the
case 𝑘 = 2 (i.e., the case where 𝑃 is a triangle). For general polygons, one has
to take into account the existence of edges that connect two non-adjacent atoms
or an inner atom with the complement of the polygon, but the total 𝑥∗-value of
these edges is very small, and hence they can essentially be ignored. Therefore,
in the following discussion, we will assume that all polygons are triangles.

The reason why we could not handle triangles with the methods described so
far is that for triangles, a responsibility assignment with the desired properties
(cf. Lemma 11.3) does not exist. Indeed, if 𝑈 ∈ H is a triangle, we have
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𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

Figure 11.8 A polygon (here with atoms 𝐴1, . . . , 𝐴5) looks like the picture on the
left. Every pair of parallel red edges stands for a set of edges with total 𝑥∗ value
very close to 1. Other edges 𝑒 (like those shown in green, dotted) may exist, but
with 𝑥∗𝑒 very small. Therefore, a polygon behaves like a triangle (shown on the
right).

∑
𝑢∈C (𝑈) 𝑥

∗ (𝛿↑ (𝑢)) = 𝑥∗ (𝛿(𝑈)) ≈ 2 · 𝑥∗ (𝐸→ (𝑈)), and hence there does not
exist a responsibility assignment as in Lemma 11.3. Because the edges in 𝐸→ (𝑈)
all belong to the same edge bundle, we define 𝑎(𝑢, 𝑒) = 𝑥∗ (𝛿↑ (𝑢)) for both sets
𝑢 ∈ C (𝑈) and this edge bundle 𝑒. This results in

∑
𝑢∈C (𝑈) 𝑎(𝑢, 𝑒) ≈ 2 ≈ 2 · 𝑥∗𝑒;

in other words, we assign roughly twice as much to the edges 𝑒 ∈ 𝐸→ (𝑈) as for
non-triangles.

Call an edge (bundle) 𝑒 a triangle edge (bundle) if 𝑒 ∈ 𝐸→ (𝑈) for some
triangle 𝑈 ∈ H and a non-triangle edge (bundle), otherwise. Because the
condition (iii) in Theorem 11.15 asks for 𝑠(𝛿(𝑢)) to be nonnegative whenever
|𝛿𝑆 (𝑢)∩𝛿𝑆 (𝑈) | is even – in contrast to condition (ii), which asked for nonnegative
slack for sets 𝑤 whose parent is not a polygon when |𝛿𝑆 (𝑤) | is odd – we adjust
the definition of the increase event for triangle edge bundles accordingly. For a
triangle edge bundle 𝑒 = {𝑢, 𝑣}, where𝑈 is the parent of 𝑢 and 𝑣, this leads to
the following choice of the increase vector:

𝑖𝑒 =
𝑎(𝑢, 𝑒)
𝑥∗ (𝛿↑ (𝑢))

·
∑︁

𝑓 ∈ 𝛿↑ (𝑢)
𝑟 𝑓 · 1[|𝛿𝑆 (𝑢) ∩ 𝛿𝑆 (𝑈) | is even]

+ 𝑎(𝑣, 𝑒)
𝑥∗ (𝛿↑ (𝑣))

·
∑︁

𝑓 ∈ 𝛿↑ (𝑣)
𝑟 𝑓 · 1[|𝛿𝑆 (𝑣) ∩ 𝛿𝑆 (𝑈) | is even]

=
∑︁

𝑓 ∈ 𝛿↑ (𝑢)
𝑟 𝑓 · 1[|𝛿𝑆 (𝑢) ∩ 𝛿𝑆 (𝑈) | is even]

+
∑︁

𝑓 ∈ 𝛿↑ (𝑣)
𝑟 𝑓 · 1[|𝛿𝑆 (𝑣) ∩ 𝛿𝑆 (𝑈) | is even] .

In fact, it is sufficient to increase the slack on 𝑒 by the maximum of these two
summands – that is, we can define the increase for triangle edge bundles as
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𝑎 𝑏

𝑈

𝑓

𝐴𝑈 𝐵𝑈

Figure 11.9 The figure illustrates the choice of the 𝜀partition-degree partition for
a triangle 𝑈 with children 𝑎, 𝑏 ∈ H. The green edges form the edge bundle
𝑓 = {𝑎, 𝑏}. We have𝑈 = 𝑎 ∪ 𝑏 and 𝑥 (𝐴𝑈 ) ≈ 𝑥 (𝐵𝑈 ) ≈ 𝑥 𝑓 ≈ 1.

follows:

𝑖𝑒 := max
{ ∑

𝑓 ∈ 𝛿↑ (𝑢) 𝑟 𝑓 · 1[|𝛿𝑆 (𝑢) ∩ 𝛿𝑆 (𝑈) | is even],∑
𝑓 ∈ 𝛿↑ (𝑣) 𝑟 𝑓 · 1[|𝛿𝑆 (𝑣) ∩ 𝛿𝑆 (𝑈) | is even]

}
.

(11.12)

If only at most one of the two terms in the maximum is positive at each time,
this does not change the increase vector at all. If both terms are positive at
the same time, however, then the increase on 𝑒 is smaller with this modified
definition (11.12), which will turn out to be useful.

To handle the issue that triangle edge bundles need to compensate the
reduction for twice as many edges (in terms of 𝑥∗ value) than non-triangle
ones, Karlin, Klein, and Oveis Gharan [2021] made several modifications of
the approach discussed so far. The first modification is to reduce triangle edge
bundles by a larger amount than non-triangle edge bundles (i.e., we simply scale
up their reduction 𝑟𝑒 by some constant factor). This will violate condition (i) of
Theorem 11.15, but this can easily be fixed by scaling the final random slack
vector 𝑠 down (e.g., by 1

2 ).
Of course, this change alone is not sufficient. If we reduce triangle edge

bundles by too much, then a new issue arises when non-triangle edge bundles
have to compensate for the reduction of triangle edge bundles. Moreover, this
scaling of the reduction for triangle edge bundles does not help when triangle
edge bundles have to compensate for the reduction of other triangle edge bundles.

To address these issues, Karlin, Klein, and Oveis Gharan [2021] defined
the reduction event 𝑅 𝑓 for triangle edge bundles 𝑓 in a very careful way. Let
𝑈 ∈ H be a triangle with children 𝑎, 𝑏 ∈ H . We choose the 𝜀partition-degree
partition of 𝛿(𝑈) (cf. Lemma 11.18) as 𝐴𝑈 = 𝛿↑ (𝑎), 𝐵𝑈 = 𝛿↑ (𝑏), and 𝐶𝑈 = ∅.
See Figure 11.9. Using properties of strongly Rayleigh distributions, Karlin,
Klein, and Oveis Gharan [2021] proved that for a sufficiently small choice of
the constants 𝛾 > 0 and 𝜂 > 0 (where 𝛾 is much larger than 𝜂), there exists an
event 𝑅𝑈 such that



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

11.5 Polygons 255

• the probability of 𝑅𝑈 is 𝛾,
• in the event 𝑅𝑈 , we always have that (𝑈, 𝑆[𝑈]) is a tree and |𝑆 ∩ 𝐴𝑈 | =
|𝑆 ∩ 𝐵𝑈 | = 1, implying that the triangle𝑈 is left-happy and right-happy,

• when conditioning on 𝑅𝑈 , the marginals on the edges in 𝐴𝑈 and 𝐵𝑈 are
approximately preserved – that is,∑︁

𝑒∈𝐴𝑈

���P[𝑒] − P[𝑒 |𝑅𝑈] ��� ≈ 0,∑︁
𝑒∈𝐵𝑈

���P[𝑒] − P[𝑒 |𝑅𝑈] ��� ≈ 0,

• when conditioning on 𝑅𝑈 , the random variables 𝑆[𝑈] and 𝑆/𝑈 are indepen-
dent, and the distribution of 𝑆[𝑈] when conditioning on 𝑅𝑈 is the same as
when conditioning on (𝑈, 𝑆[𝑈]) being a tree.

Except for the condition that (𝑈, 𝑆[𝑈]) is a tree, the first three properties
only involve edges of 𝑆/𝑈. Once we have these, the last condition can be
obtained easily in addition because conditioned on (𝑈, 𝑆[𝑈]) being a tree,
𝑆[𝑈] is independent of 𝑆/𝑈 by Lemma 5.18. Obtaining the other properties is
substantially more difficult.

We now show how to use the event 𝑅𝑈 defined above. For the triangle edge
bundle 𝑓 = {𝑎, 𝑏}, we choose 𝑅 𝑓 = 𝑅𝑈 , where𝑈 is the parent of 𝑎 and 𝑏. The
fact that the marginals for edges in 𝐴𝑈 and 𝐵𝑈 are approximately preserved
when conditioning on 𝑅 𝑓 is useful for two reasons.

First, consider a set𝑊 ∈ H with𝑊 ⊊ 𝑈 and hence without loss of generality
𝑊 ⊆ 𝑎. We now want to show that conditioned on 𝑅𝑈 , the probability of
|𝛿𝑆 (𝑊) | being odd is small. Recall that in the setting without triangles, we were
just aiming to upper bound this probability by any constant strictly smaller
than 1. Now we will aim for the much smaller bound of 0.5678.

Conditioned on the event 𝑅𝑈 , we have |𝛿𝑆 (𝑊) ∩𝛿𝑆 (𝑈) | ≤ |𝛿𝑆 (𝑎) ∩𝛿𝑆 (𝑈) | =
1, and thus |𝛿𝑆 (𝑊) ∩ 𝛿𝑆 (𝑈) | is a Bernoulli random variable. Moreover, condi-
tioned on the event 𝑅𝑈 , the sampling of the tree (𝑈, 𝑆[𝑈]) is independent of
the random variable |𝛿𝑆 (𝑊) ∩ 𝛿𝑆 (𝑈) | by the last property of the event 𝑅𝑈 . One
can show that conditioning on (𝑈, 𝑆[𝑈]) being a tree yields another strongly
Rayleigh distribution. Hence, by the last property of 𝑅𝑈 and Lemma 11.12,
|𝛿(𝑊)∩𝑆[𝑈] | obeys the law of a sum of independent Bernoulli random variables
conditioned on 𝑅𝑈 . Because |𝛿𝑆 (𝑊) | = |𝛿𝑆 (𝑊) ∩ 𝛿𝑆 (𝑈) | + |𝛿(𝑊) ∩ 𝑆[𝑈] |, we
conclude that there exist independent Bernoulli random variables 𝐵1, . . . , 𝐵𝑞
such that P𝑆∼𝜇

[
|𝛿𝑆 (𝑊) | = 𝑘

�� 𝑅𝑈 ]
= P[𝐵1 + · · · + 𝐵𝑞 = 𝑘] for all 𝑘 . Because

P𝑆∼𝜇
[
|𝛿𝑆 (𝑊) | = 0

�� 𝑅𝑈 ]
= 0, at least one of the Bernoulli random variables

𝐵1, . . . , 𝐵𝑞 , say 𝐵1, is equal to 1 with probability one. Thus, the probability
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P𝑆∼𝜇
[
|𝛿𝑆 (𝑊) | is odd

�� 𝑅𝑈 ]
is equal to P[𝐵2 + · · · + 𝐵𝑞 is even]. Using that by

the definition of 𝑅𝑈 the marginals on the edges in 𝛿𝑆 (𝑊) are approximately
preserved when conditioning on 𝑅𝑈 , we obtain

1+E[𝐵2+· · ·+𝐵𝑞] = E𝑆∼𝜇
[
|𝛿𝑆 (𝑊) |

�� 𝑅𝑈 ]
≈ E𝑆∼𝜇

[
|𝛿𝑆 (𝑊) |

]
= 𝑥∗ (𝛿(𝑊)) ≈ 2

and thus E[𝐵2 + · · · + 𝐵𝑞] ≈ 1. With Lemma 11.14, we get P[𝐵2 + · · · +
𝐵𝑞 is even] < 0.5678 and hence the desired good bound on the probability of
|𝛿𝑆 (𝑊) | being odd.

This directly implies a better bound on the necessary increase for non-triangle
edges compensating for the reduction of triangle edges as follows. Consider a
non-triangle edge 𝑒 with top cut𝑊 that needs to (partially) compensate for the
reduction of a triangle edge 𝑔 ∈ 𝛿↑ (𝑊). We have shown P𝑆∼𝜇

[
|𝛿𝑆 (𝑊) | is odd

��
𝑅𝑔

]
< 0.5678. This improvement allows us to scale up the reduction vector

for triangle edge bundles by almost 1
0.5678 and maintain sufficiently negative

expected slack on non-triangle edges. Karlin, Klein, and Oveis Gharan [2021]
chose the scaling factor to be approximately 1.7513, which is strictly smaller
than 1

0.5678 .
We still need to ensure sufficiently negative expected slack on triangle edges.

Consider a triangle𝑊 ∈ H , and denote the children of𝑊 by 𝑢 and 𝑣. For the
edges bundle 𝑒 = {𝑢, 𝑣}, we have

E[𝑠𝑒] = E[𝑖𝑒] − E[𝑟𝑒] = E[𝑖𝑒] − 1.7513 · 𝛾 · 𝑥∗𝑒 . (11.13)

Moreover, a similar argument as above can be used to show that for a triangle
edge 𝑓 ∈ 𝛿(𝑊), we have P[|𝛿𝑆 (𝑢) ∩ 𝛿𝑆 (𝑊) | even | 𝑅 𝑓 ] ≤ 0.5678, implying

E
[
𝑟 𝑓 ·1

[
|𝛿𝑆 (𝑣) ∩𝛿𝑆 (𝑊) | is even

] ]
≤ 1.7513 ·𝑥∗𝑓 ·𝛾 ·0.5678 < 𝛾 ·𝑥∗𝑓 (11.14)

becauseP[𝑅 𝑓 ] = 𝛾. On the other hand, for non-triangle edges 𝑓 , we have 𝑟 𝑓 ≤ 𝑥∗𝑓
and P[𝑟 𝑓 > 0] = P[𝑅 𝑓 ] = 𝛾. Hence, we obtain E[𝑖𝑒] ≤ 𝑥∗ (𝛿(𝑊)) · 𝛾 ≈ 2𝛾 ≈
2𝛾 · 𝑥∗𝑒. Combining this with (11.13) is unfortunately not enough to prove that
the slack vector is sufficiently negative as required by Theorem 11.15 (iv). To
handle this, Karlin, Klein, and Oveis Gharan [2021] distinguished two cases.

First, consider a triangle 𝑢 whose parent in the hierarchy is another triangle𝑈.
In this case, Karlin, Klein, and Oveis Gharan [2021] used again the marginal-
preserving property of the reduction events for triangles. To explain this, let us
assume for simplicity that 𝑥∗ (𝛿(𝑈)) = 𝑥∗ (𝛿(𝑢)) = 2 and 𝑥∗ (𝛿(𝑢) ∩ 𝛿(𝑈)) = 1,
which is in general only true approximately. Moreover, we will assume that
for the children 𝑎 and 𝑏 of the triangle 𝑢, we have 𝑥∗ (𝛿(𝑎)) = 𝑥∗ (𝛿(𝑏)) =
2 and 𝑥∗ (𝛿(𝑎) ∩ 𝛿(𝑢)) = 𝑥∗ (𝛿(𝑏) ∩ 𝛿(𝑢)) = 1, which in general is also
only true approximately. See Figure 11.10. These assumptions will simplify
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𝑈

𝑤𝑢

𝑏

𝑎

𝑥∗ ( 𝑓 ) = 1

𝛼 1 − 𝛼

1 − 𝛼 𝛼

1

Figure 11.10 A triangle 𝑢 with children 𝑎 and 𝑏, where the parent 𝑈 of 𝑢 is
also a triangle. The triangle edge bundle 𝑓 = {𝑎, 𝑏} is shown in blue. The
edges shown in red are the edges in 𝐴𝑢 = 𝛿 (𝑎) ∩ 𝛿 (𝑢); the edges shown in
orange are those in 𝐵𝑢 = 𝛿 (𝑏) ∩ 𝛿 (𝑢) . The edges leaving 𝑈 shown on the
left are those in 𝐴𝑈 = 𝛿 (𝑢) ∩ 𝛿 (𝑈) , and those edges leaving 𝑈 on the right
of this picture (shown in green) are those in 𝐵𝑈 = 𝛿 (𝑤) ∩ 𝛿 (𝑈) . We have
𝑥∗ (𝐴𝑢 ) ≈ 𝑥∗ (𝐵𝑢 ) ≈ 𝑥∗ (𝐴𝑈 ) ≈ 𝑥∗ (𝐵𝑈 ) ≈ 1. For simplicity, we assume in this
example that these equations are fulfilled exactly and not just approximately. Then
the numbers written next to the edges denote their 𝑥∗ value.

our calculations, but essentially the same argument works in the general
case. Let 𝛼 := 𝑥∗ (𝛿(𝑎) ∩ 𝛿(𝑈)). Then 𝑥∗ (𝛿(𝑏) ∩ 𝛿(𝑈)) = 1 − 𝛼. Moreover,
𝑥∗ (𝛿(𝑎) ∩ 𝐸→ (𝑈)) = 1 − 𝛼 and 𝑥∗ (𝛿(𝑏) ∩ 𝐸→ (𝑈)) = 𝛼.

We calculate the expected slack E[𝑠 𝑓 ] for the triangle edge bundle 𝑓 = {𝑎, 𝑏}.
The edges in 𝐸→ (𝑈) belong to the same edge bundle {𝑢, 𝑤} and are thus all
reduced simultaneously in the event 𝑅𝑈 . Thus, the increase vector (11.12) here
is

𝑖 𝑓 = max
{ ∑︁
𝑔∈ 𝛿↑ (𝑎)

𝑟𝑔 · 1
[
|𝐴𝑢 | is even

]
,

∑︁
𝑔∈ 𝛿↑ (𝑏)

𝑟𝑔 · 1
[
|𝐵𝑢 | is even

] }
≤ max

{ ∑︁
𝑔∈𝐸 [𝑈 ]∩𝛿 (𝑎)

𝑟𝑔 · 1
[
|𝐴𝑢 | is even

]
,

∑︁
𝑔∈𝐸 [𝑈 ]∩𝛿 (𝑏)

𝑟𝑔 · 1
[
|𝐵𝑢 | is even

]}
+

∑︁
𝑔∈ 𝛿 (𝑈)∩𝛿 (𝑎)

𝑟𝑔 · 1
[
|𝐴𝑢 | is even

]
+

∑︁
𝑔∈ 𝛿 (𝑈)∩𝛿 (𝑏)

𝑟𝑔 · 1
[
|𝐵𝑢 | is even

]
≤ max

{
𝑥∗ (𝐸 [𝑈] ∩ 𝛿(𝑎)) · 1.7513 · 1[𝑅𝑈] · 1

[
|𝐴𝑢 | is even

]
,

𝑥∗ (𝐸 [𝑈] ∩ 𝛿(𝑏)) · 1.7513 · 1[𝑅𝑈] · 1
[
|𝐵𝑢 | is even

] }
+

∑︁
𝑔∈ 𝛿 (𝑈)∩𝛿 (𝑎)

𝑟𝑔 · 1
[
|𝐴𝑢 | is even

]
+

∑︁
𝑔∈ 𝛿 (𝑈)∩𝛿 (𝑏)

𝑟𝑔 · 1
[
|𝐵𝑢 | is even

]
.



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

258 Proving the Main Payment Theorem for Hierarchies

Hence, we can bound the expectation by

E[𝑖 𝑓 ] ≤ max{𝛼, 1 − 𝛼} · P
[
|𝐴𝑢 | or |𝐵𝑢 | is even

�� 𝑅𝑈 ]
· 1.7513 · 𝛾

+
∑︁

𝑔∈ 𝛿 (𝑈)∩𝛿 (𝑎)
𝑟𝑔 · P

[
|𝐴𝑢 | is even

�� 𝑅𝑔 ]
+

∑︁
𝑔∈ 𝛿 (𝑈)∩𝛿 (𝑏)

𝑟𝑔 · P
[
|𝐵𝑢 | is even

�� 𝑅𝑔 ]
≤ max{𝛼, 1 − 𝛼} · P

[
|𝐴𝑢 | or |𝐵𝑢 | is even

�� 𝑅𝑈 ]
· 1.7513 · 𝛾

+ 𝑥∗ (𝛿(𝑈) ∩ 𝛿(𝑎)) · 𝛾 + 𝑥∗ (𝛿(𝑈) ∩ 𝛿(𝑏)) · 𝛾
= max{𝛼, 1 − 𝛼} · P

[
|𝐴𝑢 | or |𝐵𝑢 | is even

�� 𝑅𝑈 ]
· 1.7513 · 𝛾 + 𝛾,

where we used E[𝑟𝑔] ≤ 𝛾 · 𝑥∗𝑔 for non-triangle edges 𝑔 and (11.14) for triangle
edges 𝑔 ∈ 𝛿(𝑢) ∩ 𝛿(𝑈).

Conditioned on the reduction event 𝑅𝑈 for the triangle𝑈, we have |𝛿𝑆 (𝑢) ∩
𝛿𝑆 (𝑈) | = 1 by the choice of 𝑅𝑈 . Moreover, the marginals of the edges in
𝛿(𝑢) ∩ 𝛿(𝑈) are approximately preserved, implying that conditioned on 𝑅𝑈 , we
have with probability approximately 𝛼 that the one edge in 𝛿𝑆 (𝑢) ∩ 𝛿𝑆 (𝑈) is
contained in 𝛿(𝑎), and with probability roughly 1 − 𝛼, it is contained in 𝛿(𝑏).
Because 𝑥∗ (𝛿(𝑈)) = 2, Proposition 10.8 implies that (𝑈, 𝑆[𝑈]) is always a tree.
Thus 𝑥∗ (𝐸→ (𝑈)) = 1 implies that we always have |𝑆 ∩ 𝐸→ (𝑈) | = 1. Because
the marginals of edges in 𝐸→ (𝑈) are preserved when conditioning on 𝑅𝑈 (by
the last condition of the definition of 𝑅𝑈), the one edge in 𝑆 ∩ 𝐸→ (𝑈) will
be contained in 𝛿(𝑎) with probability 1 − 𝛼 and in 𝛿(𝑏) with probability 𝛼.
Moreover, conditioned on 𝑅𝑈 , the edge in 𝛿𝑆 (𝑢) ∩ 𝛿𝑆 (𝑈) is independent of
𝑆[𝑈]. Still conditioned on 𝑅𝑈 , we have |𝐴𝑢 | even if and only if |𝐵𝑢 | even, and
this happens with probability

P
[
|𝐴𝑢 | or |𝐵𝑢 | is even

�� 𝑅𝑈 ]
= 2 · 𝛼 · (1 − 𝛼),

implying (with (11.13))

E[𝑠 𝑓 ] = max{𝛼, 1 − 𝛼} · P
[
|𝐴𝑢 | or |𝐵𝑢 | is even

�� 𝑅𝑈 ]
· 1.7513 · 𝛾 + 𝛾

− 1.7513 · 𝛾
≤ max

𝛼∈[0.5,1]
2 · 𝛼2 (1 − 𝛼) · 1.7513 · 𝛾 − 0.7513 · 𝛾

≤ −0.23 · 𝛾.

We conclude that Theorem 11.15 (iv) is fulfilled for the triangle edge bundle 𝑓
if the parent 𝑈 of the triangle 𝑢 with 𝑓 = 𝐸→ (𝑢) in the hierarchyH is also a
triangle.

Finally, we have to consider triangles 𝑢 ∈ H whose parent in H is not a
triangle. To handle this case, Karlin, Klein, and Oveis Gharan [2021] introduced
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𝑈

𝑢

𝑓

𝑒

Figure 11.11 If the edge bundle 𝑒 (shown in red) is bad, then 𝑒 is a half-edge
bundle. Because 𝑒 is never reduced, the edge bundle 𝑓 ∈ 𝐸→ (𝑢) (shown in blue)
does not need to be increased in order to compensate for reductions of 𝑒.

𝑈

𝑢

𝑓

𝑒2

𝑒1

Figure 11.12 Illustration of the situation in which we choose the reduction events
of the half-edge bundles 𝑒1 and 𝑒2 (shown in red) to be identical. By increasing
the slack on the edge bundle 𝑓 = 𝛿→ (𝑢) (shown in blue), we can simultaneously
compensate for the reduction on both 𝑒1 and 𝑒2.

another refinement of the definition of the reduction 𝑟𝑒 for non-triangle edge
bundles 𝑒. Consider a triangle 𝑢 with parent 𝑈 ∈ H . If there is a bad edge
bundle 𝑒 with top cut 𝑢, then 𝑟𝑒 = 0 and thus the edge bundle 𝑓 = 𝐸→ (𝑢) does
not need to compensate for any reduction on 𝑒. See Figure 11.11. Because every
bad edge bundle is a half-edge, this is sufficient to prove that the expectation of
𝑠 𝑓 is sufficiently negative (i.e., it fulfills Theorem 11.15 (iv)). Similarly, if there
is a bundle 𝑒 with top cut 𝑢 that is 2-1-1-good with respect to 𝑢, then in half of
the cases when 𝑒 is reduced, the edge bundle 𝑓 does not need to be increased
to compensate for the reduction of 𝑒. If the sum of values 𝑥∗𝑒 for all such edge
bundles 𝑒 is at least about 1

2 , this is again sufficient to prove that the expectation
of 𝑠 𝑓 is sufficiently negative.

Karlin, Klein, and Oveis Gharan [2021] proved that if none of these two
situations arises, then there are two half-edge bundles 𝑒1, 𝑒2 with top cut 𝑢
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such that most of 𝑒1 is a subset of 𝐴𝑢, most of 𝑒2 is a subset of 𝐵𝑢, and with
probability at least 𝛾, the top cuts of both 𝑒1 and 𝑒2 are simultaneously even.
See Figure 11.12. Then we can choose the reduction events 𝑅𝑒1 ,𝑢 and 𝑅𝑒2 ,𝑢

to be identical (see (11.11)). If we do this, we need to increase the slack on
the edge bundle 𝑓 only once to compensate simultaneously for the increase
on both 𝑒1 and 𝑒2; see the definition (11.12) of the increase vector for triangle
edge bundles. These savings again turn out to be sufficient to prove that 𝑠 𝑓 is
sufficiently negative.

11.6 Derandomization

Karlin, Klein, and Oveis Gharan [2023] managed to derandomize their algorithm
and finally settled the question of improving on Christofides’ algorithm in a
deterministic way:

Theorem 11.20 (Karlin, Klein, and Oveis Gharan [2023]). There is a determin-
istic 𝛼-approximation algorithm for Symmetric TSP with Triangle Inequality
for some 𝛼 < 3

2 .

In this section, we sketch the main ideas that Karlin, Klein, and Oveis Gharan
[2023] used to prove Theorem 11.20. It is based on the well-known method of
conditional expectations. Recalling the proof of Theorem 10.18, we first note
that the expected cost of the output of Algorithm 10.5 is at most

E𝑆∼𝜇𝜆
[
𝑐(𝑆) + 𝑐(𝑦𝑆)

]
, (11.15)

where 𝑦𝑆 is the parity correction vector defined in (10.2), and 𝜇𝜆 is the 𝜆-uniform
distribution for the vector 𝜆 computed by the algorithm. Since the original
definition of 𝑦𝑆 involves the incidence vector 𝑜∗ of an optimum Hamiltonian
cycle (cf. (10.1)), which we of course do not know, we need to use the hierarchy
construction and the variant of the parity correction vector 𝑦𝑆 as in Section 10.5,
which in particular replaces 1

4𝑥
∗ + 1

4𝑜
∗ in (10.1) by 1

2𝑥
∗. The 𝜂-mincuts can then

be computed by Theorem 4.28, and they can be used to compute the desired
hierarchy.

Now Step (4) of Algorithm 10.5 (sampling 𝑆 from the distribution 𝜇𝜆) is
replaced by the following deterministic procedure, which decides for the edges
one by one whether to include them into 𝑆 or not. Suppose we have decided
already that 𝐸1 ⊆ 𝑆 ⊆ 𝐸 \ 𝐸0 for some disjoint subsets 𝐸0, 𝐸1 ⊆ 𝐸 such that
(𝑉, 𝐸1) is a forest and (𝑉, 𝐸 \ 𝐸0) is connected. Then our current pessimistic
estimator of the expected final cost is the conditional expectation of (11.15):

Est(𝐸0, 𝐸1) := E𝑆∼𝜇𝜆
[
𝑐(𝑆) + 𝑐(𝑦𝑆)

�� 𝐸1 ⊆ 𝑆 ⊆ 𝐸 \ 𝐸0
]
. (11.16)
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Let 𝑒 ∈ 𝐸 \ (𝐸0 ∪ 𝐸1) be the next edge we consider, and let

𝑝 := P𝑆∼𝜇𝜆
[
𝑒 ∈ 𝑆

�� 𝐸1 ⊆ 𝑆 ⊆ 𝐸 \ 𝐸0
]

be the conditional probability that 𝑒 is part of 𝑆. Note that

Est(𝐸0, 𝐸1) = 𝑝 · Est(𝐸0, 𝐸1 ∪ {𝑒}) + (1 − 𝑝) · Est(𝐸0 ∪ {𝑒}, 𝐸1). (11.17)

If 𝑝 = 1, we include 𝑒 into 𝐸1. If 𝑝 = 0, we include 𝑒 into 𝐸0. If 0 < 𝑝 < 1,
we include 𝑒 into 𝐸1 if Est(𝐸0, 𝐸1 ∪ {𝑒}) ≤ Est(𝐸0 ∪ {𝑒}, 𝐸1) and include 𝑒
into 𝐸0 otherwise. By (11.17), this guarantees that the pessimistic estimator
(11.16) never increases. In the end, there is no randomness anymore, so we are
guaranteed to obtain a tour of cost at most (11.15), which is at most 𝛼 ·OPT for
some 𝛼 < 3

2 .
The only remaining issue is how to compute the pessimistic estimator (11.16)

in deterministic polynomial time for given 𝐸0 and 𝐸1.
First, it is relatively easy to compute the conditional expectation of the cost

of the tree. To this end, contract an edge when including it into 𝐸1, and delete
an edge when including it into 𝐸0. Then P𝑆∼𝜇𝜆 [𝑒 ∈ 𝑆 | 𝐸1 ⊆ 𝑆 ⊆ 𝐸 \ 𝐸0] can
be computed for any edge 𝑒 by using Theorem 5.15 and Corollary 5.11. Hence,
E𝑆∼𝜇𝜆 [𝑐(𝑆) | 𝐸1 ⊆ 𝑆 ⊆ 𝐸 \ 𝐸0] can be computed in polynomial time. The
main difficulty is to compute the conditional expectation of the cost of 𝑦𝑆 .

From the construction of the parity correction vector 𝑦𝑆 in Chapter 10 and
this chapter, one can see that each entry can be written as the weighted sum
of indicators of events that depend on the size or on the parity of |𝐴 ∩ 𝑆 | for a
constant number of (not necessarily disjoint) edge sets 𝐴. Formally:

Lemma 11.21. There is a universal constant 𝑘 such that all entries of all parity
correction vectors 𝑦𝑆 (𝑆 ∈ S) defined in (10.2) have the form

𝑦𝑆𝑒 =
∑︁

𝑙∈{1,...,𝐿}:𝑆∈S𝑙

𝑤𝑙𝑒

where 𝐿 is bounded by a polynomial in 𝑛, and for 𝑙 = 1, . . . , 𝐿, we have 𝑤𝑙𝑒 ∈ Q
and

S𝑙 =
{
𝑆 ∈ S : |𝐴𝑙, 𝑗 ∩ 𝑆 | ≡ 𝜎𝑙, 𝑗 (mod 𝜏𝑙, 𝑗 ) for 𝑗 = 1, . . . , 𝑘𝑙

}
for some 𝑘𝑙 ∈ {0, . . . , 𝑘}, 𝐴𝑙, 𝑗 ⊆ 𝐸 and 𝜏𝑙, 𝑗 ∈ {2, 𝑛} and 𝜎𝑙, 𝑗 ∈ {0, 1, . . . , 𝜏𝑙, 𝑗 −
1} for all 𝑗 = 1, . . . , 𝑘𝑙 .

See Karlin, Klein, and Oveis Gharan [2023] for the proof of this lemma. Here
is an example:

Example 11.22. Let 𝑒 be an edge, and consider a component 𝑖𝑒 of the random
increase vector as defined in (11.4) (using (11.1)) in Section 11.1. Recall that
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we took expectations when going from the random slack vector 𝑠 to individual
deterministic slack vectors 𝑠𝑆′ (𝑆′ ∈ S) via 𝑠𝑆′𝑒 = E[𝑠𝑒 | 𝑆 = 𝑆′] for 𝑒 ∈ 𝐸 .
Similarly, we consider the increase vectors defined by 𝑖𝑆′𝑒 = E[𝑖𝑒 | 𝑆 = 𝑆′]. Let
U denote the (two-element) set of top cuts of 𝑒. For 𝑆′ ∈ S,

𝑖𝑆
′
𝑒 = E


∑︁
𝑢∈U

∑︁
𝑓 ∈ 𝛿↑ (𝑢) 𝛾-good

𝑎(𝑢, 𝑒)
𝑥∗ (𝛿↑ (𝑢))

· 𝑥∗𝑓 · 1𝑅 𝑓
· 1[|𝛿𝑆 (𝑢) | is odd]

���� 𝑆 = 𝑆′


=
∑︁
𝑢∈U

∑︁
𝑓 ∈ 𝛿↑ (𝑢) 𝛾-good

𝑎(𝑢, 𝑒)
𝑥∗ (𝛿↑ (𝑢))

· 𝑥∗𝑓 · 1[|𝛿𝑆′ (𝑢) | is odd] · P[𝑅 𝑓 | 𝑆 = 𝑆′],

where 𝑅 𝑓 is the reduction event (both top cuts of 𝑓 are even, total probability
𝛾). Fix 𝑢 ∈ U and a 𝛾-good edge 𝑓 ∈ 𝛿↑ (𝑢). Write 𝑈1 and 𝑈2 for the top
cuts of 𝑓 and 𝐴1 = 𝛿(𝑈1) and 𝐴2 = 𝛿(𝑈2). Moreover, let 𝐴3 = 𝛿(𝑢). Let
𝜏1 = 𝜏2 = 𝜏3 = 2 and 𝜎1 = 𝜎2 = 0 and 𝜎3 = 1. This defines a subset
S′ =

{
𝑆 ∈ S : |𝐴 𝑗 ∩ 𝑆 | ≡ 𝜎𝑗 (mod 𝜏𝑗 ) for 𝑗 = 1, . . . , 3

}
. By definition of the

reduction event 𝑅 𝑓 , we have

1[|𝛿𝑆′ (𝑢) | is odd] · P[𝑅 𝑓 | 𝑆 = 𝑆′] =

{
𝛾

𝛾+ if 𝑆′ ∈ S′

0 if 𝑆′ ∈ S \ S′,

where 𝛾+ := P [|𝐴1 ∩ 𝑆 | even and |𝐴2 ∩ 𝑆 | even] ≥ 𝛾. Then we can set 𝑤′𝑒 =
𝑎 (𝑢,𝑒) ·𝑥∗

𝑓
·𝛾

𝑥∗ (𝛿↑ (𝑢) ) ·𝛾+ . By taking the sum over all 𝑢 and 𝑓 , we can write 𝑖𝑆′𝑒 in the form of
Lemma 11.21.

Given Lemma 11.21, all we need to do is compute the constants 𝑤𝑙𝑒 and
the probabilities P𝑆∼𝜇𝜆

[
𝑆 ∈ S𝑙

�� 𝐸1 ⊆ 𝑆 ⊆ 𝐸 \ 𝐸0
]

for each 𝑙 = 1, . . . , 𝐿. To
compute these probabilities, we consider the graph that arises from deleting
edges in 𝐸0 and contracting edges in 𝐸1. Let 𝜆′ be the restriction of 𝜆 to the
edges of this graph. After adapting S𝑙 to S′

𝑙
by accounting for the edges in

𝐴𝑙, 𝑗 ∩ 𝐸1, it suffices to compute P𝑆∼𝜇𝜆′
[
𝑆 ∈ S′

𝑙

]
, which can be done using

Theorem 11.23. Most of the constants 𝑤𝑙𝑒 are given directly by the construction,
but for the reduction vector for triangle edges, it is more complicated. However,
also this can be reduced to the following theorem:

Theorem 11.23. Let 𝑘 be a constant. Given a connected graph 𝐺 = (𝑉, 𝐸) with
𝑛 vertices, 𝜆 ∈ R𝐸

>0, 𝜀 > 0, and 𝜏𝑗 ∈ {2, . . . , 𝑛} and 𝜎𝑗 ∈ {0, 1, . . . , 𝜏𝑗 − 1}
and 𝐴 𝑗 ⊆ 𝐸 for all 𝑗 = 1, . . . , 𝑘 . Let S denote the set of edge sets of spanning
trees in 𝐺, and let

S′ =
{
𝑆 ∈ S : |𝐴 𝑗 ∩ 𝑆 | ≡ 𝜎𝑗 (mod 𝜏𝑗 ) for 𝑗 = 1, . . . , 𝑘

}
.

Then P𝑆∼𝜇𝜆 [𝑆 ∈ S′] can be computed up to a factor (1 + 𝜀) in polynomial time.
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Proof. For a vector 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ C𝑘 , we evaluate the generating
polynomial 𝑔 of 𝜇𝜆 at 𝑧𝑒 =

∏
𝑗∈{1,...,𝑘}:𝑒∈𝐴 𝑗

𝑥 𝑗 (𝑒 ∈ 𝐸) and obtain a new
polynomial ℎ : C𝑘 → C, where

ℎ(𝑥1, . . . , 𝑥𝑘) :=
∑︁
𝑆∈S

𝜇𝜆 (𝑆)
∏
𝑒∈𝑆

∏
𝑗:𝑒∈𝐴 𝑗

𝑥 𝑗 = E𝑆∼𝜇𝜆


𝑘∏
𝑗=1
𝑥
|𝐴 𝑗∩𝑆 |
𝑗

 . (11.18)

Note that evaluating ℎ at any point 𝑥 ∈ C𝑘 can be done by computing 𝑧𝑒 =∏
𝑗∈{1,...,𝑘}:𝑒∈𝐴 𝑗

𝑥 𝑗 (𝑒 ∈ 𝐸) and evaluating 𝑔(𝑧). The latter can be done in
polynomial time by Theorem 5.19.

Let 𝜔 𝑗 = 𝑒2𝜋𝑖/𝜏 𝑗 denote the 𝜏𝑗 -th root of unity (here 𝑖 denotes the imaginary
unit). For positive integers 𝑠 and 𝑡, we have

𝑡−1∑︁
𝑟=0

𝑒2𝜋𝑖𝑟𝑠/𝑡 =

{
𝑡 if 𝑠

𝑡
∈ Z

0 if 𝑠
𝑡
∉ Z

(11.19)

(the second case follows from multiplying by 1 − 𝑒2𝜋𝑖𝑠/𝑡 and using 𝑒2𝜋𝑖 = 1).
Using (11.19) in the second equation, we compute

P𝑆∼𝜇𝜆
[
𝑆 ∈ S′

]
= P𝑆∼𝜇𝜆

[
|𝐴 𝑗 ∩ 𝑆 | ≡ 𝜎𝑗 (mod 𝜏𝑗 ) for 𝑗 = 1, . . . , 𝑘

]
= E𝑆∼𝜇𝜆


𝑘∏
𝑗=1

©« 1
𝜏𝑗

𝜏 𝑗−1∑︁
𝜌 𝑗=0

𝜔
𝜌 𝑗 ( |𝐴 𝑗∩𝑆 |−𝜎 𝑗 )
𝑗

ª®¬


=
1

𝜏1 · · · 𝜏𝑘

𝜏1−1∑︁
𝜌1=0
· · ·

𝜏𝑘−1∑︁
𝜌𝑘=0
E𝑆∼𝜇𝜆


𝑘∏
𝑗=1
𝜔
𝜌 𝑗 ( |𝐴 𝑗∩𝑆 |−𝜎 𝑗 )
𝑗


=

1
𝜏1 · · · 𝜏𝑘

𝜏1−1∑︁
𝜌1=0
· · ·

𝜏𝑘−1∑︁
𝜌𝑘=0

ℎ(𝜔𝜌1
1 , . . . , 𝜔

𝜌𝑘
𝑘
)
𝑘∏
𝑗=1
𝜔
−𝜌 𝑗𝜎 𝑗

𝑗
.

Hence, it suffices to evaluate ℎ(𝜔𝜌1
1 , . . . , 𝜔

𝜌𝑘
𝑘
) for all 𝜌 𝑗 ∈ {0, 1, . . . , 𝜏𝑗 − 1}

( 𝑗 = 1, . . . , 𝑘). Note that the number of these evaluations can be bounded by
𝑛𝑘 , which is a fixed polynomial. Exact evaluation with irrational numbers is
impossible, but it can be done with the required precision (i.e., up to a factor
1 + 𝜀). □

As the final result, we obtain:

Theorem 11.24 (Karlin, Klein, and Oveis Gharan [2023]). There is an 𝛼 < 3
2

and a deterministic algorithm that computes for any given Symmetric TSP
instance a solution of cost at most 𝛼 times the value of the LP relaxation (2.12).
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Exercises

11.1 Show that an edge that has 𝑉 \ {𝑢0, 𝑣0} as its only top cut is always
𝛾-good.

11.2 Show that the responsibility assignment of Lemma 11.3 can be done
so that for every edge bundle {𝑢, 𝑣}, there is a constant 𝜑𝑢,𝑣 such that
𝑎(𝑢, 𝑒) = 𝜑 · 𝑎(𝑣, 𝑒) for every edge 𝑒 in this edge bundle.

11.3 Show that Lemma 11.4 still holds if we redefine the increase vector 𝑖 by
taking the maximum instead of the sum of the two lines in (11.4).

11.4 Let 𝐸 be a finite set and 𝜇 a probability distribution on 2𝐸 in which the
elements are picked independently of each other – that is,

P𝑆∼𝜇 [𝐼 ⊆ 𝑆] =
∏
𝑒∈𝐼
P𝑆∼𝜇 [𝑒 ∈ 𝑆]

for all 𝐼 ⊆ 𝐸 . Show that then 𝜇 is strongly Rayleigh.
11.5 Let𝑈 be an 𝜂-mincut for 𝜂 ≤ 1

400 and 𝜇 a strongly Rayleigh distribution
of spanning trees. Prove that P𝑆∼𝜇 [|𝑆 ∩ 𝛿(𝑈) | even] ≥ 0.43.
Hint: Revisit the proof of Lemma 11.13.

11.6 Let 𝑏 and 𝑏′ be two independent Bernoulli random variables, each with
success probability 1

2 . Let 𝑏′′ := |𝑏 − 𝑏′ | be a third (not independent)
Bernoulli random variable. Prove:
(a) The sum of the three Bernoulli random variables 𝑏 + 𝑏′ + 𝑏′′ is

always even.
(b) The expectation of the sum is 3

2 .
(c) The three random variables are negatively correlated.
(d) Compute the generating polynomial 𝑔 of this distribution, and show

that the distribution is not strongly Rayleigh.
11.7 Let 𝐸bad be a set of edge bundles with the following properties:

• for any 𝑢 ∈ H , at most one edge bundle in 𝐸bad has top cut 𝑢, and
• 𝑥∗𝑒 = 1

2 and 𝑥∗ (𝛿↑ (𝑢)) ≤ 1
2 and 𝑥∗ (𝛿↑ (𝑣)) ≤ 1

2 for all 𝑒 ∈ 𝐸bad, where
𝑢 and 𝑣 are the top cuts of 𝑒.

Show that then the strengthening of Lemma 11.3 holds where we impose
the additional condition 𝑎(𝑢, 𝑒) = 0 for every edge 𝑒 that belongs to an
edge bundle in 𝐸bad with top cut 𝑢.
Note: Karlin, Klein, and Oveis Gharan [2021] showed that the above
properties hold approximately for the set of bad edge bundles.

11.8 Consider a non-triangle edge 𝑓 that is 2-1-1-good with respect to both
of its top cuts. Show that the reductions 𝑟𝑆′

𝑓
= E[𝑟 𝑓 | 𝑆 = 𝑆′] for 𝑆′ ∈ S

(cf. (11.11)) can be written in the form of Lemma 11.21.
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12

Removable Pairings

So far, all algorithms for Symmetric TSP began with a spanning tree and then
added edges to make the graph Eulerian. Mömke and Svensson [2016] had a
brilliant idea: If we begin with a 2-connected graph, we may also delete some
edges for making it Eulerian, and this may be cheaper overall. They introduced
the notion of removable pairings, which allow us to guarantee connectivity
when deleting edges. This idea led to a substantial improvement over the result
by Oveis Gharan, Saberi, and Singh [2011] (cf. Corollary 10.3) and is still used
for the best algorithm for Graph TSP that we know today (cf. Chapter 13).

12.1 Graph TSP

We will mostly consider Graph TSP in this and the next chapter. This is the
special case of Symmetric TSP where 𝑐(𝑒) = 1 for all edges 𝑒. The main
motivation for studying Graph TSP is that the worst-known integrality ratio of
the subtour LP (2.2) is attained by Graph TSP instances (cf. Proposition 2.24).
So one could try to prove the 4

3 conjecture first for this special case.
Let us restate the LP relaxation (2.12) for the special case Graph TSP:

min 𝑥(𝐸)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(12.1)

Here 𝐺 = (𝑉, 𝐸) is an instance of Graph TSP (i.e., a connected undirected
graph). We call this the Graph TSP LP, although its integral solutions are the
incidence vectors of 2-edge-connected spanning multi-subgraphs. We denote
the value of this linear program by LP(𝐺).

265
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266 Removable Pairings

By Theorem 2.31, the value of (12.1) is identical to the value of the subtour
LP (2.2) for the metric closure of 𝐺.

An undirected graph 𝐺 = (𝑉, 𝐸) with at least three vertices is called 2-
vertex-connected (or 2-connected) if 𝐺 − 𝑣 is connected for all 𝑣 ∈ 𝑉 ; here
𝐺 − 𝑣 denotes the graph 𝐺 [𝑉 \ {𝑣}], which results from 𝐺 by deleting 𝑣 and its
incident edges. In Symmetric TSP and in Graph TSP, we may restrict attention
to instances where the given graph 𝐺 is 2-connected:

Proposition 12.1. Suppose there is an 𝛼-approximation algorithm for 2-
connected instances of Symmetric TSP or Graph TSP. Then the same holds for
general instances.

Suppose for every 2-connected instance of Symmetric TSP or Graph TSP,
there is a tour of cost at most 𝜌 times the value of (2.12) or (12.1). Then the
same holds for general instances.

Proof. By induction on |𝑉 |. For instances with |𝑉 | ≤ 2, the statement is
trivial. If 𝐺 − 𝑣 is disconnected for an undirected graph 𝐺 = (𝑉, 𝐸), let
𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two graphs with𝑉1 ∪𝑉2 = 𝑉 , 𝐸1 ∪𝐸2 = 𝐸 ,
and 𝑉1 ∩ 𝑉2 = {𝑣}. By induction, the assertion holds for 𝐺1 and 𝐺2, and the
unions of tours in 𝐺1 and 𝐺2 are the tours in 𝐺, and the same holds for the LP
solutions. □

12.2 The Mömke–Svensson Theorem

We now present the key concept of Mömke and Svensson [2016].

Definition 12.2 (removable pairing). A removable pairing in a 2-connected
graph (𝑉, 𝐸) is a pair (𝑅,P) with the following properties:

(i) 𝑅 ⊆ 𝐸 ;
(ii) for each 𝑃 ∈ P, there exists a vertex 𝑣 ∈ 𝑉 and three distinct edges

𝑒1, 𝑒2, 𝑒3 incident to 𝑣 such that 𝑃 = {𝑒1, 𝑒2} ⊆ 𝑅;
(iii) the elements of P are pairwise disjoint;
(iv) for any set 𝐹 ⊆ 𝑅 with |𝐹 ∩ 𝑃 | ≤ 1 for all 𝑃 ∈ P, the graph (𝑉, 𝐸 \ 𝐹) is

connected.

The elements of 𝑅 are called removable edges and the elements of P pairs.
Figure 12.1 shows an example.

Now we can formulate and prove the main theorem of Mömke and Svensson
[2016]. It works for general weights, although it has not yet been used for general
Symmetric TSP. We follow the proof of Sebő and Vygen [2014], a variant of
the original proof.
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Figure 12.1 A 2-connected graph (left) and a removable pairing (right: dashed and
dotted edges are removable; colors and arrows indicate pairs).

Theorem 12.3 (Mömke and Svensson [2016]). Let 𝐺 = (𝑉, 𝐸) be a 2-vertex-
connected graph, 𝑐 : 𝐸 → R, and (𝑅,P) a removable pairing in 𝐺. Then one
can find a tour in 𝐺 of cost at most 4

3𝑐(𝐸) −
2
3𝑐(𝑅) in 𝑂 ((𝑛 + |P|)3) time. This

tour contains each edge of 𝐸 \ 𝑅 at least once.

Proof. Let odd(𝐸) again denote the set of odd-degree vertices of 𝐺. Let
𝑐′ (𝑒) = 𝑐(𝑒) for 𝑒 ∈ 𝐸 \ 𝑅 and 𝑐′ (𝑒) = −𝑐(𝑒) for 𝑒 ∈ 𝑅. For any odd(𝐸)-join 𝐽
in 𝐺 that intersects each pair 𝑃 ∈ P in at most one edge, we construct a tour
from 𝐸 by doubling the edges in 𝐽 \ 𝑅 and deleting the edges in 𝐽 ∩ 𝑅. This
tour has cost 𝑐(𝐸) + 𝑐′ (𝐽).

To compute an odd(𝐸)-join 𝐽 with 𝑐′ (𝐽) ≤ 1
3𝑐(𝐸) −

2
3𝑐(𝑅) = 1

3𝑐
′ (𝐸),

intersecting each pair at most once, we construct an auxiliary graph 𝐺′

with weights 𝑐′ from (𝐺, 𝑐′) as follows (cf. Figure 12.2). For each pair
𝑃 = {{𝑣, 𝑤}, {𝑣, 𝑤′}} ∈ P, we add a vertex 𝑣𝑃 and an edge {𝑣, 𝑣𝑃} of weight
zero, and we replace the two edges in 𝑃 by {𝑣𝑃 , 𝑤} and {𝑣𝑃 , 𝑤′}, keeping their
weight. Note that every new vertex has degree three.

Let 𝐸 ′ be the edge set of 𝐺′, and let odd(𝐸 ′) denote the set of odd-degree
vertices of𝐺′. Note that𝐺′ is 2-edge-connected because𝐺 is 2-vertex-connected.
Hence, every odd(𝐸 ′)-cut contains at least three edges (by Lemma 2.20).
Therefore, the vector with all components 1

3 is in the odd(𝐸 ′)-join polytope
of 𝐺′ (cf. Theorem 2.21), and even in its face defined by 𝑥(𝛿(𝑣𝑃)) = 1 for all
𝑃 ∈ P. By Theorem 2.21 and Proposition 4.19, this face is integral. Hence, there
is an odd(𝐸 ′)-join 𝐽′ in 𝐺′ with |𝛿𝐽 ′ (𝑣𝑃) | = 1 for all 𝑃 ∈ P and with weight
at most 1

3𝑐
′ (𝐸). Such a 𝐽′ can be found in 𝑂 ( |𝑉 (𝐺′) |3) time (by increasing

the weight of the edges incident to 𝑣𝑃 , for all 𝑃 ∈ P, by a large constant and
applying Corollary 1.30). It corresponds to an odd(𝐸)-join 𝐽 in𝐺 that intersects
each pair at most once and has weight at most 1

3𝑐
′ (𝐸). □
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−1 1 −1

−1

−1

Figure 12.2 Proof of Theorem 12.3. The graph 𝐺′ on the left results from 𝐺 and
(𝑅, P) in Figure 12.1. Squares denote odd-degree vertices. Here |𝐸 | = 12 and
|𝑅 | = 8. As 𝐽 ′ one could choose, for example, the five edges whose weight is
shown (assuming that all edges of𝐺 had unit weight). This leads to the tour shown
on the right.

So for a given instance 𝐺 of Graph TSP, we should try to find a 2-connected
spanning subgraph with few edges and a removable pairing with many removable
edges. This is not easy: Even for the problem of finding a smallest 2-connected
spanning subgraph, the best-known approximation ratio is 4

3 (Bosch-Calvo,
Grandoni, and Jabal Ameli [2023]).

We will see several methods to compute a removable pairing. First, Mömke
and Svensson [2016] proposed to obtain a removable pairing via a DFS tree.

Definition 12.4 (DFS tree). Let 𝐺 = (𝑉, 𝐸) be an undirected graph, 𝑟 ∈ 𝑉 , and
(𝑉, 𝑆) a spanning tree in 𝐺. Then (𝑉, 𝑆) is called a DFS tree rooted at 𝑟 if for
every edge 𝑒 = {𝑣, 𝑤} ∈ 𝐸 , either 𝑣 lies on the path from 𝑟 to 𝑤 in (𝑉, 𝑆) or 𝑤
lies on the path from 𝑟 to 𝑣 in (𝑉, 𝑆).

For any connected graph 𝐺 = (𝑉, 𝐸) and any 𝑟 ∈ 𝑉 , one can find a DFS tree
rooted at 𝑟 in linear time by starting with 𝑅 = 𝑆 = ∅ and applying the following
recursive function to 𝑟:

Visit(𝑣): Add 𝑣 to 𝑅.
While there exists an edge 𝑒 = {𝑣, 𝑤} ∈ 𝛿(𝑣) with 𝑤 ∉ 𝑅,
add 𝑒 to 𝑆 and call Visit(𝑤).

This is called depth-first search; hence the name DFS tree. Figure 12.3 (left-hand
side) shows an example.

Lemma 12.5 (Mömke and Svensson [2016]). Let 𝐺 = (𝑉, 𝐸) be a 2-vertex-
connected graph and (𝑉, 𝑆) a DFS tree in 𝐺, rooted at 𝑟 ∈ 𝑉 . For each edge
𝑒 = {𝑣, 𝑤} ∈ 𝐸 \ 𝑆, let without loss of generality be 𝑣 on the 𝑟-𝑤-path in (𝑉, 𝑆),
and let 𝑣′ be the successor of 𝑣 on this path. Add 𝑒 to 𝑅; moreover, if |𝛿(𝑣) | ≥ 3
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𝑟 𝑟

Figure 12.3 A 2-connected graph with a DFS tree rooted at 𝑟 (left: solid edges)
and a removable pairing resulting from the construction in Lemma 12.5 (right:
dashed and dotted edges are removable; colors and arrows indicate pairs).

and 𝑒′ = {𝑣, 𝑣′} has not yet been added to 𝑅, then also add 𝑒′ to 𝑅 and {𝑒, 𝑒′}
to P (cf. Figure 12.3). Then (𝑅,P) is a removable pairing in 𝐺.

Proof. It is easy to see that conditions (i)–(iii) of Definition 12.2 hold. To
show that condition (iv) holds, take 𝐹 ⊆ 𝑅 with |𝐹 ∩ 𝑃 | ≤ 1 for all 𝑃 ∈ P. For
each 𝑣 ∈ 𝑉 , we consider the set𝑊𝑣 of vertices 𝑤 for which 𝑣 is on the 𝑟-𝑤-path
in (𝑉, 𝑆). We show that for each 𝑣 ∈ 𝑉 , the vertex set𝑊𝑣 induces a connected
subgraph of (𝑉, 𝐸 \ 𝐹). Indeed, this follows by a straightforward induction on
|𝑊𝑣 |. Since𝑊𝑟 = 𝑉 , this yields (iv). □

As we will see now, this leads to short tours in some interesting cases.

12.3 Subcubic Graphs

Gamarnik, Lewenstein, and Sviridenko [2005] found the first approximation
algorithm with approximation ratio (slightly) better than 3

2 for cubic graphs (i.e.,
graphs in which every vertex has degree 3). Then Boyd, Sitters, van der Ster,
and Stougie [2014] devised a 4

3 -approximation algorithm for cubic graphs.
Mömke and Svensson [2016] gave a simpler proof for this result and extended

it to subcubic graphs (i.e., graphs with maximum degree 3):
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Theorem 12.6 (Mömke and Svensson [2016]). For any instance 𝐺 = (𝑉, 𝐸)
of Graph TSP where 𝐺 is subcubic, one can compute a tour with less than 4

3𝑛

edges, where 𝑛 = |𝑉 |.

Proof. Let (𝑉, 𝑆) be a DFS tree in 𝐺. Lemma 12.5 yields a removable pairing
with |𝑅 | ≥ 2( |𝐸 | − |𝑆 |) − 1 because all non-tree edges, except possibly one
incident to the root, can be paired with tree edges if the graph is subcubic.
Theorem 12.3 yields a tour with at most 4

3 |𝐸 | −
2
3 |𝑅 | ≤

4
3𝑛 −

2
3 edges. □

This is best possible, for example, for graphs that consist only of three
internally vertex-disjoint paths of the same length and with the same endpoints.
Note that the example from Figure 2.2 is also subcubic, which explains the
interest in this special case.

Later, Correa, Larré, and Soto [2015], van Zuylen [2018], Duník and Lukot’ka
[2018], Dvor̆ák, Král’, and Mohar [2017], and Wigal, Yoo, and Yu [2023] refined
the techniques of Boyd et al. [2014] and obtained better approximation ratios
for simple cubic graphs. The best-known ratio today is due to Wigal, Yoo, and
Yu [2023], who proved that every 2-connected simple cubic graph has a tour of
length less than 5

4𝑛. This was conjectured by Dvor̆ák, Král’, and Mohar [2017],
who also showed that this bound is tight.

However, we will now focus on general graphs.

12.4 Removable Pairings via Circulation

Mömke and Svensson [2016] showed how to find a good removable pairing in
general graphs using a network flow approach, somewhat similar to Lemma 5.1.
The idea is to start with a DFS tree and include some of the non-tree edges to
make the subgraph 2-vertex-connected but use as few non-pairable edges as
possible.

First, the input graph 𝐺 is transformed into a flow network (𝐷, 𝑙) as follows
(cf. Figure 12.4, left-hand side). Let (𝑉, 𝑆) be again a DFS tree, rooted at 𝑟.
Note that 𝑟 has degree 1 because 𝐺 is 2-connected. Orient all tree edges away
from 𝑟 (so that we get an arborescence rooted at 𝑟, which we also call (𝑉, 𝑆)
now) and subdivide each arc 𝑒 ∈ 𝑆 by a vertex 𝑧𝑒. For each non-tree edge {𝑣, 𝑤},
where 𝑣 is on the 𝑟-𝑤-path in (𝑉, 𝑆), add an arc (𝑤, 𝑧𝑒), where 𝑒 is the first edge
on the 𝑣-𝑤-path in (𝑉, 𝑆). This defines the digraph 𝐷. We define lower bounds
on the flow along each arc by 𝑙 ((𝑣, 𝑧𝑒)) := 1 for all 𝑣 ∈ 𝑉 \ {𝑟} and 𝑒 ∈ 𝛿+

𝑆
(𝑣),

and 𝑙 (𝑒) := 0 for all other arcs in 𝐷. (The arcs that require at least one unit of
flow are shown in green in Figure 12.4.) There are no upper bounds on the flow
along any arc.
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𝑟 𝑟

Figure 12.4 For the DFS tree in Figure 12.3, the left-hand side shows the constructed
flow network (𝐷, 𝑙) in which we look for a circulation 𝑓 with minimum cost
cost( 𝑓 ) . New vertices 𝑧𝑒 (𝑒 ∈ 𝑆) are shown as squares. Green arcs require at least
one unit of flow. The right-hand side shows how to transform this to an equivalent
standard minimum-cost circulation problem. Blue arcs can carry at most one unit
of flow. Red arcs have cost 1; all other arcs have cost 0.

The cost of a circulation 𝑓 in (𝐷, 𝑙) is measured in an unusual way. We only
pay for flow on non-tree edges, but the first unit entering a new vertex 𝑧𝑒 is free.
In other words,

cost( 𝑓 ) :=
∑︁

𝑒=(𝑣,𝑤) ∈𝑆
max

{
0, 𝑓

(
𝛿− (𝑧𝑒) \ {(𝑣, 𝑧𝑒)}

)
− 1

}
.

Finding a circulation 𝑓 in (𝐷, 𝑙) with minimum cost( 𝑓 ) can be reduced to a
standard minimum-cost circulation problem. More precisely, we note:

Lemma 12.7. There is an integral circulation 𝑓 in 𝐷 such that 𝑓 ≥ 𝑙 and
cost( 𝑓 ) ≤ cost( 𝑓 ) for every circulation 𝑓 in 𝐷 with 𝑓 ≥ 𝑙. Such an integral
circulation 𝑓 can be computed in polynomial time.

Proof. Add another vertex 𝑧′𝑒 for each new vertex 𝑧𝑒, replace every non-tree
edge (𝑣, 𝑧𝑒) by (𝑣, 𝑧′𝑒), and add two arcs from 𝑧′𝑒 to 𝑧𝑒: one with capacity 1 and
cost 0 and another one with infinite capacity and cost 1. (All other arcs have
cost 0 and infinite capacity.) See Figure 12.4, right-hand side. There is a cost-
and integrality-preserving one-to-one correspondence between circulations in
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(𝐷, 𝑙) and circulations in the new network. Hence, the result follows from
Theorem 3.10 and Theorem 3.11. □

Mömke and Svensson [2016] proved:

Lemma 12.8. Given an integral circulation 𝑓 in 𝐷 with 𝑓 ≥ 𝑙, one can construct
a tour in 𝐺 with at most 4

3𝑛 +
2
3 cost( 𝑓 ) − 2

3 edges in 𝑂 (𝑛3) time.

Proof. Let 𝐵 be the set of non-tree edges that correspond to edges in 𝐷 with
positive flow. Then (𝑉, 𝑆 ∪ 𝐵) is 2-vertex-connected. Let

𝐶 :=
{
𝑒 = (𝑣, 𝑤) ∈ 𝑆 : 𝑣 ≠ 𝑟, 𝑓 (𝛿− (𝑧𝑒) \ {(𝑣, 𝑧𝑒)}) > 0

}
be the set of tree edges that can be paired (with a non-tree edge). We do not
include the edge leaving the root because the root might have degree 2 in
(𝑉, 𝑆 ∪ 𝐵). Note that |𝐵 | − |𝐶 | ≤ cost( 𝑓 ) + 1, where we used that the root has
degree 1 in the DFS tree. Define a removable pairing in 𝐺 by 𝑅 := 𝐵∪𝐶 and by
letting P contain a pair 𝑃 for each element of 𝐶: For 𝑒 ∈ 𝐶, choose an 𝑒′ ∈ 𝐵
that corresponds to an edge in 𝛿− (𝑧𝑒) and let 𝑃 = {𝑒, 𝑒′}. By Lemma 12.5,
(𝑅,P) is indeed a removable pairing.

Now we apply Theorem 12.3 and obtain a tour with at most 4
3 |𝑆∪ 𝐵 | −

2
3 |𝑅 | =

4
3 |𝑆 | +

2
3 |𝐵 | −

2
3 |𝐶 | ≤

4
3 (𝑛 − 1) + 2

3 cost( 𝑓 ) + 2
3 edges. □

So all we need to do is find a cheap circulation in (𝐷, 𝑙). Mömke and Svensson
[2016] (and then also Mucha [2014]) proceeded as in Algorithm 12.9.

Algorithm 12.9: Mömke–Svensson Algorithm for Graph TSP
Input: a 2-vertex-connected graph 𝐺 = (𝑉, 𝐸)
Output: a tour in 𝐺

(1) Compute an optimum extreme point 𝑥 of (12.1).
(2) Compute a DFS tree (𝑉, 𝑆) in the support of 𝑥 by choosing a root 𝑟

arbitrarily and following always an edge 𝑒 with maximum 𝑥𝑒 to an
unvisited vertex. Orient (𝑉, 𝑆) as an arborescence rooted at 𝑟 .

(3) Construct the associated flow network (𝐷, 𝑙) and compute an integral
circulation 𝑓 in 𝐷 with 𝑓 ≥ 𝑙 that minimizes cost( 𝑓 ).

(4) Apply Lemma 12.8 to 𝑓 to obtain a tour in 𝐺.

This algorithm can be implemented to run in polynomial time: We use
Corollary 4.21 for Step (1) and Lemma 12.7 for Step (3).

To bound the cost of 𝑓 , Mömke and Svensson [2016] defined the fractional
circulation 𝑓 = 𝑓 ′ + 𝑓 ′′ in (𝐷, 𝑙) as follows (see Figure 12.5):
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Figure 12.5 Example for constructing a cheap circulation. Left: an LP solution 𝑥
and a possible DFS tree (rooted at 𝑟) as computed in Step (2) of Algorithm 12.9,
shown by the black solid edges. Right: the circulation 𝑓 ′. In this case, there is one
green edge carrying less than one unit of flow; this will be compensated by 𝑓 ′′.

• First define 𝑓 ′: For each 𝑒 ∈ 𝐸 \𝑆, send 𝑥𝑒 units of flow along the fundamental
cycle of 𝑒 (the circuit in 𝐷 corresponding to the unique circuit in (𝑉, 𝑆∪{𝑒})).

• Then define 𝑓 ′′: For each 𝑣 ∈ 𝑉 \ 𝑟 and 𝑒 ∈ 𝛿+
𝑆
(𝑣) with 𝑓 ′ ((𝑣, 𝑧𝑒)) < 1, send

1 − 𝑓 ′ ((𝑣, 𝑧𝑒)) units of flow along any fundamental cycle containing (𝑣, 𝑧𝑒).
Such a fundamental cycle exists because 𝐺 is 2-vertex-connected.

Then 𝑓 ≥ 𝑙. By Lemma 12.7, cost( 𝑓 ) ≤ cost( 𝑓 ). So using Lemma 12.8, all we
need to bound is cost( 𝑓 ).

Mömke and Svensson [2016] proved cost( 𝑓 ) ≤ (4
√

2−3)𝑥(𝐸) − (6
√

2−6)𝑛,
which yields a tour with at most 4

3𝑛 +
2
3 (4
√

2 − 3)𝑥(𝐸) − (4
√

2 − 4)𝑛 edges.
Combining this with Christofides’ algorithm yields the approximation ratio
1.461 (Exercise 12.5).

For this bound on cost( 𝑓 ), and also for Mucha’s [2014] improved bound that
we prove in Section 12.5, it is essential that the LP solution 𝑥 is an extreme point
and hence has sparse support due to Theorem 4.23.
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12.5 Mucha’s Analysis

Mucha [2014] improved the Mömke–Svensson analysis and obtained cost( 𝑓 ) ≤
5
3𝑥(𝐸) −

3
2𝑛, which yields a 13

9 -approximation algorithm. Here we give a simpler
proof of a slightly weaker bound, yielding the same approximation ratio. We
continue to use the notation of Section 12.4.

Lemma 12.10 (Mucha [2014]).

cost( 𝑓 ) ≤ 2𝑥(𝐸) − 11
6 𝑛 +

2
3 , (12.2)

and this holds even if the first edge of the DFS tree (the edge incident to the root
𝑟) is chosen arbitrarily (not necessarily in the support of 𝑥).

Proof. For 𝑣 ∈ 𝑉 , we consider the non-tree arcs entering 𝑧𝑒 in 𝐷 for all edges
𝑒 that leave 𝑣 in the DFS tree (𝑉, 𝑆). This is the edge set

𝐵𝑣 :=
⋃

𝑒∈ 𝛿+
𝑆
(𝑣)

{
𝑒′ ∈ 𝛿−𝐷 (𝑧𝑒) \ {(𝑣, 𝑧𝑒)} : 𝑥𝑒′ > 0

}
.

Since 𝑥 is an extreme point, the support graph 𝐺𝑥 of 𝑥 has at most 2𝑛 − 3 edges
by Theorem 4.23. At least 𝑛 − 2 of these edges belong to 𝑆 \ 𝛿(𝑟) (all edges of
the DFS tree except possibly the edge incident to the root), and at least one of
these edges belongs to 𝛿(𝑟). Hence,∑︁
𝑣∈𝑉\{𝑟 }

|𝐵𝑣 | ≤ |𝐸 (𝐺𝑥) | − (𝑛 − 2) − 1 ≤ (2𝑛 − 3) − (𝑛 − 1) = 𝑛 − 2. (12.3)

We will bound, for each 𝑣 ∈ 𝑉 separately, the number cost𝑣 ( 𝑓 ), which is the
contribution of the edges in 𝐵𝑣 to cost( 𝑓 ′) plus the additional cost incurred by
the 𝑓 ′′-flow added for 𝑣. More precisely:

cost𝑣 ( 𝑓 ) := max
{
0, 𝑓 ′ (𝐵𝑣) − 1

}
+

∑︁
𝑒∈ 𝛿+

𝑆
(𝑣)

max
{
0, 1 − 𝑓 ′ ((𝑣, 𝑧𝑒))

}
.

Note that cost( 𝑓 ) ≤ ∑
𝑣∈𝑉 cost𝑣 ( 𝑓 ).

For 𝑣 = 𝑟 , we have cost𝑟 ( 𝑓 ) ≤ 𝑥(𝛿(𝑟)) − 1. We show that for all 𝑣 ∈ 𝑉 \ {𝑟}:

cost𝑣 ( 𝑓 ) ≤ 𝑥(𝛿(𝑣)) − 2 + 1
6 |𝐵𝑣 |. (12.4)

Summing these inequalities and using (12.3) yields (12.2).
Let 𝑣 ∈ 𝑉 \ {𝑟}, and let 𝑤1, . . . , 𝑤𝑙 be the children of 𝑣 in (𝑉, 𝑆). Let

𝑅(𝑤) denote the set of descendants of a vertex 𝑤, including 𝑤 itself (i.e., all
vertices reachable from 𝑤 in the arborescence (𝑉, 𝑆)). See Figure 12.6. For
𝑖 = 1, . . . , 𝑙, let 𝑘𝑖 := |𝛿𝐺𝑥

(𝑅(𝑤𝑖)) ∩ 𝛿(𝑣) | − 1; so |𝐵𝑣 | =
∑𝑙
𝑖=1 𝑘𝑖 . Moreover,

let 𝛾 := 𝑥(𝛿𝐺 (𝑅(𝑣)) ∩ 𝛿(𝑣)), let 𝛼𝑖 := 𝑥(𝛿𝐺 (𝑅(𝑤𝑖)) ∩ 𝛿(𝑣)), and let 𝛽𝑖 :=
𝑥(𝛿𝐺 (𝑅(𝑤𝑖)) \ 𝛿(𝑣)) for 𝑖 = 1, . . . , 𝑙.
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(𝑘1 edges)

𝛽1

(𝑘𝑙 edges)

𝛽𝑙

𝛾

𝛼1

𝛼𝑙

𝑣

𝑤1

𝑤𝑙

𝑅(𝑤1)

𝑅(𝑤𝑙)

Figure 12.6 Illustrating 𝛼𝑖 , 𝛽𝑖 (𝑖 = 1, . . . , 𝑙), and 𝛾 in the proof of Lemma 12.10.
The edge set 𝐵𝑣 consists of the violet dotted edges entering 𝑣: the 𝑘𝑖 non-tree
edges from 𝑅 (𝑤𝑖 ) to 𝑣 for 𝑖 = 1, . . . , 𝑙.

By the construction of the DFS tree in Step (2) of Algorithm 12.9, we have
𝑥𝑒 ≤ 𝑥{𝑣,𝑤𝑖 } for all 𝑒 ∈ 𝛿(𝑅(𝑤𝑖)) ∩ 𝛿(𝑣). Using this, we get

cost𝑣 ( 𝑓 ) =
∑︁

𝑒∈ 𝛿+
𝑆
(𝑣)

(
max

{
0, 𝑓 ′

(
𝛿− (𝑧𝑒) \ {(𝑣, 𝑧𝑒)}

)
− 1

}
+ max

{
0, 1 − 𝑓 ′

(
(𝑣, 𝑧𝑒)

)})
=

𝑙∑︁
𝑖=1

(
max

{
0, 𝛼𝑖 − 𝑥{𝑣,𝑤𝑖 } − 1

}
+max

{
0, 1 − 𝛽𝑖

})
≤

𝑙∑︁
𝑖=1

(
max

{
0,

𝑘𝑖

𝑘𝑖 + 1
𝛼𝑖 − 1

}
+max {0, 1 − 𝛽𝑖}

)
.

Now we observe max
{
0, 𝑘𝑖
𝑘𝑖+1𝛼𝑖 − 1

}
≤ 𝑘𝑖

6 + max {0, 𝛼𝑖 − 2}: It is obviously

sufficient to check this inequality for 𝛼𝑖 = 2; here it holds because 𝑘𝑖−1
𝑘𝑖+1 ≤

𝑘𝑖
6 for

all 𝑘𝑖 ∈ Z≥0 (with equality for 𝑘𝑖 ∈ {2, 3}). Hence,

cost𝑣 ( 𝑓 ) ≤
𝑙∑︁
𝑖=1

(
𝑘𝑖

6
+max {0, 𝛼𝑖 − 2} +max {0, 1 − 𝛽𝑖}

)
=
|𝐵𝑣 |

6
+

𝑙∑︁
𝑖=1

(
max {0, 𝛼𝑖 − 2} +max {0, 1 − 𝛽𝑖}

)
.
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We claim
𝑙∑︁
𝑖=1

(
max {0, 𝛼𝑖 − 2} +max {0, 1 − 𝛽𝑖}

)
≤

𝑙∑︁
𝑖=1

𝛼𝑖 + 𝛾 − 2. (12.5)

Since the right-hand side is 𝑥(𝛿(𝑣)) − 2, this implies (12.4).
We conclude the proof by showing (12.5). The right-hand side is nonnegative:

0 ≤
𝑙∑︁
𝑗=1
𝛼 𝑗 + 𝛾 − 2 (12.6)

because 𝑥(𝛿(𝑣)) ≥ 2. We use the following upper bounds on 1 − 𝛽𝑖:

(i) 1 − 𝛽𝑖 ≤ 1,
(ii) 1 − 𝛽𝑖 ≤ 𝛼𝑖 − 1 (which follows from 𝑥(𝛿(𝑅(𝑤𝑖))) ≥ 2),
(iii) 1 − 𝛽𝑖 ≤

∑
𝑗≠𝑖 𝛼 𝑗 + 𝛾 − 1 (which follows from 𝑥(𝛿({𝑣} ∪ 𝑅(𝑤𝑖))) ≥ 2),

(iv) 1− 𝛽𝑖 ≤
∑𝑙
𝑗=1 𝛼 𝑗 + 𝛾 − 2 (which follows from adding (ii), (iii), and (12.6)).

If none of the 𝑙 summands in the left-hand side of (12.5) is positive, the
inequality is given by (12.6). If only one of the 𝑙 summands in the left-hand side
of (12.5) is positive, we use (iii) or (iv) to bound it by

∑𝑙
𝑗=1 𝛼𝑖 + 𝛾 − 2. If there

are at least two positive summands, we use (i) or (ii) to bound each of them by
𝛼𝑖 − 1. In every case, (12.5) follows. □

Mucha [2014] proved the stronger bound cost𝑣 ( 𝑓 ) ≤ 1
6 |𝐵𝑣 | +

5
6 (𝑥(𝛿(𝑣)) − 2),

but this leads to the same worst-case bound. We conclude:

Theorem 12.11 (Mucha [2014]). Algorithm 12.9 is a 13
9 -approximation algo-

rithm for Graph TSP.

Proof. By Proposition 12.1, we may assume that the instance𝐺 is 2-connected.
Construct a flow network (𝐷, 𝑙) and an integral circulation 𝑓 in 𝐷 with
𝑓 ≥ 𝑙 as in Algorithm 12.9. By Lemma 12.10 and Lemma 12.7, we have
cost( 𝑓 ) ≤ cost( 𝑓 ) ≤ 2𝑥(𝐸) − 11

6 𝑛 +
2
3 . By Lemma 12.8, we then get a tour in 𝐺

with at most 4
3𝑛 +

2
3 cost( 𝑓 ) − 2

3 ≤
4
3𝑛 +

4
3𝑥(𝐸) −

11
9 𝑛 =

1
9𝑛 +

12
9 𝑥(𝐸) edges. □

This proof also implies that the integrality ratio of the Graph TSP LP (12.1)
is at most 13

9 . A stronger conclusion is that even the integrality ratio of (2.2)
when restricted to metric closures of unweighted graphs is at most 13

9 . We will
prove stronger upper bounds on both integrality ratios in Chapter 13.

We do not know whether Mucha’s bound is tight. Newman [2020] proved
a better bound for graphs with maximum degree 4 and noted that it is even
possible that Algorithm 12.9 is a 4

3 -approximation algorithm for general graphs.
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Open Problem 12.12. What is the approximation ratio of the Mömke–Svensson
algorithm for Graph TSP?

We conclude this section with the following note for later use (in the proof of
Theorem 14.20):

Lemma 12.13. Let 𝐺 = (𝑉, 𝐸) be a 2-connected graph and 𝑒 = {𝑠, 𝑡} ∈ 𝐸
an edge. Then one can construct a tour in 𝐺 that contains 𝑒 exactly once and
contains at most 13

9 (LP(𝐺) − 1) + 1
3 dist𝐺−�̄� (𝑠, 𝑡) other edges in 𝑂 (𝑛3) time,

where LP(𝐺) is the value of (12.1).

Proof. Let 𝑥 be an extreme point solution to (12.1) with 𝑥(𝐸) = LP(𝐺). We
choose 𝑠 as the root of the DFS tree and 𝑒 as its first edge; then we proceed
with Algorithm 12.9. Construct a flow network (𝐷, 𝑙) and a circulation 𝑓 as
in Algorithm 12.9. By Lemma 12.10 and Lemma 12.7, cost( 𝑓 ) ≤ cost( 𝑓 ) ≤
2𝑥(𝐸) − 11

6 𝑛 +
2
3 . We proceed as in the proof of Lemma 12.8, except that we

set 𝑐(𝑒) := dist𝐺−�̄� (𝑠, 𝑡) and 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸 \ {𝑒}. We obtain a tour
�̄� in 𝐺 that contains 𝑒 at least once (because 𝑒 is not removable) and costs
at most 4

3𝑐(𝑆) +
2
3 cost( 𝑓 ) + 2

3 ≤
4
3
(
𝑐(𝑒) + 𝑛 − 2

)
+ 2

3
(
2𝑥(𝐸) − 11

6 𝑛 +
2
3
)
+ 2

3 =
4
3𝑐(𝑒) +

4
3𝑥(𝐸) +

1
9𝑛 −

14
9 .

If �̄� contains a second copy of 𝑒, we replace it by a shortest 𝑠-𝑡-path in
𝐺 − 𝑒; this does not increase the cost, which thus remains at most 𝑐(𝑒) +
4
3𝑥(𝐸) +

1
9𝑛 −

14
9 +

1
3 dist𝐺−�̄� (𝑠, 𝑡). Let 𝐹 be the new tour, which now contains 𝑒

exactly once and at most 4
3𝑥(𝐸) +

1
9𝑛 −

14
9 +

1
3 dist𝐺−�̄� (𝑠, 𝑡) other edges. Since

𝑛 ≤ 𝑥(𝐸) = LP(𝐺), this yields the assertion. □

12.6 Removable Pairings via 𝒔-𝒕-Numbering

Svensson [2013] suggested another way of constructing a removable pairing. For
every 2-connected graph 𝐺 and an edge {𝑠, 𝑡} of 𝐺, there is an 𝑠-𝑡-numbering,
which is a numbering𝑉 = {𝑣1, . . . , 𝑣𝑛}where 𝑣1 = 𝑠, 𝑣𝑛 = 𝑡, and every vertex 𝑣𝑖
(𝑖 = 2, . . . , 𝑛−1) has a left and a right neighbor (i.e., 𝛿(𝑣𝑖)∩𝛿(𝑣1, . . . , 𝑣𝑖−1) ≠ ∅
and 𝛿(𝑣𝑖) ∩ 𝛿(𝑣𝑖+1, . . . , 𝑣𝑛) ≠ ∅). In fact, this characterizes 2-connected graphs
(cf. Exercise 12.8).

Now we can declare an edge {𝑣𝑖 , 𝑣 𝑗 } (with 𝑖 < 𝑗) removable if 𝑣𝑖 has degree
at least 3 and 𝑣 𝑗 is not the only right neighbor of 𝑣𝑖 . For each such 𝑣𝑖 , we take
two edges between 𝑣𝑖 and right neighbors of 𝑣𝑖 and let them constitute a pair.
The other removable edges do not participate in any pair. We also declare the
edge {𝑠, 𝑡} as removable even if 𝑠 has degree 2.

This is a removable pairing because 𝑡 is still reachable from everywhere after
removing removable edges, but at most one from each pair. Let 𝑅 be this set
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of removable edges. Similarly, we can consider the symmetric construction (or
the 𝑠-𝑡-numbering 𝑣𝑛, . . . , 𝑣1) and get another removable pairing 𝐿. We have
|𝐿 | + |𝑅 | ≥ 2𝑚 − 𝑛 − 𝑛2 + 2, where 𝑛 and 𝑚 are the number of vertices and
edges of 𝐺, and 𝑛2 is the number of degree-2 vertices. (Note that the edge {𝑠, 𝑡}
is always removable.)

The larger of the two removable pairings has at least 𝑚 − 1
2 (𝑛 + 𝑛2 − 2)

removable edges and yields a tour, via Theorem 12.3, that has length at most
1
3 (2𝑚 + 𝑛 + 𝑛2 − 2). If 𝐺 is subcubic, then 2𝑚 = 3𝑛 − 𝑛2, and so the tour has
length at most 4

3𝑛 −
2
3 . This gives another simple proof of Theorem 12.6.

Exercises

12.1 Show that adding the constraints 𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 does not change
the value of the LP (12.1) for any 2-edge-connected graph 𝐺.
(Vygen [2012])

12.2 Prove that Theorem 12.3 does not hold in general if the graph 𝐺 is only
2-edge-connected instead of 2-vertex-connected.
Note: A variant of Theorem 12.3 that works for 2-edge-connected graphs
in a certain setting was used by Traub and Vygen [2023].

12.3 Show that Algorithm 12.9 has no better approximation ratio than 4
3 for

Graph TSP.
12.4 Show that 𝑓 ′′ as defined in Section 12.4 sends at most 𝑥(𝐸) − 𝑛 units of

flow along fundamental cycles. In particular, 𝑓 ′′ = 0 if 𝑥(𝐸) = 𝑛.
(Mömke and Svensson [2016])

12.5 Show that the existence of a circulation 𝑓 in (𝐷, 𝑙) with

cost( 𝑓 ) ≤ (4
√

2 − 3)𝑥(𝐸) − (6
√

2 − 6)𝑛

for every instance yields a 1.461-approximation algorithm for Graph
TSP.
Hint: If 𝑥(𝐸) ≥ 1.041 𝑛, use Christofides’ algorithm.
(Mömke and Svensson [2016])

12.6 Show that Algorithm 12.9 computes a tour with at most 4
3𝑥(𝐸) edges

if the LP solution 𝑥 computed in Step (1) is half-integral. To this end,
modify the analysis of Lemma 12.10 and observe that now cost𝑣 ( 𝑓 ) ≤∑𝑙
𝑖=1 max{0, 𝛼𝑖 − 3

2 } + max{0, 1 − 𝛽𝑖} and 𝛾 ≥ 1
2 . Deduce from this

that cost𝑣 ( 𝑓 ) ≤ 𝑥(𝛿(𝑣)) − 2 for all 𝑣 ∈ 𝑉 \ {𝑟}.
(Mömke and Svensson [2016])

12.7 Show that the bound (12.4) also holds for 𝑣 = 𝑟 if the DFS tree is chosen
as in Algorithm 12.9. Conclude that then cost( 𝑓 ) ≤ 2𝑥(𝐸) − 11

6 𝑛.
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12.8 Show that a graph is 2-vertex-connected if and only if it has an 𝑠-𝑡-
numbering.
(Lempel, Even, and Cederbaum [1967])
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13

Ear-Decompositions, Matchings, and Matroids

By combining the removable pairing technique presented in Chapter 12 with
a new approach based on ear-decompositions and matroid intersection, Sebő
and Vygen [2014] improved the approximation ratio for Graph TSP from 13

9 to
7
5 . We will present this algorithm, which is still the best-known approximation
algorithm for Graph TSP, in this chapter. An interesting feature of this algorithm
is that it is purely combinatorial, does not need to solve a linear program, and
runs in 𝑂 (𝑛3) time. A slight variant of the algorithm is a 4

3 -approximation
algorithm for finding a smallest 2-edge-connected spanning subgraph, which
was the best-known for many years. The proofs will also imply corresponding
upper bounds on the integrality ratios.

13.1 Ear-Decompositions

Ear-decompositions are a classic concept to describe 2-connected or 2-edge-
connected graphs, as well as strongly connected digraphs. We begin with the
formal definition.

Definition 13.1 (ear-decomposition). An ear-decomposition of a graph 𝐺 =

(𝑉, 𝐸) (directed or undirected) is a sequence 𝑃0, 𝑃1, . . . , 𝑃𝑘 of subgraphs of
𝐺 such that 𝑃0 consists of a single vertex, {𝐸 (𝑃1), . . . , 𝐸 (𝑃𝑘)} is a partition
of 𝐸 , and for 𝑖 = 1, . . . , 𝑘 , either 𝑃𝑖 is a path with exactly its endpoints in
𝑉 (𝑃0) ∪ · · · ∪𝑉 (𝑃𝑖−1) or 𝑃𝑖 is a circuit with exactly one of its vertices (called
its endpoint) in 𝑉 (𝑃0) ∪ · · · ∪𝑉 (𝑃𝑖−1).

The vertex of 𝑃0 is called the root, and 𝑃1, . . . , 𝑃𝑘 are called ears. For an
ear 𝑃, let in(𝑃) denote the set of internal vertices of 𝑃: those that are not
endpoints. The length of an ear is the number of its edges; this is always the
number of internal vertices plus one. Hence, the number of ears is always

280
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𝑘 =
∑𝑘
𝑖=1 ( |𝐸 (𝑃𝑖) | − |in(𝑃𝑖) |) = |𝐸 | − |𝑉 | + 1. An ear is called trivial if it has

length 1; otherwise, it is nontrivial. We call an ear short if it has length 2 or 3
and long if it has length at least 4. An ear is called odd if its length is odd,
otherwise even. See Figure 13.1, left-hand side, for an example.

An ear-decomposition is called open if 𝑃2, . . . , 𝑃𝑘 are paths, and it is odd if
all ears are odd. Ear-decompositions can be used to characterize 2-connected or
2-edge-connected graphs or strongly connected digraphs:

Proposition 13.2 (Whitney [1932a]). A digraph is strongly connected if and
only if it has an ear-decomposition. An undirected graph is 2-edge-connected if
and only if it has an ear-decomposition.

Proof. We show the first statement. For the if-direction, an easy induction on 𝑖
shows that for any 𝑣 ∈ in(𝑃𝑖), there is a path from the root to 𝑣 and a path from
𝑣 to the root. For the only-if-direction, let 𝐺 be a strongly connected digraph,
and let 𝐺′ be a maximal subgraph that has an ear-decomposition. If 𝐺′ does
not contain all vertices, there is an edge 𝑒 = (𝑣, 𝑤) ∈ 𝛿+

𝐺
(𝑉 (𝐺′)). Let 𝑃 be a

path from 𝑤 to the root, and let 𝑝 be the first vertex of 𝑃 that belongs to 𝑉 (𝐺′).
Then the edge 𝑒 plus the subpath of 𝑃 from 𝑤 to 𝑝 constitute a path or circuit
that can be added as an ear, contradicting the maximality of 𝐺′. If 𝐺′ contains
all vertices but not all edges, any missing edge could be added as a trivial ear,
which is again a contradiction. Hence 𝐺′ = 𝐺.

The proof of the second statement is identical except that we work with
𝑒 = {𝑣, 𝑤} ∈ 𝛿𝐺 (𝑉 (𝐺′)) with 𝑣 ∈ 𝑉 (𝐺′). □

Moreover, an undirected graph is 2-vertex-connected if and only if it has an
open ear-decomposition (Exercise 13.1).

A relaxation of the Graph TSP that is closely related to ear-decompositions is
the Minimum 2-Edge-Connected Spanning Subgraph Problem: For a given
2-edge-connected graph 𝐺, find a 2-edge-connected spanning subgraph of 𝐺
with minimum number of edges. Since the number of ears is always |𝐸 | − |𝑉 | +1,
this problem is equivalent to computing an ear-decomposition with minimum
number of nontrivial ears. This problem is NP-hard because it includes the
Hamiltonian Circuit problem (cf. Theorem 1.21): Any 2-edge-connected
spanning subgraph must contain at least 𝑛 = |𝑉 | edges, and it has exactly 𝑛
edges if and only if it is a Hamiltonian circuit. In fact, Fernandes [1998] proved
that the problem is APX-hard.

Computing an arbitrary ear-decomposition and deleting the trivial ears
constitutes a 2-approximation algorithm for the Minimum 2-Edge-Connected
Spanning Subgraph Problem. Indeed, the number of edges in nontrivial ears
is at most 2(𝑛 − 1) because every nontrivial ear has one more edge than it has
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internal vertices, so at most twice as many edges as internal vertices. We see that
ears of length 2 are worst in this respect, and we will see better algorithms later.
We do not know how to minimize the number of nontrivial ears or the number
of short ears, but the number of even ears can be minimized in polynomial time,
as we will see in Section 13.3.

A variant of the Minimum 2-Edge-Connected Spanning Subgraph Prob-
lem allows us to pick some edges twice. However, this relaxation does not really
change the problem:

Proposition 13.3. Let𝐺 be a 2-edge-connected graph and𝐻 a 2-edge-connected
spanning multi-subgraph of 𝐺. Then there exists a 2-edge-connected spanning
subgraph 𝐻′ of 𝐺 with |𝐸 (𝐻′) | ≤ |𝐸 (𝐻) |, and 𝐻′ can be computed from 𝐻 in
polynomial time.

Proof. If 𝐻 contains two copies of an edge 𝑒 ∈ 𝐸 (𝐺) and none of these can be
omitted, these copies are the only edges in 𝛿𝐻 (𝑋) for some ∅ ≠ 𝑋 ⊊ 𝑉 (𝐺). Since
𝐺 is 2-edge-connected, it contains a different edge 𝑓 ∈ 𝛿𝐺 (𝑋) \ {𝑒}. Removing
one of the copies of 𝑒 and adding 𝑓 maintains 2-edge-connectivity. □

Hence, a tour cannot have fewer edges than a minimum 2-edge-connected
spanning subgraph.

13.2 Removable Pairings via Ear-Decompositions

Let us say that a nontrivial ear𝑄 is attached to an ear 𝑃 in an ear-decomposition
if an endpoint of 𝑄 is an internal vertex of 𝑃. We call a nontrivial ear pendant if
no nontrivial ear is attached to it. In Figure 13.1 (left-hand side), ears 𝑃1 and
𝑃2 are non-pendant, while ears 𝑃3, 𝑃4, 𝑃5, and 𝑃6 are pendant. By applying
Theorem 12.3 to a removable pairing defined by an ear-decomposition, Sebő
and Vygen [2014] observed:

Theorem 13.4. Given a 2-vertex-connected graph 𝐺 = (𝑉, 𝐸) with an ear-
decomposition with 𝜋 pendant ears and no trivial ears, one can construct a tour
with at most 4

3 (𝑛 − 1) + 2
3𝜋 edges in 𝑂 (𝑛3) time, where 𝑛 = |𝑉 |.

Proof. Define a removable pairing by taking an arbitrary edge of each pendant
ear and taking for each non-pendant ear, a pair of its edges that are incident to a
common vertex that is an endpoint of another ear. If 𝑘 = |𝐸 | − |𝑉 | + 1 denotes
the number of ears, we have |𝑅 | = 2𝑘 − 𝜋. Theorem 12.3 yields a tour with at
most 4

3 |𝐸 | −
2
3 |𝑅 | =

4
3 (𝑛 − 1) + 2

3𝜋 edges. □
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Figure 13.1 Left: A graph𝐺 with an open ear-decomposition. The ears 𝑃1, . . . , 𝑃6
have distinct colors; moreover, the internal vertices of the 𝑖-th ear are labelled 𝑖.
The ears 𝑃7, . . . , 𝑃12 are trivial; each consists of a single dotted edge. The ears
𝑃1 and 𝑃5 are even; the other ears are odd. The ears 𝑃3, 𝑃4, 𝑃5, and 𝑃6 are short
and pendant. Right: Trivial ears are deleted, and a removable pairing (𝑅, P) with
|𝑅 | = 8 and | P | = 2 as in the proof of Theorem 13.4 is shown; the dashed edges
are removable, and the arrows indicate the two pairs.

See Figure 13.1 for an example. This bound is good if there are few pendant
ears. Otherwise, we need something else. It turns out that long pendant ears are
easy to deal with, but short pendant ears require care.

13.3 Frank’s Theorem

In this section, we relate ear-decompositions to matching theory. A matching in
an undirected graph 𝐺 is a set of edges that have pairwise distinct endpoints.
A matching covers a vertex 𝑣 if it contains an edge incident to 𝑣. So a perfect
matching is a matching that covers all vertices. A matching is called near-perfect
if it covers all vertices but one. A graph 𝐺 = (𝑉, 𝐸) is called factor-critical
if 𝐺 − 𝑣 contains a perfect matching for all 𝑣 ∈ 𝑉 . The graph in Figure 13.1
(left-hand side) is not factor-critical: Deleting the vertex marked 0 leaves a graph
without a perfect matching.

The following classic theorem connects factor-critical graphs and odd ear-
decompositions:

Theorem 13.5 (Lovász [1972]). A graph is factor-critical if and only if it has an
odd ear-decomposition. If it exists, such an ear-decomposition can be computed
in polynomial time.

Proof. Let 𝐺 = (𝑉, 𝐸) be a graph with an odd ear-decomposition, and let
𝑣 ∈ 𝑉 . We show by induction on the number of ears that 𝐺 − 𝑣 has a perfect
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matching. Let 𝑃 be the last ear. If 𝑣 ∉ in(𝑃), we can pair up the vertices in
in(𝑃) and apply the induction hypothesis to (𝐺 − in(𝑃), 𝑣). If 𝑣 ∈ in(𝑃), we
can pair up the vertices in (in(𝑃) \ {𝑣}) ∪ {𝑤} for one endpoint 𝑤 of 𝑃 and
apply induction to (𝐺 − in(𝑃), 𝑤).

For the other direction, let 𝐺 = (𝑉, 𝐸) be a factor-critical graph, 𝑟 ∈ 𝑉 , and
𝑀𝑟 a perfect matching of 𝐺 − 𝑟. We construct an 𝑀𝑟 -alternating (and hence
odd) ear-decomposition of 𝐺 (i.e., one in which the edges of every ear alternate
between 𝐸 \ 𝑀𝑟 and 𝑀𝑟 ). Let 𝐺′ be a maximal subgraph of 𝐺 that has an
𝑀𝑟 -alternating ear-decomposition with root 𝑟 . We show 𝐺′ = 𝐺. Suppose 𝐺′ is
a proper subgraph of 𝐺. Since 𝐺 is connected and edges with both endpoints
in 𝑉 (𝐺′) could be added as trivial ears, there is an edge 𝑒 = {𝑣, 𝑤} ∈ 𝐸 with
𝑣 ∈ 𝑉 (𝐺′) and 𝑤 ∉ 𝑉 (𝐺′). Let 𝑀𝑤 be a perfect matching of 𝐺 − 𝑤. Note that
𝑤 and 𝑟 are the only vertices of degree 1 in (𝑉, 𝑀𝑟 △ 𝑀𝑤); all other vertices
have degree 0 or 2. So this graph contains a path 𝑃 from 𝑤 to 𝑟, whose edges
alternate between 𝑀𝑟 and 𝑀𝑤 . Let 𝑥 be the first vertex of 𝑃 (when traversed
from 𝑤) that belongs to 𝑉 (𝐺′). Then 𝑒 plus the subpath from 𝑤 to 𝑥 can be
added as another 𝑀𝑟 -alternating ear, contradicting the maximality of 𝐺′.

This proof can easily be turned into a polynomial-time algorithm, by extending
𝐺′ (initially containing only 𝑟) and its ear-decomposition by one 𝑀𝑟 -alternating
ear at a time. A perfect matching 𝑀𝑣 in𝐺−𝑣 can be found by Theorem 1.19. □

Factor-critical graphs also play a key role in the following Gallai–Edmonds
structure theorem about maximum matchings. This structure results from
Edmonds’ [1965a] matching algorithm, but here we give a self-contained proof.
The set of neighbors of a vertex set𝑌 contains all vertices that do not belong to𝑌
but are a neighbor of some vertex in 𝑌 . The partition {𝑌, 𝑋,𝑉 (𝐺) \ (𝑋 ∪𝑌 )} in
the following theorem is called the Gallai–Edmonds decomposition of 𝐺 (see
Figure 13.2 for an example).

Theorem 13.6 (Gallai [1964]). Let 𝐺 = (𝑉, 𝐸) be an undirected graph that
does not have a perfect matching. Let 𝑌 be the set of all vertices 𝑦 such that 𝐺
has a maximum matching that does not cover 𝑦. Let 𝑋 be the set of neighbors
of 𝑌 . Then:

(i) every connected component of 𝐺 [𝑌 ] is factor-critical;
(ii) every maximum matching in 𝐺 contains |𝑋 | edges in 𝛿(𝑋) ∩ 𝛿(𝑌 );
(iii) every maximum matching in 𝐺 contains a near-perfect matching in every

connected component of 𝐺 [𝑌 ].

Proof. We first prove (ii). Suppose there exists a maximum matching 𝑀 in 𝐺
that contains fewer than |𝑋 | edges in 𝛿(𝑋) ∩ 𝛿(𝑌 ). Let 𝑥 ∈ 𝑋 be a vertex with
𝑀 ∩ 𝛿(𝑥) ∩ 𝛿(𝑌 ) = ∅, and let 𝑒 = {𝑥, 𝑦} be an incident edge with 𝑦 ∈ 𝑌 . Since
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𝑌

𝑋

Figure 13.2 The Gallai–Edmonds decomposition of a graph 𝐺 that has no perfect
matching (cf. Theorem 13.6):𝑌 contains every vertex that some maximum matching
does not cover, and 𝑋 is the set of neighbors of 𝑌 . The red edges form a maximum
matching, covering all but three vertices (the unfilled circles in 𝑌 ).

𝑥 ∉ 𝑌 and 𝑀 is a maximum matching, there is an edge {𝑥, 𝑤} ∈ 𝑀 ∩ 𝛿(𝑥). Note
that 𝑤 ∉ 𝑌 . Let 𝑀 ′ = 𝑀 \ {{𝑥, 𝑤}}. Let 𝑀𝑦 be a maximum matching that does
not cover 𝑦. Consider the maximal path 𝑃 in (𝑉, 𝑀 ′ △ 𝑀𝑦) that begins in 𝑦;
its edges alternate between 𝑀 ′ and 𝑀𝑦 . This path 𝑃 has an even number of
edges (possibly zero), for otherwise 𝑀𝑦 △ 𝐸 (𝑃) would be a larger matching,
contradicting the maximality of 𝑀𝑦 . Moreover, 𝑃 ends in 𝑌 because 𝑀𝑦 △ 𝐸 (𝑃)
is a maximum matching that does not cover that endpoint of 𝑃. So neither 𝑥
nor 𝑤 is an endpoint of 𝑃, and in fact 𝑃 does not contain 𝑥 or 𝑤 at all because
each of these vertices has at most one incident edge in 𝑀 ′ △ 𝑀𝑦 ⊇ 𝐸 (𝑃). Thus,
𝑀 ′ △ (𝐸 (𝑃) ∪ {𝑒}) is a maximum matching that does not cover 𝑤. This is a
contradiction to 𝑤 ∉ 𝑌 . We have shown (ii).

Now we claim:

Let 𝐻 be a connected component of 𝐺 [𝑌 ], 𝑟 ∈ 𝑉 (𝐻), and
𝑀𝑟 a maximum matching in 𝐺 that does not cover 𝑟.
Then 𝑀𝑟 contains a perfect matching in 𝐻 − 𝑟.

(13.1)

Note that (13.1) directly implies (i) by the definition of 𝑌 . Moreover, (13.1)
implies (iii) as follows. Let 𝐻 be a connected component of 𝐺 [𝑌 ], and suppose
there is a maximum matching 𝑀 in 𝐺 that does not contain a near-perfect
matching in 𝐻. By (13.1), 𝑀 covers all vertices of 𝐻. Let 𝑦 ∈ 𝑉 (𝐻), and let
𝑀𝑦 be a maximum matching that does not cover 𝑦. Let 𝑃 be the maximal path
in (𝑉, 𝑀 △ 𝑀𝑦) that begins in 𝑦; it alternates between 𝑀 and 𝑀𝑦 , and it ends at
a vertex not covered by 𝑀 (because 𝑀𝑦 is a maximum matching), in particular
outside 𝐻. Let 𝑤 be the last vertex of 𝑃 that belongs to 𝐻, and let 𝑃′ be the
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subpath of 𝑃 that begins in 𝑤. By (13.1), we have 𝑀𝑦 ∩ 𝛿(𝑉 (𝐻)) = ∅; hence,
this subpath 𝑃′ must begin with an edge of 𝑀 and thus has even length. Hence,
𝑀 △ 𝐸 (𝑃′) is a maximum matching that is identical to 𝑀 inside 𝐻 and does
not cover 𝑤, contradicting (13.1) by the choice of 𝑀 .

We finally prove (13.1). Let 𝑆 ⊆ 𝑉 (𝐻) be a maximal set such that for all 𝑠 ∈ 𝑆
there exists an 𝑀𝑟 -alternating path of even length from 𝑠 to 𝑟 in 𝐻 [𝑆]. Note
that the first edge of such a path (for any 𝑠 ∈ 𝑆 \ {𝑟}) must be an edge of 𝑀𝑟 .
Therefore, 𝑀𝑟 [𝑆] covers all vertices in 𝑆 \ {𝑟}, and hence 𝑀𝑟 ∩ 𝛿(𝑆) = ∅. We
show 𝑆 = 𝑉 (𝐻), which implies that 𝑀𝑟 ∩ 𝐸 (𝐻) covers all vertices of 𝐻 \ {𝑟}.
So suppose 𝑆 ⊊ 𝑉 (𝐻). Since 𝐻 is connected, there is an edge 𝑒 = {𝑣, 𝑤} with
𝑣 ∈ 𝑆 and 𝑤 ∈ 𝑉 (𝐻) \ 𝑆. Let 𝑃𝑣 be an 𝑀𝑟 -alternating path of even length from
𝑣 to 𝑟 in 𝐻 [𝑆].

Let 𝑀𝑤 be a maximum matching that does not cover 𝑤, and consider the
maximal path 𝑃 in (𝑉, 𝑀𝑟 △ 𝑀𝑤) that begins in 𝑤; its edges alternate between
𝑀𝑟 and 𝑀𝑤 , and it ends in 𝑌 . Again, 𝑃 has an even number of edges for
otherwise 𝑀𝑤 △ 𝐸 (𝑃) would be a larger matching, contradicting the maximality
of 𝑀𝑤 . If 𝑃 did not contain any vertex of 𝑆, then 𝑀𝑟 △ (𝐸 (𝑃𝑣) ∪ {𝑒} ∪ 𝐸 (𝑃))
would be a larger matching than 𝑀𝑟 , which is impossible.

So let 𝑓 = {𝑦, 𝑧} be the first edge of 𝑃 (when traversed from 𝑤) with
𝑦 ∈ 𝑉 (𝐻) \ 𝑆 and 𝑧 ∈ 𝑆∪ 𝑋 , and let 𝑃′ be the subpath of 𝑃 from 𝑤 to 𝑧. If 𝑧 ∈ 𝑆,
then we could add the vertices of𝑉 (𝑃′) \ {𝑧} to 𝑆 because {𝑒} ∪𝐸 (𝑃′) contains
an 𝑀𝑟 -alternating path of even length from every vertex of 𝑉 (𝑃′) \ {𝑧} to 𝑣 or 𝑧.
Since 𝑆 was chosen maximal, we conclude that 𝑧 ∈ 𝑋 . If 𝑓 belongs to 𝑀𝑤 , then
𝑀𝑤 △ 𝐸 (𝑃′) is another maximum matching with fewer edges in 𝛿(𝑋) ∩ 𝛿(𝑌 ),
contradicting (ii). If 𝑓 belongs to 𝑀𝑟 , then 𝑀𝑟 △ (𝐸 (𝑃𝑣) ∪ {𝑒} ∪ 𝐸 (𝑃′)) is
another maximum matching with fewer edges in 𝛿(𝑋)∩𝛿(𝑌 ), again contradicting
(ii). □

Given an algorithm for computing a maximum cardinality matching, it is easy
to compute 𝑌 in polynomial time. In fact, 𝑌 is directly computed by Edmonds’
[1965a] matching algorithm (see e.g., Schrĳver [2003] or Korte and Vygen
[2018]), which can be implemented to run in 𝑂 (𝑛3) time.

Let 𝜑(𝐺) denote the minimum number of even ears in any ear-decomposition
of 𝐺. This number yields a lower bound on the number of edges in any tour:

Proposition 13.7. Let 𝐺 be a 2-edge-connected graph with 𝑛 vertices. Then any
2-edge-connected spanning subgraph, and any tour, has at least 𝑛 − 1 + 𝜑(𝐺)
edges.

Proof. Let 𝐻 be a 2-edge-connected spanning subgraph of 𝐺. The number
of edges of 𝐻 is 𝑛 − 1 plus the number of ears in any ear-decomposition of 𝐻.
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Any ear-decomposition of 𝐻 has at least 𝜑(𝐺) ears because otherwise we could
extend it to an ear-decomposition of 𝐺 with fewer than 𝜑(𝐺) even ears by
adding the remaining edges as trivial ears. Hence, 𝐻 has at least 𝑛 − 1 + 𝜑(𝐺)
edges. By Proposition 13.3, no tour can have fewer edges. □

If 𝐺 is a graph with 𝑛 vertices, then 𝜑(𝐺) is even if and only if 𝑛 is odd
(because even ears have an odd number of internal vertices). Since the graph 𝐺
in Figure 13.1 (left-hand side) has 15 vertices and is not factor-critical, it has
𝜑(𝐺) ≥ 2 by Theorem 13.5, and the ear-decomposition in this figure actually
shows 𝜑(𝐺) = 2. Our next goal is to compute an ear-decomposition with 𝜑(𝐺)
even ears.

The following observation will be useful:

Lemma 13.8 (Schrĳver [2003]). If 𝐺 = (𝑉, 𝐸) is 2-edge-connected and ∅ ≠
𝑈 ⊊ 𝑉 such that 𝐺 [𝑈] is 2-edge-connected, then 𝜑(𝐺) ≤ 𝜑(𝐺 [𝑈]) + 𝜑(𝐺/𝑈).

Proof. If 𝐺 [𝑈] contains a Hamiltonian circuit 𝐶, then we can construct an
ear-decomposition of 𝐺 by taking an ear-decomposition of 𝐺/𝑈 with 𝜑(𝐺/𝑈)
even ears, letting 𝑃 be the first ear containing the vertex that resulted from
contraction, and inserting (if possible, an even) part of 𝐶 into 𝑃, as well as the
rest of 𝐶 as a new ear immediately behind 𝑃. The remaining edges of 𝐺 [𝑈] can
be added as trivial ears at the end. We obtain an ear-decomposition of 𝐺 with
𝜑(𝐺 [𝑈]) + 𝜑(𝐺/𝑈) even ears.

Otherwise, let 𝐶 be the first ear in an ear-decomposition of 𝐺 [𝑈] with
𝜑(𝐺 [𝑈]) even ears. We have 𝜑(𝐺 [𝑈]) = 𝜑(𝐶) + 𝜑(𝐺 [𝑈]/𝐶). Then, by the
first part, 𝜑(𝐺) ≤ 𝜑(𝐶) + 𝜑(𝐺/𝐶). By induction on the number of vertices,
𝜑(𝐺/𝐶) ≤ 𝜑(𝐺 [𝑈]/𝐶) + 𝜑(𝐺/𝑈). Combining this yields 𝜑(𝐺) ≤ 𝜑(𝐶) +
𝜑(𝐺 [𝑈]/𝐶) + 𝜑(𝐺/𝑈) = 𝜑(𝐺 [𝑈]) + 𝜑(𝐺/𝑈). □

Now we can prove a fundamental result of Frank [1993]. Our proof largely
follows Schrĳver [2003].

Theorem 13.9 (Frank [1993]). Let 𝐺 = (𝑉, 𝐸) be a 2-edge-connected graph
with 𝑛 vertices.

Then for any 𝑇 ⊆ 𝑉 such that |𝑇 | is even, there exists a 𝑇-join in 𝐺 with at
most 1

2 (𝑛 + 𝜑(𝐺) − 1) edges. Moreover, there exists a 𝑇 ⊆ 𝑉 such that |𝑇 | is
even and the minimum cardinality of a 𝑇-join in 𝐺 is 1

2 (𝑛 + 𝜑(𝐺) − 1). Such a
𝑇 and an ear-decomposition with 𝜑(𝐺) even ears can be found in polynomial
time.

Proof. The first statement follows by induction on the number of ears. If 𝑃 is
the last ear in an ear-decomposition with 𝜑(𝐺) even ears, 𝑃 is the union of a
𝑇 ′-join 𝐽′ and a 𝑇 ′′-join 𝐽′′, where 𝑇 ′ ∩ in(𝑃) = 𝑇 ′′ ∩ in(𝑃) = 𝑇 ∩ in(𝑃). Take
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the smaller one, say 𝐽′, with at most ⌊ 1
2 |𝐸 (𝑃) |⌋ edges. By induction, there exists

a (𝑇 △ 𝑇 ′)-join 𝐽 in 𝐺 − in(𝑃) with at most 1
2 (𝑛 − |in(𝑃) | + 𝜑(𝐺 − in(𝑃)) − 1)

edges. 𝐽 ∪ 𝐽′ does the job by Proposition 1.26.
The second statement is more difficult to prove. We proceed by induction on

𝑛. If 𝐺 is factor-critical, we can find an odd ear-decomposition by Theorem 13.5,
so 𝜑(𝐺) = 0, and any 𝑇 ⊊ 𝑉 with |𝑇 | = 𝑛 − 1 proves the assertion. So we
assume that 𝐺 is not factor-critical.

If𝐺 has a perfect matching, let𝐺′ = 𝐺−𝑣 for an arbitrary vertex 𝑣; otherwise,
let 𝐺′ = 𝐺. Let 𝑌 be the set of vertices 𝑦 ∈ 𝑉 (𝐺′) for which there exists a
maximum matching in 𝐺′ that does not cover 𝑦. Let 𝑋 be the set of neighbors of
𝑌 in 𝐺 (as in the Gallai–Edmonds decomposition, but also including 𝑣 if 𝐺 has
a perfect matching). Consider the bipartite graph that results from 𝐺 [𝑌 ∪ 𝑋]
by deleting all edges in 𝐺 [𝑋] and contracting all edges in 𝐺 [𝑌 ] (note that
parallel edges may arise). See Figure 13.3. This bipartite graph has a matching
𝑀 covering 𝑋 (by Theorem 13.6 (ii) and the definition of 𝑌 , every maximum
matching in 𝐺 contains such a set 𝑀). Orient the edges of 𝑀 towards 𝑋 and the
other edges towards 𝑌 . This digraph 𝐷 (like every digraph, cf. Proposition 6.4)
has a strongly connected component 𝐿 such that no edge enters 𝐿.

Every vertex in 𝐷 has an entering edge: for the vertices in 𝑋 an edge of 𝑀 , for
the other vertices because only one edge (belonging to 𝑀) leaves such a vertex
and 𝐺 is 2-edge-connected. Because no edge enters 𝐿, we conclude |𝐿 | ≥ 2.
Moreover, no edge 𝑒 = (𝑦, 𝑥) of 𝑀 can leave 𝐿 because otherwise 𝑦 would have
no outgoing edge in 𝐷 [𝐿], but 𝐿 is strongly connected.

Now 𝐷 [𝐿] is strongly connected and thus has a directed ear-decomposition
(by Proposition 13.2). All ears must alternate between edges in 𝑀 and other
edges. The first ear is even (the graph is bipartite), and a straightforward induction
shows that for every 𝑘 , the union of the first 𝑘 ears contains a perfect matching
within 𝑀, and all ears except the first one are odd. By Lemma 13.8, since
the connected components of 𝑌 that we contracted are all factor-critical (by
Theorem 13.6 (i)), we have 𝜑(𝐺 [𝑈]) = 1, where𝑈 arises from 𝐿 by undoing
the contraction. We also conclude |𝑉 (𝐿) ∩ 𝑋 | = |𝑉 (𝐿) ∩ 𝑌 |.

So 𝜑(𝐺 [𝑈]) = 1, and hence, again by Lemma 13.8, 𝜑(𝐺) ≤ 𝜑(𝐺 [𝑈]) +
𝜑(𝐺/𝑈) = 1 + 𝜑(𝐺/𝑈). (Note that 𝑈 = 𝑉 is possible, in which case 𝐺/𝑈
contains a single vertex and the above is also true.)

Let (by induction) 𝑇 ⊆ 𝑉 (𝐺/𝑈) such that |𝑇 | is even and the minimum size
of a 𝑇-join is 1

2 ( |𝑉 (𝐺/𝑈) | + 𝜑(𝐺/𝑈) − 1). Let 𝑇 result from (𝑈 ∩𝑌 ) ∪ (𝑇 \𝑈)
by adding an arbitrary vertex in𝑈 ∩ 𝑋 if the set was odd before. Then we claim:

Any 𝑇-join in 𝐺 has at least |𝑈 |2 edges inside 𝐺 [𝑈]. (13.2)
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𝑣 𝑋

𝑌

𝑈

𝑋

𝑌

𝐿

Figure 13.3 Top: The Gallai–Edmonds decomposition of 𝐺′ = 𝐺 − 𝑣 in the proof
of Theorem 13.9. Bottom: The digraph 𝐷. The red, thick edges oriented from 𝑌
to 𝑋 belong to 𝑀. The graph 𝐿 is a strongly connected component of 𝐷 without
entering arcs, and𝑈 is the corresponding vertex set in 𝐺.

By (13.2), the minimum size of a𝑇-join in𝐺 is at least 1
2
(
|𝑉 (𝐺/𝑈) | +𝜑(𝐺/𝑈) −

1
)
+ |𝑈 |2 = 1

2 (𝑛 + 1 + 𝜑(𝐺/𝑈) − 1) ≥ 1
2 (𝑛 + 𝜑(𝐺) − 1).

To prove (13.2), first observe that the vertices in 𝑈 ∩ 𝑌 have no neighbors
outside 𝑈. This holds by the choice of 𝐿 and since no matching edge leaves
𝐿. We conclude that any 𝑇-join in 𝐺 contains at least |𝑈 ∩ 𝑌 | − max{|𝑀 | :
𝑀 matching in 𝐺 [𝑈∩𝑌 ]} edges inside𝐺 [𝑈]. Because |𝑉 (𝐿)∩𝑋 | = |𝑉 (𝐿)∩𝑌 |,
the subgraph 𝐺 [𝑈 ∩ 𝑌 ] has |𝑈 ∩ 𝑋 | connected components, each of which has
an odd number of vertices. Hence, any matching in 𝐺 [𝑈 ∩ 𝑌 ]} has at most
1
2 ( |𝑈 ∩ 𝑌 | − |𝑈 ∩ 𝑋 |) edges. This proves (13.2).

All steps of this proof are constructive, implying a polynomial-time algo-
rithm. Computing the Gallai–Edmonds decomposition can be done with any
polynomial-time algorithm that computes a maximum matching (cf. Theo-
rem 1.19). □

Note that this immediately implies a 3
2 -approximation algorithm for computing

a smallest 2-edge-connected spanning subgraph: Compute an ear-decomposition
with 𝜑(𝐺) even ears and delete the trivial ears. The output has at most 3

2 (𝑛−1) +
1
2𝜑(𝐺) edges, which yields a 3

2 -approximation by Proposition 13.7. Cheriyan,
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Sebő, and Szigeti [2001] improved the approximation ratio to 17
12 as shown in

Exercise 13.2.
Theorem 13.9 can also be used to strengthen Proposition 13.7. Let LP(𝐺)

denote the value of the Graph TSP LP (12.1), and let

𝐿𝜑 (𝐺) := 𝑛 − 1 + 𝜑(𝐺).

Corollary 13.10 (Cheriyan, Sebő, and Szigeti [2001]). For every 2-edge-
connected graph 𝐺, we have

𝐿𝜑 (𝐺) ≤ LP(𝐺).

Proof. By Theorem 13.9, there exists a set 𝑇 of vertices such that |𝑇 | is even
and 1

2 (𝑛 − 1 + 𝜑(𝐺)) is the minimum cardinality of a 𝑇-join in 𝐺. Now use
Theorem 2.19 and observe that the value of (2.9) (for 𝑐(𝑒) = 1 for all edges 𝑒,
and for every 𝑇) is at most half the value of (12.1). □

13.4 Nice and Nicer Ear-Decompositions

Frank’s Theorem 13.9 was used by Cheriyan, Sebő, and Szigeti [2001] and Sebő
and Vygen [2014] as a starting point to obtain an ear-decomposition with further
properties. In the rest of this chapter, we assume 𝐺 to be 2-vertex-connected,
which is no loss of generality by Proposition 12.1.

Theorem 13.11 (Lovász and Plummer [1986]). For any 2-connected factor-
critical graph, an open odd ear-decomposition can be computed in polynomial
time.

Proof. Let 𝐺 be a 2-connected factor-critical graph. By Theorem 13.5, we
can compute an odd ear-decomposition 𝑃0, 𝑃1, . . . , 𝑃𝑘 of 𝐺 in polynomial time.
Suppose this is not open; then let 𝑃𝑖 be the first closed ear (i.e., 𝑖 ≥ 2 minimum
such that 𝑃𝑖 is a circuit). Let 𝐺′ be the subgraph of 𝐺 with ear-decomposition
𝑃0, 𝑃1, . . . , 𝑃𝑖−1, and let 𝑣 be the vertex that 𝐺′ and 𝑃𝑖 have in common.

Let 𝑃 𝑗 be the first ear after 𝑃𝑖 so that the graph with ear-decomposition
𝑃0, 𝑃1, . . . , 𝑃 𝑗 contains a path from in(𝑃𝑖) to the root that does not contain 𝑣.
Let 𝑤1 and 𝑤2 be the two endpoints of 𝑃 𝑗 . For 𝑖 = 1, 2, construct a path 𝑅𝑖 from
𝑤𝑖 to 𝑉 (𝐺′) by starting with 𝑥 = 𝑤𝑖 , letting 𝑄 be the ear with 𝑥 ∈ in(𝑄) and 𝑦
the endpoint of 𝑄 such that the 𝑥-𝑦-path in 𝑄 has even length, setting �̄� to be
the rest of 𝑄 (a path with odd length), and iterating with 𝑥 := 𝑦 until 𝑥 ∈ 𝑉 (𝐺′).

Exactly one of the two paths 𝑅1, 𝑅2 ends in 𝑣. Hence, concatenating 𝑅1, 𝑃 𝑗 ,
and 𝑅2 yields an open odd ear 𝑃new that can be added to 𝐺′, and

𝑃0, 𝑃1, . . . , 𝑃𝑖−1, 𝑃new, �̄�𝑖 , . . . , �̄� 𝑗−1, 𝑃 𝑗+1, . . . , 𝑃𝑘
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is an odd ear-decomposition of 𝐺. Iterating this procedure, we obtain an open
odd ear-decomposition of 𝐺 after less than 𝑛 steps. □

Corollary 13.12 (Cheriyan, Sebő, and Szigeti [2001]). For any 2-connected
graph 𝐺, an open ear-decomposition with 𝜑(𝐺) even ears can be computed in
polynomial time.

Proof. By Theorem 13.9, we can construct an ear-decomposition with 𝜑(𝐺)
even ears. Take an arbitrary edge in each even ear and subdivide it. We
obtain an odd ear-decomposition, so the resulting graph is factor-critical. By
Theorem 13.11, it has an open odd ear-decomposition. Take this and undo the
𝜑(𝐺) subdivisions in order to obtain an open ear-decomposition of the original
graph 𝐺, which then has at most (and hence exactly) 𝜑(𝐺) even ears. □

Definition 13.13 (nice ear-decomposition). An ear-decomposition is called nice
if it has 𝜑(𝐺) even ears, all short ears are pendant, and there is no edge joining
internal vertices of different short ears.

For example, Figure 13.1, left-hand side, displays a nice ear-decomposition.
Let us call an ear of length 2 or 3 simply a 2-ear or 3-ear, respectively. The
following lemma is essentially due to Cheriyan, Sebő, and Szigeti [2001],
although they did not consider 2-ears. In the following form, the lemma appears
in Sebő and Vygen [2014].

Lemma 13.14. Given a 2-vertex-connected graph, one can compute a nice
ear-decomposition in polynomial time.

Proof. First, compute an open ear-decomposition with 𝜑(𝐺) even ears, using
Corollary 13.12. Then we perform a sequence of operations and maintain an
ear-decomposition with 𝜑(𝐺) even ears. Each step will increase the number
of trivial ears. We will always assume that the trivial ears come last in the
ear-decomposition. We proceed in three phases.

In the first phase, we make 2-ears pendant and maintain an open ear-
decomposition. If a 2-ear 𝑃 is not pendant, let 𝑄 be the first nontrivial ear
attached to it. Remove 𝑃, extend 𝑄 by one edge of 𝑃 so that it remains open,
and make the other edge a trivial ear. Iterate this until all 2-ears are pendant.

In the second phase, we make 3-ears pendant and maintain the invariant that
no closed ear is attached to any 3-ear. Let 𝑃 be the first non-pendant 3-ear, and
let 𝑄 be the first nontrivial ear attached to it. Note that 𝑄 is open. Remove 𝑃,
extend 𝑄 by two edges of 𝑃 (it may become closed), and make the third edge a
trivial ear. Iterate this until all 3-ears are pendant.

Now all short ears are pendant (and will remain so). Suppose two short ears
are adjacent – that is, there is an edge {𝑣, 𝑤} (a trivial ear) such that 𝑣 ∈ in(𝑃)
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Figure 13.4 Left: A graph 𝐺 with a nice ear-decomposition. The short ears are
highlighted in color, and the elements of I are the green sets. Right: A nicer
ear-decomposition, in which the spanning subgraph that contains only the edges of
the short ears has fewer connected components (five instead of six). Only ear 𝑃4
has been modified here.

and 𝑤 ∈ in(𝑄) for two short ears 𝑃 and 𝑄. Then we can extend this trivial ear
by all but one edge from 𝑃 and all but one edge from 𝑄. The new ear is pendant
and can be put at the end of the ear-decomposition, followed only by the trivial
ears. One trivial ear vanishes, but two new trivial ears arise.

It is easy to see that the number of even ears never increases. □

Recall that Theorem 13.4 gives a poor bound if there are many pendant ears.
In this case, we will start constructing a tour by taking all the edges of the
pendant ears. Then their internal vertices have even degree, so we can proceed
by considering only the subgraph induced by the remaining vertices. This is
particularly efficient if the pendant ears already connect many of these vertices.
This is what we try to achieve next, but we concentrate on the short ears.

Namely, a nice ear-decomposition allows for optimizing the short ears in the
following sense. Let I contain for each short ear the set of its internal vertices
(cf. Figure 13.4, left-hand side). For 𝐼 ∈ I, we denote by P𝐼 the set of paths in
𝐺 whose set of internal vertices is 𝐼. A key observation is that we can replace
the ear 𝑃𝐼 ∈ P𝐼 by any other element of P𝐼 (adapting the set of trivial ears
accordingly). This maintains a nice ear-decomposition. Our goal is to choose
an element of P𝐼 for each 𝐼 ∈ I so that the spanning subgraph that contains
only the edges of these paths has as few connected components as possible. See
Figure 13.4 for an example.

We will now show that this optimization problem can be solved in polynomial
time. For this, we need the notion of matroids, a classic part of combinatorial
optimization theory (see also Exercise 2.5):
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Definition 13.15 (matroid). Let𝑈 be a finite set andM a family of subsets of
𝑈. Then (𝑈,M) is called a matroid if

• ∅ ∈ M;
• for all 𝐵 ∈ M and 𝐴 ⊆ 𝐵, we have 𝐴 ∈ M; and
• for all 𝐴, 𝐵 ∈ M with |𝐴| < |𝐵 |, there exists an element 𝑏 ∈ 𝐵 \ 𝐴 with
𝐴 ∪ {𝑏} ∈ M.

Typically, the elements ofM are given implicitly, and we assume that one
can test in polynomial time whether a given subset of𝑈 belongs toM. A simple
example is a partition matroid: Here we have a partitionW of𝑈 and a function
𝑢 :W → Z>0 such thatM = {𝐴 ⊆ 𝑈 : |𝐴∩𝑊 | ≤ 𝑢(𝑊) for all𝑊 ∈ W}. It is
easy to see that then (𝑈,M) is indeed a matroid. We will consider the partition
matroid (𝑈,M1) with𝑈 =

⋃
𝐼∈I P𝐼 and

M1 =
{
𝐴 ⊆ 𝑈 : |𝐴 ∩ P𝐼 | ≤ 1 for all 𝐼 ∈ I

}
.

Another example are graphic matroids: Here we have an undirected graph
𝐺 = (𝑉, 𝐸) and letM contain all edge sets of forests in 𝐺. It is easy to show
that (𝐸,M) is a matroid. For 𝑃 ∈ 𝑈 =

⋃
𝐼∈I P𝐼 , let 𝑒𝑃 ∈

(𝑉
2
)

denote an edge
that connects the endpoints of 𝑃. We will consider the graphic matroid (𝑈,M2),
where

M2 =

{
𝐴 ⊆ 𝑈 :

(
𝑉,

.⋃
𝑃∈𝐴
{𝑒𝑃}

)
is a forest

}
.

By the third property of Definition 13.15, it is trivial to find an element
ofM with maximum cardinality for any given matroid (𝑈,M). In fact, the
greedy algorithm can also find an element 𝐴 of M with maximum weight
𝑤(𝐴) = ∑

𝑎∈𝐴 𝑤(𝑎) for given weights 𝑤 : 𝑈 → R (see Exercise 2.5), but we do
not need this here. A more difficult problem is to find a maximum-cardinality set
that belongs to the intersection of two matroids. However, this is also well-solved
due to Edmonds’ matroid intersection theorem:

Theorem 13.16 (Edmonds [1970]). Let 𝑈 be a finite set and M1,M2 be
families of subsets of𝑈 such that (𝑈,M1) and (𝑈,M2) are matroids. Suppose
we can check in polynomial time for any 𝐴 ⊆ 𝑈 whether 𝐴 ∈ M1 and whether
𝐴 ∈ M2. Then we can find a set 𝐴 ∈ M1 ∩M2 of maximum cardinality in
polynomial time, and this cardinality is min{𝑟1 (𝑋) +𝑟2 (𝑈 \𝑋) : 𝑋 ⊆ 𝑈}, where
𝑟𝑖 (𝑋) = max{|𝑌 | : 𝑌 ⊆ 𝑋, 𝑌 ∈ M𝑖} is the rank function ofM𝑖 (𝑖 = 1, 2).

To solve our optimization problem, we now apply this to the partition matroid
(𝑈,M1) and the graphic matroid (𝑈,M2) defined above.
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Theorem 13.17 (Sebő and Vygen [2014]). Given a 2-connected graph 𝐺 =

(𝑉, 𝐸), we can compute in polynomial time a nice ear-decomposition of 𝐺 such
that the following holds. Let I contain the set of internal vertices for each short
ear, and let 𝐸short contain all edges of short ears. Then there exists a subset
B ⊆ I such that (𝑉, 𝐸short) has at most |𝑉 | − |𝐸short | + |B| − 𝑟2 (

⋃
𝐼∈B P𝐼 )

connected components.

Proof. We begin with an arbitrary nice ear-decomposition of 𝐺, which we
get from Lemma 13.14, and let I contain the set of internal vertices for each
short ear. Then we find a set 𝐴 ∈ M1 ∩M2 of maximum cardinality, where
(𝑈,M1) and (𝑈,M2) are the two matroids defined earlier. By Theorem 13.16,
𝐴 can be computed in polynomial time, and there exists a set 𝑋 ⊆ 𝑈 with
|𝐴| = 𝑟1 (𝑋) + 𝑟2 (𝑈 \ 𝑋).

Since 𝐴 ∈ M1, we have 𝐴 = {𝑃𝐼 : 𝐼 ∈ J} for some J ⊆ I and 𝑃𝐼 ∈ P𝐼
(𝐼 ∈ J ). We change the ear-decomposition as follows. For each 𝐼 ∈ J , we
replace the ear with internal vertices 𝐼 by 𝑃𝐼 (and adapt the set of trivial ears
accordingly). We claim that this ear-decomposition does the job.

Let 𝐸short be the set of edges of the short ears (after changing the ear-
decomposition). Since 𝐴 ∈ M2, omitting one edge from each ear with internal
vertices 𝐼 ∈ I \ J yields a forest. Hence, the number of connected components
of (𝑉, 𝐸short) is at most

|𝑉 | −
(
|𝐸short | − |I \ J |

)
= |𝑉 | − |𝐸short | + |I| − |𝐴|. (13.3)

Let B := {𝐼 ∈ I : P𝐼 ∩ 𝑋 = ∅}. Then we have

|𝐴| = 𝑟1 (𝑋) + 𝑟2 (𝑈 \ 𝑋)
= |I \ B| + 𝑟2 (𝑈 \ 𝑋)

≥ |I \ B| + 𝑟2

( ⋃
𝐼∈B
P𝐼

)
.

(13.4)

Plugging this bound into (13.3) yields the result. □

In fact, we have equality because we need to remove at least |B|−𝑟2 (
⋃
𝐼∈B P𝐼 )

edges from the short ears in order to obtain a forest.
In the example of Figure 13.4, B would consist of the sets of internal

vertices of the ears 𝑃5 and 𝑃6 (see Figure 13.5, left-hand side); then |B| = 2 and
𝑟2 (

⋃
𝐼∈B P𝐼 ) = 1, and indeed the edges of the short ears in the ear-decomposition

shown on the right-hand side of Figure 13.4 form a spanning subgraph with
15 − 11 + 2 − 1 = 5 connected components.

Although Theorem 13.17 yields a polynomial-time algorithm, one can exploit
the fact that the two matroids have a special structure to obtain a faster running
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Figure 13.5 Left: The nicer ear-decomposition from Figure 13.4 (according to
Theorem 13.17). The red sets are the elements of B; the green sets are the elements
of I \ B. Right: The cuts in the proof of Theorem 13.18. The partition U is shown
in blue.

time. Already Rado [1942] considered the case when one matroid is a partition
matroid. Sebő and Vygen [2014] reduced the problem to finding a maximum
forest representative system of the hypergraph in which all endpoints of paths
in P𝐼 form a hyperedge (for each 𝐼 ∈ I). Using also a faster algorithm for
Theorem 13.9 (Frank [1993]), one can compute an ear-decomposition as in
Theorem 13.17 in 𝑂 ( |𝑉 | |𝐸 |) time.

From now on, we work with a “nicer” ear-decomposition as in Theorem 13.17.
If it has many pendant ears and the short ears form a forest, this will help us
because we simply take all edges of pendant ears (then the internal vertices of
pendant ears have degree 2) and complete this edge set to a tour using only
edges of the subgraph induced by the other vertices. If the short ears do not
form a forest, we will obtain a stronger lower bound:

Theorem 13.18 (Sebő and Vygen [2014]). Let 𝐺 = (𝑉, 𝐸) be a graph with a
nice ear-decomposition. Let I contain the set of internal vertices for each short
ear. Then

𝐿𝜇 (𝐺,I) := 𝑛 − 1 +max

{
|B| − 𝑟2

( ⋃
𝐼∈B
P𝐼

)
: B ⊆ I

}
≤ LP(𝐺),

where 𝑛 = |𝑉 | and 𝑟2 is the rank function of the matroid (𝑈,M2).

Proof. Let B ⊆ I. Let U be the partition of 𝑉 that contains the vertex
sets of the connected components of

(
𝑉,

⋃
𝐼∈B,𝑃𝐼 ∈P𝐼 𝐸 (𝑃𝐼 )

)
. Then |U| =

𝑛 −∑
𝐼∈B |𝐼 | − 𝑟2 (

⋃
𝐼∈B P𝐼 ).
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Consider the family of sets F := U ∪ B
.
∪ {{𝑣} : 𝑣 ∈ 𝐼 ∈ B}, taking

singletons in B twice. See Figure 13.5 for an illustration. Let 𝑥 be a feasible
solution to (12.1). Summing over the inequalities 𝑥(𝛿(𝑈)) ≥ 2 for the sets𝑈 in
this family F (except for𝑈 = 𝑉) yields

2 𝑥(𝐸) ≥
∑︁

𝑈∈F\{𝑉 }
𝑥(𝛿(𝑈)) ≥ 2( |F | − 1) = 2

(
𝑛 − 1 + |B| − 𝑟2

( ⋃
𝐼∈B
P𝐼

))
because no edge is contained in more than two of these at least |U| − 1 + |B| +∑
𝐼∈B |𝐼 | cuts. □

Note that 𝐿𝜇 (𝐺,I) ≥ 𝑛 − 1 because B = ∅ is a possible choice.

13.5 The 7
5 -Approximation Algorithm

Now we can explain the 7
5 -approximation algorithm for Graph TSP by Sebő

and Vygen [2014]. We will work with the lower bound

Λ(𝐺,I) := 1
3𝐿𝜑 (𝐺) +

2
3𝐿𝜇 (𝐺,I).

Proposition 13.19. Let 𝐺 be a 2-edge-connected graph, and let I contain the
set of internal vertices for each short ear in a nice ear-decomposition. Then

𝑛 − 1 ≤ Λ(𝐺,I) ≤ LP(𝐺).

Proof. Λ(𝐺,I) ≤ LP(𝐺) follows from Corollary 13.10 and Theorem 13.18.
The inequality Λ(𝐺,I) ≥ 𝑛 − 1 follows from 𝐿𝜑 (𝐺) ≥ 𝑛 − 1 and 𝐿𝜇 (𝐺,I) ≥
𝑛 − 1. □

The algorithm first computes an ear-decomposition as in Theorem 13.17 and
then deletes all trivial ears. The following lemma shows what to do if there are
many pendant ears (otherwise, we will use Theorem 13.4):

Lemma 13.20. Let 𝐺 be a 2-edge-connected graph with a nice ear-decomposi-
tion that has no trivial ears, let 𝐸short be the set of edges of the short ears, let I
contain the set of internal vertices for each short ear, and let 𝑘 be the number of
connected components of (𝑉, 𝐸short). Then one can compute a tour in 𝐺 with at
most 𝑘 − 1 + |𝐸short | + 1

2𝐿𝜑 (𝐺) − 𝜋 edges in 𝑂 (𝑛3) time, where 𝜋 is the number
of pendant ears.

Proof. Let 𝐸𝜋 be the set of all edges of pendant ears, and𝑉𝜋 the set of internal
vertices of pendant ears. We have |𝐸𝜋 | = |𝑉𝜋 | + 𝜋. If 𝜆 denotes the number of
long pendant ears and 𝜑𝜋 denotes the number of even pendant ears, we have
|𝑉𝜋 | ≥ 2𝜋 + 2𝜆 − 𝜑𝜋 .
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Figure 13.6 Illustrating the algorithm described in the proof of Lemma 13.20,
continuing the example from Figure 13.5. Left: The edges of pendant ears after
optimizing short ears (black) and a minimal set of edges of non-pendant ears (red)
to make a connected spanning subgraph. Right: For correcting parities (in the
green subgraph 𝐺 [𝑉 \ 𝑉𝜋 ]), we need three more edges; a possible resulting tour
is shown.

Our algorithm first takes all edges of pendant ears. Since (𝑉, 𝐸short) has
𝑘 connected components and 𝐸short ⊆ 𝐸𝜋 , we conclude that (𝑉, 𝐸𝜋) has
at most 𝑘 − |𝐸𝜋 \ 𝐸short | + 𝜆 connected components. Hence, we can add
𝑘 − |𝐸𝜋 \ 𝐸short | +𝜆− 1 edges to 𝐸𝜋 to obtain a connected spanning subgraph in
which all vertices in 𝑉𝜋 have degree 2 (see Figure 13.6). Note that this subgraph
has at most 𝑘 + |𝐸short | + 𝜆 − 1 ≤ 𝑘 + |𝐸short | + 1

2 |𝑉𝜋 | − 𝜋 +
1
2𝜑𝜋 − 1 edges.

Let 𝑇 ⊆ 𝑉 \𝑉𝜋 be the set of vertices with odd degree in this subgraph. Then
add a minimum 𝑇-join in 𝐺 [𝑉 \𝑉𝜋] (cf. Theorem 1.29); note that this induced
subgraph has an ear-decomposition with 𝜑(𝐺) −𝜑𝜋 even ears. By Theorem 13.9,
this 𝑇-join has at most 1

2 (𝑛 − |𝑉𝜋 | − 1 + 𝜑(𝐺) − 𝜑𝜋) edges. Summing up, our
tour has at most 𝑘 − 1 + |𝐸short | + 1

2𝐿𝜑 (𝐺) − 𝜋 edges. □

The overall algorithm is now easily described:

Theorem 13.21 (Sebő and Vygen [2014]). There is a 7
5 -approximation algorithm

for Graph TSP. For any given graph𝐺, it computes a tour with at most 7
5 LP(𝐺)

edges.

Proof. By Proposition 12.1, we may assume that the given graph𝐺 = (𝑉, 𝐸) is
2-connected. Then we first compute an ear-decomposition as in Theorem 13.17.
Next, we delete all trivial ears. Again, let I contain the set of internal vertices
for each short ear.

Let 𝐺′ = (𝑉, 𝐸 ′) be the resulting spanning subgraph. 𝐺′ is 2-edge-connected
(since it has an ear-decomposition) but not necessarily 2-vertex-connected. Let
𝐺1, . . . , 𝐺 𝑝 be the maximal 2-connected subgraphs of 𝐺′; we call them the
blocks of 𝐺′. Several of them may share a vertex, but their edge sets form
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a partition of 𝐸 ′. Note that
∑𝑝

𝑖=1 ( |𝑉 (𝐺𝑖) | − 1) = |𝑉 | − 1 and
∑𝑝

𝑖=1 𝐿𝜑 (𝐺𝑖) =
𝐿𝜑 (𝐺).

Let 𝜋𝑖 denote the number of pendant ears of 𝐺𝑖 . Note that an ear can be
pendant in some 𝐺𝑖 but not pendant in 𝐺. Let 𝑘𝑖 be the number of connected
components in (𝑉 (𝐺𝑖), 𝐸short ∩ 𝐸 (𝐺𝑖)) and 𝑘 be the number of connected
components in (𝑉, 𝐸short). By Theorem 13.17, we have (for some B ⊆ I)

𝑝∑︁
𝑖=1
(𝑘𝑖 − 1) = 𝑘 − 1

= 𝑛 − 1 − |𝐸short | + |B| − 𝑟2

( ⋃
𝐼∈B
P𝐼

)
≤ 𝐿𝜇 (𝐺,I) − |𝐸short |

by definition of 𝐿𝜇 (𝐺,I) (cf. Theorem 13.18).
We distinguish two cases. If

∑𝑝

𝑖=1 𝜋𝑖 ≤
1
10Λ(𝐺,I), apply Theorem 13.4 to

each block and obtain a tour with at most 4
3 (𝑛 − 1) + 2

3
∑𝑝

𝑖=1 𝜋𝑖 ≤
7
5Λ(𝐺,I)

edges. Otherwise, we apply Lemma 13.20 to each block to obtain a tour with at
most

𝑝∑︁
𝑖=1

(
𝑘𝑖 − 1 + |𝐸short ∩ 𝐸 (𝐺𝑖) | + 1

2𝐿𝜑 (𝐺𝑖) − 𝜋𝑖
)

=

𝑝∑︁
𝑖=1
(𝑘𝑖 − 1) + |𝐸short | + 1

2𝐿𝜑 (𝐺) −
𝑝∑︁
𝑖=1

𝜋𝑖

≤ 𝐿𝜇 (𝐺,I) + 1
2𝐿𝜑 (𝐺) −

𝑝∑︁
𝑖=1

𝜋𝑖

≤ 7
5Λ(𝐺,I)

edges. We can simply compute both tours and take the smaller one. We are done
by Proposition 13.19. □

The algorithm can be implemented to run in 𝑂 (𝑛3) time. Theorem 13.21 still
yields the best approximation ratio known for the Graph TSP. For some special
cases, better approximation algorithms are known (see Section 12.3).

Theorem 13.21 also shows that the integrality ratio of the subtour LP (2.2)
for metric closures of unweighted graphs is at most 7

5 . As of today, no better
bound is known. Table 13.1 summarizes the history of Graph TSP.

Exercise 13.11 shows that the ratio 7
5 is tight for this algorithm.

Open Problem 13.22. Devise a 4
3 -approximation algorithm for Graph TSP.
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Table 13.1 Approximation ratios and upper bounds on the integrality ratio
for Graph TSP in the order of their discovery. The integrality ratio refers to
the subtour LP (2.2) of the metric closure of Graph TSP instances. (R) means
randomized; this algorithm computes a random tour. Only algorithms with
ratio better than 3

2 are shown.

Approximation Integrality
Ratio Ratio Year Reference Chapter

3
2 − 10−52 (R) 3

2 − 10−52 2011 Oveis Gharan, Saberi,
and Singh [2011]

10.1

1.461 1.461 2011 Mömke and Svensson [2016] 12
13
9

13
9 2011 Mucha [2014] 12.5

7
5

7
5 2012 Sebő and Vygen [2014] 13

13.6 Two-Edge-Connected Spanning Subgraph Problem

The techniques described in this chapter also yield an approximation algorithm
for the Minimum 2-Edge-Connected Spanning Subgraph Problem.

Theorem 13.23 (Sebő and Vygen [2014]). There is a polynomial-time algorithm
that computes, for any given 2-edge-connected graph 𝐺, a 2-edge-connected
spanning subgraph with at most 4

3 LP(𝐺) edges.

Proof. Analogously to the proof of Proposition 12.1, we may assume that
the given graph 𝐺 = (𝑉, 𝐸) is 2-connected. Then we first compute an ear-
decomposition as in Theorem 13.17. Next, we delete all trivial ears. Let 𝐺′ be
the resulting spanning subgraph. Again, 𝐺′ is 2-edge-connected because it has
an ear-decomposition.

Let 𝜋 denote the number of pendant ears. Then 𝐺′ has at most 5
4 (𝑛 − 1) +

1
4𝜑(𝐺) +

1
2𝜋 edges because the number of edges in each ear 𝑃 is at most 5

4 |in(𝑃) |
plus 1

4 if it is even plus 1
2 if it is short (and hence pendant). If 𝜋 ≤ 1

6 LP(𝐺),
then |𝐸 (𝐺′) | ≤ 5

4𝐿𝜑 (𝐺) +
1
2𝜋 ≤

4
3 LP(𝐺) by Corollary 13.10.

If 𝜋 ≥ 1
6 LP(𝐺), we apply Lemma 13.20 and obtain a tour 𝐹 in𝐺′ with at most

𝑘 − 1 + |𝐸short | + 1
2𝐿𝜑 (𝐺) − 𝜋 edges, which is at most 𝐿𝜇 (𝐺,I) + 1

2𝐿𝜑 (𝐺) − 𝜋
by Theorem 13.17 and the definition of 𝐿𝜇 (𝐺,I). (Again, I contains the set of
internal vertices of each short ear.) We get the bound

𝐿𝜇 (𝐺,I) + 1
2𝐿𝜑 (𝐺) − 𝜋 ≤ (1 +

1
2 −

1
6 ) LP(𝐺) = 4

3 LP(𝐺)

by Corollary 13.10 and Theorem 13.18.
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Note that (𝑉, 𝐹) is 2-edge-connected, but it may contain two copies of some
edges of 𝐺. An application of Proposition 13.3 concludes the proof. □

This also shows that the integrality ratio of (12.1) is at most 4
3 . The best-known

lower bound is 8
7 (Boyd, Fu, and Sun [2016]).

Hunkenschröder, Vempala, and Vetta [2019] devised a completely different 4
3 -

approximation algorithm for the minimum 2-edge-connected spanning subgraph
problem. A better approximation ratio was achieved only recently by Garg,
Grandoni, and Jabal Ameli [2023]. The currently best ratio is 1.3 + 𝜀 (for any
𝜀 > 0), obtained by Kobayashi and Noguchi [2023].

Heeger and Vygen [2017] found a 10
7 -approximation algorithm for the min-

imum 2-vertex-connected spanning subgraph problem, also based on ear-
decompositions. This approximation ratio was recently improved to 4

3 by
Bosch-Calvo, Grandoni, and Jabal Ameli [2023].

The techniques described in this chapter also yield a 3
2 -approximation algo-

rithm for a more general problem: finding a minimum𝑇-tour (see Exercises 13.6–
13.8). We will return to this problem in Chapter 14.

Exercises

13.1 Prove that an undirected graph is 2-vertex-connected if and only if it
has an open ear-decomposition. Do not use Theorem 13.11 or Corol-
lary 13.12.

13.2 Let𝐺 be a 2-vertex-connected graph. Consider a nice ear-decomposition
of 𝐺. Show:
(a) If there are 𝑘3 3-ears, then LP(𝐺) ≥ 3 𝑘3.
(b) The number of edges in nontrivial ears is at most 5

4 𝐿𝜑 (𝐺) +
1
2 𝑘3.

(c) Deleting the trivial ears yields a 2-edge-connected spanning subgraph
with at most 17

12 LP(𝐺) edges.
(Cheriyan, Sebő, and Szigeti [2001])

13.3 Show that the smallest 2-edge-connected spanning subgraph is at most a
factor 4

3 smaller than the shortest tour, and that this bound is tight.
(Monma, Munson, and Pulleyblank [1990])

13.4 For a graph𝐺 with edge weights 𝑐 : 𝐸 (𝐺) → R≥0, we define 𝜏(𝐺, 𝑐) as

max
{

min{𝑐(𝐽) : 𝐽 is a 𝑇-join in 𝐺} : 𝑇 ⊆ 𝑉 (𝐺), |𝑇 | even
}
.

Show that every unweighted 2-edge-connected graph 𝐺 (i.e., 𝑐(𝑒) = 1
for all 𝑒) has an ear-decomposition 𝑃0, 𝑃1, . . . , 𝑃𝑘 such that 𝜏(𝐺, 𝑐) =∑𝑘
𝑗=1 𝜏(�̄� 𝑗 , 𝑐), where �̄� 𝑗 arises from 𝑃 𝑗 by contracting the endpoints
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of 𝑃 𝑗 . Show that this does not hold in general for weighted graphs.
Note: Computing 𝜏(𝐺, 𝑐) is NP-hard for general weights, even if the
graph is a circuit, because this contains the well-known Partition
problem. Iwata and Ravi [2013] devised a 3

2 -approximation algorithm.
13.5 Prove Theorem 13.16 in the special case when (𝑈,M1) and (𝑈,M2)

are both partition matroids (given by the corresponding partitions).
Hint: Reduce this problem to a maximum flow problem and use Theo-
rem 2.5.

13.6 Let 𝐺 be a Graph TSP instance and 𝑇 ⊆ 𝑉 such that |𝑇 | is even. A
𝑇-tour is a multi-set 𝐹 of edges such that (𝑉, 𝐹) is connected and 𝐹 is
a 𝑇-join. Show that, given any ear-decomposition, one can construct a
𝑇-tour with at most 3

2 (𝑛 − 1) + 1
2 (𝑘2 − 𝑘≥4) edges, where 𝑘2 and 𝑘≥4

denote the number of 2-ears and long ears, respectively.
Hint: Use ear induction similar to the first part of the proof of Theo-
rem 13.9.
(Sebő and Vygen [2014])

13.7 Continuing the previous exercise, let I contain the (one-element) set
of internal vertices of each 2-ear, except those for which the internal
vertex is in 𝑇 . Now assume an ear-decomposition as in Theorem 13.17
(with the new definition of I). Take all edges of 2-ears, but only one
of the two edges if the middle vertex belongs to 𝑇 . Augment this edge
set minimally to a set 𝑆 such that (𝑉, 𝑆) is connected (without further
edges from 2-ears) and add a minimum (odd(𝑆) △ 𝑇)-join. Show that
this yields a 𝑇-tour with at most 𝐿𝜇 (𝐺,I) + 1

2 (𝑛 − 1 − 𝑘2 + 𝑘≥4) edges.
(Sebő and Vygen [2014])

13.8 Use Exercises 13.6 and 13.7 to obtain a 3
2 -approximation algorithm for

finding a minimum 𝑇-tour in a graph. To this end, show that 𝐿𝜇 (𝐺,I)
is a lower bound on the number of edges in any 𝑇-tour.
(Sebő and Vygen [2014])

13.9 Show that in the setting of the proof of Theorem 13.21, we have
𝑝∑︁
𝑖=1

𝐿𝜇 (𝐺𝑖 ,I𝑖) = 𝐿𝜇 (𝐺,I).

13.10 Show that (𝑈,M) is a matroid if and only if ∅ ∈ M, subsets of elements
of M are in M, and the maximal elements of M (called the bases)
satisfy the following basis exchange axiom: For any two distinct bases
𝐵1 and 𝐵2, there are elements 𝑒1 ∈ 𝐵1 \ 𝐵2 and 𝑒2 ∈ 𝐵2 \ 𝐵1 such that
𝐵1 \ {𝑒1} ∪ {𝑒2} and 𝐵2 \ {𝑒2} ∪ {𝑒1} are bases. (See Exercise 5.13 for
a special case.)
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Figure 13.7 Example showing that the tour computed by the algorithm of Theo-
rem 13.21 is not necessarily much shorter than 7

5 times the optimum. For every
𝑘 ∈ N, we have a Hamiltonian graph with 10𝑘 + 1 vertices and 13𝑘 + 1 edges. The
figure shows the case 𝑘 = 3. A nice open ear-decomposition starts with 2𝑘 ears of
length 5 from left to right, each with three vertical edges, and then proceeds with 𝑘
horizontal pendant 3-ears and one trivial ear (the dashed edge on the right). Here
𝜋 = 𝑘 = 1

10Λ(𝐺, I) , but no matter whether we apply Theorem 13.4 (if dotted
edges are removable) or Lemma 13.20 (if the red edges form the spanning tree), we
can end up with 14𝑘 edges. This picture is adapted from Sebő and Vygen [2014]
(with permission from Springer Nature).

13.11 Show with the example in Figure 13.7 that the bound 7
5 on the approxi-

mation ratio of the algorithm of Theorem 13.21 is tight.
13.12 Let 𝛼 > 1. Prove: If there is an 𝛼-approximation algorithm for the

minimum 2-edge-connected spanning subgraph problem, then there is a
2
3 (𝛼 + 1)-approximation algorithm for the Graph TSP.
Hint: Use Theorem 13.4.
(Sebő and Vygen [2014])

https://www.springer.com/journal/493


This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

14

Symmetric Path TSP and 𝑇-Tours

Like in the asymmetric case (cf. Chapter 9), one can consider the generalization
of Symmetric TSP where the start and end of the tour that we are looking for
are not necessarily identical. Christofides’ algorithm can be generalized to this
problem but yields only a 5

3 -approximation here. This chapter contains basic
results about this problem, as well as a further generalization called 𝑇-tours;
these results will be used in the subsequent chapters where we will present
better approximation algorithms. For unweighted graphs, a 3

2 -approximation
algorithm can be obtained with the techniques of Chapter 13, or with a simple
LP-based approach that we will present in this chapter.

14.1 Hoogeveen’s Path Variants and 𝑻-Tours

Similar to Definition 9.2, we say that an {𝑠, 𝑡}-tour in an undirected graph
𝐺 = (𝑉, 𝐸) is a multi-subset 𝐹 of 𝐸 such that (𝑉, 𝐹

.
∪ {{𝑡, 𝑠}}) is connected

and Eulerian. Again, the {𝑠, 𝑡}-tours are precisely the footprints of the walks
from 𝑠 to 𝑡 that visit every vertex at least once. Therefore, we call 𝑠 and 𝑡 the
endpoints of the {𝑠, 𝑡}-tour.

Before formally defining Path TSP and the 𝑇-Tour Problem, let us consider
the variant in which we look for an {𝑠, 𝑡}-tour and at most one of the endpoints
is given as input and at least one endpoint can be chosen freely. Then there is a
simple 3

2 -approximation algorithm:

Theorem 14.1 (Hoogeveen [1991]). There is a 3
2 -approximation algorithm for

each of the following problems:

(i) Given an instance (𝐺, 𝑐) of Symmetric TSP with 𝐺 = (𝑉, 𝐸), find a
minimum-cost multi-subset 𝐹 of 𝐸 such that 𝐹 is an {𝑠, 𝑡}-tour for some
𝑠, 𝑡 ∈ 𝑉 with 𝑠 ≠ 𝑡.

303
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(ii) Given an instance (𝐺, 𝑐) of Symmetric TSP with 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉 ,
find a minimum-cost multi-subset 𝐹 of 𝐸 such that 𝐹 is an {𝑠, 𝑡}-tour for
some 𝑡 ∈ 𝑉 \ {𝑠}.

Proof. The algorithm is similar to Christofides’ algorithm (Algorithm 1.31):
First, take a minimum-cost spanning tree (𝑉, 𝑆) and compute a minimum-cost
𝑊-join 𝐽, where𝑊 can be chosen so that

(i) |𝑊 △ odd(𝑆) | ≤ 2 if no endpoints are given;
(ii) |𝑊 △ odd(𝑆) △ {𝑠}| = 1 if one endpoint 𝑠 is given.

Such an edge set 𝐽 of minimum cost can be found by complete enumeration
on the possible sets 𝑊 (or, better, by a simple direct reduction to weighted
matching; cf. Exercise 14.1). Now 𝑆

.
∪ 𝐽 is a feasible solution or a tour. If it is

a tour, we can delete any edge (incident to 𝑠 in case (ii)) and obtain a feasible
solution.

To show the approximation ratio, observe that any optimum solution 𝐹

contains two disjoint sets 𝐽1 and 𝐽2 satisfying the above conditions: Traverse an
𝑠-𝑡-walk with footprint 𝐹 and color its edges red and blue, changing the color
whenever we visit an element of odd(𝑆) for the first time. Then the two color
classes are a𝑊1-join 𝐽1 and a𝑊2-join 𝐽2 for sets𝑊1 and𝑊2, where𝑊1△odd(𝑆)
is empty and𝑊2 △ odd(𝑆) is the set {𝑠, 𝑡} of endpoints of 𝐹 (or vice versa). So
these sets𝑊1,𝑊2 satisfy (i) or (ii). □

The third variant studied by Hoogeveen [1991] is the one in which both
endpoints are given as input. The two variants of Theorem 14.1 can be reduced
easily to this third variant by enumerating all possible choices of (𝑠 and) 𝑡.
Therefore, we focus on this problem from now on:

Problem 14.2 (Path TSP).

Instance: A connected undirected graph 𝐺 = (𝑉, 𝐸), a cost function 𝑐 :
𝐸 → R≥0, and two vertices 𝑠, 𝑡 ∈ 𝑉 .

Task: Compute an {𝑠, 𝑡}-tour in 𝐺 with minimum cost.

Note that this is equivalent to the special case of Asymmetric Path TSP
where the cost function 𝑐 is symmetric. We use the term Path TSP instead of
Symmetric Path TSP or 𝑠-𝑡-path TSP (a term that was used in several papers).
The special case of Path TSP where 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸 is called Graph
Path TSP.

Several approaches to Path TSP also work for an interesting generalization:
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Definition 14.3 (𝑇-tour). Given an undirected graph 𝐺 = (𝑉, 𝐸) and a set
𝑇 ⊆ 𝑉 of even cardinality, a 𝑇-tour in 𝐺 is a multi-subset 𝐹 of 𝐸 such that
(𝑉, 𝐹) is connected and odd(𝐹) = 𝑇 .

So ∅-tours are tours in the sense of Definition 1.9, and in the case of |𝑇 | = 2
(say 𝑇 = {𝑠, 𝑡}), we get {𝑠, 𝑡}-tours as already defined earlier. In some papers,
𝑇-tours have also been called connected 𝑇-joins. The most general problem we
will study in this chapter is:

Problem 14.4 (𝑇-Tour Problem).

Instance: A connected undirected graph 𝐺 = (𝑉, 𝐸), a cost function 𝑐 :
𝐸 → R≥0, and a set 𝑇 ⊆ 𝑉 of even cardinality.

Task: Compute a 𝑇-tour in 𝐺 with minimum cost.

For 𝑇 = ∅, this is Symmetric TSP; for |𝑇 | = 2, it is Path TSP. The double
tree algorithm (Proposition 1.22) easily extends to the 𝑇-Tour Problem:

Proposition 14.5. Let (𝐺, 𝑐, 𝑇) be an instance of the 𝑇-Tour Problem with
𝐺 = (𝑉, 𝐸). Let (𝑉, 𝑆) be a minimum-cost spanning tree in (𝐺, 𝑐) and 𝐽 ⊆ 𝑆 be
a 𝑇-join. Then 𝐹 := 𝑆

.
∪ (𝑆 \ 𝐽) is a 𝑇-tour, and this yields a 2-approximation

algorithm.

Proof. The existence of a 𝑇-join 𝐽 ⊆ 𝑆 follows from Proposition 1.27; actually,
𝐽 is unique. We have odd(𝐹) = odd(𝐽) = 𝑇 , so 𝐹 is a 𝑇-tour. We have
𝑐(𝐹) = 2𝑐(𝑆) − 𝑐(𝐽) ≤ 2𝑐(𝑆) ≤ 2 OPT because no 𝑇-tour can be cheaper than
a cheapest connector. □

The straightforward generalization of Christofides’ algorithm also works for
the 𝑇-Tour Problem (see Algorithm 14.6). Only the parity correction (Step (2))
needs to be adapted.

Algorithm 14.6: Christofides’ Algorithm for 𝑇-Tours
Input: an instance (𝐺, 𝑐, 𝑇) of the 𝑇-Tour Problem
Output: a 𝑇-tour 𝐹

(1) Compute a minimum-cost spanning tree (𝑉, 𝑆) in (𝐺, 𝑐).
(2) Let𝑊 = 𝑇 △ odd(𝑆), and let 𝐽 be a minimum-cost𝑊-join in (𝐺, 𝑐).
(3) Output the 𝑇-tour 𝑆

.
∪ 𝐽.

Hoogeveen [1991] (for |𝑇 | = 2) and Sebő and Vygen [2014] (for general 𝑇)
proved:



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

306 Symmetric Path TSP and 𝑇-Tours

(a)

𝑠 𝑡

(b)

𝑠 𝑡

Figure 14.1 Picture (a) shows a family of examples due to Hoogeveen [1991]
proving that the approximation ratio of 5

3 of Christofides’ algorithm for Graph
Path TSP is tight. For every 𝑘 ≥ 1, we have a graph with 3𝑘 + 1 vertices. Picture
(b) shows a spanning tree (𝑉, 𝑆) that might be chosen by Christofides’ algorithm.
The vertices with the wrong degree parity in the spanning tree (the elements of
𝑇 △ odd(𝑆)) are shown as green squares. Parity correction costs 2𝑘 here.

Theorem 14.7. Algorithm 14.6 is a 5
3 -approximation algorithm for the 𝑇-Tour

Problem, and this bound is tight even for |𝑇 | = 2 (and even for Graph Path
TSP).

Proof. Let (𝑉, 𝑆) be a minimum-cost spanning tree. Let 𝐽 be a minimum-cost
(𝑇 △ odd(𝑆))-join, and 𝐹∗ an optimum solution (a minimum-cost 𝑇-tour). Then
𝑆
.
∪ 𝐹∗ is a (𝑇 △odd(𝑆))-join. Since both 𝑆 and 𝐹∗ are connected, each contains

a (𝑇 △ odd(𝑆))-join; so 𝑆
.
∪ 𝐹∗ can be partitioned into three (𝑇 △ odd(𝑆))-joins.

Hence, 3𝑐(𝐽) ≤ 𝑐(𝑆
.
∪ 𝐹∗), and we conclude 3𝑐(𝑆

.
∪ 𝐽) = 3𝑐(𝑆) + 3𝑐(𝐽) ≤

3𝑐(𝑆) + 𝑐(𝑆
.
∪ 𝐹∗) = 4𝑐(𝑆) + 𝑐(𝐹∗) ≤ 5𝑐(𝐹∗).

The bound is tight even for |𝑇 | = 2 and unit weights: consider the graph
(𝑉, 𝐸) with 𝑉 = {0, . . . , 3} and 𝐸 = {{0, 1}, {1, 2}, {2, 3}, {0, 3}} (a circuit of
length 4) with 𝑠 = 0 and 𝑡 = 3. An optimum {𝑠, 𝑡}-tour has three edges. If we
choose 𝑆 = 𝐸 \ {2, 3} as the spanning tree, we have 𝑇 △ odd(𝑆) = {0, 2} and
parity correction costs 2; hence, the resulting 𝑇-tour has five edges. See Figure
14.1 for an infinite set of examples. □

Table 14.1 gives an overview on the progress on Path TSP, starting with the
seminal work by An, Kleinberg, and Shmoys [2015], who were the first to beat
Christofides’ algorithm. Table 14.2 summarizes the progress for the 𝑇-Tour
Problem.

If we have an instance (𝑉, 𝑐) of the Symmetric TSP with Triangle In-
equality and 𝐺 = (𝑉, 𝐸) is the complete graph on 𝑉 , then we can turn any
{𝑠, 𝑡}-tour 𝐹 in𝐺 into a Hamiltonian 𝑠-𝑡-path without increasing the cost, simply
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Table 14.1 Approximation ratios for Path TSP in the order of their discovery.
The ratio 3

2 + 𝜀 holds for any 𝜀 > 0. The last result follows from the reduction
from Path TSP to Symmetric TSP by Traub, Vygen, and Zenklusen [2022] (see
Chapter 16).

Approximation
Ratio Year Reference Chapter

5
3 1990 Hoogeveen [1991] 14.1
1+
√

5
2 2011 An, Kleinberg, and Shmoys [2015] 15.2

8
5 2012 Sebő [2013] 15.2
1.599 2015 Vygen [2016] –
1.566 2015 Gottschalk and Vygen [2018] 15.3
26
17 2016 Sebő and van Zuylen [2019] 15.4
3
2 + 𝜀 2017 Traub and Vygen [2019a] –
3
2 2018 Zenklusen [2019] 16.2
3
2 − 10−36 2022 Karlin, Klein, and Oveis Gharan [2023] 10–11, 16

by applying Lemma 1.7 to 𝐹
.
∪ {{𝑡, 𝑠}}. Also for the 𝑇-Tour Problem, it is

equivalent to work in the metric closure:

Proposition 14.8. The 𝑇-Tour Problem is equivalent to its special case when
𝐺 is complete and 𝑐 satisfies the triangle inequality.

Proof. Given a general instance (𝐺, 𝑐, 𝑇) of the 𝑇-Tour Problem, let (�̄�, 𝑐)
be the metric closure of (𝐺, 𝑐). Then a 𝑇-tour �̄� in (�̄�, 𝑐) can be transformed
to a 𝑇-tour 𝐹 in (𝐺, 𝑐) of the same cost by replacing every edge {𝑣, 𝑤} ∈ �̄� by
the edge set of a shortest 𝑣-𝑤-path in 𝐺. □

Then optimum 𝑇-tours (with minimum number of edges) are trees:

Proposition 14.9 (Cheriyan, Friggstad, and Gao [2015]). Let (𝐺, 𝑐, 𝑇) be an
instance of the 𝑇-Tour Problem where 𝐺 = (𝑉, 𝐸) is a complete graph, 𝑐
satisfies the triangle inequality, and 𝑇 ≠ ∅. Then there exists an optimum 𝑇-tour
𝐹 such that (𝑉, 𝐹) is a spanning tree of 𝐺.

Proof. Let 𝐹 be an optimum 𝑇-tour with minimum number of edges. By
definition, (𝑉, 𝐹) is connected. Suppose it contains a circuit 𝐶. Since 𝑇 ≠ ∅,
the multi-graph (𝑉, 𝐹) is connected but not a circuit itself, so there must be
a vertex 𝑣 that is incident to an edge {𝑣, 𝑤} of 𝐶 and an edge {𝑣, 𝑢} of 𝐹 \ 𝐶.
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Table 14.2 Approximation ratios and upper bounds on the integrality ratio for
the 𝑇-Tour Problem in the order of their discovery. The integrality ratio refers
to the LP (14.2) for instances that satisfy the triangle inequality.

Approximation Integrality
Ratio Ratio Year Reference Chapter

5
3

5
3 2012 Sebő and Vygen [2014] 14.1

13
8

13
8 2012 Cheriyan, Friggstad,

and Gao [2015]
–

8
5

8
5 2012 Sebő [2013] 15.2

11
7

11
7 2020 Traub [2020b] 15.5

Replacing these two edges by an edge {𝑢, 𝑤} cannot increase the cost due to
the triangle inequality, and it does not change the parity of any vertex degree.
Hence, we obtain an optimum 𝑇-tour with one edge less. This contradicts our
assumption. □

In particular, if |𝑇 | = 2, there is an optimum 𝑇-tour that is a Hamiltonian
path (whose set of endpoints is 𝑇). This motivates the name Path TSP for this
problem.

14.2 LP Relaxations of Path TSP and the 𝑻-Tour Problem

For Path TSP, we will mostly work in the metric closure, so (𝑉, 𝐸) is a complete
graph and 𝑐 satisfies the triangle inequality. The natural LP relaxation then is:

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉, |𝑈 ∩ {𝑠, 𝑡}| even)

𝑥(𝛿(𝑈)) ≥ 1 (∅ ≠ 𝑈 ⊊ 𝑉, |𝑈 ∩ {𝑠, 𝑡}| odd)

𝑥(𝛿(𝑣)) = 2 (𝑣 ∈ 𝑉 \ {𝑠, 𝑡})

𝑥(𝛿(𝑣)) = 1 (𝑣 ∈ {𝑠, 𝑡})

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(14.1)

The integral feasible solutions to this LP are the incidence vectors of Hamiltonian
𝑠-𝑡-paths. Similar to Theorem 2.31, dropping the degree constraints does not
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change the LP value (see Exercise 14.2). The resulting relaxed LP is also
applicable to instances when 𝑐 does not satisfy the triangle inequality and is
particularly useful when studying Graph Path TSP (see Section 14.4).

Given Proposition 14.9, it is not surprising that feasible solutions to this LP
are convex combinations of incidence vectors of spanning trees:

Proposition 14.10 (An, Kleinberg, and Shmoys [2015]). Let 𝑥 be a feasible
solution to (14.1). Then 𝑥 is a convex combination of incidence vectors of edge
sets of spanning trees.

Proof. For any ∅ ≠ 𝑈 ⊆ 𝑉 , we have

𝑥(𝐸 [𝑈]) = 1
2

( ∑︁
𝑢∈𝑈

𝑥(𝛿(𝑢)) − 𝑥(𝛿(𝑈))
)

= |𝑈 | − 1
2
(
|𝑈 ∩ {𝑠, 𝑡}| + 𝑥(𝛿(𝑈))

)
≤ |𝑈 | − 1,

with equality for𝑈 = 𝑉 , so 𝑥 is in the spanning tree polytope (Theorem 2.16). □

We now consider a natural LP relaxation for the 𝑇-Tour Problem. If
𝐺 = (𝑉, 𝐸) is a complete graph with 𝑛 = |𝑉 | vertices, 𝑐 satisfies the triangle
inequality, and ∅ ≠ 𝑇 ⊆ 𝑉 with |𝑇 | even, the following formulation is natural in
view of Proposition 14.9:

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉, |𝑈 ∩ 𝑇 | even)

𝑥(𝛿(W)) ≥ |W|−1 (W partition of 𝑉)

𝑥(𝐸) = 𝑛 − 1

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(14.2)

Here 𝛿(W) again denotes the set of edges with endpoints in different classes of
the partitionW. We first show that this LP is indeed a relaxation of the 𝑇-Tour
Problem:

Proposition 14.11. The integral feasible solutions of the 𝑇-Tour LP (14.2) are
the incidence vectors of the 𝑇-tours 𝐹 for which (𝑉, 𝐹) is a tree.

Proof. Let 𝑥 be an integral feasible solution to (14.2). By Corollary 2.15,
𝑥 is the incidence vector of (the edge set of) a spanning tree (𝑉, 𝐹). By
Proposition 1.27, this tree contains a 𝑇-join 𝐽. We show 𝐽 = 𝐹. Let 𝑒 ∈ 𝐹, and
consider the corresponding fundamental cut of (𝑉, 𝐹) – that is, the cut 𝛿(𝑈)
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with 𝛿(𝑈) ∩ 𝐹 = {𝑒}. We have 𝑥(𝛿(𝑈)) = 1, and hence |𝑈 ∩ 𝑇 | is odd. Since
every 𝑇-join must intersect every 𝑇-cut, we have 𝑒 ∈ 𝐽. We conclude that 𝐹 is a
𝑇-join and hence a 𝑇-tour.

Conversely, let 𝑥 be the incidence vector of a 𝑇-tour 𝐹 such that (𝑉, 𝐹) is
a tree. Then its fundamental cuts are 𝑇-cuts by Lemma 2.20, which implies
𝑥(𝛿(𝑈)) ≥ 2 for ∅ ≠ 𝑈 ⊊ 𝑉 with |𝑈 ∩ 𝑇 | even. The partition constraints
𝑥(𝛿(W)) ≥ |W| − 1 are satisfied for every partitionW of 𝑉 because (𝑉, 𝐹) is
connected. □

By Propositions 14.9 and 14.11, the value of (14.2) is at most the minimum
cost of a 𝑇-tour for every instance (𝐺, 𝑐, 𝑇) where 𝐺 is a complete graph and 𝑐
satisfies the triangle inequality. Moreover, we note:

Proposition 14.12. Any feasible solution to (14.2) is in the spanning tree
polytope of 𝐺.

Proof. This follows from Corollary 2.15 because connectors with 𝑛 − 1 edges
are spanning trees. □

With Theorem 2.16, this also shows that in (14.2), the partition constraints
𝑥(𝛿(W)) ≥ |W| −1 for all partitionsW of𝑉 could be replaced by 𝑥(𝐸 [𝑈]) ≤
|𝑈 | − 1 for all ∅ ≠ 𝑈 ⊊ 𝑉 without changing the set of feasible solutions.

Proposition 14.13. If 𝑇 = {𝑠, 𝑡}, then the sets of feasible solutions to (14.1)
and (14.2) coincide.

Proof. If 𝑥 is a feasible solution to (14.1), then 𝑥 is a convex combination of
spanning trees by Proposition 14.10, which implies 𝑥(𝐸) = 𝑛−1 and 𝑥(𝛿(W)) ≥
|W| − 1 for every partitionW of 𝑉 . Conversely, if 𝑥 is a feasible solution to
(14.2), then 𝑥 is a convex combination of spanning trees by Proposition 14.12,
implying 𝑥(𝛿(𝑈)) ≥ 1 for every ∅ ≠ 𝑈 ⊊ 𝑉 . The degree constraints are
implied by 𝑥(𝛿(𝑣)) ≥ 1 for 𝑣 ∈ {𝑠, 𝑡} and 𝑥(𝛿(𝑣)) ≥ 2 for 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} and
𝑥(𝐸) = 𝑛 − 1. □

The statement of Proposition 14.13 also holds for the two LPs that arise
when we drop the degree constraints in (14.1) and the constraint 𝑥(𝐸) = 𝑛 − 1
in (14.2) (see Exercise 14.4).

Dropping the constraint 𝑥(𝐸) = 𝑛 − 1 makes the LP (14.2) applicable to
instances when 𝑐 does not satisfy the triangle inequality, in particular to the
Graph 𝑇-Tour Problem (and also to 𝑇 = ∅).

An, Kleinberg, and Shmoys [2015] (for |𝑇 | = 2) and Cheriyan, Friggstad,
and Gao [2015] (for general 𝑇) observed the following strengthening of Theo-
rem 14.7:
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𝑠 𝑡

Figure 14.2 Example showing a lower bound of 3
2 on the integrality ratio of the

Path TSP LP (14.1) (and hence the 𝑇-Tour LP (14.2)). The top figure shows a graph
𝐺 = (𝑉, 𝐸 ) with two vertices 𝑠 and 𝑡 . Together with 𝑐 (𝑒) = 1 for all 𝑒 ∈ 𝐸,
this defines an instance of Path TSP. 𝐺 is also the support graph of an optimum
solution to the LP (14.1) in the metric closure, shown by the numbers 𝑥𝑒 (𝑒 ∈ 𝐸)
in the top figure. The bottom figure shows an optimum {𝑠, 𝑡 }-tour.

Theorem 14.14. Let (𝐺, 𝑐, 𝑇) be an instance of the 𝑇-Tour Problem where
𝐺 is a complete graph, 𝑐 satisfies the triangle inequality, and 𝑇 ≠ ∅. Then
Christofides’ algorithm for 𝑇-tours (Algorithm 14.6) computes a solution of cost
at most 5

3 times the value of (14.2). In particular, the integrality ratio of (14.2)
is at most 5

3 .

Proof. Let 𝑥∗ be an optimum solution to (14.2). By Proposition 14.12, 𝑥∗ is
contained in the spanning tree polytope (2.8). By Theorem 2.16, this implies
that a cheapest spanning tree 𝑆 has cost at most 𝑐(𝑥∗).

To bound the cost of the (𝑇 △ odd(𝑆))-join 𝐽, we show that the vector
𝑦 := 1

3 · 𝑥
∗ + 1

3 · 𝜒
𝑆 is contained in the (𝑇 △ odd(𝑆))-join polyhedron (see

(2.9)). Then, by Theorem 2.19, the cost of the 𝑇-tour computed by Christofides’
algorithm for𝑇-tours is 𝑐(𝑆) +𝑐(𝐽) ≤ 𝑐(𝑆) +𝑐(𝑦) = 4

3𝑐(𝑆) +
1
3 ·𝑐(𝑥

∗) ≤ 5
3𝑐(𝑥

∗).
It remains to show that the vector 𝑦 is contained in the (𝑇 △ odd(𝑆))-join

polyhedron. To prove this, let ∅ ≠ 𝑈 ⊊ 𝑉 with 𝑦(𝛿(𝑈)) < 1. We show that
| (𝑇 △ odd(𝑆)) ∩𝑈 | is even. Since |𝑆 ∩ 𝛿(𝑈) | ≥ 1 and 𝑥∗ (𝛿(𝑈)) ≥ 1, we have
|𝑆 ∩ 𝛿(𝑈) | = 1 and 𝑥∗ (𝛿(𝑈)) < 2. Therefore, by Lemma 2.20, |𝑈 ∩ odd(𝑆) | is
odd. Moreover, |𝑈∩𝑇 | is odd because 𝑥∗ (𝛿(𝑈)) < 2. Hence, | (𝑇 △odd(𝑆)) ∩𝑈 |
is even. □

We will show better upper bounds on the integrality ratios of (14.1) and
(14.2) in Chapter 15 (see Tables 14.2 and 14.3). The best-known lower bound is
3
2 , obtained for |𝑇 | = 2 and again for an unweighted graph instance:
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Table 14.3 Upper bounds on the integrality ratio for Path TSP in the order of
their discovery. The integrality ratio refers to the LP (14.1) for instances that
satisfy the triangle inequality.

Integrality
Ratio Year Reference Chapter

5
3 2011 An, Kleinberg, and Shmoys [2015] 14.2
1+
√

5
2 2011 An, Kleinberg, and Shmoys [2015] 15.2

8
5 2012 Sebő [2013] 15.2
1.599 2015 Vygen [2016] –
1.566 2015 Gottschalk and Vygen [2018] 15.3
26
17 2016 Sebő and van Zuylen [2019] 15.4
1.528 2018 Traub and Vygen [2019b], Zhong [2020] –

Proposition 14.15. The integrality ratio of (14.1), and hence also the integrality
ratio of (14.2), is at least 3

2 .

Proof. Figure 14.2 shows 𝑛-city instances for every even integer 𝑛 ≥ 6 in
which the LP value is 𝑛 − 1, while an optimum {𝑠, 𝑡}-tour has 3𝑛

2 − 4 edges. □

The LPs (14.1) and (14.2) can be solved in polynomial time using the
equivalence of optimization and separation (Theorem 2.10): Separating over
the partition constraints in (14.2) is possible since they define the connector
polyhedron, over which we can optimize in polynomial time (Theorem 1.17).
For the cut constraints, we could use Theorem 4.28 or the following:

Theorem 14.16 (Barahona and Conforti [1987]). Given finite set 𝑉 and 𝑇 ⊆ 𝑉
with |𝑇 | even and 𝑥 :

(𝑉
2
)
→ R≥0, we can find a set attaining

min
{
𝑥(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊ 𝑉, |𝑈 ∩ 𝑇 | even

}
(14.3)

in polynomial time.

Proof. Let𝑈∗ be an optimum solution.
We first find a set attaining min{𝑥(𝛿(𝑈)) : ∅ ≠ 𝑈 ⊊ 𝑉, |𝑇 ∩𝑈 | ∈ {0, 2}}

by computing a minimum-weight cut (separating 𝑇 ′ and 𝑇 \ 𝑇 ′ if both sets are
nonempty) for each 𝑇 ′ ⊆ 𝑇 with |𝑇 ′ | ∈ {0, 2}, using Corollary 2.9. If we do not
have an optimal solution yet,𝑈∗ satisfies |𝑈∗ ∩ 𝑇 | ≥ 4 and | (𝑉 \𝑈∗) ∩ 𝑇 | ≥ 4.
We assume this in the following.
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Next, we find a set𝑈 attaining min{𝑥(𝛿(𝑈)) : |𝑈∩𝑇 | ≥ 2, | (𝑉 \𝑈)∩𝑇 | ≥ 2}
by |𝑇 |4 applications of a minimum 𝑠-𝑡-cut algorithm (cf. Corollary 2.9). If |𝑈∩𝑇 |
is even, we are done. So far we have spent 𝑂 (𝑛8) time, where 𝑛 = |𝑉 |. (This
running time can be improved easily, but it is irrelevant for us.)

So assume that |𝑈 ∩ 𝑇 | is odd. Then we claim:

There is a set𝑊 attaining (14.3) that does not cross𝑈. (14.4)

Since |𝑈 ∩ 𝑇 | is odd, we have

| (𝑈 ∩𝑈∗) ∩ 𝑇 | + |((𝑉 \𝑈) ∩ (𝑉 \𝑈∗)) ∩ 𝑇 |
= | (𝑈 ∩𝑈∗) ∩ 𝑇 | + |𝑇 | − |(𝑈 ∪𝑈∗) ∩ 𝑇 |
= |𝑈 ∩ 𝑇 | + |𝑈∗ ∩ 𝑇 | + |𝑇 | − 2| (𝑈 ∪𝑈∗) ∩ 𝑇 |,

and this number is odd. Thus, | (𝑈∩𝑈∗) ∩𝑇 | is odd or | ( (𝑉 \𝑈) ∩ (𝑉 \𝑈∗)) ∩𝑇 |
is odd.

Suppose𝑈∗ and𝑈 cross. We may assume that | (𝑈∩𝑈∗)∩𝑇 | is odd; otherwise,
we replace𝑈 by𝑉 \𝑈 and𝑈∗ by𝑉 \𝑈∗. Then | (𝑈∪𝑈∗) ∩𝑇 | and | (𝑈 \𝑈∗) ∩𝑇 |
are even. We show that one of them attains (14.3).

Case 1: | (𝑈 ∩𝑈∗) ∩ 𝑇 | ≥ 3. Then

𝑥(𝛿(𝑈 ∩𝑈∗)) + 𝑥(𝛿(𝑈 ∪𝑈∗)) ≤ 𝑥(𝛿(𝑈)) + 𝑥(𝛿(𝑈∗)).

Moreover, 𝑥(𝛿(𝑈 ∩𝑈∗)) ≥ 𝑥(𝛿(𝑈)) by the choice of 𝑈, and hence 𝑥(𝛿(𝑈 ∪
𝑈∗)) ≤ 𝑥(𝛿(𝑈∗)).
Case 2: | (𝑈 ∩𝑈∗) ∩ 𝑇 | = 1. Then

𝑥(𝛿(𝑈∗ \𝑈)) + 𝑥(𝛿(𝑈 \𝑈∗)) ≤ 𝑥(𝛿(𝑈)) + 𝑥(𝛿(𝑈∗)).

Moreover, | (𝑈∗ \𝑈) ∩𝑇 | ≥ 3, implying 𝑥(𝛿(𝑈∗ \𝑈)) ≥ 𝑥(𝛿(𝑈)) by the choice
of𝑈, and hence 𝑥(𝛿(𝑈 \𝑈∗)) ≤ 𝑥(𝛿(𝑈∗)).

Claim (14.4) is proved. So we branch, once we contract 𝑈 and once we
contract 𝑉 \𝑈, and apply the algorithm recursively. In the end, we output the
best of all sets𝑈 that the algorithm computes and for which |𝑈 ∩ 𝑇 | is even.

The subsets of 𝑉 corresponding to sets considered as𝑈 in the course of the
algorithm form a cross-free family. Hence, less than 4𝑛 applications of the above
𝑂 (𝑛8)-time algorithm are needed (cf. Propositions 4.7 and 4.8). □

A variation of this proof (swapping even and odd, and adapting the initial step)
also works for minimum-weight 𝑇-cuts (Exercise 14.6), but for this problem,
Padberg and Rao [1982] found a more efficient algorithm (and here we do not
need it anyway).
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Figure 14.3 An LP solution (numbers in black) to a Path TSP instance and the
narrow cuts (gray dotted lines), which form a chain.

14.3 Narrow Cuts

The following definition has played a key role in the development of approx-
imation algorithms with a better guarantee than Christofides’ algorithm for
𝑇-tours.

Definition 14.17 (narrow cut). Let 𝑥 be a feasible solution to the LP (14.2). We
call a cut 𝛿(𝑈) narrow if ∅ ≠ 𝑈 ⊊ 𝑉 and 𝑥(𝛿(𝑈)) < 2.

See Figure 14.3 for an example. This notion is motivated by the fact that
narrow cuts are the only reason that Wolsey’s argument (Theorem 2.29) fails for
𝑇-tours. They therefore need special attention.

The following property, observed by An, Kleinberg, and Shmoys [2015]
for |𝑇 | = 2 and by Cheriyan, Friggstad, and Gao [2015] for general 𝑇 , is
exploited by most algorithms that have been designed for {𝑠, 𝑡}-tours or 𝑇-tours.
If 𝑉1 ⊊ · · · ⊊ 𝑉𝑘 , we say that {𝑉1, . . . , 𝑉𝑘} is a chain. If U is a chain, we say
that the set of cuts {𝛿(𝑈) : 𝑈 ∈ U} forms a chain.

Lemma 14.18. Let 𝑥 be a feasible solution to the LP (14.2) or (14.1). Let
U = {𝑈 : ∅ ≠ 𝑈 ⊊ 𝑉, 𝑥(𝛿(𝑈)) < 2}. ThenU is cross-free. If |𝑇 | = 2, then the
set of narrow cuts forms a chain.

Proof. Suppose there are sets 𝐴, 𝐵 ⊊ 𝑉 with 𝑥(𝛿(𝐴)) < 2, 𝑥(𝛿(𝐵)) < 2, and
𝐴 ∩ 𝐵 ≠ ∅ and 𝐴 ∪ 𝐵 ≠ 𝑉 . Then

𝑥(𝛿(𝐴 ∩ 𝐵)) + 𝑥(𝛿(𝐴 ∪ 𝐵)) ≤ 𝑥(𝛿(𝐴)) + 𝑥(𝛿(𝐵)) < 2 + 2 = 4,

so at least one of |𝑇 ∩ (𝐴∩ 𝐵) | and |𝑇 ∩ (𝐴∪ 𝐵) | must be odd. Hence, both must
be odd (as |𝑇 ∩ 𝐴| and |𝑇 ∩ 𝐵 | are odd). But then |𝑇 ∩ (𝐴 \ 𝐵) | and |𝑇 ∩ (𝐵 \ 𝐴) |
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must be even. However,

𝑥(𝛿(𝐴 \ 𝐵)) + 𝑥(𝛿(𝐵 \ 𝐴)) ≤ 𝑥(𝛿(𝐴)) + 𝑥(𝛿(𝐵)) < 2 + 2 = 4,

so 𝐴 \ 𝐵 or 𝐵 \ 𝐴 must be empty.
This shows the first statement. For the second statement, let 𝑇 = {𝑠, 𝑡}, and

assume that 𝐴, 𝐵 ∈ U and that 𝐴 and 𝐵 both contain 𝑠 but not 𝑡 (otherwise,
take the complement). Then 𝐴∩ 𝐵 ≠ ∅, 𝐴∪ 𝐵 ≠ 𝑉 , and the above yields 𝐴 ⊆ 𝐵
or 𝐵 ⊆ 𝐴. □

With Theorem 4.28, one can enumerate all narrow cuts in polynomial time.
For Path TSP, there is a simpler way (see Exercise 14.7).

We have noted earlier that the narrow cuts are the reason why Wolsey’s
analysis fails for 𝑇-tours. More precisely, Wolsey’s analysis fails only because of
those narrow cuts that are (odd(𝑆) △ 𝑇)-cuts for the spanning tree (𝑉, 𝑆). The
following lemma implies that these are precisely the narrow cuts that contain an
even number of edges of the spanning tree (𝑉, 𝑆).

Lemma 14.19. Let 𝑥 be a feasible solution to LP (14.2) or (14.1) (and in this
case, 𝑇 = {𝑠, 𝑡}). Let 𝐻 be a multi-subset of 𝐸 . Then a narrow cut 𝐶 is an
(odd(𝐻) △ 𝑇)-cut if and only if |𝐻 ∩ 𝐶 | is even.

Proof. The LP constraints imply that every narrow cut 𝐶 is a 𝑇-cut. Hence, 𝐶
is an (odd(𝐻) △ 𝑇)-cut if and only if 𝐶 is not an odd(𝐻)-cut. Let𝑈 be a vertex
set with𝐶 = 𝛿(𝑈). By Lemma 2.20, |𝑈∩odd(𝐻) | is even if and only if |𝛿𝐻 (𝑈) |
is even. Thus, 𝐶 is not an odd(𝐻)-cut if and only if |𝐻 ∩ 𝐶 | is even. □

14.4 𝑻-Tours and Path TSP in Graphs

Within less than a year, Mömke and Svensson [2016], Mucha [2014], An,
Kleinberg, and Shmoys [2015], and Sebő and Vygen [2014] proposed better and
better approximation algorithms for Graph Path TSP (see Table 14.4).

For Graph Path TSP, it is natural to consider the following LP relaxation:

min 𝑥(𝐸)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉, |𝑈 ∩ {𝑠, 𝑡}| even)

𝑥(𝛿(𝑈)) ≥ 1 (∅ ≠ 𝑈 ⊊ 𝑉, |𝑈 ∩ {𝑠, 𝑡}| odd)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(14.5)

The value of this LP equals the value of (14.1) in the metric closure of 𝐺
(this follows from Exercise 14.2).
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Table 14.4 Approximation ratios and upper bounds on the integrality ratio for
Graph Path TSP in the order of their discovery. The integrality ratio refers to
the LP (14.1) of the metric closure of Graph Path TSP instances.

Approximation Integrality
Ratio Ratio Year Reference Chapter

1.586 – 2011 Mömke and Svensson [2016] 14.4
1.584 – 2011 Mucha [2014] 14.4
1.578 1.614 2011 An, Kleinberg, and

Shmoys [2015]
–

1.5 1.5 2012 Sebő and Vygen [2014] 14.4
1.497 – 2018 Traub and Vygen [2023] –
1.4 + 𝜀 – 2019 Traub, Vygen, and

Zenklusen [2022]
13, 16

First, we see that the removable pairing technique can be applied quite
directly (as suggested by Mömke and Svensson [2016]). The following result is
essentially due to Mucha [2014] (but he proved the approximation ratio 19

12 + 𝜀
for any 𝜀 > 0 and did not obtain an upper bound on the integrality ratio).

Theorem 14.20. There is a 19
12 -approximation algorithm for Graph Path TSP.

For any given instance, it computes a solution with at most 19
12 LP edges, where

LP denotes the value of (14.5).

Proof. Let (𝐺, 𝑠, 𝑡) be a Graph Path TSP instance and 𝑥 an optimum solution
to the LP (14.5). Like in Proposition 12.1 we may assume that 𝐺 is 2-connected.
Adding an edge 𝑒 from 𝑠 to 𝑡 and setting 𝑥�̄� = 1 yields a solution to the Graph
TSP LP (12.1) for the extended graph 𝐺 + 𝑒.

Applying Lemma 12.13 to𝐺+𝑒 and removing 𝑒 from the result yields an {𝑠, 𝑡}-
tour in𝐺 with at most 13

9 (𝑥(𝐸
.
∪ {𝑒})−1)+ 1

3 dist𝐺 (𝑠, 𝑡) = 13
9 𝑥(𝐸)+

1
3 dist𝐺 (𝑠, 𝑡)

edges. This does the job if dist𝐺 (𝑠, 𝑡) ≤ 5
12𝑥(𝐸).

If dist𝐺 (𝑠, 𝑡) > 5
12𝑥(𝐸), we instead run the double tree algorithm (Propo-

sition 14.5). This {𝑠, 𝑡}-tour has at most 2(𝑛 − 1) − dist𝐺 (𝑠, 𝑡) edges. Using
𝑛 − 1 ≤ 𝑥(𝐸) and dist𝐺 (𝑠, 𝑡) > 5

12𝑥(𝐸), this is at most 19
12𝑥(𝐸). □

Sebő and Vygen [2014] showed that their techniques (described in Chapter 13)
also lead to a 3

2 -approximation algorithm for the Graph 𝑇-Tour Problem
(the special case of the 𝑇-Tour Problem with 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸). More
precisely, they showed the following:
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Theorem 14.21 (Sebő and Vygen [2014]). For every connected graph 𝐺 =

(𝑉, 𝐸) and every 𝑇 ⊆ 𝑉 with |𝑇 | even, there is a 𝑇-tour with at most 3
2 LP(𝐺,𝑇)

edges, where

LP(𝐺,𝑇) := min
{
𝑥(𝐸) : 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑉, |𝑈 ∩ 𝑇 | even),

𝑥(𝛿(W)) ≥ |W| − 1 (W partition of 𝑉),
𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸)

}
denotes the value of the Graph 𝑇-Tour LP. This bound is tight. Such a 𝑇-tour
can be computed in 𝑂 (𝑛3) time.

The algorithm is sketched in Exercises 13.6–13.8. See also Exercise 14.9.
Proposition 14.15 shows that no better factor than 3

2 is possible, even for
|𝑇 | = 2. For |𝑇 | = 2, the linear program in Theorem 14.21 is equivalent to (14.5)
(Exercise 14.4), and we obtain:

Corollary 14.22 (Sebő and Vygen [2014]). For every connected graph 𝐺 and
every two vertices 𝑠, 𝑡 ∈ 𝑉 , there is an {𝑠, 𝑡}-tour with at most 3

2 LP(𝐺, {𝑠, 𝑡})
edges, where LP(𝐺, {𝑠, 𝑡}) denotes the value of the Graph Path TSP LP (14.5).
This bound is tight. Such an {𝑠, 𝑡}-tour can be computed in polynomial time.

We did not state the 𝑂 (𝑛3) running time that we immediately get from
Theorem 14.21 because we now give a simpler proof of Corollary 14.22, due to
Gao [2013], which is however based on a slower algorithm because it first solves
the LP (14.5). The notion of narrow cuts extends to solutions to this LP without
any change. Following Gottschalk and Vygen [2018], let us also introduce the
following notion:

Definition 14.23 (Gao tree). Let 𝑥 be a feasible solution to (14.5) and (𝑉, 𝑆) a
spanning tree. Then (𝑉, 𝑆) is called a Gao tree (for 𝑥) if 𝑥𝑒 > 0 for all 𝑒 ∈ 𝑆
and |𝑆 ∩ 𝑁 | = 1 for every narrow cut 𝑁 .

Figure 14.4 shows an example. Here is Gao’s [2013] main lemma:

Lemma 14.24 (Gao [2013]). For every feasible solution 𝑥 of (14.5), there exists
a Gao tree.

Proof. Let {𝑠} ⊆ 𝑈1 ⊊ 𝑈2 ⊊ · · · ⊊ 𝑈𝑘 ⊆ 𝑉 \ {𝑡} such that {𝛿(𝑈𝑖) : 𝑖 =
1, . . . , 𝑘} is the set of narrow cuts (cf. Lemma 14.18). Let𝑈0 := ∅ and𝑈𝑘+1 := 𝑉 .
Let 𝐺𝑥 := (𝑉, {𝑒 ∈ 𝐸 : 𝑥𝑒 > 0}) denote the support graph of 𝑥. We claim:

For all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1, the subgraph of 𝐺𝑥
induced by𝑈 𝑗 \𝑈𝑖 is connected. (14.6)
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Figure 14.4 A Gao tree (red, thick) for the LP solution (numbers in black) of
Figure 14.3; again, the narrow cuts are shown by gray dotted lines. The Gao tree
contains exactly one edge in each narrow cut.

Suppose that (14.6) does not hold – that is, for some 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1, there
is a set ∅ ≠ 𝐴 ⊊ 𝑈 𝑗 \𝑈𝑖 such that 𝑥(𝛿(𝐴) ∩𝛿(𝐵)) = 0, where 𝐵 := (𝑈 𝑗 \𝑈𝑖) \ 𝐴.
Then

𝑥(𝛿(𝐴)) + 𝑥(𝛿(𝐵)) = 𝑥(𝛿(𝑈 𝑗 \𝑈𝑖)) ≤ 𝑥(𝛿(𝑈 𝑗 )) + 𝑥(𝛿(𝑈𝑖)).

Now there are two cases. If 𝑖 = 0 or 𝑗 = 𝑘 + 1, the right-hand side is less than
2, but the left-hand side is at least 2. If 𝑖 > 0 and 𝑗 < 𝑘 +1, the right-hand side is
less than 4, but the left-hand side is at least 4. This contradiction proves (14.6).

So we can design a Gao tree by taking a spanning tree of 𝐺𝑥 [𝑈𝑖+1 \𝑈𝑖] for
𝑖 = 0, . . . , 𝑘 and then, for each 𝑖 = 1, . . . , 𝑘 , adding an edge of 𝐺𝑥 that connects
𝑈𝑖 \𝑈𝑖−1 and 𝑈𝑖+1 \𝑈𝑖 (such an edge must exist because 𝐺𝑥 [𝑈𝑖+1 \𝑈𝑖−1] is
connected). □

This immediately implies Corollary 14.22: Compute an optimum solution 𝑥 to
the LP (14.5), construct a Gao tree (𝑉, 𝑆) for 𝑥, and do parity correction. The Gao
tree has 𝑛 − 1 edges, and parity correction costs at most 𝑐( 𝑥2 ) =

1
2 LP(𝐺, {𝑠, 𝑡})

because 𝑥
2 is in the (odd(𝑆) △ {𝑠, 𝑡})-join polyhedron: For all narrow cuts

𝑁 = 𝛿(𝑈), we have |𝑁 ∩ 𝑆 | = 1, so |𝑈 ∩ (odd(𝑆) △ {𝑠, 𝑡}) | is even due to
Lemma 14.19.

Gao [2015] showed that this analysis does not work for general weights: In
the example of Figure 14.5, the only Gao tree costs more than the LP value
(however, in this example, parity correction is very cheap).

Lemma 14.24 cannot be extended to 𝑇-tours: Let 𝐺 = (𝑉, 𝐸) be the complete
graph on four vertices, 𝑇 = 𝑉 , and 𝑥𝑒 = 1

2 for all 𝑒 ∈ 𝐸; this is a feasible
solution to (14.2) and all singletons induce narrow cuts, but of course there
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Figure 14.5 A Path TSP instance (from Gao [2015]) with edge costs and an
optimum dual solution (red ellipses) shown in (a), and with an optimum primal
solution and the narrow cuts (blue, dashed) shown in (b). The green tree in (b) is
the only Gao tree, and its cost is 10, more than the LP value 29

3 .

is no spanning tree in which all four vertices have degree 1. The example of
Gottschalk and Vygen [2018] in Figure 14.6 shows that even if 𝑥 is an extreme
point and we allow an odd number of edges instead of exactly one in every
narrow cut, the existence of (the equivalent of) a Gao tree cannot be guaranteed
for 𝑇-tours.

Corollary 14.22 implies that the Path TSP LP (14.1) restricted to metric
closures of unweighted graphs has integrality ratio exactly 3

2 ; this is the only
case in this book where the LP is not integral and we know the exact integrality
ratio. Although the approximation ratio matches this integrality ratio, Traub and
Vygen [2023] improved on it by devising a 1.497-approximation algorithm. This
proof also used ear-decompositions, refining the original Sebő–Vygen proof
of Corollary 14.22. Finally, Traub, Vygen, and Zenklusen [2022] showed that
Graph Path TSP is not much harder to approximate than Graph TSP (see
Chapter 16).
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Figure 14.6 An instance of the 𝑇-Tour Problem (edge costs are not shown);
𝑇 is the set of filled vertices. The numbers next to the edges show a feasible
solution 𝑥∗ to the LP (14.2): Thick green edges 𝑒 have 𝑥∗𝑒 = 1, thin edges 𝑒 have
𝑥∗𝑒 = 1

2 , other edges 𝑒 (not shown) have 𝑥∗𝑒 = 0. In fact, this is an extreme point
(see Exercise 14.10). If 𝐺 denotes the support graph of 𝑥∗, we see that 𝐺 − 𝑇
is disconnected, so 𝐺 contains no spanning tree in which all elements of 𝑇 are
leaves (and hence𝐺 contains no spanning tree in which all elements of 𝑇 have odd
degree). However, 𝛿 (𝑡 ) is narrow for all 𝑡 ∈ 𝑇 , so 𝐺 contains no “Gao tree.” This
picture is taken from Gottschalk and Vygen [2018] (with permission from Springer
Nature).

14.5 A General Reduction

Let us conclude this chapter with a general reduction from Path TSP to
Symmetric TSP.

Theorem 14.25. Let 𝜀 > 0 and 𝛼, 𝜌 ≥ 1 be fixed constants. If there is an
𝛼-approximation algorithm for Symmetric TSP, then there is a (3 − 2

𝛼
+ 𝜀)-

approximation algorithm for Path TSP. If the integrality ratio of (2.2) is 𝜌, then
the integrality ratio of (14.1) is at most 3 − 2

𝜌
.

Proof. Let (𝐺, 𝑐, 𝑠, 𝑡) be an instance of Path TSP. Let 𝐾 := ⌈ 2
𝜀
⌉. Let 𝑃 be the

edge set of a shortest 𝑠-𝑡-path in (𝐺, 𝑐). We add to our graph a new 𝑠-𝑡-path
with 𝐾 − 1 new vertices and 𝐾 new edges 𝑒, each with 𝑐(𝑒) = 1

𝐾
𝑐(𝑃). Let �̄� be

the set of these new edges, and �̄� the resulting graph. Note that 𝑐(�̄�) = 𝑐(𝑃).
Let OPT(𝐺, 𝑐, 𝑠, 𝑡) denote the minimum cost of an {𝑠, 𝑡}-tour in (𝐺, 𝑐), and let

OPT(�̄�, 𝑐) be the minimum cost of a tour in (�̄�, 𝑐). Since adding �̄� to an {𝑠, 𝑡}-
tour in 𝐺 yields a tour in �̄�, we have OPT(�̄�, 𝑐) ≤ OPT(𝐺, 𝑐, 𝑠, 𝑡) + 𝑐(�̄�) =
OPT(𝐺, 𝑐, 𝑠, 𝑡) + 𝑐(𝑃).

We apply an 𝛼-approximation algorithm for Symmetric TSP to (�̄�, 𝑐). Let
the resulting tour be �̄�. We have

𝑐(�̄�) ≤ 𝛼 · OPT(�̄�, 𝑐) ≤ 𝛼
(
OPT(𝐺, 𝑐, 𝑠, 𝑡) + 𝑐(𝑃)

)
.

https://www.springer.com/journal/10107
https://www.springer.com/journal/10107
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Because in (𝑉, �̄�) every vertex has even degree, �̄� must contain either each
edge of �̄� an odd number of times – then we simply remove all of them – or
each edge of �̄� an even number of times (and at least two for all but one edge of
�̄� due to connectivity) – then we remove all of them and add one copy of 𝑃.
In both cases, we change the parity of the degree only at 𝑠 and 𝑡 and decrease
the cost by at least (1 − 2

𝐾
)𝑐(𝑃). Moreover, we do not destroy connectivity: In

the “even case,” this follows from the addition of 𝑃, and in the “odd case,” this
follows from the fact that in (𝑉, �̄�) every cut contains an even number of edges.

We obtain an {𝑠, 𝑡}-tour 𝐹 in 𝐺 with

𝑐(𝐹) ≤ 𝑐(�̄�) −
(
1 − 2

𝐾

)
𝑐(𝑃)

≤ 𝛼OPT(𝐺, 𝑐, 𝑠, 𝑡) +
(
𝛼 − 1 + 2

𝐾

)
𝑐(𝑃)

≤ 𝛼OPT(𝐺, 𝑐, 𝑠, 𝑡) + (𝛼 − 1 + 𝜀) 𝑐(𝑃)
≤ (𝛼 + 𝜀) OPT(𝐺, 𝑐, 𝑠, 𝑡) + (𝛼 − 1) 𝑐(𝑃).

If 𝑐(𝑃) ≤ ( 2
𝛼
− 1)OPT(𝐺, 𝑐, 𝑠, 𝑡), then this is at most(

𝛼 + 𝜀 + (𝛼 − 1) ( 2
𝛼
− 1)

)
OPT(𝐺, 𝑐, 𝑠, 𝑡) =

(
3 − 2

𝛼
+ 𝜀

)
OPT(𝐺, 𝑐, 𝑠, 𝑡).

If 𝑐(𝑃) > ( 2
𝛼
−1) OPT(𝐺, 𝑐, 𝑠, 𝑡), the double tree algorithm (Proposition 14.5)

yields a better result, whose cost is at most

2 OPT(𝐺, 𝑐, 𝑠, 𝑡) − 𝑐(𝑃) <
(
3 − 2

𝛼

)
OPT(𝐺, 𝑐, 𝑠, 𝑡).

The proof of the second statement is almost the same. Let LP(𝐺, 𝑐, 𝑠, 𝑡)
denote the value of the LP (14.1). If 𝑐(𝑃) > ( 2

𝜌
− 1)LP(𝐺, 𝑐, 𝑠, 𝑡), the double

tree algorithm yields an {𝑠, 𝑡}-tour of cost at most 2 LP(𝐺, 𝑐, 𝑠, 𝑡) − 𝑐(𝑃) <
(3 − 2

𝜌
)LP(𝐺, 𝑐, 𝑠, 𝑡) because the minimum cost of a spanning tree is at most

LP(𝐺, 𝑐, 𝑠, 𝑡) by Proposition 14.10.
If 𝑐(𝑃) ≤ ( 2

𝜌
− 1)LP(𝐺, 𝑐, 𝑠, 𝑡), we construct �̄� as above. From a solution

𝑥 to the LP (14.1) for (𝐺, 𝑐, 𝑠, 𝑡), we obtain a solution 𝑥 to the LP (2.2) for
(�̄�, 𝑐) by setting 𝑥�̄� := 1 for all 𝑒 ∈ �̄� and 𝑥𝑒 := 𝑥𝑒 for all 𝑒 ∈ 𝐸 . Then
𝑐(𝑥) = 𝑐(𝑥) + 𝑐(�̄�) = 𝑐(𝑥) + 𝑐(𝑃). If the integrality ratio of (2.2) is 𝜌, then we
get as above an {𝑠, 𝑡}-tour 𝐹 with

𝑐(𝐹) ≤ 𝜌 LP(𝐺, 𝑐, 𝑠, 𝑡) + (𝜌 − 1 + 𝜀) 𝑐(𝑃)
≤ (𝜌 + 𝜀) LP(𝐺, 𝑐, 𝑠, 𝑡) + (𝜌 − 1) 𝑐(𝑃)
≤

(
3 − 2

𝜌
+ 𝜀

)
LP(𝐺, 𝑐, 𝑠, 𝑡),

where we used Theorem 2.19 (applied to 𝑇 = {𝑠, 𝑡}) in the second inequality.
Since we can choose 𝜀 > 0 arbitrarily small, this yields the claimed result. □
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Corollary 14.26. If the integrality ratio of (2.2) is 4
3 , then the integrality ratio

of (14.1) is 3
2 . □

At the moment, the reduction given by Theorem 14.25 does not really help.
We will see a better general reduction in Chapter 16; however, this does not
apply to the integrality ratio.

Exercises

14.1 Show that the algorithm in the proof of Theorem 14.1 can be implemented
to run in 𝑂 (𝑛3) time (using Theorem 1.29).

14.2 Let (𝐺, 𝑐, 𝑠, 𝑡) be a Path TSP instance in which 𝐺 is a complete graph
and 𝑐 satisfies the triangle inequality. Prove:

(a) The degree constraints 𝑥(𝛿(𝑣)) = 2 (𝑣 ∈ 𝑉 \ {𝑠, 𝑡}) and 𝑥(𝛿(𝑣)) = 1
(𝑣 ∈ {𝑠, 𝑡}) can be dropped without changing the value of the Path
TSP LP (14.1).

(b) The LP (14.1) has the same value as (9.1) on the digraph that arises
from 𝐺 by orienting every edge both ways (with the same cost).

14.3 Show that there always exists an optimum solution to (14.1) with less
than 2𝑛 edges in the support.

14.4 Let (𝐺, 𝑐, 𝑇) be an instance of the 𝑇-Tour Problem with 𝑇 = {𝑠, 𝑡}.
Consider the LP that arises when we drop the degree constraints in
(14.1) and the LP that arises when we drop the constraint 𝑥(𝐸) = 𝑛 − 1
in (14.2). Show that the sets of feasible solutions to these LPs coincide.

14.5 Show that replacing the partition constraints (𝑥(𝛿(W)) ≥ |W| − 1
for all partitionsW of 𝑉) in the 𝑇-Tour LP (14.2) by cut constraints
𝑥(𝛿(𝑈)) ≥ 1 for all ∅ ≠ 𝑈 ⊊ 𝑉 can change the LP value.
Hint: Modify the example in Figure 14.6.

14.6 Prove the variant of Theorem 14.16 with |𝑈 ∩ 𝑇 | odd instead of even,
once by a variation of that proof and once using the equivalence of
optimization and separation (Theorem 2.10).

14.7 Let 𝑥 be a solution to the LP (14.1) for a Path TSP instance. Show how
to compute all narrow cuts by computing a 𝑣-𝑤-cut 𝛿(𝑈) with minimum
𝑥(𝛿(𝑈)) for all 𝑣, 𝑤 ∈ 𝑉 . Do not use Theorem 4.28.

14.8 Show that Proposition 12.1 applies also to Path TSP, to the 𝑇-Tour
Problem, and their special cases in unweighted graphs (with the cor-
responding LP relaxations): We may assume that the input graph 𝐺 is
2-connected.
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14.9 Let 𝐺 = (𝑉, 𝐸) be a graph with a nice ear-decomposition, let 𝑇 ⊆ 𝑉
with |𝑇 | even, and let I contain the set of internal vertices of each short
ear, except those for which 𝑇 contains at least one of its internal vertices.
Define 𝐿𝜇 as in Theorem 13.18 but with this definition of I. Show that
then 𝐿𝜇 (𝐺,I) ≤ LP(𝐺,𝑇), where LP(𝐺,𝑇) denotes the value of the
LP (14.2).

14.10 Show that the LP solution shown in Figure 14.6 is an extreme point of
the polytope described by (14.2).
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15

Best-of-Many Christofides and Variants

An, Kleinberg, and Shmoys [2015] were the first to beat Christofides’ algorithm
for Path TSP. Their algorithm, which they called Best-of-Many Christofides,
is very natural: Since an LP solution can be written as a convex combination of
spanning trees (Proposition 14.10), we can do parity correction on each of these
trees and output the best of the resulting tours. It turns out that this yields a better
guarantee than the 5

3 (cf. Theorem 14.7) that Christofides’ algorithm yields.
In this chapter, we analyze this algorithm and study various follow-up works

that have yielded better and better approximation ratios; some of them also
apply to general 𝑇-tours.

15.1 Decomposing an LP Solution into Spanning Trees

An, Kleinberg, and Shmoys [2015] proposed the Best-of-Many Christofides
algorithm for Path TSP and showed that it has approximation ratio at most
1+
√

5
2 ≈ 1.619 (the golden ratio). This was the first improvement of Christofides’

algorithm that is not restricted to unweighted graphs, and it opened the door
for many further improvements. The Best-of-Many Christofides algorithm was
generalized to 𝑇-tours by Cheriyan, Friggstad, and Gao [2015]; they proved
an approximation ratio of 1.625 for the 𝑇-Tour Problem. Then Sebő [2013]
showed that the same algorithm actually has an approximation ratio 8

5 for the
𝑇-Tour Problem. We will see this in Section 15.2. Algorithm 15.1 shows a
formal description of the algorithm. Recall that requiring that 𝐺 is complete
and 𝑐 satisfies the triangle inequality is no restriction due to Proposition 14.8.

For Symmetric TSP and even for Graph TSP, Best-of-Many Christofides
does not have a better approximation ratio than 3

2 : If 𝐺 = (𝑉, 𝐸) is a complete
graph with an even number 𝑛 of vertices and 𝑥∗𝑒 = 2

𝑛−1 for all 𝑒 ∈ 𝐸 and
𝜇(𝑆) = 1

𝑛
for every star 𝑆 (in which all vertices but one have degree 1), we

324
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Algorithm 15.1: Best-of-Many Christofides
Input: an instance (𝐺, 𝑐, 𝑇) of the 𝑇-Tour Problem, where 𝐺 is a

complete graph and 𝑐 satisfies the triangle inequality
Output: a 𝑇-tour

(1) Let 𝑥∗ be an optimum solution to the LP (14.2) (or (2.2) if 𝑇 = ∅).
(2) Let S denote the set of edge sets of spanning trees in 𝐺. Find 𝜇(𝑆) ≥ 0 for

𝑆 ∈ S such that
∑
𝑆∈S 𝜇(𝑆) = 1 and 𝑥∗ ≥ ∑

𝑆∈S 𝜇(𝑆)𝜒𝑆 .
(3) For each 𝑆 ∈ S with 𝜇(𝑆) > 0, compute a minimum-cost odd(𝑆) △ 𝑇-join

𝐽 in (𝐺, 𝑐) and consider the 𝑇-tour 𝑆
.
∪ 𝐽.

(4) Output the best of these 𝑇-tours.

obtain a tour with 3𝑛
2 − 1 edges. A more interesting example due to Schalekamp

and van Zuylen (cf. Genova and Williamson [2017]) is shown in Figure 15.1.
We note:

Proposition 15.2. The approximation ratio of the Best-of-Many Christofides
algorithm is at least 3

2 , and exactly 3
2 for Symmetric TSP.

Proof. Since
∑
𝑆∈S 𝜇(𝑆)𝑐(𝑆) ≤ 𝑐(𝑥∗), the cheapest tree 𝑆 with 𝜇(𝑆) > 0

costs at most 𝑐(𝑥∗), and for Symmetric TSP (𝑇 = ∅), there is an odd(𝑆)-join 𝐽
with 𝑐(𝐽) ≤ 1

2𝑐(𝑥
∗) as in Wolsey’s analysis (Theorem 2.29).

In the example in Figure 15.1, the algorithm might decompose 𝑥∗ into the two
shown spanning trees and then end up with a tour of cost 6, which is 3

2 times
the optimum. □

However, for Path TSP and in fact the 𝑇-Tour Problem, Best-of-Many
Christofides is better than Christofides’ algorithm.

Note that for the special case |𝑇 | = 2 (Path TSP), the LP (14.2) is equivalent
to (14.1) by Proposition 14.13, and this is what An, Kleinberg, and Shmoys
[2015] considered.

In the rest of this section, we discuss how to implement Step (2) of Best-
of-Many Christofides. By Proposition 14.12 (for 𝑇 ≠ ∅) and Corollary 2.17
(for 𝑇 = ∅), the LP solution 𝑥∗ (scaled down by the factor 𝑛−1

𝑛
if 𝑇 = ∅) is in

the spanning tree polytope of 𝐺. By Carathéodory’s theorem, there exists a
probability distribution 𝜇 as in Step (2) with less than 𝑛2 nonzero entries, and
such a distribution can be computed in polynomial time (see Theorem 4.22). One
can also exploit the structure of the spanning tree polytope (see e.g., Cunningham
[1984] or Exercise 15.1). Also the proof of Theorem 15.15 (see Section 15.3)
can be turned into an algorithm.
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(a)

0

0

0

0

2

1

11

1

(b)

Figure 15.1 Example due to Schalekamp and van Zuylen, proving that for the
Symmetric TSP, the Best-of-Many Christofides algorithm does not have a better
approximation ratio than 3

2 . The numbers next to the edges in (a) denote their cost.
In an optimum LP solution, the dotted edges in (a) have value 1

2 and the solid edges
have value 1. The LP value is 4. (b) shows a decomposition of the optimum LP
solution into two spanning trees (each with weight 1

2 ) plus the dotted edges. Both
spanning trees cost 4, and for both of them, parity correction costs 2.

For Path TSP and Symmetric TSP, an elegant method was proposed by
Genova and Williamson [2017]. We first describe it for a solution 𝑥 to the
subtour LP (2.2), which corresponds to the case 𝑇 = ∅. The core of the proof is
the following lemma:

Lemma 15.3. Let 𝐾 ∈ N and 𝐺 = (𝑉, 𝐸) be an undirected (2𝐾)-edge-
connected multi-graph in which all vertices have degree 2𝐾. Then 𝐸 can be
partitioned into edge sets of 𝐾 spanning trees of 𝐺 plus 𝐾 extra edges. If 𝐺
contains at least 𝐾 parallel edges between two vertices 𝑠 and 𝑡, such 𝐾 edges
can be chosen as the extra edges.

Proof. We proceed by induction on |𝑉 |. The assertion is trivial if 𝐺 has
only two vertices. Otherwise let 𝑧 be an arbitrary vertex (but not 𝑠 or 𝑡 if
we want to satisfy the extra requirement). Applying Theorem 2.30, we split
off a pair of edges incident to 𝑧 until 𝑧 has degree zero. We obtain a multi-
graph 𝐺′ = (𝑉 \ {𝑧}, 𝐸 ′) in which all degrees are still 2𝐾 and in which
still |𝛿𝐺′ (𝑈) | ≥ 2𝐾 for all ∅ ≠ 𝑈 ⊊ 𝑉 \ {𝑧}. By the induction hypothesis,
𝐸 ′ = 𝑆1

.
∪ · · ·

.
∪ 𝑆𝐾

.
∪ {𝑒1, . . . , 𝑒𝐾 }, where (𝑉 \ {𝑧}, 𝑆𝑖) is a tree for all

𝑖 = 1, . . . , 𝐾 .
We now undo the splitting off operation. First, consider the extra edges

𝑒1, . . . , 𝑒𝐾 . If an extra edge 𝑒𝑖 = {𝑥𝑖 , 𝑦𝑖} resulted from splitting off, we replace
𝑒𝑖 by {𝑥𝑖 , 𝑧} and put {𝑧, 𝑦𝑖} into a reserve list (which is initially empty).

If a tree 𝑆𝑖 contains some edges {𝑥 𝑗 , 𝑦 𝑗 } ( 𝑗 = 1, . . . , 𝑙) that resulted from
the splitting off operation, we first replace 𝑆𝑖 by 𝑆1

𝑖
:= (𝑆𝑖 \ {{𝑥1, 𝑦1}}) ∪

{{𝑥1, 𝑧}, {𝑧, 𝑦1}} (now (𝑉, 𝑆1
𝑖
) is a tree). Then, for 𝑗 = 2, . . . , 𝑙, let without loss

of generality 𝑥 𝑗 be closer to 𝑧 than 𝑦 𝑗 in the current tree 𝑆 𝑗−1
𝑖

(otherwise swap 𝑥 𝑗
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𝑧

𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 𝑥4 𝑦4

Figure 15.2 Undoing the splitting off operations at 𝑧 in the proof of Lemma 15.3.
Starting with the tree on the bottom (without 𝑧), we first replace the blue dashed
edge {𝑥1, 𝑦1} by the two solid blue edges. Then, for 𝑗 = 2, 3, 4, we replace
{𝑥 𝑗 , 𝑦 𝑗 } by {𝑧, 𝑦 𝑗 } and put the dotted edge {𝑥 𝑗 , 𝑧} in the reserve list.

and 𝑦 𝑗 ). Replace 𝑆 𝑗−1
𝑖

by 𝑆 𝑗
𝑖

:= (𝑆 𝑗−1
𝑖
\ {{𝑥 𝑗 , 𝑦 𝑗 }}) ∪ {{𝑧, 𝑦 𝑗 }} and put {𝑥 𝑗 , 𝑧}

into the reserve list. See Figure 15.2.
Now, for each tree 𝑆𝑖 that contains no edge that resulted from splitting off,

we take an arbitrary edge from the reserve list and add it to 𝑆𝑖 . In the end, the
reserve list is empty, and the induction step is complete. □

Theorem 15.4. Let (𝑉, 𝑐) be an instance of the Symmetric TSP with Triangle
Inequality, and let 𝑥 be a rational feasible solution to the subtour LP (2.2).
Then we can compute in polynomial time an integer 𝐾 ∈ N, a list of span-
ning trees (𝑉, 𝑆1), . . . , (𝑉, 𝑆𝐾 ) and numbers 𝜇(𝑆1), . . . , 𝜇(𝑆𝐾 ) > 0 such that∑𝐾
𝑖=1 𝜇(𝑆𝑖) = 1 and

∑𝐾
𝑖=1 𝜇(𝑆𝑖)𝜒𝑆𝑖 ≤ 𝑥. If 𝑥𝑒 = 1 for some 𝑒 = {𝑠, 𝑡} ∈

(𝑉
2
)
,

then the trees can be chosen so that
∑𝐾
𝑖=1 𝜇(𝑆𝑖)𝜒𝑆𝑖 + 𝜒𝑒 = 𝑥.

Proof. Let 𝐾 ∈ N so that 𝐾𝑥𝑒 is an integer for all 𝑒. Let 𝐺 be the undirected
multi-graph that contains 𝐾𝑥𝑒 copies of every 𝑒 ∈

(𝑉
2
)
. Apply Lemma 15.3 to

𝐺, output the list of distinct trees, and set 𝜇(𝑆) = 1
𝐾
|{𝑖 ∈ {1, . . . , 𝐾} : 𝑆 = 𝑆𝑖}|

for each such tree (𝑉, 𝑆).
For a polynomial-time algorithm, we proceed as in the proof of Lemma 15.3,

but we do not store the edges of 𝐺 explicitly but rather the number of parallel
edges for every pair of vertices. Similarly, we store spanning trees with their
multiplicities. Theorem 2.32 says that we can do all the splitting off steps at one
vertex 𝑧 in polynomial time. For every vertex pair {𝑢, 𝑣}, we store the number of
parallel edges with endpoints 𝑢 and 𝑣 that resulted from splitting off at 𝑧. When
undoing the splitting off operation, we look at all spanning trees that contain an
edge {𝑢, 𝑣} with their multiplicities. For at most one of these spanning trees, we
create two copies, one for which we undo the splitting off operation for {𝑢, 𝑣}
and one for which we do not change the edge {𝑢, 𝑣}. Hence, each iteration
increases the number of distinct spanning trees by at most

(𝑛−1
2

)
. □
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Theorem 15.4 also works for the Path TSP: Take a solution 𝑥 of (14.1) and
set 𝑥{𝑠,𝑡 } := 1 (this variable must have had value zero).

15.2 Analysis of Best-of-Many Christofides

Since the approximation ratio of the Best-of-Many Christofides algorithm is
exactly 3

2 for 𝑇 = ∅, we assume 𝑇 ≠ ∅ from now on. Almost all works that
analyze the Best-of-Many Christofides algorithm begin as follows:

Proposition 15.5 (An, Kleinberg, and Shmoys [2015]). Best-of-Many Christo-
fides (Algorithm 15.1) computes a 𝑇-tour of cost at most

𝑐(𝑥∗) +
∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝑦𝑆)

for all vectors 𝑦𝑆 in the (𝑇 △ odd(𝑆))-join polyhedron (cf. (2.9)) for 𝑆 ∈ S.

Proof. The cost of the 𝑇-tour computed by Best-of-Many Christofides is

min
𝑆∈S: 𝜇 (𝑆)>0

(
𝑐(𝑆) +min{𝑐(𝐽) : 𝐽 is a (𝑇 △ odd(𝑆))-join}

)
≤

∑︁
𝑆∈S

𝜇(𝑆)
(
𝑐(𝑆) +min{𝑐(𝐽) : 𝐽 is a (𝑇 △ odd(𝑆))-join}

)
≤ 𝑐(𝑥∗) +

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝑦𝑆),

where the last inequality follows from 𝑥∗ ≥ ∑
𝑆∈S 𝜇(𝑆)𝜒𝑆 and Theorem 2.19.

□

In other words, we can view 𝜇 as a probability distribution and analyze the
expected cost if we sample 𝑆 according to 𝜇. The difficulty in the analysis lies in
finding an appropriate set of vectors (𝑦𝑆)𝑆∈S (which we call parity correction
vectors). One can use 𝑦𝑆 = 1

3𝑥
∗ + 1

3 𝜒
𝑆 as in Theorem 14.14 to obtain the

approximation guarantee 5
3 again, but one can do better.

We will again use that a narrow cut is a (𝑇 △ odd(𝑆))-cut if and only if
the spanning tree (𝑉, 𝑆) contains an even number of edges in that cut (cf.
Lemma 14.19). To design a better parity correction vector, the first idea is to try
𝑦𝑆 = 𝛽𝑥∗ + (1 − 2𝛽)𝜒𝑆 for some 𝛽 slightly larger than 1

3 . This vector satisfies
all constraints of the (𝑇 △ odd(𝑆))-join polyhedron except that 𝑦𝑆 (𝛿(𝑈)) ≥ 1
can be violated for narrow cuts 𝐶 with |𝑆 ∩ 𝐶 | even, but only if 𝑥∗ (𝐶) is very
close to 1 (less than 4𝛽−1

𝛽
). However, as we see now, if 𝑥∗ (𝐶) is very close to 1,

then the trees with more than one edge in 𝐶 (in particular, trees 𝑆 with |𝑆 ∩ 𝐶 |
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even) cannot contribute much to the convex combination, so one might hope
that correcting this is cheap.

Proposition 15.6. For every narrow cut 𝐶, we have∑︁
𝑆∈S: |𝑆∩𝐶 |=1

𝜇(𝑆) ≥ 2 − 𝑥∗ (𝐶) (15.1)

and ∑︁
𝑆∈S: |𝑆∩𝐶 | even

𝜇(𝑆) ≤ 𝑥∗ (𝐶) − 1. (15.2)

Proof. Since |𝑆 ∩ 𝐶 | ≥ 1 for every cut 𝐶 and 𝑆 ∈ S, we have 𝑥∗ (𝐶) ≥∑
𝑆∈S 𝜇(𝑆) |𝑆 ∩ 𝐶 | ≥

∑
𝑆∈S 2𝜇(𝑆) −∑

𝑆∈S: |𝑆∩𝐶 |=1 𝜇(𝑆), which implies (15.1).
Then (15.2) follows from

∑
𝑆∈S: |𝑆∩𝐶 |=1 𝜇(𝑆) +

∑
𝑆∈S: |𝑆∩𝐶 | even 𝜇(𝑆) ≤ 1 and

(15.1). □

Let N denote the set of narrow cuts. We consider

𝑦𝑆 := 𝛽𝑥∗ + (1 − 2𝛽)𝜒𝑆

+
∑︁

𝐶∈N: |𝑆∩𝐶 | even
max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑣𝐶 (15.3)

for 𝑆 ∈ S, where 0 ≤ 𝛽 ≤ 1
2 and 𝑣𝐶 ∈ R𝐸≥0 are vectors with

𝑣𝐶 (𝐶) ≥ 1 for all 𝐶 ∈ N . (15.4)

We now show that 𝑦𝑆 is a parity correction vector for 𝑆.

Lemma 15.7 (An, Kleinberg, and Shmoys [2015]). For every 𝑆 ∈ S, the vector
𝑦𝑆 is in the (𝑇 △ odd(𝑆))-join polyhedron (cf. (2.9)).

Proof. Clearly 𝑦𝑆 is nonnegative. Let 𝑆 ∈ S and 𝐶 be a (𝑇 △ odd(𝑆))-cut. We
need to show 𝑦𝑆 (𝐶) ≥ 1.

If 𝐶 ∉ N , then 𝑥∗ (𝐶) ≥ 2 and hence

𝑦𝑆 (𝐶) ≥ 𝛽𝑥∗ (𝐶) + (1 − 2𝛽) |𝑆 ∩ 𝐶 | ≥ 2𝛽 + 1 − 2𝛽 = 1.

If 𝐶 ∈ N , then by Lemma 14.19, |𝑆 ∩ 𝐶 | is even and hence at least 2. Using
(15.4), we get

𝑦𝑆 (𝐶) ≥ 𝛽𝑥∗ (𝐶) + (1 − 2𝛽) |𝑆 ∩ 𝐶 | + 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)
≥ 𝛽𝑥∗ (𝐶) + 2(1 − 2𝛽) + 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)
= 1. □

This leads to the following analysis:
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Lemma 15.8 (An, Kleinberg, and Shmoys [2015]). Let (𝐺, 𝑐, 𝑇) be an instance
of the 𝑇-Tour Problem where 𝐺 is a complete graph, 𝑐 satisfies the triangle
inequality, and 𝑇 ≠ ∅. Let 𝑥∗ be a solution to the LP (14.2), and 0 ≤ 𝛽 ≤ 1

2 .
Let 𝑣𝐶 ∈ R𝐸≥0 be vectors with 𝑣𝐶 (𝐶) ≥ 1 for all 𝐶 ∈ N . Then Best-of-Many
Christofides computes a 𝑇-tour of cost at most

(2 − 𝛽) 𝑐(𝑥∗) +
∑︁
𝐶∈N
(𝑥∗ (𝐶) − 1)max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑐(𝑣𝐶 ).

Proof. By Proposition 15.5 and Lemma 15.7, the solution computed by
Best-of-Many Christofides costs at most

(1 + 𝛽) 𝑐(𝑥∗) +
∑︁
𝑆∈S

𝜇(𝑆)
(
(1 − 2𝛽)𝑐(𝑆)

+
∑︁

𝐶∈N: |𝑆∩𝐶 | even
max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑐(𝑣𝐶 )

)
= (2 − 𝛽) 𝑐(𝑥∗) +

∑︁
𝐶∈N

©«
∑︁

𝑆∈S: |𝑆∩𝐶 | even
𝜇(𝑆)ª®¬ max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑐(𝑣𝐶 )

≤ (2 − 𝛽) 𝑐(𝑥∗) +
∑︁
𝐶∈N
(𝑥∗ (𝐶) − 1)max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑐(𝑣𝐶 ),

where we used (15.2) in the inequality. □

Now, the next question is how to choose the vectors 𝑣𝐶 . In the case |𝑇 | = 2,
An, Kleinberg, and Shmoys [2015] showed:

Lemma 15.9 (An, Kleinberg, and Shmoys [2015]). Let |𝑇 | = 2. Then there are
vectors 𝑣𝐶 ∈ R𝐸≥0 with 𝑣𝐶 (𝐶) ≥ 1 for 𝐶 ∈ N and

∑
𝐶∈N 𝑣

𝐶 ≤ 𝑥∗.

Proof. For any subset N ′ ⊆ N , there is a partition W of 𝑉 (the sets “in
between” these narrow cuts) with |W| = |N ′ | + 1 and 𝛿(W) = ⋃

𝐶∈N′ 𝐶.
Then 𝑥∗ (⋃𝐶∈N′ 𝐶) = 𝑥∗ (𝛿(W)) ≥ |W| − 1 = |N ′ |. Hence, by Theorem 3.13,
there is a function 𝑓 : 𝐸 × N → R≥0 with

∑
𝐶∈N 𝑓 (𝑒, 𝐶) ≤ 𝑥∗𝑒 (𝑒 ∈ 𝐸) and∑

𝑒∈𝐶 𝑓 (𝑒, 𝐶) ≥ 1 (𝐶 ∈ N ). Set 𝑣𝐶𝑒 := 𝑓 (𝑒, 𝐶). □

This theorem does not hold for general 𝑇 (see Exercise 15.2). Now it is easy
to complete the analysis of the golden ratio approximation:

Theorem 15.10 (An, Kleinberg, and Shmoys [2015]). Let (𝐺, 𝑐, 𝑠, 𝑡) be a Path
TSP instance where 𝐺 is a complete graph and 𝑐 satisfies the triangle inequality.
Let 𝑥∗ be a solution to the LP (14.1). Then Best-of-Many Christofides computes
an {𝑠, 𝑡}-tour of cost at most 1+

√
5

2 𝑐(𝑥∗).
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𝑠

𝑡

Figure 15.3 A spanning tree (𝑉, 𝑆) . Filled circles show vertices in 𝑇 △ odd(𝑆) ,
where 𝑇 = {𝑠, 𝑡 }. The edge set 𝑆 is partitioned into its 𝑠-𝑡-path 𝐼𝑆 (blue) and its
(odd(𝑆) △ 𝑇 )-join 𝐽𝑆 (green, thick). The narrow cuts are those shown in grey
(dotted and solid). Those that have an even number of edges of 𝑆 are shown in solid
grey; each of them contains (at least) one green and (at least) one blue edge. Three
of the blue edges are lonely.

Proof. Choose the vectors 𝑣𝐶 as in Lemma 15.9. By Lemma 15.8, the solution
computed by Best-of-Many Christofides costs at most

(2 − 𝛽) 𝑐(𝑥∗) +
∑︁
𝐶∈N
(𝑥∗ (𝐶) − 1)max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑐(𝑣𝐶 ).

Using (𝑥 − 1) (4𝛽 − 1 − 𝛽𝑥) ≤ (3𝛽−1)2
4𝛽 for all 𝑥 ∈ R, we get the upper bound

(2 − 𝛽) 𝑐(𝑥∗) +
∑︁
𝐶∈N

(3𝛽−1)2
4𝛽 𝑐(𝑣𝐶 ).

Setting 𝛽 = 1√
5

and using Lemma 15.9 completes the proof. □

By choosing the vectors 𝑣𝐶 differently, one can improve this bound, even for
general 𝑇 , as Sebő [2013] showed. To this end, we partition the edge set of a tree
into two parts. By Proposition 1.27, every spanning tree contains a 𝑇-join. For
𝑆 ∈ S, let 𝐼𝑆 denote the 𝑇-join in (𝑉, 𝑆) and 𝐽𝑆 := 𝑆 \ 𝐼𝑆 . See Figure 15.3 for an
example. If 𝐽𝑆 is cheap, we can use it for parity correction as in Proposition 14.5
because 𝐽𝑆 is a (𝑇 △ odd(𝑆))-join. Otherwise, 𝐼𝑆 must be cheap, and this is also
useful: 𝐼𝑆 covers all narrow cuts and can be used for the vectors 𝑣𝐶 (𝐶 ∈ N ), as
we will see next.

From 𝐼𝑆 , we actually only use the lonely edges – that is, those edges 𝑒 ∈ 𝑆
for which there is a narrow cut 𝐶 with 𝐶 ∩ 𝑆 = {𝑒}. Let 𝐿𝑆 denote this set of
lonely edges. We have 𝐿𝑆 ⊆ 𝐼𝑆 because 𝐼𝑆 (in fact every 𝑇-join) intersects every
narrow cut (in fact every 𝑇-cut).

Theorem 15.11 (Sebő [2013]). Let (𝐺, 𝑐, 𝑇) be an instance of the 𝑇-Tour
Problem where 𝐺 is a complete graph, 𝑐 satisfies the triangle inequality, and
𝑇 ≠ ∅. Let 𝑥∗ be a solution to the LP (14.2). Then Best-of-Many Christofides
computes a 𝑇-tour of cost at most 8

5𝑐(𝑥
∗).
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Proof. Let

𝑣𝐶 :=
1

2 − 𝑥∗ (𝐶)
∑︁

𝑆∈S: |𝑆∩𝐶 |=1
𝜇(𝑆)𝜒𝑆∩𝐶 (15.5)

for 𝐶 ∈ N . Then indeed 𝑣𝐶 (𝐶) ≥ 1 for all 𝐶 ∈ N due to (15.1). To bound the
cost, we observe ∑︁

𝐶∈N
(2 − 𝑥∗ (𝐶)) 𝑐(𝑣𝐶 ) =

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐿𝑆). (15.6)

Indeed, if 𝑒 is the only edge of 𝑆 in two narrow cuts, they are both the fundamental
cut of 𝑒 and 𝑆, and hence identical.

Using the new definition of 𝑣𝐶 and (15.6), we get from Lemma 15.8 that the
𝑇-tour computed by Best-of-Many Christofides costs at most

(2 − 𝛽) 𝑐(𝑥∗) + max
𝐶∈N

(
𝑥∗ (𝐶 )−1
2−𝑥∗ (𝐶 ) max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}) ∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐿𝑆).

Observing (𝑥−1) (4𝛽−1−𝛽𝑥 )
2−𝑥 ≤ 1− 𝛽− 2

√︁
𝛽 − 2𝛽2 for all 𝑥 < 2 and setting 𝛽 = 4

9 ,
this bound is at most

14
9 𝑐(𝑥

∗) + 1
9

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐿𝑆).

Using 𝑦𝑆 = 𝜒𝐽𝑆 instead yields the bound

𝑐(𝑥∗) +
∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐽𝑆). (15.7)

Since 𝐿𝑆 ⊆ 𝐼𝑆 = 𝑆 \ 𝐽𝑆 , the better of the two bounds is at most

9
10

(
14
9 𝑐(𝑥

∗) + 1
9

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐼𝑆)
)
+ 1

10

(
𝑐(𝑥∗) +

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐽𝑆)
)

= 15
10𝑐(𝑥

∗) + 1
10

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝑆)

≤ 8
5𝑐(𝑥

∗). □

Gao [2015] simply chose 𝑣𝐶 to be the incidence vector of a cheapest edge
in 𝐶, which is clearly best possible in this framework, but it does not lead to a
better approximation ratio (see an example in the appendix of Vygen [2016]).
The following question remains open:

Open Problem 15.12. What is the approximation ratio of the Best-of-Many
Christofides algorithm for Path TSP and for the 𝑇-Tour Problem?
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We only know that both answers are at least 3
2 and at most 8

5 . Nevertheless,
there have been several further improvements that work with variants of Best-
of-Many Christofides, which we will discuss in the rest of this chapter. Most
of them work only for Path TSP, but in Section 15.5, we will also see an
improvement for the general 𝑇-Tour Problem.

15.3 Working with a Better Distribution

Although no better upper bound than 8
5 is known for Best-of-Many Christofides,

Vygen [2016] showed that one can get a better approximation ratio for Path TSP
by “reassembling trees” – that is, by changing the probability distribution 𝜇 so
that certain bad configurations are avoided.

This result was improved by Gottschalk and Vygen [2018]. They showed that
a distribution with certain global properties – containing, in a sense, many Gao
trees – always exists. More precisely, the distribution consists of an ordered list
of spanning trees such that the first one is a Gao tree, and for each narrow cut 𝐶
with 𝑥∗ (𝐶) = 2 − 𝛼, the first 𝛼 fraction of the trees contains exactly one edge of
𝐶 in each tree. More precisely:

Theorem 15.13 (Gottschalk and Vygen [2018]). For every feasible solution 𝑥∗

to (14.1), there are 𝑆1, . . . , 𝑆𝑟 ∈ S and 𝜇(𝑆1), . . . , 𝜇(𝑆𝑟 ) > 0 with
∑𝑟
𝑗=1 𝜇(𝑆 𝑗 ) =

1 such that 𝑥∗ =
∑𝑟
𝑗=1 𝜇(𝑆 𝑗 )𝜒𝑆 𝑗 , and for every 𝐶 ∈ N , there exists a 𝑘 ∈

{1, . . . , 𝑟} with
∑𝑘
𝑗=1 𝜇(𝑆 𝑗 ) ≥ 2 − 𝑥∗ (𝐶) and |𝐶 ∩ 𝑆 𝑗 | = 1 for all 𝑗 = 1, . . . , 𝑘 .

Figure 15.4 shows an example. Theorem 15.13 gives us as many good
trees in the beginning of our list as we can expect from (15.1). Gottschalk
and Vygen [2018] also showed that such a list of trees can be computed in
polynomial time, but we will not need this in the following. In fact, as observed by
K. Pashkovich, a polynomial-time algorithm follows easily from Theorem 15.13
(see Exercise 15.5).

The general idea why Theorem 15.13 is useful is that Gao trees allow for
cheap parity correction because they do not need any correction of narrow
cuts. For a Gao tree 𝑆, the vector 𝛽𝑥∗ + (1 − 2𝛽)𝜒𝐽𝑆 is already a good parity
correction vector, and the saved term (1 − 2𝛽)𝜒𝐼𝑆 in (15.3) can be used to help
narrow cuts in other trees. The Gao trees in the distribution 𝜇 may have very
little weight, but also the first trees with total weight of say 0.1 are nice: For each
such tree 𝑆 and each narrow cut 𝐶 with |𝑆 ∩𝐶 | even, we have 𝑥∗ (𝐶) ≥ 1.9, and
hence 𝛽𝑥∗ + (1− 2𝛽)𝜒𝐽𝑆 + 0.1𝛽𝜒𝐼𝑆 is a parity correction vector. The remaining
(1− 2.1𝛽)𝜒𝐼𝑆 can again be used to help later trees. Based on a parity correction
vector proposed by Vygen [2016] (cf. Exercise 15.3), Gottschalk and Vygen
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𝑠 𝑡

𝐶0 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8

1 1

2
3

1
6

1
3

1
2

1
2
3

1
3

5
6

5
6

1
2

1
2

2
3

1

1
2
3

2
3

1
3

1
3

𝜇(𝑆1) = 1
3 𝜇(𝑆2) = 1

3 𝜇(𝑆3) = 1
6 𝜇(𝑆4) = 1

6

Figure 15.4 Continuing the example from Figure 14.4, the picture shows a decom-
position of the LP solution 𝑥∗ (black numbers) into spanning trees, satisfying the
properties of Theorem 15.13. Here 𝑥∗ = 1

3 𝜒
𝑆1 + 1

3 𝜒
𝑆2 + 1

6 𝜒
𝑆3 + 1

6 𝜒
𝑆4 . The trees

𝑆1, 𝑆2, 𝑆3, 𝑆4 are shown in red, green, blue, and brown, respectively. As required,
𝑆1 is a Gao tree, and 𝑆2 has only one edge in each of the cuts 𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶8
with value less than 5

3 .

[2018] obtained the approximation ratio 1.566 for any list of trees satisfying
Theorem 15.13.

In the rest of this section, we prove Theorem 15.13, following the nicer proof
of Schalekamp et al. [2018].

Definition 15.14 (chain-point). Let 𝐺 = (𝑉, 𝐸) be an undirected graph, ∅ ⊊
𝑈1 ⊊ 𝑈2 ⊊ . . . ⊊ 𝑈𝑘 ⊊ 𝑉 , and C := {𝛿(𝑈1), . . . , 𝛿(𝑈𝑘)}. A chain-point for C

is a vector 𝑥 ∈ R𝐸≥0 such that

(a) 𝑥 is contained in the spanning tree polytope (2.8) of 𝐺,
(b) 𝑥(𝛿(𝑈𝑖)) < 2 for 𝑖 = 1, . . . , 𝑘 , and
(c)

∑
𝑣∈𝑈 𝑗\𝑈𝑖

𝑥(𝛿(𝑣)) = 2|𝑈 𝑗 \𝑈𝑖 | for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 .

Note that every feasible solution to the LP (14.1) is a chain-point for C = N
being the set of its narrow cuts. We will prove the following generalization of
Theorem 15.13 to chain-points.

Theorem 15.15. Let𝐺 = (𝑉, 𝐸) be an undirected graph, ∅ ⊊ 𝑈1 ⊊ 𝑈2 ⊊ . . . ⊊

𝑈𝑘 ⊊ 𝑉 , and C := {𝛿(𝑈1), . . . , 𝛿(𝑈𝑘)}. Let 𝑥∗ be a chain-point for C . Then
there are 𝑆1, . . . , 𝑆𝑟 ∈ S and 𝜇(𝑆1), . . . , 𝜇(𝑆𝑟 ) > 0 with

∑𝑟
𝑗=1 𝜇(𝑆 𝑗 ) = 1 such

that 𝑥∗ =
∑𝑟
𝑗=1 𝜇(𝑆 𝑗 )𝜒𝑆 𝑗 , and for every 𝐶 ∈ C , there exists a 𝑘 ∈ {1, . . . , 𝑟}

with
∑𝑘
𝑗=1 𝜇(𝑆 𝑗 ) ≥ 2 − 𝑥∗ (𝐶) and |𝐶 ∩ 𝑆 𝑗 | = 1 for all 𝑗 = 1, . . . , 𝑘 .
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We call a spanning tree (𝑉, 𝑆) of 𝐺 a Gao tree for C if |𝑆 ∩ 𝐶 | = 1 for every
𝐶 ∈ C . In order to prove Theorem 15.15, we will repeatedly apply the following
lemma:

Lemma 15.16. Let 𝑥∗ be a chain-point for C . Then there are a Gao tree
(𝑉, 𝑆) for C and a vector 𝑥′ in the spanning tree polytope (2.8) such that
𝑥∗ = 𝜆 · 𝜒𝑆 + (1 − 𝜆) · 𝑥′ for some 0 < 𝜆 ≤ 1.

Proof. Let 𝐹 be the minimal face of the spanning tree polytope (2.8) that
contains 𝑥∗. We call a set ∅ ≠ 𝑊 ⊆ 𝑉 tight if 𝑥∗ (𝐸 [𝑊]) = |𝑊 | − 1. Let L be
a laminar family of tight sets defining the face 𝐹 (i.e., a laminar family as in
Lemma 4.16).

We will find a spanning tree (𝑉, 𝑆) with 𝜒𝑆 ∈ 𝐹 – that is, with 𝑆 ⊆ {𝑒 ∈ 𝐸 :
𝑥∗𝑒 > 0} and |𝑆[𝐿] | = |𝐿 | − 1 for every 𝐿 ∈ L. Then, by Lemma 4.16 (ii), for
every tight set𝑈 we have, for suitable coefficients 𝜆𝐿 (for 𝐿 ∈ L) and 𝜆𝑒 (for
𝑒 ∈ 𝐸 with 𝑥∗𝑒 = 0),

𝜒𝐸 [𝑈 ] =
∑︁
𝐿∈L

𝜆𝐿𝜒
𝐸 [𝐿 ] +

∑︁
𝑒∈𝐸:𝑥∗𝑒=0

𝜆𝑒𝜒
{𝑒} .

Because 𝑆 contains only edges in the support of 𝑥∗, this implies

|𝑆[𝑈] | =
∑︁
𝐿∈L

𝜆𝐿 |𝑆[𝐿] |

=
∑︁
𝐿∈L

𝜆𝐿 ( |𝐿 | − 1)

=
∑︁
𝐿∈L

𝜆𝐿 𝑥
∗ (𝐸 [𝐿])

= 𝑥∗ (𝐸 [𝑈])
= |𝑈 | − 1.

Hence, there is a vector 𝑥′ in (2.8) such that 𝑥∗ = 𝜆 · 𝜒𝑆 + (1 − 𝜆) · 𝑥′ for some
0 < 𝜆 ≤ 1. The spanning tree (𝑉, 𝑆) that we will find will in addition fulfill
|𝑆 ∩ 𝐶 | = 1 for every 𝐶 ∈ C .

Let C = {𝛿(𝑈1), . . . , 𝛿(𝑈𝑘)} with ∅ ⊊ 𝑈1 ⊊ 𝑈2 ⊊ . . . ⊊ 𝑈𝑘 ⊊ 𝑉 . Let
𝑈0 := ∅ and 𝑈𝑘+1 := 𝑉 , and let 𝐺 = (𝑉, {𝑒 : 𝑥∗𝑒 > 0}) be the support graph of
𝑥∗. We claim that the following three statements hold.

(i) For every tight set𝑊 , the set {𝑙 ∈ {0, 1, . . . , 𝑘} : 𝑊 ∩ (𝑈𝑙+1 \𝑈𝑙) ≠ ∅} is
a set of consecutive indices – that is, of the form {𝑖, 𝑖 + 1, . . . , 𝑗} for some
𝑖 ≤ 𝑗 .

(ii) For every tight set 𝑊 and for 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1, the induced subgraph
𝐺 [𝑊 ∩ (𝑈 𝑗 \𝑈𝑖)] of the support graph is connected.
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𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

𝐿

Figure 15.5 Illustration of the construction of 𝑆𝐿 in the proof of Lemma 15.16.
Narrow cuts are shown as gray dotted lines. The dark-green ellipses show a set 𝐿 in
the laminar family𝑉∪L and its maximal subsets 𝐿1, . . . , 𝐿5 ∈ L. The light-green
edges are the edges of the trees (𝐿1, 𝑆𝐿1 ) , . . . , (𝐿5, 𝑆𝐿5 ) . The edges added to
𝑆𝐿1 ∪ · · · ∪ 𝑆𝐿5 to obtain 𝑆′

𝐿
are shown in orange. Finally, we add the edge drawn

in red, which completes 𝑆′
𝐿

to the tree 𝑆𝐿 with the desired properties.

(iii) Let 1 ≤ 𝑖 ≤ 𝑘 and let𝑊,𝑊 ′ be tight sets such that𝑊 \𝑈𝑖 ,𝑊 ∩𝑈𝑖 ,𝑊 ′ \𝑈𝑖 ,
and𝑊 ′ ∩𝑈𝑖 are nonempty. Then𝑊 ∩𝑊 ′ ≠ ∅.

Having (i)–(iii), we construct 𝑆 as follows. We consider the sets 𝐿 ∈ L ∪ {𝑉}
in an order of non-decreasing cardinality and show that we can find a spanning
tree (𝐿, 𝑆𝐿) in the support graph 𝐺 such that |𝑆𝐿 ∩ 𝐶 | ≤ 1 for every 𝐶 ∈ C .
See Figure 15.5 for an illustration of the construction of 𝑆𝐿 .

Let 𝐿1, . . . , 𝐿𝑚 ∈ L be the maximal sets that are proper subsets of 𝐿. These
are disjoint because L is laminar. By (iii), we have | (𝑆𝐿1 ∪ · · · ∪ 𝑆𝐿𝑚 ) ∩𝐶 | ≤ 1
for every 𝐶 ∈ C .

For 0 ≤ 𝑙 ≤ 𝑘 with 𝐿 ∩ (𝑈𝑙+1 \𝑈𝑙) ≠ ∅, we now add edges of𝐺 [𝑈𝑙+1 \𝑈𝑙] to
𝑆𝐿1 ∪ · · · ∪ 𝑆𝐿𝑚 to obtain an edge set 𝑆′

𝐿
⊆ 𝐺 [𝐿] such that 𝑆′

𝐿
[𝐿 ∩ (𝑈𝑙+1 \𝑈𝑙)]

is the edge set of a tree with vertex set 𝐿 ∩ (𝑈𝑙+1 \𝑈𝑙); this is possible by (ii).
Let us now consider 0 ≤ 𝑙 ≤ 𝑘 where 𝐿∩𝑈𝑙 and 𝐿 \𝑈𝑙 are nonempty. If there

is a set 𝐿𝑖 (with 1 ≤ 𝑖 ≤ 𝑚) such that both 𝐿𝑖 ∩𝑈𝑙 and 𝐿𝑖 \𝑈𝑙 are nonempty,
then by (i), 𝐿𝑖 intersects both𝑈𝑙 \𝑈𝑙−1 and𝑈𝑙+1 \𝑈𝑙 . Therefore, 𝑆𝐿𝑖 contains
the edge set of a path with one endpoint in each of these sets; in fact, it contains
a single edge with this property. Otherwise, we add an edge from𝑈𝑙 \𝑈𝑙−1 to
𝑈𝑙+1 \𝑈𝑙 to ensure connectivity; this results in the edge set of a spanning tree
of 𝐺 [𝐿] and maintains the property that every cut 𝐶 ∈ C is intersected in at
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most one edge. The existence of such an edge follows from (i) and (ii) applied
to𝑊 = 𝐿 and 𝑖 = 𝑙 − 1 and 𝑗 = 𝑙 + 1.

It remains to prove claims (i)–(iii).
We first show (i). Let𝑊 be a tight set. Suppose𝑊∩(𝑈𝑙+1\𝑈𝑙) = ∅, but𝑊∩𝑈𝑙

and𝑊 \𝑈𝑙+1 are both nonempty. By (a) of Definition 15.14, the chain-point 𝑥∗
restricted to 𝐸 [𝑊] is a convex combination of incidence vectors of (edge sets of)
spanning trees of 𝐺 [𝑊] because𝑊 is tight. Therefore 𝑥∗ (𝛿(𝑈𝑙) ∩ 𝛿(𝑈𝑙+1)) ≥ 1.
Moreover, we have

𝑥∗ (𝛿(𝑈𝑙+1 \𝑈𝑙)) =
∑︁

𝑣∈𝑈𝑙+1\𝑈𝑙

𝑥(𝛿(𝑣)) − 2𝑥∗ (𝐸 [𝑈𝑙+1 \𝑈𝑙])

≥ 2|𝑈𝑙+1 \𝑈𝑙 | − 2( |𝑈𝑙+1 \𝑈𝑙 | − 1)
= 2

by (a) and (c). Therefore by (b),

4 > 𝑥∗ (𝛿(𝑈𝑙)) + 𝑥∗ (𝛿(𝑈𝑙+1))
= 𝑥∗ (𝛿(𝑈𝑙+1 \𝑈𝑙)) + 2 · 𝑥∗ (𝛿(𝑈𝑙) ∩ 𝛿(𝑈𝑙+1))
≥ 4.

This contradiction implies (i).
Next we show (ii). Let 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1. We first show 𝑥∗ (𝐸 [𝑈 𝑗 \𝑈𝑖]) >
|𝑈 𝑗 \𝑈𝑖 | − 2. For this, we distinguish three cases. If 𝑖 > 0 and 𝑗 < 𝑘 + 1, we
have

4 > 𝑥∗ (𝛿(𝑈𝑖)) + 𝑥∗ (𝛿(𝑈 𝑗 ))

≥
∑︁

𝑣∈𝑈 𝑗\𝑈𝑖

𝑥∗ (𝛿(𝑣)) − 2 · 𝑥∗ (𝐸 [𝑈 𝑗 \𝑈𝑖])

= 2|𝑈 𝑗 \𝑈𝑖 | − 2 · 𝑥∗ (𝐸 [𝑈 𝑗 \𝑈𝑖]).

If 𝑖 = 0 and 𝑗 = 𝑘 + 1, we have |𝑉 | − 1 = 𝑥∗ (𝐸) = 𝑥∗ (𝐸 [𝑈 𝑗 \𝑈𝑖]). Otherwise,
we have either 𝑈 𝑗 \𝑈𝑖 = 𝑈 𝑗 or 𝑈 𝑗 \𝑈𝑖 = 𝑉 \𝑈𝑖 . Without loss of generality
𝑈 𝑗 \𝑈𝑖 = 𝑈 𝑗 (the other case is symmetric). Then

|𝑉 | − 1 = 𝑥∗ (𝐸)
= 𝑥∗ (𝐸 [𝑈 𝑗 ]) + 𝑥∗ (𝛿(𝑈 𝑗 )) + 𝑥∗ (𝐸 [𝑉 \𝑈 𝑗 ])
< 𝑥∗ (𝐸 [𝑈 𝑗 ]) + 2 + (|𝑉 | − |𝑈 𝑗 | − 1).

Hence, in all cases 𝑥∗ (𝐸 [𝑈 𝑗 \𝑈𝑖]) > |𝑈 𝑗 \𝑈𝑖 | − 2.
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Now let𝑊 be a tight set. Then

𝑥∗ (𝐸 [𝑊 ∩ (𝑈 𝑗 \𝑈𝑖)]) + 𝑥∗ (𝐸 [𝑊 ∪ (𝑈 𝑗 \𝑈𝑖)])
≥ 𝑥∗ (𝐸 [𝑈 𝑗 \𝑈𝑖]) + 𝑥∗ (𝐸 [𝑊])
> |𝑈 𝑗 \𝑈𝑖 | − 2 + |𝑊 | − 1.

Since 𝑥∗ (𝐸 [𝑊∪(𝑈 𝑗\𝑈𝑖)]) ≤ |𝑊∪(𝑈 𝑗\𝑈𝑖) |−1, we have 𝑥∗ (𝐸 [𝑊∩(𝑈 𝑗\𝑈𝑖)]) >
|𝑊 ∩ (𝑈 𝑗 \𝑈𝑖) | − 2. This implies that 𝐺 [𝑊 ∩ (𝑈 𝑗 \𝑈𝑖)] is connected, because
otherwise there is a partition of𝑊 ∩ (𝑈 𝑗 \𝑈𝑖) into nonempty sets 𝐴 and 𝐵 such
that 𝑥∗ (𝛿(𝐴) ∩ 𝛿(𝐵)) = ∅, implying

𝑥∗ (𝐸 [𝑊 ∩ (𝑈 𝑗 \𝑈𝑖)]) ≤ 𝑥∗ (𝐸 [𝐴]) + 𝑥∗ (𝐸 [𝐵])
≤ |𝐴| − 1 + |𝐵 | − 1
= |𝑊 ∩ (𝑈 𝑗 \𝑈𝑖) | − 2.

Finally, we show (iii). Let 1 ≤ 𝑖 ≤ 𝑘 , and suppose there are tight sets
𝑊 and 𝑊 ′ such that 𝑊 \ 𝑈𝑖 , 𝑊 ∩ 𝑈𝑖 , 𝑊 ′ \ 𝑈𝑖 , and 𝑊 ′ ∩ 𝑈𝑖 are nonempty.
Then 𝑥∗ (𝛿(𝑈𝑖) ∩ 𝐸 [𝑊]) ≥ 1 because 𝑥∗ restricted to 𝐸 [𝑊] is a convex
combination of incidence vectors of spanning trees of 𝐺 [𝑊] (since𝑊 is tight).
The same holds for 𝑊 ′. So if 𝑊 and 𝑊 ′ are disjoint, we have 𝑥∗ (𝛿(𝑈𝑖)) ≥
𝑥∗ (𝛿(𝑈𝑖) ∩ 𝐸 [𝑊]) + 𝑥∗ (𝛿(𝑈𝑖) ∩ 𝐸 [𝑊 ′]) ≥ 2, contradicting (b). □

We now show how Lemma 15.16 implies Theorem 15.15.

Proof of Theorem 15.15. Let 𝐹 be the minimal face of the spanning tree
polytope that contains the chain-point 𝑥∗. We apply induction on the dimension
of 𝐹. Let (𝑉, 𝑆) be a Gao tree as in Lemma 15.16. Let 0 < 𝜆 ≤ 1 maximal
such that 𝑥∗ = 𝜆 · 𝜒𝑆 + (1 − 𝜆) · 𝑥′ for some 𝑥′ in the spanning tree polytope
(2.8). If 𝜆 = 1, we have 𝑥∗ = 𝜒𝑆 and are done. Otherwise, 𝑥′ is contained in a
lower-dimensional face of the spanning tree polytope than 𝑥∗: By the maximality
of 𝜆, either the vector 𝑥′ has smaller support, or there is a set𝑈 that is tight for
𝑥′ but not for 𝑥∗, or both. Moreover, because |𝑆 ∩ 𝐶 | = 1 for every cut 𝐶 ∈ C ,
we have (1 − 𝜆) · 𝑥′ (𝐶) = 𝑥∗ (𝐶) − 𝜆. Hence

C ′ := {𝐶 ∈ C : 𝑥′ (𝐶) < 2} = {𝐶 ∈ C : 𝜆 < 2 − 𝑥∗ (𝐶)}.

We claim that 𝑥′ is a chain-point for C ′. Properties (a) and (b) hold by
construction. We now show (c).

Let 𝑈𝑖 and 𝑈 𝑗 be two sets with 𝑈𝑖 ⊊ 𝑈 𝑗 and 𝛿(𝑈𝑖), 𝛿(𝑈 𝑗 ) ∈ C ′. We have
𝑆 ∩ 𝛿(𝑈𝑖) ∩ 𝛿(𝑈 𝑗 ) = ∅ because otherwise 𝑆 ∩ 𝛿(𝑈 𝑗 \ 𝑈𝑖) = ∅ since 𝑆 is a
Gao tree for C . Therefore, because |𝑆 ∩ 𝛿(𝑈𝑖) | = |𝑆 ∩ 𝛿(𝑈 𝑗 ) | = 1, the graph
(𝑉, 𝑆) [𝑈 𝑗 \𝑈𝑖] is connected and hence |𝑆[𝑈 𝑗 \𝑈𝑖] | = |𝑈 𝑗 \𝑈𝑖 | −1. This implies∑
𝑣∈𝑈 𝑗\𝑈𝑖

|𝛿(𝑣) ∩ 𝑆 | = 2 · |𝑆[𝑈 𝑗 \𝑈𝑖] | + |𝑆 ∩ 𝛿(𝑈𝑖) | + |𝑆 ∩ 𝛿(𝑈 𝑗 ) | = 2|𝑈 𝑗 \𝑈𝑖 |.
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Because 𝑥∗ fulfills (c) for C and hence for C ′, this implies that 𝑥′ fulfills (c)
(for C ′) as well.

This shows that 𝑥′ is a chain-point for C ′. Hence, we can apply the induction
hypothesis to 𝑥′ to obtain 𝑥′ =

∑𝑟 ′

𝑗=1 𝜇
′ (𝑆′

𝑗
)𝜒𝑆

′
𝑗 . Then 𝑥∗ = 𝜆 · 𝜒𝑆 + (1 − 𝜆) ·∑𝑟 ′

𝑗=1 𝜇
′ (𝑆′

𝑗
)𝜒𝑆

′
𝑗 . We set 𝑟 := 𝑟 ′+1, 𝜇(𝑆1) := 𝜆, 𝑆1 := 𝑆, and for 𝑖 = 2, . . . , 𝑟 ′+1,

we set 𝑆𝑖 := 𝑆′
𝑖−1 and 𝜇(𝑆𝑖) := (1 − 𝜆)𝜇′ (𝑆′

𝑖−1). Then 𝜇(𝑆1), . . . , 𝜇(𝑆𝑟 ) > 0
with

∑𝑟
𝑗=1 𝜇(𝑆 𝑗 ) = 1 and 𝑥∗ =

∑𝑟
𝑗=1 𝜇(𝑆 𝑗 )𝜒𝑆 𝑗 .

Now consider a cut 𝐶 ∈ C . We claim that there exists a 𝑘 ∈ {1, . . . , 𝑟} with∑𝑘
𝑗=1 𝜇(𝑆 𝑗 ) ≥ 2 − 𝑥∗ (𝐶) and |𝐶 ∩ 𝑆 𝑗 | = 1 for all 𝑗 = 1, . . . , 𝑘 . We always have
|𝐶 ∩ 𝑆1 | = 1 because (𝑉, 𝑆) is a Gao tree for C . If𝐶 ∉ C ′ (i.e., 2− 𝑥∗ (𝐶) ≤ 𝜆 =

𝜇(𝑆1)), the claim holds for 𝑘 = 1. Otherwise, by the induction hypothesis, there
exists a 𝑘 ∈ {2, . . . , 𝑟} such that 1

1−𝜆
∑𝑘
𝑗=2 𝜇(𝑆 𝑗 ) =

∑𝑘
𝑗=2 𝜇

′ (𝑆′
𝑗−1) ≥ 2 − 𝑥′ (𝐶)

and |𝐶 ∩ 𝑆 𝑗 | = 1 for all 𝑗 = 2, . . . , 𝑘 . Then

𝑘∑︁
𝑗=1

𝜇(𝑆 𝑗 ) ≥ 𝜆 + (1 − 𝜆) · (2 − 𝑥′ (𝐶))

= 𝜆 + 2(1 − 𝜆) − (𝑥∗ (𝐶) − 𝜆)
= 2 − 𝑥∗ (𝐶).

This completes the proof of the claim and of Theorem 15.15. □

As noted by Schalekamp et al. [2018], this proof can be turned into a
polynomial-time algorithm; finding 𝜆 can be done with the technique of Exer-
cise 5.14. Alternative algorithms were devised by Gottschalk and Vygen [2018]
and by Pashkovich (see Exercise 15.5).

We remark that Theorem 15.13 cannot be generalized to 𝑇-tours: We saw in
Figure 14.6 that there may not even be a single Gao tree in the support graph.

It is an interesting open question what the approximation ratio is for Best-of-
Many Christofides for Path TSP with a distribution like in Theorem 15.13. We
only know that it is between 1.5 (Proposition 15.2) and 1.566 (Gottschalk and
Vygen [2018]), but it is not even clear whether it is really better than the generic
Best-of-Many Christofides.

In Section 15.4, we show a better upper bound for a slightly different algorithm.
There we will also need Theorem 15.13.

15.4 Parity Correction of Forests

The next improvement for Path TSP was found by Sebő and van Zuylen [2019].
They introduced the idea to delete some of the lonely edges in the spanning
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𝑠

𝑡

𝑠

𝑡

Figure 15.6 Top: The spanning tree (𝑉, 𝑆) from Figure 15.3. Again, the narrow
cuts are those shown in grey (dotted and solid). The lonely edges are dotted and
red. For each lonely edge, there is one narrow cut (dotted) in which this is the only
edge of 𝑆 (other narrow cuts are shown as solid lines). Removing the lonely edges
from 𝑆 results in a forest 𝐹𝑆 (green). Filled circles show vertices in 𝑇 △ odd(𝐹𝑆 ) ,
where 𝑇 = {𝑠, 𝑡 }.
Bottom: After removing the lonely edges, we do parity correction (blue, curved).
The long blue edge is bad. Here we have to put back two copies of a lonely edge
(red, dotted) to restore connectivity.

tree before parity correction, because parity correction will often reconnect the
connected components of the forest anyway.

Deleting lonely edges from 𝑆 results in a forest 𝐹𝑆 (see Figure 15.6). We
will do parity correction on this forest – that is, add a (𝑇 △ odd(𝐹𝑆))-join 𝐽.
Deleting a lonely edge 𝑒 from 𝑆 generates two connected components 𝑋 and
𝑉 \ 𝑋 , where 𝛿(𝑋) is a narrow cut. Hence, this is a 𝑇-cut and thus also a
(𝑇 △ odd(𝐹𝑆))-cut because 𝐹𝑆 ∩ 𝛿(𝑋) = ∅. Therefore, the (𝑇 △ odd(𝐹𝑆))-join
𝐽 contains some edge (in fact an odd number of edges) in this cut. This makes
us hope to restore connectivity often. Nevertheless, the resulting 𝑇-join 𝐹𝑆

.
∪ 𝐽

might be disconnected. In this case, we put back two copies of some of the
edges from 𝑆 \ 𝐹𝑆 .

For a narrow cut𝐶, we denote byL(𝐶) the set of trees 𝑆 for which |𝑆∩𝐶 | = 1
and 𝐹𝑆 ∩ 𝐶 = ∅. For a tree 𝑆 ∈ L(𝐶), the forest 𝐹𝑆 contains no edge in 𝐶
because the only edge was deleted from 𝑆. Parity correction will add at least
one edge in every such cut. The problem is, however, that an edge of 𝐽 may
belong to more than one of these cuts (such edges will be called bad). In this
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case, one way to ensure connectivity is to put back two copies of the lonely edge
that we deleted in each of these cuts except one.

When choosing 𝐽, we will not just choose the cheapest (𝑇 △ odd(𝐹𝑆))-join
but also account for this reconnection cost. If we choose 𝐽 for parity correction,
we will pay a total of 𝑐𝑆 (𝐽), where

𝑐𝑆 (𝑒) := 𝑐(𝑒) +
∑︁

𝐶∈N:𝑆∈L(𝐶 ) , 𝑒∈𝐶
2𝑐(𝐶 ∩ 𝑆)

− max
{
0, max
𝐶∈N:𝑆∈L(𝐶 ) , 𝑒∈𝐶

2𝑐(𝐶 ∩ 𝑆)
}

;
(15.8)

here the second and third terms account for the reconnection cost as we will
show in Lemma 15.19.

Definition 15.17 (bad edge). Call an edge 𝑒 ∈ 𝐸 bad with respect to 𝐹𝑆 if there
are at least two narrow cuts 𝐶 with 𝑆 ∈ L(𝐶) and 𝑒 ∈ 𝐶.

If an edge is not bad, then 𝑐𝑆 (𝑒) = 𝑐(𝑒). We note that edges of 𝑒 ∈ 𝑆 are not
bad with respect to 𝐹𝑆 ; this is useful if we use such edges in a parity correction
vector.

Algorithm 15.18: Best-of-Many Christofides with Lonely Edge Deletion
Input: an instance (𝐺, 𝑐, 𝑇) of the 𝑇-Tour Problem with 𝑇 ≠ ∅, where

𝐺 is a complete graph and 𝑐 satisfies the triangle inequality
Output: a 𝑇-tour in 𝐺

(1) Let 𝑥∗ be an optimum solution to the LP (14.2).
(2) Let S denote the set of edge sets of spanning trees in 𝐺. Find 𝜇(𝑆) ≥ 0 for

𝑆 ∈ S such that
∑
𝑆∈S 𝜇(𝑆) = 1 and 𝑥∗ =

∑
𝑆∈S 𝜇(𝑆)𝜒𝑆 . For each narrow

cut 𝐶, let L(𝐶) ⊆ S such that |𝑆 ∩ 𝐶 | = 1 for all 𝑆 ∈ L(𝐶).
(3) For 𝑆 ∈ S with 𝜇(𝑆) > 0, let (𝑉, 𝐹𝑆) be the forest that results from (𝑉, 𝑆)

by deleting every edge 𝑒 ∈ 𝑆 for which {𝑒} = 𝑆 ∩ 𝐶 for some 𝐶 ∈ N with
𝑆 ∈ L(𝐶).

(4) For each 𝑆 ∈ S with 𝜇(𝑆) > 0, compute an (𝑇 △ odd(𝐹𝑆))-join 𝐽𝑆 whose
anticipated cost 𝑐𝑆 (𝐽𝑆) is minimum. Select a minimum-cost set 𝑅𝑆 of
edges so that 𝐹𝑆 ∪ 𝐽𝑆 ∪ 𝑅𝑆 is connected, and consider the 𝑇-tour
𝐹𝑆

.
∪ 𝐽𝑆

.
∪ 𝑅𝑆

.
∪ 𝑅𝑆 .

(5) Output the best of these 𝑇-tours.

Although Sebő and van Zuylen [2019] described their algorithm only for
Path TSP and with a specific distribution 𝜇 coming from Theorem 15.13,
Algorithm 15.18 describes it in a slightly more general form, which we will
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𝑒

𝑅𝑒

Figure 15.7 Illustration of the proof of Lemma 15.19. Vertices in 𝑇 are shown as
squares, other vertices as circles. On the left, we have the spanning tree (𝑉, 𝑆)
with the edges in 𝑆 \ 𝐹𝑆 drawn dotted and red. Filled vertices are vertices in
𝑇 △ odd(𝐹𝑆 ) . On the right, we have a 𝑇-tour consisting of the forest 𝐹𝑆 (solid), a
(𝑇 △ odd(𝐹𝑆 ) )-join 𝐽𝑆 (dashed), and a reconnection set 𝑅

.

∪ 𝑅 (dotted). For the
blue edge 𝑒 ∈ 𝐽𝑆 , the two copies of the set 𝑅𝑒 are highlighted in green.

need in Section 15.5. Note that L(𝐶) does not necessarily contain all trees 𝑆
with |𝑆 ∩ 𝐶 | = 1. We will analyze this algorithm for different choices of L(𝐶).

Finding 𝑅𝑆 as in Step (4) easily reduces to the Minimum Spanning Tree
problem (Theorem 1.17) after contracting the connected components of (𝑉, 𝐹𝑆∪
𝐽𝑆). The reconnection cost can indeed be bounded as anticipated.

Lemma 15.19. For all 𝑆 ∈ S, we have 2𝑐(𝑅𝑆) ≤ 𝑐𝑆 (𝐽𝑆) − 𝑐(𝐽𝑆).

Proof. For each 𝑒 ∈ 𝐽𝑆 , let us denote by 𝑅𝑒 the edge set that results from⋃
𝐶∈N: 𝑆∈L(𝐶 ) , 𝑒∈𝐶 (𝐶 ∩ 𝑆) by removing a most expensive edge. See Figure 15.7

for an example. By the definition of 𝑐𝑆 , we have 2𝑐(𝑅𝑒) = 𝑐𝑆 (𝑒) − 𝑐(𝑒). Let
𝑅 :=

⋃
𝑒∈𝐽𝑆 𝑅𝑒. We have 2𝑐(𝑅) ≤ 𝑐𝑆 (𝐽𝑆) − 𝑐(𝐽𝑆). Hence, it suffices to show

that 𝐹𝑆 ∪ 𝐽𝑆 ∪ 𝑅 is connected.
For 𝑓 = {𝑣, 𝑤} ∈ 𝑆 \ 𝐹𝑆 , we show that there is a path from 𝑣 to 𝑤 in
(𝑉, 𝐹𝑆 ∪ 𝐽𝑆 ∪ 𝑅). This is obvious if 𝑓 ∈ 𝑅. Hence, assume 𝑓 ∉ 𝑅 from now on.
Consider the narrow cut 𝐶 with 𝐶 ∩ 𝑆 = { 𝑓 }. Since this is a (𝑇 △ odd(𝐹𝑆))-cut,
𝐽𝑆 contains at least one edge 𝑒 in 𝐶. The graph (𝑉, (𝑆 \ { 𝑓 }) ∪ {𝑒}) is a tree
because 𝑆 ∩ 𝐶 = { 𝑓 } and 𝑒 ∈ 𝐶. This tree contains a path 𝑃 from 𝑣 to 𝑤.
We claim that 𝐸 (𝑃) ⊆ 𝐹𝑆 ∪ {𝑒} ∪ 𝑅𝑒. Suppose there is an edge 𝑓 ′ ∈ 𝑆 \ 𝐹𝑆
that belongs to 𝑃. Then there is a narrow cut 𝐶′ such that 𝑆 ∈ L(𝐶′) and
𝐶′ ∩ 𝑆 = { 𝑓 ′}. We have 𝑒 ∈ 𝐶′ because 𝑃 must contain an even number of
edges in 𝐶′. We conclude 𝑓 ′ ∈ 𝑅𝑒 (because 𝑓 ∉ 𝑅𝑒). □

Just like Proposition 15.5, we continue by noting:
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Lemma 15.20. The cost of the 𝑇-tour computed by Algorithm 15.18 is at most
𝑐(𝑥∗) +∑𝑆∈S 𝜇(𝑆)

(
𝑐𝑆 ( �̄�𝑆) − 𝑐(𝑆 \𝐹𝑆)

)
for all vectors �̄�𝑆 in the (𝑇 △ odd(𝐹𝑆))-

join polyhedron (cf. (2.9)) for 𝑆 ∈ S.

Proof. The 𝑇-tour 𝐹𝑆
.
∪ 𝐽𝑆

.
∪ 𝑅𝑆

.
∪ 𝑅𝑆 costs at most

𝑐(𝐹𝑆) + 𝑐(𝐽𝑆) + 2𝑐(𝑅𝑆) ≤ 𝑐(𝑆) + 𝑐𝑆 (𝐽𝑆) − 𝑐(𝑆 \ 𝐹𝑆)
≤ 𝑐(𝑆) + 𝑐𝑆 ( �̄�𝑆) − 𝑐(𝑆 \ 𝐹𝑆),

where the first inequality follows from Lemma 15.19 and the last inequality
from Theorem 2.19. Taking the weighted sum yields the assertion. □

So we again use a parity correction vector to bound 𝑐𝑆 (𝐽𝑆). This vector will
again contain a fraction of 𝑥∗. Therefore, the following bound, shown by Sebő
and van Zuylen [2019] for Path TSP and generalized by Traub [2020b] to
𝑇-tours, is useful:

Lemma 15.21. Let 𝑆 ∈ S. Then

𝑐𝑆 (𝑥∗) − 𝑐(𝑥∗) ≤
∑︁

𝐶∈N:𝑆∈L(𝐶 )
2(𝑥∗ (𝐶) − 1) 𝑐(𝐶 ∩ 𝑆).

Proof. LetN𝑆 denote the set of narrow cuts 𝐶 for which 𝑆 ∈ L(𝐶). We claim:

There are vectors 𝑤𝐶 ∈ R𝐸≥0 for 𝐶 ∈ N𝑆 such that
𝑤𝐶 (𝐶) ≥ 1 for 𝐶 ∈ N𝑆 and

∑
𝐶∈N𝑆 𝑤𝐶 ≤ 𝑥∗. (15.9)

Then ∑︁
𝑒∈𝐸

𝑥∗𝑒 ·max
{
0, max
𝐶∈N𝑆 :𝑒∈𝐶

2𝑐(𝐶 ∩ 𝑆)
}

≥
∑︁
𝑒∈𝐸

∑︁
𝐶′∈N𝑆

𝑤𝐶
′

𝑒 ·max
{
0, max
𝐶∈N𝑆 :𝑒∈𝐶

2𝑐(𝐶 ∩ 𝑆)
}

≥
∑︁
𝑒∈𝐸

∑︁
𝐶′∈N𝑆 :𝑒∈𝐶′

𝑤𝐶
′

𝑒 · 2𝑐(𝐶′ ∩ 𝑆)

=
∑︁
𝐶∈N𝑆

2𝑐(𝐶 ∩ 𝑆) · 𝑤𝐶 (𝐶)

≥
∑︁
𝐶∈N𝑆

2𝑐(𝐶 ∩ 𝑆).

Together with the definition of 𝑐𝑆 (cf. (15.8)) and N𝑆 = {𝐶 ∈ N : 𝑆 ∈ L(𝐶)},
this directly implies the assertion.

For |𝑇 | = 2, Lemma 15.9 directly implies (15.9), but we cannot use this for
general 𝑇 . To prove (15.9) for general 𝑇 , we again use Theorem 3.13. Consider



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

344 Best-of-Many Christofides and Variants

N ′ ⊆ N𝑆 . Removing the edge in 𝐶 ∩ 𝑆 from (𝑉, 𝑆) for each 𝐶 ∈ N ′ results in
1 + |N ′ | connected components, whose vertex sets form a partitionW of 𝑉 . We
have 𝛿(W) = ⋃

𝐶∈N′ 𝐶 and hence 𝑥∗ (⋃𝐶∈N′ 𝐶) = 𝑥∗ (𝛿(W)) ≥ |W| − 1 =

|N ′ |. Hence, by Theorem 3.13, there is a function 𝑓 : 𝐸 × N𝑆 → R≥0
with

∑
𝐶∈N𝑆 𝑓 (𝑒, 𝐶) ≤ 𝑥∗𝑒 (𝑒 ∈ 𝐸) and

∑
𝑒∈𝐶 𝑓 (𝑒, 𝐶) ≥ 1 (𝐶 ∈ N𝑆). Set

𝑤𝐶𝑒 := 𝑓 (𝑒, 𝐶). □

In the following, we assume that 𝜇 satisfies the conditions of Theorem 15.13,
which is feasible for Path TSP. In addition, we assume that for each narrow cut
𝐶, the coefficients of the first trees sum up to exactly 2 − 𝑥∗ (𝐶), which can be
obtained simply by duplicating some elements of S.

Theorem 15.22 (Sebő and van Zuylen [2019]). Let (𝐺, 𝑐, 𝑠, 𝑡) be a Path
TSP instance and 𝑥∗ an optimum solution to (14.1). Let 𝑆1, . . . , 𝑆𝑟 ∈ S and
𝜇(𝑆1), . . . , 𝜇(𝑆𝑟 ) > 0 with

∑𝑟
𝑗=1 𝜇(𝑆 𝑗 ) = 1 such that 𝑥∗ =

∑𝑟
𝑗=1 𝜇(𝑆 𝑗 )𝜒𝑆 𝑗 , and

for every 𝐶 ∈ N , there exists a 𝑘 ∈ {1, . . . , 𝑟} with
∑𝑘
𝑗=1 𝜇(𝑆 𝑗 ) = 2 − 𝑥∗ (𝐶)

and |𝐶 ∩ 𝑆 𝑗 | = 1 for all 𝑗 = 1, . . . , 𝑘; let L(𝐶) = {𝑆1, . . . , 𝑆𝑘} and 𝑇 = {𝑠, 𝑡}.
Then Best-of-Many Christofides with lonely edge deletion (Algorithm 15.18)

computes a solution of cost at most 26
17𝑐(𝑥

∗).

Proof. Let 0 ≤ 𝛽 ≤ 1
2 be a constant that we choose later. Similar to (15.3), let

�̄�𝑆 := 𝛽𝑥∗ + (1 − 2𝛽)𝜒𝑆 +
∑︁

𝐶∈N:𝑆∈L(𝐶 )
𝛽(2 − 𝑥∗ (𝐶))𝜒𝑆∩𝐶

+
∑︁

𝐶∈N:𝑆∉L(𝐶 )
max

{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑣𝐶 ,

where we now set 𝑣𝐶 := 1
2−𝑥∗ (𝐶 )

∑
𝑆∈L(𝐶 ) 𝜇(𝑆)𝜒𝑆∩𝐶 for𝐶 ∈ N . Then 𝑣𝐶 (𝐶) =

1 for all 𝐶 ∈ N , and the equivalent of Lemma 15.7 still holds:

For every 𝑆 ∈ S and every (𝑇 △ odd(𝐹𝑆))-cut 𝐶, we have �̄�𝑆 (𝐶) ≥ 1. (15.10)

To show (15.10), let 𝑆 ∈ S and 𝐶 be a (𝑇 △ odd(𝐹𝑆))-cut. If 𝐶 ∉ N , then
𝑥∗ (𝐶) ≥ 2 and hence �̄�𝑆 (𝐶) ≥ 𝛽𝑥∗ (𝐶) + (1 − 2𝛽) |𝑆 ∩𝐶 | ≥ 2𝛽 + (1 − 2𝛽) = 1.

If 𝐶 ∈ N , then |𝐹𝑆 ∩ 𝐶 | is even by Lemma 14.19. If 𝐹𝑆 ∩ 𝐶 = ∅, then
𝑆 ∈ L(𝐶) and thus �̄�𝑆 (𝐶) ≥ 𝛽𝑥∗ (𝐶) + (1 − 2𝛽) + 𝛽(2 − 𝑥∗ (𝐶)) |𝑆 ∩ 𝐶 | ≥ 1.

If |𝐹𝑆 ∩ 𝐶 | ≥ 2, then 𝑆 ∉ L(𝐶) and thus

�̄�𝑆 (𝐶) ≥ 𝛽𝑥∗ (𝐶) + (1 − 2𝛽) |𝑆 ∩ 𝐶 | + 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)
≥ 𝛽𝑥∗ (𝐶) + 2(1 − 2𝛽) + 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)
= 1.
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We have shown (15.10); moreover, �̄�𝑆 is nonnegative. Hence �̄�𝑆 is in the
(𝑇 △ odd(𝐹𝑆))-join polyhedron (cf. (2.9)), and by Theorem 2.19, we have
𝑐𝑆 (𝐽𝑆) ≤ 𝑐𝑆 ( �̄�𝑆).

Recall that 𝑐𝑆 (𝑒) = 𝑐(𝑒) unless 𝑒 is bad. The edges in 𝑆 are never bad for
𝑆, nor are the edges that we deleted in trees that come earlier in the list of
Theorem 15.13: This is because for every such edge 𝑒 in an earlier tree 𝑆′, there
is only one narrow cut 𝐶 with 𝑒 ∈ 𝐶 and 𝑆′ ∈ L(𝐶), and 𝑆′ ∈ L(𝐶) whenever
𝑆 ∈ L(𝐶). Using the definition of �̄�𝑆 , we conclude

𝑐𝑆 (𝐽𝑆) ≤ 𝑐𝑆 ( �̄�𝑆) = 𝑐( �̄�𝑆) + 𝛽
(
𝑐𝑆 (𝑥∗) − 𝑐(𝑥∗)

)
.

Using Lemmas 15.20 and 15.21, the total cost of the solution computed by
Best-of-Many Christofides with lonely edge deletion is at most

(2 − 𝛽)𝑐(𝑥∗) +
∑︁
𝐶∈N

∑︁
𝑆∈L(𝐶 )

𝜇(𝑆)𝑐(𝑆 ∩ 𝐶) · 𝐴,

where

𝐴 = max
𝐶∈N

(
−1 + 𝛽 · 2(𝑥∗ (𝐶) − 1) + 𝛽(2 − 𝑥∗ (𝐶))

+max
{
0, 4𝛽 − 1 − 𝛽𝑥∗ (𝐶)

}
𝑥∗ (𝐶 )−1
2−𝑥∗ (𝐶 )

)
≤ max

1≤𝑥<2

(
𝛽𝑥 − 1 + 𝑥−1

2−𝑥 max{0, 4𝛽 − 1 − 𝛽𝑥}
)
.

For 𝛽 = 8
17 , we get 𝐴 ≤ 0 and hence total cost at most (2−𝛽)𝑐(𝑥∗) = 26

17𝑐(𝑥
∗). □

As said, the assumption on 𝜇 can be satisfied for Path TSP by Theorem 15.13.
Hence, we immediately get:

Corollary 15.23. The integrality ratio of (14.1) is at most 26
17 < 1.530. □

It turns out that the algorithm can be implemented without actually computing
𝜇 (see Exercise 15.6). Although for general 𝑇 , no 𝜇 as in Theorem 15.13 may
exist and the above analysis does not work, we will return to Best-of-Many
Christofides with lonely edge deletion for general 𝑇 (and 𝜇) in Section 15.5.

The analysis of Theorem 15.22 was improved by Traub and Vygen [2019b],
who showed that Algorithm 15.18 (with L(𝐶) as in Theorem 15.22) actually
computes a solution of cost less than 1.5284 times the LP value for any given
Path TSP instance. The main idea in this improved analysis is the following.
For the first tree 𝑆1, the vector 1

2𝑥
∗ is a feasible parity correction vector since

|𝑆1 ∩ 𝐶 | = 1 for all narrow cuts 𝐶. Hence, in the worst case, this tree must be
more expensive than the average tree cost 𝑐(𝑥∗). Then, using a different parity
correction vector for every tree – where for the earlier trees, the contribution of
𝑥∗ to the parity correction vector is higher, and the contribution of the tree itself
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is lower than for later trees – yields a better bound on the integrality ratio. Traub
and Vygen [2019b] conjectured that one can obtain the ratio 1.5273 with their
approach, which was confirmed by Zhong [2020]:

Theorem 15.24 (Traub and Vygen [2019b], Zhong [2020]). The integrality
ratio of (14.1) is at most 1.5273.

This is probably not the final word. The following conjecture is natural.

Open Problem 15.25. Prove that the integrality ratio of the LP relaxation (14.1)
of Path TSP is exactly 3

2 .

15.5 A Better Algorithm for 𝑻-Tours

Traub [2020b] devised an 11
7 -approximation algorithm for the 𝑇-Tour Problem.

The algorithm is very simple: Run Best-of-Many Christofides (Algorithm 15.1)
and Best-of-Many Christofides with lonely edge deletion (Algorithm 15.18) and
output the best resulting 𝑇-tour. In contrast to the previous sections, we do not
use a specific decomposition into spanning trees.

The idea why this is better than the plain Best-of-Many Christofides is as
follows. Sebő’s [2013] analysis (Theorem 15.11) is tight only if 𝐼𝑆 = 𝐿𝑆 , but
in this case, deleting the lonely edges changes the parity in all the narrow cuts.
The narrow cuts with exactly two edges were critical, but these end up with only
one edge in the forest and no longer need parity correction.

Theorem 15.26 (Traub [2020b]). There is a polynomial-time algorithm that
computes a 𝑇-tour of cost at most 11

7 times the value of the LP relaxation (14.2)
for any given instance (𝐺, 𝑐, 𝑇) of the 𝑇-Tour Problem where 𝐺 is a complete
graph, 𝑐 satisfies the triangle inequality, and 𝑇 ≠ ∅.

Proof. For a spanning tree 𝑆 ∈ S, let us again define

𝐿𝑆 :=
⋃

𝐶∈N: |𝐶∩𝑆 |=1
(𝐶 ∩ 𝑆)

as the set of its lonely edges. Let 𝑥∗ denote an optimum solution to the LP
relaxation (14.2). We run two algorithms and output the better result. The first
algorithm is Best-of-Many Christofides. The second algorithm is Best-of-Many
Christofides with lonely edge deletion with L(𝐶) = {𝑆 ∈ S : |𝑆 ∩𝐶 | = 1} (i.e.,
we delete all lonely edges). Both algorithms can be implemented in polynomial
time by Theorem 4.22.
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Recalling Lemma 15.8 and plugging in (15.5) and 𝛽 = 7
15 , Best-of-Many

Christofides yields a 𝑇-tour of cost at most

23
15𝑐(𝑥

∗) +
∑︁
𝐶∈N

(
𝑥∗ (𝐶 )−1
2−𝑥∗ (𝐶 ) ·max

{
0, 13−7𝑥∗ (𝐶 )

15

})
·

∑︁
𝑆∈L(𝐶 )

𝜇(𝑆)𝑐(𝑆 ∩ 𝐶). (15.11)

From (15.7), we also know that the cost is at most

𝑐(𝑥∗) +
∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐽𝑆). (15.12)

We will derive a third bound from the Best-of-Many Christofides with lonely
edge deletion and then take a convex combination of the three bounds.

We will again use Lemma 15.20, but in contrast to Section 15.4, we now
delete all lonely edges, we do not have a decomposition of 𝑥∗ with any special
properties, and we will not use 𝑣𝐶 at all (because it might have contributions
from bad edges). Therefore, we need a different parity correction vector. We use

�̃�𝑆 := 2
5𝑥
∗ + 1

5 𝜒
𝑆 + 1

5 𝜒
𝐼𝑆∩𝐹𝑆 +

∑︁
𝐶∈N:𝑆∈L(𝐶 )

2
5 (2 − 𝑥

∗ (𝐶))𝜒𝑆∩𝐶 .

Again, we have to show:

For every 𝑆 ∈ S and every (𝑇 △ odd(𝐹𝑆))-cut 𝐶, we have �̃�𝑆 (𝐶) ≥ 1. (15.13)

To show (15.13), let 𝑆 ∈ S, and let 𝐶 be a (𝑇 △ odd(𝐹𝑆))-cut. If 𝐶 ∉ N , then
𝑥∗ (𝐶) ≥ 2 and hence �̃�𝑆 (𝐶) ≥ 2

5𝑥
∗ (𝐶) + 1

5 |𝑆 ∩ 𝐶 | ≥ 1. If |𝑆 ∩ 𝐶 | ≥ 3, then
again �̃�𝑆 (𝐶) ≥ 2

5𝑥
∗ (𝐶) + 1

5 |𝑆 ∩ 𝐶 | ≥ 1.
Now let |𝑆 ∩ 𝐶 | ≤ 2 and 𝐶 ∈ N . Then 𝐶 is a 𝑇-cut, and |𝐹𝑆 ∩ 𝐶 | is even by

Lemma 14.19.
If |𝐹𝑆 ∩ 𝐶 | = 2, then 𝑆 ∩ 𝐶 contains exactly these two edges. Moreover, the

𝑇-cut 𝐶 contains an edge of the 𝑇-join 𝐼𝑆 , and this edge also belongs to 𝐹𝑆 , so
𝐼𝑆 ∩ 𝐹𝑆 ≠ ∅. We have �̃�𝑆 (𝐶) ≥ 2

5𝑥
∗ (𝐶) + 2

5 +
1
5 ≥ 1.

The final case is when |𝑆 ∩ 𝐶 | ≤ 2 and 𝐹𝑆 ∩ 𝐶 = ∅. We claim that then
|𝑆 ∩𝐶 | = 1 and 𝑆 ∈ L(𝐶), which implies �̃�𝑆 (𝐶) ≥ 2

5𝑥
∗ (𝐶) + 1

5 |𝑆 ∩𝐶 | +
2
5 (2 −

𝑥∗ (𝐶)) |𝑆 ∩ 𝐶 | ≥ 1. Suppose 𝑆 ∉ L(𝐶). This is impossible if |𝑆 ∩ 𝐶 | = 1
because 𝐹𝑆 ∩ 𝐶 = ∅. If |𝑆 ∩ 𝐶 | = 2, we deleted both edges in 𝑆 ∩ 𝐶, and
hence 𝐶 = 𝛿(𝑈1 ∪ 𝑈2) for disjoint sets 𝑈1 and 𝑈2 with 𝑆 ∈ L(𝛿(𝑈1)) and
𝑆 ∈ L(𝛿(𝑈2)). This implies that |𝑈1 ∩ 𝑇 | and |𝑈2 ∩ 𝑇 | are both odd, which
contradicts the fact that 𝐶 = 𝛿(𝑈1 ∪𝑈2) is a 𝑇-cut.
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We have shown (15.13); moreover, �̃�𝑆 is nonnegative. Using Lemma 15.21
and 𝑐𝑆 (𝑒) = 𝑐(𝑒) for all 𝑒 ∈ 𝑆, we have

𝑐𝑆 ( �̃�𝑆) = 𝑐( �̃�𝑆) + 2
5
(
𝑐𝑆 (𝑥∗) − 𝑐(𝑥∗)

)
≤ 2

5𝑐(𝑥
∗) + 1

5𝑐(𝑆) +
1
5𝑐(𝐼𝑆 ∩ 𝐹𝑆) +

∑︁
𝐶∈N:𝑆∈L(𝐶 )

2
5 (2 − 𝑥

∗ (𝐶)) 𝑐(𝑆 ∩ 𝐶)

+ 4
5

∑︁
𝐶∈N:𝑆∈L(𝐶 )

(𝑥∗ (𝐶) − 1) 𝑐(𝐶 ∩ 𝑆)

= 2
5𝑐(𝑥

∗) + 1
5𝑐(𝑆) +

1
5𝑐(𝐼𝑆 ∩ 𝐹𝑆) +

4
5𝑐(𝑆 \ 𝐹𝑆)

−
∑︁

𝐶∈N:𝑆∈L(𝐶 )

2
5 (2 − 𝑥

∗ (𝐶)) 𝑐(𝑆 ∩ 𝐶).

Hence, by Lemma 15.20 and using 𝐿𝑆 = 𝑆 \ 𝐹𝑆 = 𝐼𝑆 \ 𝐹𝑆 , the result of
Best-of-Many Christofides with lonely edge deletion costs at most

𝑐(𝑥∗) +
∑︁
𝑆∈S

𝜇(𝑆)
(
𝑐𝑆 ( �̃�𝑆) − 𝑐(𝐿𝑆)

)
≤ 7

5𝑐(𝑥
∗) +

∑︁
𝑆∈S

𝜇(𝑆)
(

1
5𝑐(𝑆) +

1
5𝑐(𝐼𝑆) −

1
5𝑐(𝐼𝑆 \ 𝐹𝑆) +

4
5𝑐(𝐼𝑆 \ 𝐹𝑆)

−
∑︁

𝐶∈N:𝑆∈L(𝐶 )

2
5 (2 − 𝑥

∗ (𝐶))𝑐(𝐶 ∩ 𝑆) − 𝑐(𝐿𝑆)
)

= 8
5𝑐(𝑥

∗) + 1
5

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐼𝑆) − 2
5

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐿𝑆)

− 2
5

∑︁
𝐶∈N
(2 − 𝑥∗ (𝐶))

∑︁
𝑆∈L(𝐶 )

𝜇(𝑆)𝑐(𝑆 ∩ 𝐶).
(15.14)

Taking 15
21 times (15.11), 1

21 times (15.12), and 5
21 times (15.14) (and using

(15.6)) yields the upper bound
32
21𝑐(𝑥

∗) + 1
21

∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝑆) +
∑︁
𝑆∈S

𝜇(𝑆)𝑐(𝐿𝑆) · 𝐴,

where

𝐴 = max
𝐶∈N

(
𝑥∗ (𝐶 )−1
2−𝑥∗ (𝐶 ) max

{
0, 13

21 −
7
21𝑥
∗ (𝐶)

}
− 2

21 (2 − 𝑥
∗ (𝐶))

)
− 2

21

≤ max
𝑥<2

(
𝑥−1
2−𝑥 max

{
0, 13

21 −
7
21𝑥

}
− 2

21 (2 − 𝑥)
)
− 2

21

= 0.

This yields the upper bound 32
21𝑐(𝑥

∗) + 1
21𝑐(𝑥

∗) + 0 = 11
7 𝑐(𝑥

∗) as asserted. □

This is the best-known ratio today. Given the progress on Path TSP (Chap-
ter 16), the following question is natural:
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Exercises 349

Open Problem 15.27. Is there a 3
2 -approximation algorithm for the 𝑇-tour

problem?

Exercises

15.1 Let 𝑥 be a vector in the connector polyhedron of a graph 𝐺 = (𝑉, 𝐸),
and let 𝐿 ∈ Z>0 such that there exists a distribution 𝜇 of spanning trees
with 𝑥 ≥ ∑

𝑆∈S 𝜇(𝑆)𝜒𝑆 such that 𝐿𝜇(𝑆) is integral for all 𝑆 ∈ S. Let
𝑈 := 𝐸 × {1, . . . , 𝐿}, and consider the subsets

M1 :=
{
𝑊 ⊆ 𝑈 : (𝑉, {𝑒 ∈ 𝐸 : (𝑒, 𝑖) ∈ 𝑊})

is a forest for all 𝑖 = 1, . . . , 𝐿
}

and

M2 :=
{
𝑊 ⊆ 𝑈 : |{𝑖 : (𝑒, 𝑖) ∈ 𝑊}| ≤ 𝐿𝑥𝑒 for all 𝑒 ∈ 𝐸

}
.

(a) Show that (𝑈,M1) and (𝑈,M2) are matroids.
(b) Show that (𝑊 ∈ M1 ∩ M2 and |𝑊 | = 𝐿 (𝑛 − 1)) if and only if

𝑥 ≥ ∑
𝑆∈S 𝜇(𝑆)𝜒𝑆 , where 𝜇(𝑆) := 1

𝐿
|{𝑖 : (𝑒, 𝑖) ∈ 𝑊 for all 𝑒 ∈ 𝑆}|.

(c) Conclude that for any vector 𝑥 in the spanning tree polytope and
any 𝜀 > 0, we can find a distribution 𝜇 of spanning trees with∑
𝑆∈S 𝜇(𝑆)𝜒𝑆 ≤ (1 + 𝜀)𝑥 in polynomial time using matroid inter-

section (Theorem 13.16).
Note: The 1 + 𝜀 factor can be removed (i.e., the limitation that 𝐿
is polynomially bounded can be overcome). See Corollary 40.4a in
Schrĳver [2003].

15.2 Show that Lemma 15.9 does not hold for general 𝑇 .
15.3 This exercise analyzes Best-of-Many Christofides (for 𝑇-tours) slightly

differently. Let 0 ≤ 𝛽 ≤ 1
2 . Let 𝑧𝑆 ∈ R𝐸≥0 and 𝑦𝑆 = 𝛽𝑥∗+(1−2𝛽)𝜒𝐽𝑆 +𝑧𝑆

for 𝑆 ∈ S.
(a) Show that 𝑦𝑆 is a parity correction vector for 𝑆 ∈ S if 𝑧𝑆 (𝐶) ≥

𝛽(2 − 𝑥∗ (𝐶)) for all narrow cuts 𝐶 with |𝐶 ∩ 𝑆 | even.
(b) Suppose

∑
𝑆∈S 𝜇(𝑆)𝑧𝑆 ≤ (1 − 2𝛽)∑𝑆∈S 𝜇(𝑆)𝜒𝐼𝑆 . Show that then

we have a (2− 𝛽)-approximation algorithm for the𝑇-Tour Problem.
(c) Show that one can choose 𝛽 = 2

5 and

𝑧𝑆 = 1
10 𝜒

𝐼𝑆 +
∑︁

𝐶∈N: |𝑆∩𝐶 | even
max

{
0, 7−4𝑥∗ (𝐶 )

10

}
𝑣𝐶 ,

where 𝑣𝐶 is defined as in (15.5).
Note: This yields another proof of Theorem 15.11.
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(d) Show that for Path TSP (𝑇 = {𝑠, 𝑡}), one can obtain an approxima-
tion ratio better than 8

5 with the distribution from Theorem 15.13.
(Vygen [2016], Gottschalk and Vygen [2018])

15.4 Show that for every extreme point of the Path TSP LP (14.1), there
always exists a distribution like in Theorem 15.13 with fewer than 2𝑛
trees. Use Exercise 14.3.

15.5 Let 𝑥∗ be an optimum solution to the Path TSP LP (14.1). Let 1 = 𝜉1 <

· · · < 𝜉𝑘 < 2 be the distinct values 𝑥∗ (𝐶) of the narrow cuts 𝐶 ∈ N .
(a) Show that the separation problem for the convex hull of incidence

vectors of spanning trees (𝑉, 𝑆) with |𝑆∩𝐶 | = 1 for all narrow cuts𝐶
with 𝑥∗ (𝐶) ≤ 𝜉𝑖 can be solved in polynomial time for all 𝑖 = 1, . . . , 𝑘 .

(b) Use (a) to devise a polynomial-time algorithm to compute an optimum
LP solution 𝑥∗ and a distribution as in Theorem 15.13 (without using
the proof of this theorem).
Hint: Set up a linear program and use Theorems 2.10 and 4.22.

(K. Pashkovich; see Gottschalk and Vygen [2018])
15.6 Let 𝑥∗ be an optimum solution to the Path TSP LP (14.1). Let 1 = 𝜉1 <

· · · < 𝜉𝑘 < 2 be the distinct values 𝑥∗ (𝐶) of the narrow cuts 𝐶 ∈ N . For
𝑖 = 1, . . . , 𝑘 , let 𝑆𝑖 be a minimum-cost spanning tree such that |𝑆𝑖∩𝐶 | = 1
for all narrow cuts𝐶 with 𝑥∗ (𝐶) ≤ 𝜉𝑖 . Computing such spanning trees 𝑆𝑖
obviously reduces to the Minimum Spanning Tree problem. For a narrow
cut 𝐶 with 𝑥∗ (𝐶) = 𝜉𝑖 , let L(𝐶) = {𝑆𝑖 , . . . , 𝑆𝑘}. Show that continuing
Best-of-Many Christofides with lonely edge deletion (Algorithm 15.18)
with the trees 𝑆1, . . . , 𝑆𝑘 yields a 26

17 -approximation algorithm.
(Sebő and van Zuylen [2019])

15.7 Show that if there is no cut 𝐶 with 3
2 < 𝑥

∗ (𝐶) < 2 for a solution 𝑥∗ to
the Path TSP LP (14.1), then an {𝑠, 𝑡}-tour of cost at most 3

2𝑐(𝑥
∗) can

be computed in polynomial time.
Hint: Consider the analysis in the proof of Theorem 15.22.
(Sebő and van Zuylen [2019])
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16

Path TSP by Dynamic Programming

Traub and Vygen [2019a] used recursive dynamic programming to obtain a
( 3

2 + 𝜀)-approximation algorithm for Path TSP for any 𝜀 > 0. This approach
was then improved and simplified by Zenklusen [2019], who obtained a 3

2 -
approximation for Path TSP. After discussing the dynamic programming
approach in a simple context in Section 16.1, we present Zenklusen’s algorithm
in Section 16.2.

In Sections 16.3–16.7, we present a black-box reduction from Path TSP to
Symmetric TSP, similar to the one proposed by Traub, Vygen, and Zenklusen
[2022]. This shows that the former is not much harder to approximate than the
latter. This implies the currently best-known approximation guarantees for Path
TSP and the special case Graph Path TSP. Our new proof actually yields the
same result even for a more general problem, which we call Multi-Path TSP.

Although the LP relaxation is still used, none of the dynamic programming
approaches presented in this chapter imply upper bounds on the integrality ratio.

16.1 Reducing Path TSP to Instances with Near Endpoints

In this section, we first explain the dynamic programming idea in a simpler
setting. Instances of Path TSP where the distance from 𝑠 to 𝑡 is small are similar
to the corresponding Symmetric TSP instance. One could therefore think that
the larger the distance from 𝑠 to 𝑡 is, the more difficult such an instance would be,
and indeed the instances with the worst-known integrality ratio (cf. Figure 14.2)
do have a large distance from 𝑠 to 𝑡. However, Traub [2017] (inspired by the
work of Blum et al. [2007]) showed how to use dynamic programming to deal
with such instances.

351
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Theorem 16.1 (Traub [2017]). Let 𝜀 > 0 and 𝛼 > 1 be constants. If there is an
𝛼-approximation algorithm for Path TSP restricted to instances (𝐺, 𝑐, 𝑠, 𝑡) in
which dist(𝐺,𝑐) (𝑠, 𝑡) ≤ ( 1

3 +𝜀) OPT, then there is an 𝛼-approximation algorithm
for general Path TSP. Here OPT denotes the minimum cost of an {𝑠, 𝑡}-tour
in 𝐺.

Proof. Consider an instance (𝐺, 𝑐, 𝑠, 𝑡) in which dist(𝐺,𝑐) (𝑠, 𝑡) > ( 1
3 +𝜀) OPT.

Let 𝐺 = (𝑉, 𝐸) and

𝑓 (𝑣) := min{dist(𝐺,𝑐) (𝑠, 𝑣), dist(𝐺,𝑐) (𝑠, 𝑡)}

for 𝑣 ∈ 𝑉 , and order the vertices so that 𝑣1 = 𝑠, 𝑣𝑛 = 𝑡, and 𝑓 (𝑣1) ≤ 𝑓 (𝑣2) ≤
· · · ≤ 𝑓 (𝑣𝑛). Consider the chain of cuts 𝛿(𝑈 𝑗 ) for 𝑗 = 1, . . . , 𝑛 − 1, where
𝑈 𝑗 = {𝑣1, . . . , 𝑣 𝑗 }, and set 𝑦(𝑈 𝑗 ) := 𝑓 (𝑣 𝑗+1) − 𝑓 (𝑣 𝑗 ). Note that

𝑛−1∑︁
𝑗=1

𝑦(𝑈 𝑗 ) =

𝑛−1∑︁
𝑗=1

(
𝑓 (𝑣 𝑗+1) − 𝑓 (𝑣 𝑗 )

)
= 𝑓 (𝑡) − 𝑓 (𝑠) = dist(𝐺,𝑐) (𝑠, 𝑡)

and

𝑐(𝑒) ≥ |dist(𝐺,𝑐) (𝑠, 𝑣) − dist(𝐺,𝑐) (𝑠, 𝑤) |

≥ | 𝑓 (𝑣) − 𝑓 (𝑤) |

=
∑︁

𝑗:𝑒∈ 𝛿 (𝑈 𝑗 )
𝑦(𝑈 𝑗 )

(16.1)

for all 𝑒 = {𝑣, 𝑤} ∈ 𝐸 . (This implies that 𝑦 can be interpreted as an optimum
dual solution to a shortest path LP; see Exercise 16.1.)

By Lemma 2.20, every {𝑠, 𝑡}-tour 𝐹 contains an odd number of edges in each
of the cuts 𝛿(𝑈 𝑗 ). Our goal is to show that some of these cuts contain only one
edge of 𝐹 and to “guess” those edges.

Let 𝐹∗ be an optimum {𝑠, 𝑡}-tour, and let 𝐿∗ be the set of edges 𝑒 ∈ 𝐹∗ that
are the only edge in one of these cuts – that is,

𝐿∗ =
{
𝑒 ∈ 𝐹∗ : 𝐹∗ ∩ 𝛿(𝑈 𝑗 ) = {𝑒} for some 𝑗 ∈ {1, . . . , 𝑛 − 1}

}
.

See Figure 16.1 for an example. Note that no edge can be the only edge
in two of these cuts, say 𝛿(𝑈𝑖) and 𝛿(𝑈 𝑗 ) for 𝑖 < 𝑗 , because otherwise
𝐹∗ ∩ 𝛿({𝑣𝑖+1, . . . , 𝑣 𝑗 }) = ∅, contradicting the fact that (𝑉, 𝐹∗) is connected. We
claim that

𝑐(𝐿∗) ≥ 3
2𝜀 · OPT. (16.2)
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𝛿 (𝑈3 ) 𝛿 (𝑈4 ) 𝛿 (𝑈5 ) 𝛿 (𝑈6 ) 𝛿 (𝑈8 )𝛿 (𝑈1 ) 𝛿 (𝑈2 ) 𝛿 (𝑈7 ) 𝛿 (𝑈9 )

𝑠 𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7 𝑣8

𝑣9

𝑡

𝑈9

𝑈7

𝑈2

𝑈1

Figure 16.1 The ten vertices of a Path TSP instance, ordered by the distance from 𝑠
as in the proof of Theorem 16.1. Not all edges of the instance are shown. The dashed
vertical lines indicate the cuts 𝛿 (𝑈 𝑗 ) for 𝑗 = 1, . . . , 𝑛− 1. The solid lines show the
optimum {𝑠, 𝑡 }-tour 𝐹∗. The thick green edges are those in 𝐿∗. The {𝑠, 𝑡 }-tour 𝐹∗
corresponds to the path with vertices (1, 𝑠, 𝑣2 ) , (2, 𝑣2, 𝑣4 ) , (7, 𝑣5, 𝑣9 ) , (9, 𝑣8, 𝑡 )
in the digraph (𝐷, 𝐴) . This picture is taken (in modified form) from Traub and
Vygen [2023], with permission from SIAM.

To show this, first note that (16.1) implies that for any edge set 𝐹,

𝑐(𝐹) ≥
𝑛−1∑︁
𝑗=1
|𝐹 ∩ 𝛿(𝑈 𝑗 ) | · 𝑦(𝑈 𝑗 ). (16.3)

Applying the inequality (16.3) first to 𝐹∗ and then to 𝐿∗, we get

OPT = 𝑐(𝐹∗) ≥
𝑛−1∑︁
𝑗=1
|𝐹∗ ∩ 𝛿(𝑈 𝑗 ) | · 𝑦(𝑈 𝑗 )

≥ 3
𝑛−1∑︁
𝑗=1

𝑦(𝑈 𝑗 ) − 2
∑︁

𝑗: |𝐹∗∩𝛿 (𝑈 𝑗 ) |=1
𝑦(𝑈 𝑗 )

≥ 3
𝑛−1∑︁
𝑗=1

𝑦(𝑈 𝑗 ) − 2𝑐(𝐿∗).

Combining this with
∑𝑛−1
𝑗=1 𝑦(𝑈 𝑗 ) = dist(𝐺,𝑐) (𝑠, 𝑡) > ( 1

3 + 𝜀)OPT yields (16.2).
Our goal is to “guess” the cuts 𝛿(𝑈 𝑗 ) that contain only one edge of 𝐹∗ and

these edges (i.e., the set 𝐿∗). For simplicity, assume that 𝐹∗ has only one edge
incident to 𝑠 and only one edge incident to 𝑡. This is no loss of generality, either
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by working in the metric closure or by introducing new vertices 𝑠′ and 𝑡′ and
edges {𝑠′, 𝑠} and {𝑡, 𝑡′} of zero cost and asking for an {𝑠′, 𝑡′}-tour.

We now construct an acyclic digraph to set up our dynamic program. Let

𝐷 =
{
( 𝑗 , 𝑢, 𝑣) : 𝑗 ∈ {1, . . . , 𝑛 − 1}, 𝑢 ∈ 𝑈 𝑗 , 𝑣 ∈ 𝑉 \𝑈 𝑗 , {𝑢, 𝑣} ∈ 𝐸

}
represent the candidates of the dynamic program, each consisting of a set 𝑈 𝑗
and an edge 𝑒 = {𝑢, 𝑣} ∈ 𝛿(𝑈 𝑗 ) with 𝑢 ∈ 𝑈 𝑗 and 𝑣 ∉ 𝑈 𝑗 . Our acyclic digraph
has vertex set 𝐷 and weights both on vertices and arcs. The weight of a vertex
( 𝑗 , 𝑢, 𝑣) is 𝑑 (( 𝑗 , 𝑢, 𝑣)) := 𝑐({𝑢, 𝑣}).

For two candidates ( 𝑗 ′, 𝑢′, 𝑣′), ( 𝑗 , 𝑢, 𝑣) ∈ 𝐷, we introduce an arc 𝑎 from
( 𝑗 ′, 𝑢′, 𝑣′) to ( 𝑗 , 𝑢, 𝑣) if 𝑗 ′ < 𝑗 and 𝑣′, 𝑢 ∈ 𝑈 𝑗 \𝑈 𝑗′ . We consider the Path TSP
instance corresponding to this arc 𝑎, which has vertex set𝑈 𝑗 \𝑈 𝑗′ and endpoints
𝑣′and 𝑢 (so we ask for a minimum-cost {𝑣′, 𝑢}-tour in 𝐺 [𝑈 𝑗 \𝑈 𝑗′ ]). We will
call a 𝛽-approximation algorithm (for some 𝛽 > 𝛼) on this instance to compute
a {𝑣′, 𝑢}-tour 𝐹𝑎 with vertex set𝑈 𝑗 \𝑈 𝑗′ and set 𝑑 (𝑎) := 𝑐(𝐹𝑎).

If we denote by 𝐴 the set of those arcs, (𝐷, 𝐴) is an acyclic digraph. The
total weight of a path in (𝐷, 𝐴) is the total weight of its vertices and arcs.

By construction, any path 𝑃 of total weight 𝑑 (𝑃) from 𝐷𝑠 = {(1, 𝑠, 𝑣) :
{𝑠, 𝑣} ∈ 𝛿𝐺 (𝑠)} to 𝐷𝑡 = {(𝑛 − 1, 𝑣, 𝑡) : {𝑣, 𝑡} ∈ 𝛿𝐺 (𝑡)} corresponds to an
{𝑠, 𝑡}-tour of cost 𝑑 (𝑃). Conversely, 𝐹∗ corresponds to a path 𝑃∗ from 𝐷𝑠 to 𝐷𝑡
of total weight 𝑑 (𝑃∗) ≤ 𝑐(𝐿∗) + 𝛽𝑐(𝐹∗ \ 𝐿∗). See Figure 16.1 for an example.
Hence, computing a minimum-weight path from 𝐷𝑠 to 𝐷𝑡 yields an {𝑠, 𝑡}-tour
of cost at most

𝑐(𝐿∗) + 𝛽𝑐(𝐹∗ \ 𝐿∗) = 𝛽OPT − (𝛽 − 1)𝑐(𝐿∗)
≤

(
𝛽 − (𝛽 − 1) 3

2𝜀
)
· OPT

≤
(
𝛽 − (𝛼 − 1) 3

2𝜀
)
· OPT,

where we used (16.2) in the first inequality.
Constructing this digraph with 𝑂 (𝑛3) nodes and 𝑂 (𝑛6) arcs can be done

in polynomial time (by calling the 𝛽-approximation algorithm for every arc).
Computing a minimum-weight path from 𝐷𝑠 to 𝐷𝑡 is a simple dynamic
program: The minimum total weight of a path from 𝐷𝑠 to a vertex ( 𝑗 , 𝑢, 𝑣) ∈ 𝐷
is ℓ( 𝑗 , 𝑢, 𝑣) := 𝑑 (( 𝑗 , 𝑢, 𝑣)) if 𝑗 = 1 and

ℓ( 𝑗 , 𝑢, 𝑣) := 𝑑 (( 𝑗 , 𝑢, 𝑣))

+min
{
ℓ( 𝑗 ′, 𝑢′, 𝑣′) + 𝑑

(
( 𝑗 ′, 𝑢′, 𝑣′), ( 𝑗 , 𝑢, 𝑣)

)
:

( 𝑗 ′, 𝑢′, 𝑣′) ∈ 𝐷, 𝑗 ′ < 𝑗, and 𝑣′, 𝑢 ∈ 𝑈 𝑗 \𝑈 𝑗′
}

if 𝑗 > 1.
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For a given instance (𝐺, 𝑐, 𝑠, 𝑡), we do not know whether we are in the case
dist(𝐺,𝑐) (𝑠, 𝑡) ≤ ( 1

3 + 𝜀) OPT. However, we can simply run both algorithms:
the dynamic programming algorithm and the given algorithm that does the
job if dist(𝐺,𝑐) (𝑠, 𝑡) ≤ ( 1

3 + 𝜀) OPT. We return the better of the two resulting
solutions. We conclude that an 𝛼-approximation algorithm for Path TSP
instances (𝐺, 𝑐, 𝑠, 𝑡) with dist(𝐺,𝑐) (𝑠, 𝑡) ≤ ( 1

3 + 𝜀) OPT plus a 𝛽-approximation
algorithm for general Path TSP imply a

(
max{𝛼, 𝛽−(𝛼−1) 3

2𝜀}
)
-approximation

algorithm for general Path TSP.
Starting with 𝛽 = 2 (we can take the double tree algorithm; cf. Proposi-

tion 14.5) and applying this “booster” statement
⌈

2−𝛼
(𝛼−1) 3

2 𝜀

⌉
times completes the

proof. Note that the running time increases with each application of the booster
by a factor 𝑂 (𝑛6), but we apply it only a constant number of times. □

The theorem also works for Graph Path TSP (here the resulting subinstances
are also instances of Graph Path TSP), for which it was used by Traub and
Vygen [2023] to beat the integrality ratio (i.e., to obtain an approximation ratio
less than 3

2 ). The dynamic programming technique was developed further by
Traub and Vygen [2019a], Zenklusen [2019], and Traub, Vygen, and Zenklusen
[2022].

Instead of computing a tour directly in the dynamic program, Traub and
Vygen [2019a] computed a spanning tree and a parity correction vector. Their
algorithm starts with a solution 𝑥1 to the LP (14.1), which already yields a
cheap parity correction vector 1

2𝑥1 (for an arbitrary spanning tree) except for
the deficiency on the narrow cuts (cf. Definition 14.17). The new dynamic
program now guesses which of the narrow cuts contain only one edge of 𝐹∗ (and
guesses these edges and includes them in the spanning tree) and strengthens
the LP relaxation of the subinstance in between two narrow cuts by requiring
𝑥(𝛿(𝑈)) ≥ 3 for each narrow cut 𝛿(𝑈) in between. Combining the LP solutions
of the subinstances with the incidence vector of the guessed edges yields an LP
solution 𝑥2, and 1

4 (𝑥1 + 𝑥2) is now good on all original narrow cuts. However,
new narrow cuts show up in 𝑥2. By iterating this process and giving 𝑥𝑖 weight
approximately 2−𝑖−1, one approaches a valid parity correction vector of cost at
most 1

2 OPT and a spanning tree of cost at most OPT. One will not always make
the correct guesses, but the output of the (recursive) dynamic program will
not be worse than with correct guesses. In this way, Traub and Vygen [2019a]
obtained a ( 3

2 + 𝜀)-approximation algorithm for Path TSP for any constant
𝜀 > 0.

We omit the details because this approach was simplified and improved by
Zenklusen [2019]. This is the subject of the next section.
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16.2 Zenklusen’s 3
2 -Approximation Algorithm for Path TSP

Zenklusen’s [2019] Path TSP algorithm uses a similar dynamic program to the
one proposed by Traub and Vygen [2019a], but it does not require recursion.
Throughout this section, we will work with an instance (𝐺, 𝑐, 𝑠, 𝑡) where 𝐺 is a
complete graph and 𝑐 satisfies the triangle inequality. This is no restriction due
to Proposition 14.8.

Lemma 16.2. Let 𝑥∗ be an optimum solution to (14.1), and let 𝑥′ be a feasible
solution to (14.1) such that for every narrow cut 𝐶 of 1

2𝑥
∗ + 1

2𝑥
′, we have

𝑥′ (𝐶) = 1. Then we can compute an {𝑠, 𝑡}-tour of cost at most 3
2𝑐(𝑥

′) in
polynomial time.

Proof. By Proposition 14.10, the vector 𝑥′ is a convex combination of incidence
vectors of (edge sets of) spanning trees. Each of these intersects every narrow
cut of 1

2𝑥
∗ + 1

2𝑥
′ in exactly one edge. For every such tree (𝑉, 𝑆), the narrow cuts

of 1
2𝑥
∗ + 1

2𝑥
′ are no (odd(𝑆) △ {𝑠, 𝑡})-cuts (by Lemma 14.19). Hence, 1

4𝑥
∗ + 1

4𝑥
′

is a feasible parity correction vector for these trees.
Let (𝑉, 𝑆) be a cheapest spanning tree that has exactly one edge in each

narrow cut of 1
2𝑥
∗ + 1

2𝑥
′ (such a tree can be computed easily because the narrow

cuts form a chain by Lemma 14.18). We have 𝑐(𝑆) ≤ 𝑐(𝑥′). By Theorem 2.19,
applying parity correction to 𝑆 (i.e., adding a cheapest (odd(𝑆) △ {𝑠, 𝑡})-join)
yields an {𝑠, 𝑡}-tour of cost at most 1

4𝑐(𝑥
∗) + 5

4𝑐(𝑥
′) ≤ 3

2𝑐(𝑥
′). □

We will continue to denote by 𝑥∗ an optimum solution to (14.1) throughout
this section. We will show how to compute a vector 𝑥′ as in Lemma 16.2 with
𝑐(𝑥′) ≤ OPT. This immediately implies a 3

2 -approximation for Path TSP.
Now, let 𝑥 be any feasible solution to (14.1), and let 𝐶 be a narrow cut of

1
2𝑥
∗ + 1

2𝑥. Since the vector 1
2𝑥
∗ + 1

2𝑥 is a feasible solution to (14.1), 𝐶 must be
an 𝑠-𝑡-cut. Moreover, because 𝐶 is narrow, 1

2𝑥
∗ (𝐶) + 1

2𝑥(𝐶) < 2, and hence
𝑥∗ (𝐶) < 3 and 𝑥(𝐶) < 3. Define

Q := {𝑄 : 𝑄 is an 𝑠-𝑡-cut with 𝑥∗ (𝑄) < 3}.

By these observations, it suffices to compute a solution 𝑥′ to (14.1) with
𝑐(𝑥′) ≤ OPT such that for every cut 𝑄 ∈ Q, we have either 𝑥′ (𝑄) ≥ 3 or
𝑥′ (𝑄) = 1.

The cuts in Q are the 𝑠-𝑡-cuts 𝑄 with (𝑥∗ + 𝜒{𝑠,𝑡 }) (𝑄) < 4. Because
(𝑥∗ + 𝜒{𝑠,𝑡 }) (𝑄) ≥ 2 for all cuts, we have |Q| ≤ 𝑛4 due to Theorem 4.25.
Furthermore, the set Q can be computed deterministically in polynomial time
by Theorem 4.28.
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Definition 16.3 (Q-good solution). A Q-good solution is a solution 𝑥 to the
LP (14.1) such that there exists an L ⊆ Q with the following two properties:

• For every cut 𝑄 ∈ L, we have 𝑥(𝑄) = 1 and 𝑥 restricted to 𝑄 is integral.
• For every cut 𝑄 ∈ Q \ L, we have 𝑥(𝑄) ≥ 3.

We call L the set of lonely cuts of the LP solution 𝑥. Moreover, we call an edge
𝑒 ∈ 𝑄 ∈ L with 𝑥𝑒 = 1 a lonely edge.

The set L always contains 𝛿(𝑠) and 𝛿(𝑡). By Lemma 14.18, the lonely cuts
form a chain. The reason for requiring integrality of 𝑥 on the cuts in L is that
this will allow us to compute a minimum-cost Q-good solution in polynomial
time.

Lemma 16.4 (Zenklusen [2019]). A minimum-cost Q-good solution can be
computed in polynomial time.

Before proving this lemma, we show that it implies the following theorem.

Theorem 16.5 (Zenklusen [2019]). There exists a 3
2 -approximation algorithm

for Path TSP.

Proof. First compute an optimum solution 𝑥∗ to (14.1) and compute Q,
using Theorem 4.28. Now compute a minimum-cost Q-good solution 𝑥′ (by
Lemma 16.4). We have 𝑥′ (𝑄) = 1 for every cut 𝑄 with 1

2𝑥
∗ (𝑄) + 1

2𝑥
′ (𝑄) < 2.

We need to show 𝑐(𝑥′) ≤ OPT; the result then follows from Lemma 16.2.
Fix an optimum {𝑠, 𝑡}-tour 𝐹. Let L = {𝑄 ∈ Q : |𝐹 ∩ 𝑄 | = 1}. Then
|𝐹 ∩ 𝑄 | ≥ 3 for all 𝑄 ∈ Q \ L because all cuts in Q are 𝑠-𝑡-cuts and 𝐹 is the
footprint of a walk from 𝑠 to 𝑡. Thus, the incidence vector of 𝐹 is a Q-good
solution of cost OPT. In particular, our minimum-cost Q-good solution 𝑥′ has
cost at most OPT. □

It remains to prove Lemma 16.4. If we fix L and the set of lonely edges, it is
easy to compute a cheapest Q-good solution with these given lonely cuts and
edges: We can simply add constraints 𝑥(𝑄) = 1 for all 𝑄 ∈ L, 𝑥(𝑄) ≥ 3 for all
𝑄 ∈ Q \ L, and 𝑥𝑒 = 1 for all lonely edges 𝑒 to the LP (14.1) and compute an
optimum solution to this strengthened LP. Since |Q| ≤ 𝑛4, this is possible in
polynomial time. To obtain a minimum-cost Q-good solution 𝑥′ even without
knowing the lonely cuts and edges, we will use dynamic programming (similar
to Section 16.1) to “guess” them.

As a first step towards the dynamic program, we prove that for fixed lonely
cuts and lonely edges, we can partition the instance at the lonely cuts into several
independent subinstances.
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For a set 𝑊 ⊆ 𝑉 and 𝑠′, 𝑡′ ∈ 𝑊 with 𝑠′ ≠ 𝑡′, let LP[𝑊, 𝑠′, 𝑡′] denote the
following linear program:

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊊ 𝑊, |𝑈 ∩ {𝑠′, 𝑡′}| even)

𝑥(𝛿(𝑈)) ≥ 1 (∅ ≠ 𝑈 ⊊ 𝑊, |𝑈 ∩ {𝑠′, 𝑡′}| odd)

𝑥(𝛿(𝑣)) = 2 (𝑣 ∈ 𝑊 \ {𝑠′, 𝑡′})

𝑥(𝛿(𝑣)) = 1 (𝑣 ∈ {𝑠′, 𝑡′})

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸)

𝑥𝑒 = 0 (𝑒 ∈ 𝐸 \ 𝐸 [𝑊]).

Note that LP[𝑉, 𝑠, 𝑡] is the Path TSP LP (14.1).

Lemma 16.6. A vector 𝑥 with support in 𝐸 [𝑊] is a feasible solution to
LP[𝑊, 𝑠′, 𝑡′] if and only if it is a convex combination of incidence vectors of trees
spanning𝑊 and fulfills the degree constraints 𝑥(𝛿(𝑣)) = 2 for 𝑣 ∈ 𝑊 \ {𝑠′, 𝑡′}
and 𝑥(𝛿(𝑠′)) = 𝑥(𝛿(𝑡′)) = 1.

Proof. For a vector 𝑥 in the spanning tree polytope (2.8) of𝐺 [𝑊] that satisfies
the degree constraints, we have 𝑥(𝛿(𝑈)) ≥ 1 for all nonempty proper subsets
𝑈 of𝑊 and 𝑥(𝛿(𝑈)) = ∑

𝑣∈𝑈 𝑥(𝛿(𝑣)) − 2𝑥(𝐸 [𝑈]) = 2|𝑈 | − 2𝑥(𝐸 [𝑈]) ≥ 2 for
all ∅ ≠ 𝑈 ⊆ 𝑊 \ {𝑠′, 𝑡′}. Conversely, every feasible solution to LP[𝑊, 𝑠′, 𝑡′]
is a convex combination of incidence vectors of trees spanning𝑊 by Proposi-
tion 14.10. □

For a vertex 𝑣, denote by LP[{𝑣}, 𝑣, 𝑣] the linear program min{0 : 𝑥𝑒 = 0
(𝑒 ∈ 𝐸)} and by LP[𝑊, 𝑣, 𝑣] with𝑊 ≠ {𝑣} a linear program that has no feasible
solution.

We now show how LP solutions can be decomposed into solutions for
independent subinstances (see Figure 16.2):

Lemma 16.7. Let {𝑠} = 𝐿1 ⊊ 𝐿2 ⊊ . . . ⊊ 𝐿𝑘 = 𝑉 \ {𝑡}. Let 𝑤𝑖 , 𝑣𝑖+1 ∈ 𝐿𝑖+1 \𝐿𝑖
for 𝑖 = 1, . . . , 𝑘 − 1, and let 𝑣1 := 𝑠 and 𝑤𝑘 := 𝑡. Consider the linear program

min 𝑐(𝑥)
subject to 𝑥 feasible solution to LP[𝑉, 𝑠, 𝑡]

𝑥(𝛿(𝐿𝑖)) = 1 for 𝑖 = 1, . . . , 𝑘
𝑥{𝑣𝑖 ,𝑤𝑖 } = 1 for 𝑖 = 1, . . . , 𝑘 .

(16.4)

Then any feasible solution 𝑥 to (16.4) can be written as 𝑥 =
∑𝑘
𝑖=1 𝜒

{𝑣𝑖 ,𝑤𝑖 } +∑𝑘−1
𝑖=1 𝑥

𝑖 , where 𝑥𝑖 is a feasible solution to LP[𝐿𝑖+1 \ 𝐿𝑖 , 𝑤𝑖 , 𝑣𝑖+1]. Moreover,
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𝐿1 𝐿2 𝐿𝑘−1 𝐿𝑘

. . .
𝑠 = 𝑣1 𝑤1 𝑣2 𝑤2 𝑣𝑘−1 𝑤𝑘−1 𝑣𝑘 𝑤𝑘 = 𝑡

Figure 16.2 Illustration of Lemma 16.7. The dashed lines show the cuts 𝛿 (𝐿𝑖 ) for
𝑖 = 1, . . . , 𝑘, where the sets 𝐿𝑖 are the sets left of the dashed lines.

for any feasible solutions 𝑥𝑖 to LP[𝐿𝑖+1 \ 𝐿𝑖 , 𝑤𝑖 , 𝑣𝑖+1] for 𝑖 = 1, . . . , 𝑘 − 1, the
vector 𝑥 =

∑𝑘
𝑖=1 𝜒

{𝑣𝑖 ,𝑤𝑖 } +∑𝑘−1
𝑖=1 𝑥

𝑖 is a feasible solution to (16.4).

Proof. Let 𝑥 be a feasible solution to (16.4). By Lemma 16.6, 𝑥 is a convex
combination of incidence vectors of spanning trees. Because 𝑥(𝛿(𝐿𝑖)) =

𝑥{𝑣𝑖 ,𝑤𝑖 } = 1, all these spanning trees intersect the cut 𝛿(𝐿𝑖) in exactly the
edge {𝑣𝑖 , 𝑤𝑖}. If (𝑉, 𝑆) is a spanning tree with 𝑆 ∩ 𝛿(𝐿𝑖) = {{𝑣𝑖 , 𝑤𝑖}} for all
𝑖 = 1, . . . , 𝑘 , then (𝐿𝑖+1\𝐿𝑖 , 𝑆[𝐿𝑖+1\𝐿𝑖]) is a spanning tree for all 𝑖 = 1, . . . , 𝑘−1.
Thus, the vector 𝑥𝑖 that equals 𝑥 for edges in 𝐸 [𝐿𝑖+1 \ 𝐿𝑖] and is zero for all
other edges, is a convex combination of incidence vectors of trees spanning
𝐿𝑖+1 \ 𝐿𝑖 . We have 𝑥 =

∑𝑘
𝑖=1 𝜒

{𝑣𝑖 ,𝑤𝑖 } +∑𝑘−1
𝑖=1 𝑥

𝑖 . If 𝑤𝑖 = 𝑣𝑖+1, then this vertex is
the only one in 𝐿𝑖+1 \ 𝐿𝑖 because otherwise 𝑥(𝛿((𝐿𝑖+1 \ 𝐿𝑖) \ {𝑤𝑖})) = 0 would
contradict a constraint of (16.4). If 𝑤𝑖 ≠ 𝑣𝑖+1, the degree constraints for 𝑥 imply
𝑥𝑖 (𝛿(𝑣)) = 2 for 𝑣 ∈ (𝐿𝑖+1 \ 𝐿𝑖) \ {𝑤𝑖 , 𝑣𝑖+1} and 𝑥𝑖 (𝛿(𝑤𝑖)) = 𝑥𝑖 (𝛿(𝑣𝑖+1)) = 1.
Thus by Lemma 16.6, the vector 𝑥𝑖 is a feasible solution to LP[𝐿𝑖+1\𝐿𝑖 , 𝑤𝑖 , 𝑣𝑖+1].

Now let 𝑥𝑖 (𝑖 = 1, . . . , 𝑘 − 1) be feasible solutions to the linear programs
LP[𝐿𝑖+1 \ 𝐿𝑖 , 𝑤𝑖 , 𝑣𝑖+1] and 𝑥 =

∑𝑘
𝑖=1 𝜒

{𝑣𝑖 ,𝑤𝑖 } +∑𝑘−1
𝑖=1 𝑥

𝑖 . Then 𝑤𝑖 = 𝑣𝑖+1 only if
|𝐿𝑖+1 \ 𝐿𝑖 | = 1. Since the support of a vector 𝑥𝑖 is contained in 𝐸 [𝐿𝑖+1 \ 𝐿𝑖],
we have 𝑥(𝛿(𝐿𝑖)) = 1 and 𝑥{𝑣𝑖 ,𝑤𝑖 } = 1 for all 𝑖 = 1, . . . , 𝑘 . By Lemma 16.6,
for every 𝑖 = 1, . . . , 𝑘 − 1, the vector 𝑥𝑖 is a convex combination of incidence
vectors of trees spanning 𝐿𝑖+1 \ 𝐿𝑖 . Since the union of the edge sets of spanning
trees for all sets 𝐿𝑖+1 \ 𝐿𝑖 (𝑖 = 1, . . . , 𝑘 − 1) together with the edges {𝑣𝑖 , 𝑤𝑖}
(𝑖 = 1, . . . , 𝑘) is a spanning tree of 𝐺, the vector 𝑥 is a convex combination
of incidence vectors of spanning trees. Moreover, the degree constraints of
LP[𝐿𝑖+1 \ 𝐿𝑖 , 𝑤𝑖 , 𝑣𝑖+1] imply the degree constraints of LP[𝑉, 𝑠, 𝑡]. Hence, by
Lemma 16.6, 𝑥 is a feasible solution to LP[𝑉, 𝑠, 𝑡]. □

In order to prove that also any optimum solution to (16.4) with additional
constraints 𝑥(𝑄) ≥ 3 for all 𝑄 ∈ Q \ {𝛿(𝐿1), . . . , 𝛿(𝐿𝑘)} can be obtained
as a combination of (independently computed) solutions for LPs for all the



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

360 Path TSP by Dynamic Programming

. . .
𝑠 𝑡

Figure 16.3 Illustration of Lemma 16.8. The dashed lines show the cuts in L,
which form a chain. If Q \ L consists of the cuts sketched by the solid lines, B
contains the green cuts, and Q \ (B ∪ L) contains the red cuts (which can be
ignored if the cuts in L are lonely).

subinstances, we need to get rid of such constraints that affect several subinstances.
See Figure 16.3. The following lemma shows that these can be simply omitted,
since they are implied by other constraints:

Lemma 16.8 (Traub and Vygen [2019a]). Let L ⊆ Q such that L forms a chain.
Let

B := {𝑄 ∈ Q \ L : L
.
∪ {𝑄} forms a chain}.

Then any feasible solution 𝑥 to (14.1) with 𝑥(𝑄) ≥ 3 for all𝑄 ∈ B and 𝑥(𝑄) = 1
for 𝑄 ∈ L fulfills 𝑥(𝑄) ≥ 3 for all cuts 𝑄 ∈ Q \ L.

Proof. Let {𝑠} ⊆ 𝑈 ⊆ 𝑉 \ {𝑡} such that 𝛿(𝑈) ∈ Q \ L. If 𝛿(𝑈) ∈ B, we have
𝑥(𝛿(𝑈)) ≥ 3 by assumption. Otherwise, there is a set 𝐿 with {𝑠} ⊆ 𝐿 ⊆ 𝑉 \ {𝑡}
such that 𝛿(𝐿) ∈ L and both 𝐿 \𝑈 and𝑈 \ 𝐿 are nonempty. But then

4 ≤ 𝑥(𝛿(𝐿 \𝑈)) + 𝑥(𝛿(𝑈 \ 𝐿)) ≤ 𝑥(𝛿(𝑈)) + 𝑥(𝛿(𝐿)) = 𝑥(𝛿(𝑈)) + 1,

implying 𝑥(𝛿(𝑈)) ≥ 3. □

We now describe the dynamic programming algorithm to compute a Q-good
solution 𝑥′ with minimum cost. This will be very similar to the dynamic program
in the proof of Theorem 16.1. We construct an auxiliary digraph (𝐷, 𝐴) with
vertices corresponding to possible pairs of a lonely cut and a lonely edge and
arcs corresponding to subinstances. We define the vertex set to be

𝐷 :=
{
(𝑈, 𝑣, 𝑤) : 𝛿(𝑈) ∈ Q, {𝑠, 𝑣} ⊆ 𝑈 ⊆ 𝑉 \ {𝑤, 𝑡}

}
and the arc set to be

𝐴 :=
{
((𝑈1, 𝑣1, 𝑤1), (𝑈2, 𝑣2, 𝑤2)) ∈ 𝐷 × 𝐷 :
𝑈1 ⊊ 𝑈2 and 𝑤1, 𝑣2 ∈ 𝑈2 \𝑈1 and (𝑤1 ≠ 𝑣2 or |𝑈2 \𝑈1 | = 1)

}
.
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We now define weights 𝑑 for both arcs and vertices of this digraph (𝐷, 𝐴). For
every vertex (𝑈, 𝑣, 𝑤) ∈ 𝐷, define its weight as 𝑑 ((𝑈, 𝑣, 𝑤)) := 𝑐(𝑣, 𝑤). For an
arc 𝑎 = ((𝑈1, 𝑣1, 𝑤1), (𝑈2, 𝑣2, 𝑤2)), let

B𝑎 := {𝛿(𝑊) ∈ Q : 𝑈1 ⊊ 𝑊 ⊊ 𝑈2}

and denote by 𝑥𝑎 an optimum solution to the following linear program:

min 𝑐(𝑥)
subject to 𝑥 feasible solution to LP[𝑈2 \𝑈1, 𝑤1, 𝑣2]

𝑥(𝑄) + 𝜒{𝑣1 ,𝑤1 } (𝑄) + 𝜒{𝑣2 ,𝑤2 } (𝑄) ≥ 3 for all 𝑄 ∈ B𝑎 .
(16.5)

Then we define the weight of 𝑎 to be 𝑑 (𝑎) := 𝑐(𝑥𝑎). Let

𝐷𝑠 :=
{(
{𝑠}, 𝑠, 𝑤

)
: 𝑤 ∈ 𝑉 \ {𝑠}

}
and 𝐷𝑡 :=

{(
𝑉 \ {𝑡}, 𝑣, 𝑡

)
: 𝑣 ∈ 𝑉 \ {𝑡}

}
.

Now we compute a path 𝑃∗ in (𝐷, 𝐴) from 𝐷𝑠 to 𝐷𝑡 that minimizes the total
weight 𝑑 (𝑃∗), which is the total weight of its vertices plus the total weight of its
arcs. Computing 𝑃∗ can be done by a simple dynamic program, as in the proof
of Theorem 16.1. Let 𝐷 (𝑃∗) and 𝐴(𝑃∗) denote the vertex and arc set of this
path 𝑃∗. Then we set 𝑥′ to be

𝑥′ :=
∑︁

𝑎∈𝐴(𝑃∗ )
𝑥𝑎 +

∑︁
(𝑈,𝑣,𝑤) ∈𝐷 (𝑃∗ )

𝜒{𝑣,𝑤} .

Lemma 16.9. The vector 𝑥′ is a Q-good solution.

Proof. Let (𝐿𝑖 , 𝑣𝑖 , 𝑤𝑖) for 𝑖 = 1, . . . , 𝑘 be the vertices of the path 𝑃∗ visited
in this order. Let 𝑥𝑖 := 𝑥𝑎𝑖 where 𝑎𝑖 = ((𝐿𝑖 , 𝑣𝑖 , 𝑤𝑖), (𝐿𝑖+1, 𝑣𝑖+1, 𝑤𝑖+1)) for
𝑖 = 1, . . . , 𝑘 − 1. Then by construction of the vectors 𝑥𝑖 and by Lemma 16.7,
the vector 𝑥′ is a feasible solution to LP[𝑉, 𝑠, 𝑡], fulfills 𝑥(𝛿(𝐿𝑖)) = 1 for
all 𝑖 = 1, . . . , 𝑘 , and is integral for edges in 𝛿(𝐿𝑖). To show that 𝑥′ is a
Q-good solution, it remains to prove 𝑥(𝑄) ≥ 3 for all 𝑄 ∈ Q \ L, where
L = {𝛿(𝐿𝑖) : 𝑖 = 1, . . . , 𝑘}. By Lemma 16.8, it suffices to prove this for the set
B of cuts𝑄 ∈ Q \L for which L∪{𝑄} forms a chain. Since B =

⋃
𝑎∈𝐴(𝑃∗ ) B𝑎,

every cut𝑄 ∈ B is contained in some setB𝑎 with 𝑎 ∈ 𝐴(𝑃∗). But then 𝑥(𝑄) ≥ 3
by construction of 𝑥𝑎. This proves that 𝑥′ is a Q-good solution. □

Lemma 16.10. For every Q-good solution 𝑥, there exists a path 𝑃 in (𝐷, 𝐴)
from 𝐷𝑠 to 𝐷𝑡 with weight 𝑑 (𝑃) ≤ 𝑐(𝑥).

Proof. Let 𝑥 be a Q-good solution. Let {𝑠} = 𝐿1 ⊊ 𝐿2 ⊊ . . . ⊊ 𝐿𝑘 = 𝑉 \ {𝑡}
be the chain such that 𝛿(𝐿1), . . . , 𝛿(𝐿𝑘) are the lonely cuts of 𝑥. Let 𝑒1, . . . , 𝑒𝑘
be the lonely edges of 𝑥 with 𝑒𝑖 ∈ 𝛿(𝐿𝑖). Then 𝑒𝑖 is the unique edge in 𝛿(𝐿𝑖)
with 𝑥𝑒𝑖 = 1, and all other edges 𝑒 ∈ 𝛿(𝐿𝑖) have 𝑥𝑒 = 0. We claim that for
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𝑖, 𝑗 ∈ {1, . . . , 𝑘} with 𝑖 < 𝑗 , the edges 𝑒𝑖 and 𝑒 𝑗 are different. Suppose not, then
𝑒𝑖 = 𝑒 𝑗 ∈ 𝛿(𝐿𝑖) ∩ 𝛿(𝐿 𝑗 ) and

2 ≤ 𝑥(𝛿(𝐿 𝑗 \ 𝐿𝑖)) = 𝑥(𝛿(𝐿 𝑗 )) + 𝑥(𝛿(𝐿𝑖)) − 2𝑥(𝛿(𝐿𝑖) ∩ 𝛿(𝐿 𝑗 ))
≤ 1 + 1 − 2𝑥(𝑒𝑖) = 0,

a contradiction. Let 𝑒𝑖 = {𝑣𝑖 , 𝑤𝑖} with 𝑣𝑖 ∈ 𝐿𝑖 for 𝑖 = 1, . . . , 𝑘 . Consider
𝑖 ∈ {1, . . . , 𝑘 − 1}. Because 𝑥(𝛿(𝑤𝑖)) = 𝑥(𝛿(𝑣𝑖+1)) = 2 and 𝑥(𝛿(𝐿𝑖+1 \ 𝐿𝑖)) =
𝑥𝑒𝑖 + 𝑥𝑒𝑖+1 , we can have 𝑤𝑖 = 𝑣𝑖+1 only if |𝐿𝑖+1 \ 𝐿𝑖 | = 1. Thus the digraph
(𝐷, 𝐴) contains a path 𝑃 with vertices

({𝑠}, 𝑠, 𝑤1) = (𝐿1, 𝑣1, 𝑤1), (𝐿2, 𝑣2, 𝑤2), . . . , (𝐿𝑘 , 𝑣𝑘 , 𝑤𝑘) = (𝑉 \ {𝑡}, 𝑣𝑘 , 𝑡)

visited in this order. By Lemma 16.7, 𝑥 =
∑𝑘
𝑖=1 𝜒

{𝑣𝑖 ,𝑤𝑖 } + ∑𝑘−1
𝑖=1 𝑥

𝑖 , where 𝑥𝑖
is a feasible solution to the linear program LP[𝐿𝑖+1 \ 𝐿𝑖 , 𝑤𝑖 , 𝑣𝑖+1]. Let 𝑎𝑖 =
((𝐿𝑖 , 𝑣𝑖 , 𝑤𝑖), (𝐿𝑖+1, 𝑣𝑖+1, 𝑤𝑖+1)) ∈ 𝐴(𝑃). Then for every cut 𝑄 ∈ B𝑎𝑖 ⊆ Q \ L,
we have 3 ≤ 𝑥(𝑄) = 𝑥𝑖 (𝑄) + 𝜒{𝑣𝑖 ,𝑤𝑖 } (𝑄) + 𝜒{𝑣𝑖+1 ,𝑤𝑖+1 } (𝑄), implying that 𝑥𝑖 is
a feasible solution to the linear program defining 𝑥𝑎𝑖 . Thus, 𝑑 (𝑎𝑖) = 𝑐(𝑥𝑎𝑖 ) ≤
𝑐(𝑥𝑖). This proves

𝑑 (𝑃) =
∑︁

𝑝∈𝐷 (𝑃)
𝑑 (𝑝) +

∑︁
𝑎∈𝐴(𝑃)

𝑑 (𝑎) ≤
𝑘∑︁
𝑖=1

𝑐({𝑣𝑖 , 𝑤𝑖}) +
𝑘−1∑︁
𝑖=1

𝑐(𝑥𝑖) = 𝑐(𝑥).

□

We have 𝑐(𝑥′) = 𝑑 (𝑃∗) ≤ 𝑑 (𝑃) for every path 𝑃 from 𝐷𝑠 to 𝐷𝑡 in (𝐷, 𝐴).
Thus, Lemma 16.9 and Lemma 16.10 imply Lemma 16.4. This concludes the
proof of Theorem 16.5.

16.3 Reducing Path TSP to TSP: Outline

Traub, Vygen, and Zenklusen [2022] devised a general reduction of Path TSP to
Symmetric TSP: Any 𝛼-approximation algorithm for Symmetric TSP implies
an (𝛼 + 𝜀)-approximation algorithm for Path TSP, for every constant 𝜀 > 0.
The rest of this chapter is devoted to this reduction; however, we will give a
slightly different proof.

The first idea is the following. If a Path TSP instance (𝐺, 𝑐, 𝑠, 𝑡) satisfies
dist(𝐺,𝑐) (𝑠, 𝑡) ≤ 𝜀

𝛼+1 ·OPT(𝐺, 𝑐, 𝑠, 𝑡), then there is not a big difference between
the cost of {𝑠, 𝑡}-tours and tours: Any {𝑠, 𝑡}-tour can be extended to a tour
by adding a shortest 𝑠-𝑡-path and vice versa. Hence, applying the given 𝛼-
approximation algorithm to the Symmetric TSP instance (𝐺, 𝑐) and adding a
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𝛿 (𝑈3 ) 𝛿 (𝑈4 ) 𝛿 (𝑈5 ) 𝛿 (𝑈6 ) 𝛿 (𝑈7 ) 𝛿 (𝑈9 ) 𝛿 (𝑈10 )𝛿 (𝑈1 ) 𝛿 (𝑈2 ) 𝛿 (𝑈8 )

𝑠

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8 𝑣9

𝑣10

𝑡

𝑈8

𝑈2

𝑈1

Figure 16.4 A Path TSP instance with 10 vertices, ordered by the distance from
𝑠 as in Figure 16.1. The dashed vertical lines again indicate the cuts 𝛿 (𝑈 𝑗 ) for
𝑗 = 1, . . . , 𝑛 − 1. Suppose the solid lines show the optimum {𝑠, 𝑡 }-tour 𝐹∗, and
consider the cuts that contain at most three edges of 𝐹∗. These are the green cuts
𝛿 (𝑈1 ) , 𝛿 (𝑈2 ) , 𝛿 (𝑈8 ) here, so we would try to “guess” these cuts and the bold
green edges. Note that in between 𝛿 (𝑈2 ) and 𝛿 (𝑈8 ) , we do not have a Path TSP
instance (but a Multi-Path TSP instance).

shortest 𝑠-𝑡-path to the result yields an {𝑠, 𝑡}-tour of total cost at most

𝛼 · OPT(𝐺, 𝑐) + dist(𝐺,𝑐) (𝑠, 𝑡)
≤ 𝛼 · (OPT(𝐺, 𝑐, 𝑠, 𝑡) + dist(𝐺,𝑐) (𝑠, 𝑡)) + dist(𝐺,𝑐) (𝑠, 𝑡)
= 𝛼 · OPT(𝐺, 𝑐, 𝑠, 𝑡) + (𝛼 + 1) · dist(𝐺,𝑐) (𝑠, 𝑡)
≤ (𝛼 + 𝜀) · OPT(𝐺, 𝑐, 𝑠, 𝑡).

Otherwise (i.e., if the distance from 𝑠 to 𝑡 is large), we will give a reduction
inspired by the one in Section 16.1. Like in the proof of Theorem 16.1, we set
up a dynamic program. We will exploit the fact that some cuts 𝛿(𝑈𝑖) contain at
most 𝛼+1

𝜀
edges of any optimum {𝑠, 𝑡}-tour. This is still a constant number of

edges, so we can still hope to guess them, and we can still list all candidates of
the dynamic program in polynomial time. The difficulty is that the subproblems
in between two candidates are no longer Path TSP instances (see Figure 16.4 for
an example). Therefore we generalize the entire approach to Multi-Path TSP.

Originally, Traub, Vygen, and Zenklusen [2022] generalized the approach to
a different problem (called Φ-TSP, cf. Exercises 16.5–16.7), but here we present
a different proof.

In the rest of this chapter, we will not work in the metric closure because we
will also apply our reduction to Graph Path TSP.
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𝑠1

𝑡1

𝑠2

𝑡2 = 𝑠3𝑡3

𝑠4 = 𝑡4

𝑡5

𝑠5

𝐹1

𝐹2 𝐹3

𝐹4

𝐹5

Figure 16.5 Example of a solution to a Multi-Path TSP instance. The different
multi-edge sets 𝐹𝑖 are shown in different colors.

16.4 Multi-Path TSP

We now present the problem that plays the principal role in the rest of this
chapter. It generalizes Path TSP, but instead of asking for a single walk from 𝑠

to 𝑡 (whose footprint is an {𝑠, 𝑡}-tour), we ask for walks from 𝑠𝑖 to 𝑡𝑖 for given
terminal pairs {𝑠𝑖 , 𝑡𝑖} such that every vertex belongs to at least one of these
walks:

Problem 16.11 (Multi-Path TSP).

Instance: An undirected graph 𝐺 = (𝑉, 𝐸) with weights 𝑐 : 𝐸 → R≥0. Ter-
minal pairs {𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘} with 𝑠𝑖 , 𝑡𝑖 ∈ 𝑉 for 𝑖 = 1, . . . , 𝑘 .

Task: Compute multi-subgraphs (𝑉𝑖 , 𝐹𝑖) of 𝐺 such that

• 𝑠𝑖 , 𝑡𝑖 ∈ 𝑉𝑖 for 𝑖 = 1, . . . , 𝑘 and 𝑉1 ∪ · · · ∪𝑉𝑘 = 𝑉 , and
• 𝐹𝑖 is an ({𝑠𝑖} △ {𝑡𝑖})-tour in 𝐺 [𝑉𝑖] for 𝑖 = 1, . . . , 𝑘 ,

and the total cost
∑𝑘
𝑖=1 𝑐(𝐹𝑖) is minimum (or declare that no such

solution exists).

Note that 𝑠𝑖 = 𝑡𝑖 is allowed, in which case {𝑠𝑖 , 𝑡𝑖} is a multi-set containing one
vertex twice and 𝐹𝑖 must be a tour in 𝐺 [𝑉𝑖] with 𝑠𝑖 ∈ 𝑉𝑖 . Also other terminals
can coincide. We do not require that the sets 𝑉𝑖 are pairwise disjoint, and even
an edge of 𝐺 can appear in several ({𝑠𝑖} △ {𝑡𝑖})-tours. See Figure 16.5 for an
example. The special case when 𝑘 = 1 is the regular Path TSP.

For a Multi-Path TSP instance, we denote by
∑𝑘
𝑖=1 dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖) the

total distance. This is an obvious lower bound on the cost of an optimum
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solution, which we again denote by OPT. Let us first note that there is a simple
constant-factor approximation algorithm:

Proposition 16.12. There is a 3-approximation algorithm for Multi-Path TSP.

Proof. Let (𝐺, 𝑐, 𝑘, {𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘}) be a Multi-Path TSP instance.
Consider the weighted graph (𝐺′, 𝑐′) that results from (𝐺, 𝑐) by contracting
all terminals into a single vertex 𝑡0. Contracting the terminals in an arbitrary
solution to the Multi-Path TSP instance yields a connected graph; hence, the
instance has no solution if 𝐺′ is disconnected. If 𝐺′ is connected, (𝐺′, 𝑐′)
contains a spanning tree of cost at most OPT. Taking a minimum-cost spanning
tree in (𝐺′, 𝑐′) and uncontracting yields a set 𝐹 of edges that connects every
vertex to a terminal. We double all edges of 𝐹.

If there is no 𝑠𝑖-𝑡𝑖-path in (𝐺, 𝑐) for some 𝑖 ∈ {1, . . . , 𝑘}, then the instance
has no solution. Otherwise, we start by letting (𝑉𝑖 , 𝐹𝑖) be a shortest 𝑠𝑖-𝑡𝑖-path in
(𝐺, 𝑐) for all 𝑖 = 1, . . . , 𝑘 . Then we add each connected component 𝑋 of 𝐹

.
∪ 𝐹

to a graph (𝑉𝑖 , 𝐹𝑖) that contains a vertex of 𝑋 . The total cost of the resulting
solution is at most

∑𝑘
𝑖=1 dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖) + 2 OPT ≤ 3 OPT. □

In the following, we will assume that 𝑘 is bounded by a constant (recall that
our final goal is to solve Path TSP, the special case 𝑘 = 1). All subinstances in
between two cuts that we will consider in our dynamic program will be of this
kind.

Consider, for example, Figure 16.4. The solution 𝐹∗ (more precisely, a walk
traversing 𝐹∗) induces a nontrivial Multi-Path TSP instance in between 𝛿(𝑈2)
and 𝛿(𝑈8), with vertex set 𝑈8 \𝑈2 = {𝑣3, . . . , 𝑣8}. The terminal pairs of the
induced instance depend on the order in which we traverse 𝐹∗. If we traverse 𝐹∗
in the order 𝑠, 𝑣4, 𝑣6, 𝑡, 𝑣9, 𝑡, 𝑣7, 𝑣8, 𝑣3, 𝑣2, 𝑣5, 𝑣7, 𝑣3, 𝑣10, 𝑡, the resulting terminal
pairs are {𝑠1, 𝑡1} = {𝑣4, 𝑣6}, {𝑠2, 𝑡2} = {𝑣7, 𝑣3}, and {𝑠3, 𝑡3} = {𝑣5, 𝑣3}. We
will formalize the notion of an induced subinstance in Definition 16.14.

16.5 The Case of Short Total Distance

In this section, we reduce Multi-Path TSP instances with small total distance
to Symmetric TSP.

Lemma 16.13. Let 𝑘 ∈ N and 𝜀 > 0 and 𝛼 > 1 be constants such that
there is an 𝛼-approximation algorithm for Symmetric TSP. Then there is an
(𝛼 + 𝜀)-approximation algorithm for Multi-Path TSP restricted to instances
with at most 𝑘 terminal pairs and total distance at most 𝜀

3𝛼 · OPT.
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Proof. Let (𝐺, 𝑐, 𝑘, {𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘}) be a Multi-Path TSP instance with
total distance at most 𝜀

3𝛼 · OPT. Let 𝐺 = (𝑉, 𝐸). Let (𝑉1, 𝐹
∗
1 ), . . . , (𝑉𝑘 , 𝐹

∗
𝑘
) be

an optimum solution, and let 𝐹∗ be the disjoint union of 𝐹∗1 , . . . , 𝐹
∗
𝑘
. Let 𝑃𝑖 be

the edge set of a shortest 𝑠𝑖-𝑡𝑖-path (𝑖 = 1, . . . , 𝑘).
Call an edge 𝑒 ∈ 𝐸 heavy if 𝑐(𝑒) ≥ 𝜀

6𝑘𝛼 · OPT. We first “guess” the heavy
edges in 𝐹∗. We do not know this threshold, but there are at most |𝐸 | + 1 choices
of the set 𝐻 of heavy edges in 𝐸 . Moreover, there are at most ( |𝐸 | + 1) 6𝑘𝛼

𝜀

possibilities for the set 𝐻∗ of heavy edges in 𝐹∗, because |𝐻∗ | ≤ 6𝑘𝛼
𝜀

. Hence,
we can enumerate all possibilities for 𝐻 and 𝐻∗. In one of the enumerated cases,
we have the correct 𝐻 and 𝐻∗, and we show that in this case we get a sufficiently
cheap solution.

Given 𝐻 and 𝐻∗, we delete all edges in 𝐷 := 𝐻 \
(
𝐻∗∪⋃𝑘

𝑖=1 𝑃𝑖
)

and compute
a tour in each connected component of the resulting graph 𝐺 − 𝐷. Since 𝑠𝑖 and
𝑡𝑖 are in the same connected component of 𝐺 −𝐷 for all 𝑖 = 1, . . . , 𝑘 , such tours
can be obtained from 𝐹∗ by adding 𝑃𝑖 for each 𝑖 (to correct the parity of the
degree of the terminals) and by adding at most 𝑘 − 1 pairs of parallel edges
(so that the connected components are the same as in 𝐺 − 𝐷). The latter edges
are not heavy because the heavy edges that do not belong to 𝐹∗ ∪⋃𝑘

𝑖=1 𝑃𝑖 have
been deleted. Hence, there exist tours in the connected components of 𝐺 − 𝐷
that have total cost at most OPT + ∑𝑘

𝑖=1 dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖) + 2(𝑘 − 1) 𝜀
6𝑘𝛼 · OPT.

Since the total distance is at most 𝜀
3𝛼 · OPT, this is at most (1 + 2𝜀

3𝛼 )OPT.
We call an 𝛼-approximation algorithm for Symmetric TSP on each connected

component of 𝐺 − 𝐷 and obtain tours of total cost (𝛼 + 2𝜀
3 )OPT. From these

tours, we obtain a solution to our Multi-Path TSP instance by adding a shortest
𝑠𝑖-𝑡𝑖-path for 𝑖 = 1, . . . , 𝑘 , which increases the total cost by at most 𝜀

3𝛼 · OPT.
The cost of the final solution is at most (𝛼 + 𝜀)OPT. □

Note that if the original instance has unit weights, all Symmetric TSP
instances in this proof have unit weights too.

16.6 Induced Instances on Subsets

In Section 16.4, we already indicated how we construct instances on subsets of𝑉 ;
let us formalize this now. First, we need to consider solutions to Multi-Path TSP
instances as walks: A solution (𝑉𝑖 , 𝐹𝑖) for 𝑖 = 1, . . . , 𝑘 can also be represented
by the sequence of vertices𝑊𝑖 in a walk from 𝑠𝑖 to 𝑡𝑖 whose footprint is 𝐹𝑖 (for
each 𝑖 ∈ {1, . . . , 𝑘}); then we call 𝑊 = (𝑊1, . . . ,𝑊𝑘) a walk solution to the
given instance.



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

16.6 Induced Instances on Subsets 367

Let 𝑈 be a subset of the vertex set 𝑉 . Given a walk solution, the first and
the last vertex in each maximal subwalk inside 𝑈 induce a terminal pair. See
Figure 16.6 for an example. Later, we will apply the following definition not
only to walk solutions but also to other sequences of vertices.

Definition 16.14 (induced terminal pairs, induced instance). Let 𝐺 = (𝑉, 𝐸)
be an undirected graph and𝑈 ⊆ 𝑉 a subset of vertices. Let S be a multi-set of
sequences of vertices. A subsequence 𝑆 of consecutive elements of a sequence in
S is called a𝑈-sequence in S if all of its vertices belong to𝑈 and 𝑆 is maximal
with this property. The induced terminal pairs 𝑇 [𝑈,S] contain a pair {𝑠, 𝑡} for
each𝑈-sequence 𝑆 of S, where 𝑠 is the first and 𝑡 is the last element of 𝑆.

For a Multi-Path TSP instance I with graph 𝐺 and edge weights 𝑐, the
induced instance I[𝑈,S] = (𝐺 [𝑈], 𝑐, 𝑇 [𝑈,S]) consists of the subgraph of
(𝐺, 𝑐) induced by𝑈 and the induced terminal pairs 𝑇 [𝑈,S].

In fact, a walk solution does not only induce an instance, but also a solution
to that instance:

Lemma 16.15. Let I be a Multi-Path TSP instance with graph𝐺 = (𝑉, 𝐸). Let
𝑊 be a walk solution to I, and let𝑈 ⊆ 𝑉 . Then the𝑈-sequences of𝑊 constitute
a walk solution 𝑊 [𝑈] to the induced Multi-Path TSP instance I[𝑈,𝑊].
Moreover, for every𝑈′ ⊆ 𝑈, we have (I[𝑈,𝑊]) [𝑈′,𝑊 [𝑈]] = I[𝑈′,𝑊].

Proof. This follows immediately from the definition. □

We will solve various instances on subsets of 𝑉 independently, including
those induced by an optimum solution. When we stitch solutions on disjoint
subsets together, we need more information than just the terminal pairs. To this
end, we define:

Definition 16.16 (border protocol). Let 𝐺 = (𝑉, 𝐸) be an undirected graph,
𝑠, 𝑡 ∈ 𝑉 , and𝑈 ⊆ 𝑉 a subset of vertices.

A border protocol 𝐵 for 𝑈 and the terminal pair {𝑠, 𝑡} in 𝐺 is a sequence
𝑣0, 𝑤0, 𝑣1, 𝑤1, . . . , 𝑣𝑙 , 𝑤𝑙 of (not necessarily distinct) vertices with 𝑙 ≥ 0, 𝑣0 = 𝑠,
𝑤𝑙 = 𝑡, such that

• 𝑣 𝑗 and 𝑤 𝑗 are both in𝑈 or both in 𝑉 \𝑈 for each 𝑗 ∈ {0, . . . , 𝑙}, and
• {𝑤 𝑗−1, 𝑣 𝑗 } is an edge in 𝛿𝐺 (𝑈) for all 𝑗 ∈ {1, . . . , 𝑙}.

We denote the multi-set of these 𝑙 edges by 𝛿𝐵 (𝑈). For a multi-set 𝐵 of border
protocols 𝐵1, . . . , 𝐵𝑟 , we write 𝛿𝐵 (𝑈) = 𝛿𝐵1 (𝑈)

.
∪ · · ·

.
∪ 𝛿𝐵𝑟

(𝑈).

A border protocol for 𝑈 in 𝐺 is also a border protocol for 𝑉 \ 𝑈 in 𝐺.
Figure 16.6 shows an example.
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Figure 16.6 On the top left, we see a Multi-Path TSP instance I with vertex
set 𝑉 , a terminal pair {𝑠, 𝑡 }, an {𝑠, 𝑡 }-tour, and a subset 𝑈 of 𝑉 . Other edges
of this instance are not shown. If 𝑊 is the sequence of vertices that we get
when traversing this {𝑠, 𝑡 }-tour so that 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5 are visited in this order,
we obtain the induced terminal pairs {𝑠1, 𝑡1} = {𝑢1, 𝑢2}, {𝑠2, 𝑡2} = {𝑢3, 𝑢4},
{𝑠3, 𝑡3} = {𝑢5, 𝑢5}, and {𝑠4, 𝑡4} = {𝑢5, 𝑡 }. The bottom picture sketches the
induced Multi-Path TSP instance I[𝑈, {𝑊 } ] and a solution to that instance.
Replacing the edges inside𝑈 by this solution yields the {𝑠, 𝑡 }-tour shown on the
top right. The sequence 𝑠, 𝑠, 𝑢1, 𝑢2, 𝑣, 𝑤, 𝑢3, 𝑢4, 𝑣

′, 𝑤′, 𝑢5, 𝑢5, 𝑣
′′, 𝑣′′, 𝑢5, 𝑡 is

the border protocol induced by𝑊 for𝑈 and the terminal pair {𝑠, 𝑡 }.

According to Definition 16.14, the multi-set of terminal pairs𝑇 [𝑈, 𝐵] induced
by a multi-set 𝐵 of border protocols for 𝑈 contains the pair {𝑣 𝑗 , 𝑤 𝑗 } for all
border protocols 𝑣0, 𝑤0, . . . , 𝑣𝑙 , 𝑤𝑙 in 𝐵 and all 𝑗 for which 𝑣 𝑗 , 𝑤 𝑗 ∈ 𝑈. The
induced instance I[𝑈, 𝐵] contains these pairs as terminal pairs.

Lemma 16.17. Let I = (𝐺, 𝑐, 𝑘, {𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘}) be a Multi-Path TSP
instance with the graph 𝐺 = (𝑉, 𝐸), and let𝑈 ⊆ 𝑉 be a subset of vertices. Let
𝐵𝑖 be a border protocol for𝑈 and the terminal pair {𝑠𝑖 , 𝑡𝑖} in 𝐺 (𝑖 = 1, . . . , 𝑘),
and let 𝐵 be the multi-set of these 𝑘 border protocols. Let𝑊𝑈 be a walk solution
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to I[𝑈, 𝐵] and 𝑊𝑉\𝑈 a walk solution to I[𝑉 \𝑈, 𝐵]. Then 𝑊𝑈 , 𝑊𝑉\𝑈 , and
𝛿𝐵 (𝑈) can be composed to a walk solution to I.

Proof. Let 𝑖 ∈ {1, . . . , 𝑘}, and let 𝐵𝑖 be the border protocol 𝑣0, 𝑤0, 𝑣1, 𝑤1, . . . ,

𝑣𝑙 , 𝑤𝑙 with 𝑣0 = 𝑠𝑖 , 𝑤𝑙 = 𝑡𝑖 . For all 𝑗 such that 𝑣 𝑗 , 𝑤 𝑗 ∈ 𝑈, the induced instance
I[𝑈, {𝐵𝑖}] (and henceI[𝑈, 𝐵]) contains a terminal pair {𝑣 𝑗 , 𝑤 𝑗 }; thus the walk
solution𝑊𝑈 contains a walk from 𝑣 𝑗 to 𝑤 𝑗 . For all 𝑗 such that 𝑣 𝑗 , 𝑤 𝑗 ∈ 𝑉 \𝑈,
the induced instanceI[𝑉 \𝑈, {𝐵𝑖}] (and henceI[𝑉 \𝑈, 𝐵]) contains a terminal
pair {𝑣 𝑗 , 𝑤 𝑗 }; thus the walk solution𝑊𝑉\𝑈 contains a walk from 𝑣 𝑗 to 𝑤 𝑗 . By
inserting these walks, we transform 𝐵𝑖 into a walk from 𝑠𝑖 to 𝑡𝑖 in 𝐺. Doing this
for 𝑖 = 1, . . . , 𝑘 yields a walk solution to I because each vertex is visited by at
least one of the walks. □

Given a walk solution𝑊 and a subset𝑈 ⊆ 𝑉 , the multi-set of border protocols
induced by𝑊 for𝑈 is the multi-set 𝐵 that we get by listing, for each sequence in
𝑊 , the first and the last vertex of each𝑈-sequence and each (𝑉 \𝑈)-sequence.
Then 𝑇 [𝑈, 𝐵] = 𝑇 [𝑈,𝑊] and 𝑇 [𝑉 \𝑈, 𝐵] = 𝑇 [𝑉 \𝑈,𝑊].

The idea will be to guess the border protocols for𝑈 induced by an optimum
(walk) solution for sets 𝑈 for which this solution contains only few edges of
𝛿(𝑈). We will next explain which cuts exactly we will consider.

16.7 The Case of Long Total Distance

Complementing Lemma 16.13, we now deal with the case of long total distance.
Consider an instance (𝐺, 𝑐, 𝑘, {𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘}) with total distance more
than 𝜀

3𝛼 · OPT (for some constants 𝜀 > 0, 𝛼 > 1, and 𝑘 ∈ N). Without loss
of generality, 𝑠𝑖 ≠ 𝑡𝑖 for 𝑖 = 1, . . . , �̄� and 𝑠𝑖 = 𝑡𝑖 for 𝑖 = �̄� + 1, . . . , 𝑘 for some
�̄� ∈ {1, . . . , 𝑘}. (The case �̄� = 0 is covered by Section 16.5.)

As in Section 16.1 we define a chain of cuts, but now one for each ter-
minal pair. Let 𝐺 = (𝑉, 𝐸) and 𝑛 = |𝑉 |. For 𝑖 = 1, . . . , �̄� , let 𝑓 𝑖 (𝑣) :=
min{dist(𝐺,𝑐) (𝑠𝑖 , 𝑣), dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖)} for 𝑣 ∈ 𝑉 , and order the vertices so
that 𝑣𝑖1 = 𝑠𝑖 , 𝑣𝑖𝑛 = 𝑡𝑖 , and 𝑓 𝑖 (𝑣𝑖1) ≤ 𝑓 𝑖 (𝑣𝑖2) ≤ · · · ≤ 𝑓 𝑖 (𝑣𝑖𝑛). Consider the
chain of cuts 𝛿(𝑈𝑖

𝑗
) for 𝑗 = 1, . . . , 𝑛 − 1, where 𝑈𝑖

𝑗
= {𝑣𝑖1, . . . , 𝑣

𝑖
𝑗
}, and set

𝑦𝑖 (𝑈𝑖
𝑗
) = 𝑓 𝑖 (𝑣𝑖

𝑗+1) − 𝑓
𝑖 (𝑣𝑖

𝑗
).

Let (𝑉∗1 , 𝐹
∗
1 ), . . . , (𝑉

∗
𝑘
, 𝐹∗
𝑘
) be an optimum solution, and let 𝐹∗ be the disjoint

union of 𝐹∗1 , . . . , 𝐹
∗
𝑘
. Call a cut small if it contains at most 𝐾 edges of 𝐹∗, where

we set 𝐾 = 6𝛼𝑘
𝜀

. Since 𝜀, 𝛼, and 𝑘 are constants, 𝐾 is a constant, too. For
𝑖 = 1, . . . , �̄� , let

Λ𝑖 =
{
𝑗 ∈ {1, . . . , 𝑛 − 1} : |𝐹∗ ∩ 𝛿(𝑈𝑖𝑗 ) | ≤ 𝐾

}
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be the set of indices of small cuts in the chain for terminal pair {𝑠𝑖 , 𝑡𝑖}. Our goal
is again to “guess” the edges in these small cuts – that is, the set

𝐿∗ =

�̄�⋃
𝑖=1

⋃
𝑗∈Λ𝑖

(
𝐹∗ ∩ 𝛿(𝑈𝑖𝑗 )

)
. (16.6)

See Figure 16.7 for an example. Very similarly to (16.2), we first show:

Lemma 16.18. 𝑐(𝐿∗) ≥ 𝜀
6𝛼 · OPT.

Proof. First note (exactly as in inequality (16.3)) that for any edge set 𝐹 and
any 𝑖 = 1, . . . , �̄� ,

𝑐(𝐹) ≥
𝑛−1∑︁
𝑗=1
|𝐹 ∩ 𝛿(𝑈𝑖𝑗 ) | · 𝑦𝑖 (𝑈𝑖𝑗 ).

Applying this inequality first to 𝐹∗ and then to 𝐿∗∩𝐹∗
𝑖

(using |𝐿∗∩𝐹∗
𝑖
∩𝛿(𝑈𝑖

𝑗
) | =

|𝐹∗
𝑖
∩ 𝛿(𝑈𝑖

𝑗
) | ≥ 1 for 𝑗 ∈ Λ𝑖), we get

𝑐(𝐹∗) ≥
𝑛−1∑︁
𝑗=1
|𝐹∗ ∩ 𝛿(𝑈𝑖𝑗 ) | · 𝑦 𝑗 (𝑈𝑖𝑗 )

≥ 𝐾

𝑛−1∑︁
𝑗=1

𝑦𝑖 (𝑈𝑖𝑗 ) − 𝐾 ·
∑︁
𝑗∈Λ𝑖

𝑦𝑖 (𝑈𝑖𝑗 )

≥ 𝐾

𝑛−1∑︁
𝑗=1

𝑦𝑖 (𝑈𝑖𝑗 ) − 𝐾 · 𝑐(𝐿∗ ∩ 𝐹∗𝑖 )

= 𝐾 · dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖) − 𝐾 · 𝑐(𝐿∗ ∩ 𝐹∗𝑖 ).

For 𝑖 = �̄� + 1, . . . , 𝑘 we have dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖) = 0, and thus this inequality holds
trivially. Summing over 𝑖 = 1, . . . , 𝑘 yields

𝐾 · 𝑐(𝐿∗) ≥ 𝐾 ·
𝑘∑︁
𝑖=1

dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖) − 𝑘 · 𝑐(𝐹∗).

Using
∑𝑘
𝑖=1 dist(𝐺,𝑐) (𝑠𝑖 , 𝑡𝑖) > 𝜀

3𝛼 ·OPT = 2𝑘
𝐾
·OPT and 𝑐(𝐹∗) = OPT, we obtain

𝐾 · 𝑐(𝐿∗) > 𝑘 · OPT, which completes the proof (using again 𝐾 = 6𝛼𝑘
𝜀

). □

So the edges in 𝐿∗ amount to a constant fraction of the total cost of 𝐹∗. We
will now again set up a dynamic program to guess these edges, but here this is
more complicated than in Section 16.1. Consider the grid formed by all the cuts
𝛿(𝑈 𝑗

𝑖
) and the subgrid formed by the small cuts (cf. Figure 16.7).
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2 ) 𝛿 (𝑈1

6 ) 𝛿 (𝑈1
7 )
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3 )
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4 )
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6 )
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1 )

𝛿 (𝑈2
2 )

𝛿 (𝑈2
5 )

𝛿 (𝑈2
7 )

𝑤

𝑥

𝑦

𝑧

𝑠1

𝑡1

𝑠2

𝑡2

𝑒1
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𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

Figure 16.7 A Multi-Path TSP instance with eight vertices and two terminal pairs.
The horizontal order corresponds to the terminal pair {𝑠1, 𝑡1} and the vertical order
to the terminal pair {𝑠2, 𝑡2}. Suppose the red edges (𝐹∗1 ) and the blue edges (𝐹∗2 )
form an optimum solution, and let 𝐾 = 3. Then the small cuts 𝛿 (𝑈𝑖

𝑗
) (those with

at most 𝐾 edges in 𝐹∗1
.

∪ 𝐹∗2 ) are indicated by thick green dashed lines. In this
example, all edges except the two parallel red edges in the upper left are contained
in a small cut.
A boxed set with box definition

(
(𝑈1

2 ,𝑈
1
6 ) ,𝑈

2
2
)

is indicated by the light green area:
It contains the vertices in the area left of 𝛿 (𝑈1

2 ) , as well as those in the area left of
𝛿 (𝑈1

6 ) and below 𝛿 (𝑈2
2 ) .

The solution (𝐹∗1 , 𝐹∗2 ) corresponds to a 𝑑∅-𝑑𝑉 -path in the digraph (𝐷, 𝐴) , which
has vertices with the boxed sets ∅, 𝑈1

2 , 𝑈1
2 ∪ (𝑈1

6 ∩ 𝑈
2
1 ) , 𝑈1

2 ∪ (𝑈1
6 ∩ 𝑈

2
2 ) ,

𝑈1
2 ∪ (𝑈1

6 ∩𝑈
2
5 ) ,𝑈

1
6 ,𝑈1

7 , 𝑉 .

We would like to proceed column by column in this subgrid (from left to
right) and, within a column, row by row (from bottom to top). Of course, we
know the complete grid, but not the subgrid.

Recall that 𝑈𝑖
𝑗
= {𝑣𝑖1, . . . , 𝑣

𝑖
𝑗
} for all 𝑖 = 1, . . . , �̄� and all 𝑗 = 0, . . . , 𝑛. Let

U𝑖 := {𝑈𝑖
𝑗

: 𝑗 = 0, . . . , 𝑛} be the chain corresponding to the terminal pair
{𝑠𝑖 , 𝑡𝑖}.
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Definition 16.19 (boxed vertex set). We say that a vertex set𝑈 ⊆ 𝑉 is boxed if
𝑈 = ∅ or𝑈 has the form

𝑈 :=
�̄�⋃
𝑖=1

(
𝑖−1⋂
ℎ=1

𝑌 ℎ ∩ 𝑋 𝑖
)
,

where 𝑋 𝑖 , 𝑌 𝑖 ∈ U𝑖 with 𝑋 𝑖 ⊊ 𝑌 𝑖 for 𝑖 = 1, . . . , �̄� − 1 and 𝑋 �̄� ∈ U �̄� \ ∅. We also
call

(
(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋 �̄�−1, 𝑌 �̄�−1), 𝑋 �̄�

)
a box definition of𝑈.

See Figure 16.7 for an example.
A boxed set can have several box definitions. Note that 𝑉 is a boxed set, one

of its box definitions is
(
(∅, 𝑉), . . . , (∅, 𝑉), 𝑉

)
. If(

(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋 �̄�−1, 𝑌 �̄�−1), 𝑋 �̄�
)

is a box definition of a set𝑈, then𝑈 is the union of the disjoint sets

𝑋1,

(𝑌1 \ 𝑋1) ∩ 𝑋2,

(𝑌1 \ 𝑋1) ∩ (𝑌2 \ 𝑋2) ∩ 𝑋3,

. . .

(𝑌1 \ 𝑋1) ∩ · · · ∩ (𝑌 �̄�−1 \ 𝑋 �̄�−1) ∩ 𝑋 �̄� .

The number of box definitions (and hence the number of boxed sets) is at most
1 + 𝑛2�̄�−1. Our goal is to guess the boxed vertex sets that are defined by small
cuts, and for each such vertex set𝑈, we also need to guess the induced terminal
pairs. Due to the structure of our boxed sets, we will be able to restrict the
number of induced terminal pairs in any boxed set.

Definition 16.20 (candidate). A candidate 𝑑 consists of a boxed set𝑈 (𝑑) and a
multi-set 𝑇 (𝑑) of at most 𝑘 (𝐾 + 1) terminal pairs in𝑈 (𝑑).

We denote by 𝐷 the set of all candidates. There are at most (1 + 𝑛2𝑘−1) ·
𝑛2𝑘 (𝐾+1) ≤ 𝑛2𝑘 (𝐾+2) candidates. Since 𝑘 and 𝐾 are constants, we can enumerate
all candidates in polynomial time. Note that there is exactly one candidate 𝑑∅
with 𝑈 (𝑑∅) = ∅ (and 𝑇 (𝑑∅) = ∅), corresponding to the “empty instance.” Let
𝑑𝑉 be the candidate with 𝑈 (𝑑𝑉 ) = 𝑉 and 𝑇 (𝑑𝑉 ) = {{𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘}},
corresponding to the original instance that we want to solve.

We construct an acyclic digraph (𝐷, 𝐴) on the vertex set 𝐷. An arc from 𝑑 to
𝑑′ will exist only if𝑈 (𝑑) ⊊ 𝑈 (𝑑′), so such an arc corresponds to expanding the
boxed set. To this end, we will need to solve Multi-Path TSP instances on the
vertex set𝑈 (𝑑′) \𝑈 (𝑑) with at most 2𝑘 (𝐾 + 1) terminal pairs.
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To compute solutions to such instances, we will call a 𝛽-approximation
algorithmA for Multi-Path TSP. LetA(I) denote the walk solution obtained
by runningA on the Multi-Path TSP instance I. If this instance I is infeasible,
then we write 𝑐(A(I)) = ∞.

Consider a pair of candidates 𝑑 and 𝑑′ with𝑈 (𝑑) ⊊ 𝑈 (𝑑′). For each multi-
set 𝐵 of border protocols for 𝑈 (𝑑) in 𝐺 [𝑈 (𝑑′)], one for each terminal pair
{𝑠′, 𝑡′} ∈ 𝑇 (𝑑′), such that 𝑇 (𝑑) = 𝑇 [𝑈 (𝑑), 𝐵], the digraph contains an arc from
𝑑 to 𝑑′, and the weight of the arc is

𝑤((𝑑, 𝑑′)) := 𝑐 (A (I[𝑈 (𝑑′) \𝑈 (𝑑), 𝐵])) + 𝑐 (𝛿𝐵 (𝑈 (𝑑))) .

With the arc and its weight, we can also store 𝐵 and the solution thatA produces
for the instance I[𝑈 (𝑑′) \𝑈 (𝑑), 𝐵]. Figure 16.8 shows an example.

Lemma 16.21. The number of multi-sets 𝐵 of border protocols that we consider
for a pair (𝑑, 𝑑′) of candidates (and thus the number of parallel arcs (𝑑, 𝑑′)) is
at most (𝑛+1)6𝑘 (𝐾+1) . Moreover,𝑇 [𝑈 (𝑑′) \𝑈 (𝑑), 𝐵] contains at most 2𝑘 (𝐾+1)
terminal pairs for any such 𝐵.

Proof. Since each of 𝑇 (𝑑) and 𝑇 (𝑑′) contains at most 𝑘 (𝐾 + 1) terminal pairs,
𝑇 [𝑈 (𝑑′) \𝑈 (𝑑), 𝐵] can contain at most 2𝑘 (𝐾 + 1) terminal pairs. So the total
length of 𝐵 is at most 6𝑘 (𝐾 + 1). □

So we can construct (𝐷, 𝐴) in polynomial time, with𝑂 (𝑛10𝑘 (𝐾+2) ) calls toA.
(This bound can be improved – see Exercise 16.8 – but this is not important.) We
will find a shortest 𝑑∅-𝑑𝑉 -path in this digraph with respect to the arc weights 𝑤.
From this, we get a solution as follows:

Lemma 16.22. Given a 𝑑∅-𝑑𝑉 -path 𝑃 in (𝐷, 𝐴), one can construct a solution
to I of cost at most 𝑤(𝑃) in polynomial time.

Proof. We show that for all 𝑑′ ∈ 𝐷 \ {𝑑∅} and for any 𝑑∅-𝑑′-path 𝑃′, we can
construct a walk solution to the instance I = (𝐺 [𝑈 (𝑑′)], 𝑐, 𝑇 (𝑑′)) of cost at
most 𝑤(𝑃′) in polynomial time. For 𝑑′ = 𝑑𝑉 , this implies the lemma.

We use induction on the number of arcs in 𝑃′. If 𝑃′ consists of a single arc
(𝑑∅ , 𝑑′), we obtain the solution A(I) of cost 𝑤(𝑃′) = 𝑤((𝑑∅ , 𝑑′)).

Otherwise, let (𝑑, 𝑑′) be the last arc of a 𝑑∅-𝑑′-path 𝑃′, let 𝐵 be the multi-set
of border protocols corresponding to that arc, and let 𝑃 be the 𝑑∅-𝑑-path that
results from 𝑃′ by removing that last arc. By the induction hypothesis, we can
construct a walk solution to the instance (𝐺 [𝑈 (𝑑)], 𝑐, 𝑇 (𝑑)) = I[𝑈 (𝑑), 𝐵]
of cost at most 𝑤(𝑃) in polynomial time. Moreover, we have computed
A (I[𝑈 (𝑑′) \𝑈 (𝑑), 𝐵]). Together with 𝛿𝐵 (𝑈 (𝑑)), these walk solutions can be
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𝑈 (𝑑)

𝑈 (𝑑′) \𝑈 (𝑑)

𝑉 \𝑈 (𝑑′)
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Figure 16.8 Illustration of two parallel arcs (𝑑, 𝑑′ ) in the digraph (𝐷, 𝐴) . In this
example, the boxed set 𝑈 (𝑑′ ) is shown in green and blue; its terminal pairs in
𝑇 (𝑑′ ) are {𝑢1, 𝑢2} and {𝑢6, 𝑢9}. The boxed set 𝑈 (𝑑) is shown in green, and
its terminal pairs in 𝑇 (𝑑) are {𝑢1, 𝑢1}, {𝑢4, 𝑢4}, and {𝑢8, 𝑢9}. The left and the
right part of the figure show two different ways of extending the same solution to
the Multi-Path TSP instance (𝐺 [𝑈 (𝑑) ], 𝑐, 𝑇 (𝑑) ) to a solution to the Multi-
Path TSP instance (𝐺 [𝑈 (𝑑′ ) ], 𝑐, 𝑇 (𝑑′ ) ) . These two different extensions can
be obtained by considering two different arcs from 𝑑 to 𝑑′, corresponding to two
different multi-sets of border protocols for𝑈 (𝑑) in 𝐺 [𝑈 (𝑑′ ) ]. The solution on
the left is obtained by considering the multi-set of border protocols that consists
of 𝑢1, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢4, 𝑢5, 𝑢2 and 𝑢6, 𝑢7, 𝑢8, 𝑢9, then computing a solution to
the induced instance with vertex set𝑈 (𝑑′ ) \𝑈 (𝑑) and terminal pairs {𝑢2, 𝑢3},
{𝑢5, 𝑢2}, {𝑢6, 𝑢7}, and applying Lemma 16.17. The solution on the right is obtained
by considering the multi-set of border protocols that consists of 𝑢1, 𝑢1, 𝑢2, 𝑢2 and
𝑢6, 𝑢3, 𝑢4, 𝑢4, 𝑢5, 𝑢7, 𝑢8, 𝑢9, then computing a solution to the induced instance
with vertex set𝑈 (𝑑′ ) \𝑈 (𝑑) and terminal pairs {𝑢2, 𝑢2}, {𝑢6, 𝑢3}, {𝑢5, 𝑢7}, and
applying Lemma 16.17.

composed to a solution to the instance I by Lemma 16.17. Its total cost is

𝑤(𝑃) + 𝑐
(
A (I[𝑈 (𝑑′) \𝑈 (𝑑), 𝐵])

)
+ 𝑐(𝛿𝐵 (𝑈 (𝑑))) = 𝑤(𝑃′),

as required. □

Moreover, we need to show that a short 𝑑∅-𝑑𝑉 -path exists. We construct one
from an optimum solution:

Lemma 16.23. Let 𝐹∗ be an optimum solution, and let 𝐿∗ be defined as
in (16.6). Then there exists a 𝑑∅-𝑑𝑉 -path in (𝐷, 𝐴) of total weight at most
𝑐(𝐿∗) + 𝛽 · 𝑐(𝐹∗ \ 𝐿∗).

Proof. Given 𝐹∗, we first define a chain of boxed sets such that their box
definitions correspond to small cuts only, and such that for each edge 𝑒 in a
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small cut, at least one of these boxed sets contains exactly one endpoint of 𝑒. As
before, for 𝑖 = 1, . . . , �̄� , let

Λ𝑖 =
{
𝑗 ∈ {1, . . . , 𝑛 − 1} : |𝐹∗ ∩ 𝛿(𝑈𝑖𝑗 ) | ≤ 𝐾

}
be the set of indices of small cuts in the chain for terminal pair {𝑠𝑖 , 𝑡𝑖}, and
let Y𝑖 := {𝑈𝑖

𝑗
: 𝑗 ∈ Λ𝑖 ∪ {𝑛}}. The set Y := Y1 × · · · × Y �̄� is totally ordered

lexicographically by the subset relation. For each 𝜆 = (𝑌1, . . . , 𝑌 �̄�) ∈ Y,
consider the boxed set𝑈 (𝜆) with box definition(

(𝑌1
− , 𝑌

1), (𝑌2
− , 𝑌

2), . . . , (𝑌 �̄�−1
− , 𝑌 �̄�−1), 𝑌 �̄�

)
,

where 𝑌 𝑖− denotes the largest element of {∅} ∪ Y𝑖 that is a proper subset of 𝑌 𝑖 .
By definition, we have:

If 𝜆, 𝜆′ ∈ Y and 𝜆 is lexicographically smaller than 𝜆′,
then𝑈 (𝜆) ⊆ 𝑈 (𝜆′). (16.7)

Moreover, the endpoints of an edge in a small cut belong to different boxes
of the grid induced by the small cuts (cf. Figure 16.7). If 𝜅 and 𝜆 are two
lexicographically consecutive vectors in Y and 𝜆 = (𝑌1, . . . , 𝑌 �̄�), then

𝑈 (𝜆) \𝑈 (𝜅) =

�̄�⋂
𝑖=1

(
𝑌 𝑖 \ 𝑌 𝑖−

)
;

this is a box in the grid defined by the small cuts. Since we add one box at each
step, we have:

For each edge 𝑒 that belongs to a small cut,
there is a 𝜆 ∈ Y with 𝑒 ∈ 𝛿(𝑈 (𝜆)). (16.8)

By (16.7), U := ∅ ∪ {𝑈 (𝜆) : 𝜆 ∈ Y} is a chain. If 𝑊∗ is a walk solution
with footprint 𝐹∗, then consider, for each 𝑈 ∈ U, the candidate 𝑑 with
𝑈 (𝑑) = 𝑈 and 𝑇 (𝑑) = 𝑇 [𝑈,𝑊∗]. Note that 𝑇 [𝑈,𝑊∗] contains at most 𝑘 (𝐾 +1)
terminal pairs because 𝑈 is a boxed set induced by small cuts, which implies
|𝛿𝐹∗ (𝑈) | ≤ (2𝑘 − 1)𝐾 . Hence, these candidates form a path 𝑃 from 𝑑∅ to 𝑑𝑉 in
(𝐷, 𝐴), where we use the arc (𝑑, 𝑑′) associated with the border protocols 𝐵 for
𝑈 (𝑑) in𝐺 [𝑈 (𝑑′)] that are induced by𝑊∗ [𝑈 (𝑑′)]. (So, for each𝑈 (𝑑′)-sequence
in𝑊∗, we list the first and the last vertex of each𝑈 (𝑑)-subsequence and each
(𝑈 (𝑑′) \ 𝑈 (𝑑))-subsequence.) Then indeed 𝑇 [𝑈 (𝑑), 𝐵] = 𝑇 [𝑈 (𝑑),𝑊∗] and
𝑇 [𝑈 (𝑑′) \𝑈 (𝑑), 𝐵] = 𝑇 [𝑈 (𝑑′) \𝑈 (𝑑),𝑊∗].

By Lemma 16.15, the instanceI[𝑈 (𝑑′) \𝑈 (𝑑), 𝐵] has a solution that consists
of the (𝑈 (𝑑′) \𝑈 (𝑑))-sequences in𝑊∗, and the solution thatA finds is at most 𝛽
times more expensive. Moreover, 𝛿𝐵 (𝑈 (𝑑)) = 𝛿𝐹∗ (𝑈 (𝑑)) \ 𝛿𝐹∗ (𝑈 (𝑑′)). Hence,
the total weight of the path 𝑃 is at most 𝛽 · 𝑐(𝐹∗ \ 𝐿∗) + 𝑐(𝐿∗), as required. □
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We conclude the following booster theorem:

Theorem 16.24. Let 𝜀 > 0, 𝛼 > 1, 𝛽 > 𝛼, and 𝑘 ∈ N be constants. Suppose we
have an 𝛼-approximation algorithm for Symmetric TSP and a 𝛽-approximation
algorithm for Multi-Path TSP instances with up to 16𝛼

𝜀
𝑘2 terminal pairs. Then

we also have a max{𝛼 + 𝜀, (𝛽 − (𝛼 − 1) 𝜀6𝛼 )}-approximation algorithm for
Multi-Path TSP instances with up to 𝑘 terminal pairs.

Proof. By Proposition 16.12, we may assume 𝜀 < 2. Given a Multi-Path
TSP instance I with up to 𝑘 terminal pairs, we run both algorithms: the one
for short total distance (Lemma 16.13) and the one for long total distance (see
below) and output the better result. If the total distance is at most 𝜀

3𝛼 · OPT,
Lemma 16.13 guarantees that we are done.

Otherwise, we need the 𝛽-approximation algorithm A for Multi-Path TSP
instances with up to 2𝑘 (𝐾 + 1) terminal pairs; recall that 𝐾 = 6𝛼𝑘

𝜀
and note

that 2𝑘 (𝐾 + 1) = 2𝑘 ( 6𝛼
𝜀
𝑘 + 1) < 16𝛼

𝜀
𝑘2. Construct the digraph (𝐷, 𝐴) with

arc weights 𝑤 as before, calling A at most 𝑂 (𝑛10𝑘 (𝐾+2) ) times. Find a shortest
𝑑∅-𝑑𝑉 -path 𝑃 in (𝐷, 𝐴) and derive a solution to I of cost at most 𝑤(𝑃) by
Lemma 16.22.

By Lemmas 16.23 and 16.18, we have

𝑤(𝑃) ≤ 𝑐(𝐿∗) + 𝛽 · 𝑐(𝐹∗ \ 𝐿∗)
= 𝛽 · OPT − (𝛽 − 1) · 𝑐(𝐿∗)
≤ 𝛽 · OPT − (𝛼 − 1) · 𝑐(𝐿∗)
≤

(
𝛽 − (𝛼 − 1) 𝜀6𝛼

)
· OPT. □

Applying this booster theorem repeatedly yields the main result of this chapter:

Corollary 16.25. Let 𝜀 > 0, 𝛼 > 1, and 𝑘 ∈ N be constants. If there is
an 𝛼-approximation algorithm for Symmetric TSP, then there is an (𝛼 + 𝜀)-
approximation algorithm for Multi-Path TSP instances with up to 𝑘 terminal
pairs.

Proof. By Proposition 16.12, we may assume 𝛼 < 3. Let

𝑀 :=
⌈

3 − 𝛼 − 𝜀
(𝛼 − 1) 𝜀6𝛼

⌉
;

note that this is a constant. Starting with a 3-approximation algorithm (Proposi-
tion 16.12) for general Multi-Path TSP instances (in particular those with up to
( 16𝛼
𝜀
) (2𝑀−1) 𝑘 (2

𝑀 ) terminal pairs, which is still a constant number) and applying
Theorem 16.24 at most 𝑀 times yields an (𝛼 + 𝜀)-approximation algorithm for
Multi-Path TSP instances with up to 𝑘 terminal pairs. □



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

16.7 The Case of Long Total Distance 377

The following is the special case 𝑘 = 1.

Theorem 16.26 (Traub, Vygen, and Zenklusen [2022]). Let 𝛼 > 1 and 𝜀 > 0
be constants. If there is an 𝛼-approximation algorithm for Symmetric TSP, then
there is an (𝛼 + 𝜀)-approximation algorithm for Path TSP. □

This yields in particular:

Corollary 16.27. There is an 𝛼-approximation algorithm for Path TSP for
some 𝛼 < 3

2 .

Proof. This follows directly from combining Theorems 16.26 and 11.20. □

We summarize again the state of the art for Path TSP in Table 16.1.
If the given Multi-Path TSP instance has unit edge weights, all gener-

ated instances of Symmetric TSP will be unit-weight instances as well (see
Section 16.5). Hence, we conclude:

Theorem 16.28 (Traub, Vygen, and Zenklusen [2022]). Let 𝛼 > 1 and 𝜀 > 0
be constants. If there is an 𝛼-approximation algorithm for Graph TSP, then
there is an (𝛼 + 𝜀)-approximation algorithm for Graph Path TSP. □

Corollary 16.29. For any 𝜀 > 0, there is a ( 7
5 + 𝜀)-approximation algorithm

for Graph Path TSP.

Proof. This follows from Theorems 13.21 and 16.28. □

It is an interesting open question whether Theorem 16.26 can be extended to
the Asymmetric TSP:

Open Problem 16.30. Is it true that any 𝛼-approximation algorithm for Asym-
metric TSP implies an (𝛼 + 𝜀)-approximation algorithm for Asymmetric Path
TSP?

The best-known black-box reduction loses a factor of 2 (see Theorem 9.8).
Another open question addresses the 𝑇-Tour Problem:

Open Problem 16.31. Is it true that any 𝛼-approximation algorithm for Symmet-
ric TSP implies an (𝛼 + 𝜀)-approximation algorithm for the 𝑇-Tour Problem?

We only know this for the special case when |𝑇 | is bounded by a constant
(see Exercise 16.9).
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Table 16.1 Approximation ratios and upper bounds on the integrality ratio
for Path TSP in the order of their discovery. The integrality ratio refers to the
LP (14.1) for instances that satisfy the triangle inequality. The ratio 3

2 + 𝜀 holds
for any 𝜀 > 0. The last result follows from the reduction from Path TSP to
Symmetric TSP by Traub, Vygen, and Zenklusen [2022].

Approximation Integrality
Ratio Ratio Year Reference Chapter

5
3 – 1990 Hoogeveen [1991] 14.1
1+
√

5
2

1+
√

5
2 2011 An, Kleinberg, and

Shmoys [2015]
15.2

8
5

8
5 2012 Sebő [2013] 15.2

1.599 1.599 2015 Vygen [2016] –
1.566 1.566 2015 Gottschalk and Vygen [2018] 15.3
26
17

26
17 2016 Sebő and van Zuylen [2019] 15.4

3
2 + 𝜀 – 2017 Traub and Vygen [2019a] –

1.528 2018 Traub and Vygen [2019b],
Zhong [2020]

–

3
2 – 2018 Zenklusen [2019] 16.2
3
2 − 10−36 – 2022 Karlin, Klein, and

Oveis Gharan [2023]
10–11, 16

Exercises

16.1 Let 𝐺 = (𝑉, 𝐸) be an undirected graph with edge weights 𝑐 : 𝐸 → R≥0.
Show that 𝑦 as defined in the proof of Theorem 16.1 defines the nonzero
entries of an optimum solution to the dual to the shortest path LP

min
{
𝑐(𝑥) : 𝑥(𝛿(𝑈)) ≥ 1 (𝑠 ∈ 𝑈 ⊆ 𝑉 \ {𝑡}), 𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸)

}
.

Conclude that this shortest path LP always has an integral optimum
solution.

16.2 Show that the constraints 𝑥(𝑄)+𝜒{𝑣1 ,𝑤1 } (𝑄)+𝜒{𝑣2 ,𝑤2 } (𝑄) ≥ 3 in (16.5)
can be omitted for all 𝑄 ∈ B𝑎 with {𝑣1, 𝑤1} ∈ 𝑄 or {𝑣2, 𝑤2} ∈ 𝑄.

16.3 Describe a linear-time algorithm that decides whether a given Multi-
Path TSP instance has a solution.

16.4 Let I = (𝐺, 𝑐, {𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘}) be a Multi-Path TSP instance,
𝐺 = (𝑉, 𝐸), and 𝐹 be a multi-subset of 𝐸 . Show that there exists a
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solution (𝑉1, 𝐹1), . . . , (𝑉𝑘 , 𝐹𝑘) to I such that 𝐹 is the disjoint union of
𝐹1, . . . , 𝐹𝑘 if and only if

• a vertex has odd degree in (𝑉, 𝐹) if and only if it appears an odd
number of times in the list 𝑠1, 𝑡1, 𝑠2, 𝑡2, . . . , 𝑠𝑘 , 𝑡𝑘 of terminals;
• for every vertex, there is a terminal in the same connected component

of (𝑉, 𝐹);
• there are pairwise edge-disjoint paths 𝑃𝑖 from 𝑠𝑖 to 𝑡𝑖 (𝑖 = 1, . . . , 𝑘)

in (𝑉, 𝐹).
Note: It is NP-hard to check the third condition, even if the other two
conditions are satisfied (Middendorf and Pfeiffer [1993]). For constant
𝑘 , Robertson and Seymour [1995] devised a polynomial-time algorithm.

16.5 An instance of Φ-TSP consists of an undirected graph 𝐺 = (𝑉, 𝐸) with
edge weights 𝑐 : 𝐸 → R≥0 and an interface Φ = (𝐼, 𝑇,C ), consisting
of a subset 𝐼 ⊆ 𝑉 , a subset 𝑇 ⊆ 𝐼, and a partition C of 𝐼. A Φ-tour
is a multi-subset 𝐹 of 𝐸 such that odd(𝐹) = 𝑇 , the graph (𝑉, 𝐹)/𝐼 is
connected, and for all 𝐶 ∈ C , the vertices in 𝐶 lie in the same connected
component of (𝑉, 𝐹). Φ-TSP asks for a minimum-weight Φ-tour in
(𝐺, 𝑐) (or to decide that no Φ-tour exists).

(a) Devise a linear-time algorithm to decide whether a given instance
has a feasible solution.

(b) Assume a 2-approximation for the Steiner Forest Problem, which
asks for a minimum-weight edge set 𝐹 such that for all 𝐶 ∈ C , the
vertices in 𝐶 lie in the same connected component of (𝑉, 𝐹). Show
that this implies a 7-approximation algorithm for Φ-TSP.

Note: Agrawal, Klein, and Ravi [1995] indeed devised a 2-approximation
for the Steiner Forest Problem. Traub, Vygen, and Zenklusen [2022]
devised a 4-approximation algorithm for Φ-TSP.

16.6 Let 𝜀 > 0 and 𝛼 > 1 be constants such that we have an 𝛼-approximation
algorithm for Symmetric TSP, and consider Φ-TSP (cf. Exercise 16.5)
restricted to instances (𝐺, 𝑐,Φ) with Φ = (𝐼, 𝑇,C ) where |𝐼 | is bounded
by a constant and there exists a 𝑇-join of cost at most 𝜀

2𝛼OPT. Show
that then there is an (𝛼 + 𝜀)-approximation algorithm for such Φ-TSP
instances.
Hint: Mimic the proof of Lemma 16.13.
(Traub, Vygen, and Zenklusen [2022])

16.7 Now consider a Φ-TSP instance (𝐺, 𝑐,Φ) with Φ = (𝐼, 𝑇,C ) (cf.
Exercise 16.5) for which every 𝑇-join costs at least 𝜀

2𝛼OPT. Show that
then there is a laminar familyL of subsets of𝑉 such that, for an optimum
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Φ-tour 𝐹∗ and 𝐾 = 4𝛼
𝜀

, the set

𝐿∗ :=
{
𝑒 ∈ 𝐹∗ : there is an 𝐿 ∈ L with 𝑒 ∈ 𝛿(𝐿), |𝐹∗ ∩ 𝛿(𝐿) | ≤ 𝐾

}
satisfies 𝑐(𝐿∗) ≥ 𝜀

4𝛼OPT.
Hint: Use Lemma 4.15.
Note: Traub, Vygen, and Zenklusen [2022] set up a dynamic program to
guess 𝐿∗ and obtained a booster theorem similar to Theorem 16.24.

16.8 Show that the digraph (𝐷, 𝐴) can be reduced to only 𝑂 (𝑛3𝑘 (𝐾+2) ) arcs
(for constant 𝑘 and 𝐾) so that Lemma 16.23 still holds.

16.9 Let 𝑘 ∈ N be a constant. Show that Corollary 16.25 implies that an
𝛼-approximation algorithm for Symmetric TSP implies an (𝛼 + 𝜀)-
approximation algorithm for instances of the 𝑇-Tour Problem with
|𝑇 | ≤ 𝑘 .
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17

Further Results, Related Problems

In this chapter, we mention further results on the approximability of variants or
special cases of the traveling salesman problem. We will also briefly mention
a few important related problems for which the best-known approximation
algorithms use a TSP approximation algorithm as a subroutine. In particular,
we discuss inapproximability results, geometric special cases, the minimum
2-edge-connected spanning subgraph problem, the prize-collecting TSP, the a
priori TSP, and capacitated vehicle routing.

17.1 Inapproximability

For the problems studied in this book, better and better approximation algorithms
have been found, and this is likely to continue. It is natural to ask whether there
is a limit or whether there is an approximation scheme: a (1 + 𝜀)-approximation
algorithm for every 𝜀 > 0, with a polynomial running time for each fixed 𝜀.

Unless P = NP, the answer is no, except for some special cases. Papadimitriou
and Yannakakis [1993] showed that Symmetric TSP (and even the very special
case 1-2-TSP; see Section 17.3) is MAXSNP-hard. Today, the term APX-hard
is more commonly used. We do not define these terms here but just say that,
by the results of Arora et al. [1998], they imply that there is no approximation
scheme unless P = NP.

In fact, concrete lower bounds have been obtained for many problems. Unless
P = NP, no approximation algorithms exist with better ratio than

• 75
74 for Asymmetric TSP (Karpinski, Lampis, and Schmied [2015], improving
on Papadimitriou and Vempala [2006]);
• 123

122 for Symmetric TSP (Karpinski, Lampis, and Schmied [2015], improving
on Lampis [2014]);

381
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• 685
684 for Graph TSP (Karpinski and Schmied [2015]), even for subcubic
graphs.

With the current techniques, it seems difficult to prove much larger lower
bounds, but it would be very interesting.

Open Problem 17.1. Improve the lower bounds on the approximability of any
of the studied problems substantially.

Some important special cases that do have an approximation scheme are
discussed in Section 17.3.

17.2 Two-Edge-Connected Spanning Subgraphs

For Symmetric TSP, we often worked with the linear programming relaxation
(2.12). The set of feasible integral solutions to this LP includes not only the
incidence vectors of tours, but the incidence vectors of all 2-edge-connected
spanning multi-subgraphs. Hence, it is an interesting question how well this –
seemingly easier – problem can be approximated. A related (and arguably even
more interesting) problem does not allow parallel edges:

Problem 17.2 (Two-Edge-Connected Spanning Subgraph Problem).

Instance: A 2-edge-connected undirected graph 𝐺 = (𝑉, 𝐸) and a cost
function 𝑐 : 𝐸 → R≥0.

Task: Compute a subset 𝐹 ⊆ 𝐸 of minimum cost such that (𝑉, 𝐹) is
2-edge-connected.

Note that in this formulation, it is not allowed that 𝐹 contains two copies of
an edge.

In the unweighted case (𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸), it does not make a difference
whether we allow multi-subgraphs or subgraphs (i.e., whether we allow picking
an edge more than once). The reason is that we can always avoid taking a second
copy of an edge (see Proposition 13.3 and Exercise 2.14). In Section 13.6,
we showed a 4

3 -approximation algorithm for the problem of finding a smallest
2-edge-connected spanning subgraph. This approximation ratio has recently
been improved to 1.3 + 𝜀 by Garg, Grandoni, and Jabal Ameli [2023] and
Kobayashi and Noguchi [2023]. Fernandes [1998] proved that the problem is
APX-hard.

For the general (weighted) problem, it does make a difference whether we allow
picking an edge twice. If we allow this, we immediately get a 3

2 -approximation
algorithm.
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Figure 17.1 Example from Alexander, Boyd, and Elliott-Magwood [2006] showing
a lower bound of 6

5 on the integrality ratio of the LP (2.12). The red edges cost 2, the
black edges 1, and the green edges 0. An LP solution is given by setting 𝑥𝑒 = 1

2 for
the red edges and 𝑥𝑒 = 1 for all other edges; its cost is 10 𝑛

8 . Any 2-edge-connected
multi-subgraph costs at least 12 𝑛

8 .

Theorem 17.3 (Frederickson and Ja’ja’ [1982]). There is a 3
2 -approximation

algorithm for the problem of finding a minimum-weight 2-edge-connected
spanning multi-subgraph of a given connected undirected graph 𝐺 = (𝑉, 𝐸)
with weights 𝑐 : 𝐸 → R≥0.

Proof. Directly from Wolsey’s analysis of Christofides’ algorithm (cf. Theo-
rem 2.29). □

The algorithm by Karlin, Klein, and Oveis Gharan [2022, 2023] obtains an
approximation ratio of 3

2 − 10−36.
If we do not allow picking edges more than once, the problem is apparently

harder unless the edge weights satisfy the triangle inequality (in which case
the problem reduces to the one in which we allow picking edges twice; cf.
Exercise 17.1). In general, the best-known approximation ratio for Problem 17.2
is still 2. We need the following classical result:

Theorem 17.4 (Edmonds [1973,1975]). Let 𝐺 = (𝑉, 𝐸) be a directed graph
with weights 𝑐 : 𝐸 → R≥0 and 𝑟 ∈ 𝑉 . Suppose |𝛿+ (𝑈) | ≥ 2 for all 𝑈 ⊊ 𝑉
with 𝑟 ∈ 𝑈. Then 𝐺 contains two edge-disjoint spanning arborescences rooted
at 𝑟, and we can find two such arborescences with minimum total weight in
polynomial time.

In fact, this problem can be reduced to weighted matroid intersection (see,
e.g., Schrĳver [2003] or Korte and Vygen [2018]). Using this, the following is
quite easy:

Theorem 17.5 (Khuller and Vishkin [1994]). There is a 2-approximation
algorithm for the Two-Edge-Connected Spanning Subgraph Problem.

Proof. Let 𝐺↔ = (𝑉, 𝐸↔) be the digraph that results from orienting every
edge of 𝐺 both ways. Let 𝑐((𝑣, 𝑤)) = 𝑐({𝑣, 𝑤}) for every edge 𝑒 = (𝑣, 𝑤) ∈
𝐸↔. Choose a root 𝑟 ∈ 𝑉 arbitrarily, and find two edge-disjoint spanning
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Figure 17.2 Example from Cheriyan et al. [2008] showing a lower bound of 3
2 on

the integrality ratio of the LP that results from (2.12) by adding the constraints
𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸. We have 2𝑘 + 2 vertices (here 𝑘 = 6). The 2𝑘 + 1 green
edges have cost 0, and the red edges have cost 1. Setting 𝑥𝑒 = 1 for the green edges,
𝑥𝑒 = 1

3 for the single red edges, and 𝑥𝑒 = 2
3 for the two bent double red edges yields

a feasible LP solution of total cost 2
3 𝑘 + 1. There is no simple 2-edge-connected

spanning subgraph with fewer than 𝑘 + 1 red edges. Since there is a spanning tree
of cost 0, this is actually an instance of the tree augmentation problem.

arborescences rooted at 𝑟 in 𝐺↔, say (𝑉, 𝐴1) and (𝑉, 𝐴2), so that their total
weight is minimum (cf. Theorem 17.4). Let 𝐴 = 𝐴1 ∪ 𝐴2, and let 𝐹 =

{𝑒 = {𝑣, 𝑤} : (𝑣, 𝑤) ∈ 𝐴 or (𝑤, 𝑣) ∈ 𝐴} be the corresponding subset of 𝐸 .
Then for any 𝑈 ⊊ 𝑉 with 𝑟 ∈ 𝑈, we have |𝐹 ∩ 𝛿(𝑈) | ≥ |𝐴 ∩ 𝛿+ (𝑈) | =
|𝐴1 ∩ 𝛿+ (𝑈) | + |𝐴2 ∩ 𝛿+ (𝑈) | ≥ 2, so (𝑉, 𝐹) is 2-edge-connected. Moreover,
𝑐(𝐹) ≤ 𝑐(𝐴1) + 𝑐(𝐴2) ≤ 2𝑐(𝐹∗) for any 2-edge-connected subgraph (𝑉, 𝐹∗),
because (𝐹∗)↔ contains two edge-disjoint spanning arborescences, again by
Theorem 17.4. □

Still no better approximation algorithm is known. This is somewhat surprising
because Jain [2001] obtained the approximation ratio 2 for much more general
network design problems. A first step towards improving on Theorem 17.5
and resolving the following open problem may be the recent progress on the
weighted tree augmentation problem by Traub and Zenklusen [2021,2022].

Open Problem 17.6. Find an approximation algorithm with an approximation
ratio better than 2 for the Two-Edge-Connected Spanning Subgraph Problem.

By Theorem 2.29, the integrality ratio of (2.12) is at most 3
2 . In fact, by

Theorem 2.31 and the fact that every tour is 2-edge-connected, it is at most
the integrality ratio of (2.2) and hence at most 3

2 − 10−36 (cf. Theorem 10.19).
Carr and Ravi [1998] conjectured it to be 4

3 . An example of Alexander, Boyd,
and Elliott-Magwood [2006] shows that it is at least 6

5 (see Figure 17.1). The
ratio restricted to unit weights is between 8

7 (Boyd, Fu, and Sun [2016]) and 4
3

(Theorem 13.23).
For unit weights, the integrality ratio does not change if we add the constraints

𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 to (2.12) – see Exercise 2.14 and Proposition 13.3. For
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general weights, the integrality ratio is different if we add 𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 :
It is at least 3

2 (see the example by Cheriyan et al. [2008] in Figure 17.2) and at
most 2 (by Jain’s [2001] general result on survivable network design).

The directed analogon of Problem 17.2 is the problem of computing a
minimum-weight strongly connected spanning subgraph of a given digraph (a
relaxation of the Asymmetric TSP). See Exercise 3.7.

17.3 Special Cases and Variants of the Symmetric TSP

Besides Graph TSP (cf. Chapters 12 and 13), other special cases of the
Symmetric TSP have been studied.

For example, in the special case of the Graph TSP where the instance is
a 𝑘-regular graph (with 𝑘 large), Vishnoi [2012] showed how to find a tour
of length at most (1 +

√︁
64/ln 𝑘)𝑛 in polynomial time. This was improved by

Chiplunkar and Vishwanathan [2015] and Feige, Ravi, and Singh [2014]. For
𝑘 = 3 (cubic graphs) and for subcubic graphs, stronger results are known (see
Section 12.3).

Another well-studied special case is the 1-2-TSP, in which 𝑐(𝑣, 𝑤) ∈ {1, 2}
for all 𝑣, 𝑤 ∈ 𝑉 . To see that this is essentially a special case of the Graph TSP
(up to an additive constant of 1), add a vertex 𝑥 and consider the graph with edge
set {{𝑣, 𝑥} : 𝑣 ∈ 𝑉} ∪ {{𝑣, 𝑤} : 𝑣, 𝑤 ∈ 𝑉, 𝑣 ≠ 𝑤, 𝑐(𝑣, 𝑤) = 1}. The 1-2-TSP has
an 8

7 -approximation algorithm (Berman and Karpinski [2006]). The integrality
ratio of (2.2) for the 1-2-TSP is between 10

9 (Williamson [1990]) and 5
4 (Mnich

and Mömke [2018], improving on Qian et al. [2015]).
Another line of research deals with geometric instances. Here, each city is

associated with a point inR𝑑 , and the distances are ℓ𝑝-distances. This case is also
NP-hard for any fixed 𝑑 ≥ 2 and any 𝑝. Arora [1998] found an approximation
scheme for geometric instances based on dynamic programming. The most
prominent case 𝑑 = 𝑝 = 2 is called the Euclidean TSP, for which Mitchell
[1999] also devised such an approximation scheme. Rao and Smith [1998] and
Bartal and Gottlieb [2013] improved the running time: For every fixed 𝜀 > 0,
they have (1 + 𝜀)-approximation algorithms that run in 𝑂 (𝑛 log 𝑛) and 𝑂 (𝑛)
time, respectively. The dependence of the constant factor on 𝜀 was improved by
Kisfaludi-Bak, Nederlof, and Węgrzycki [2021], but the running time remains
large for reasonable values of 𝜀. Bartal, Gottlieb, and Krauthgamer [2016] found
a randomized approximation scheme for metric spaces with bounded doubling
dimension. Disser et al. [2021] found a fully polynomial approximation scheme
for instances with highway dimension 1.
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Interestingly, it is not known whether the decision version of the Euclidean
TSP belongs to NP: For a given instance of Euclidean TSP with integral
coordinates, a given tour 𝑇 , and an integer 𝑘 , we do not know how to decide in
polynomial time whether the cost of 𝑇 is at most 𝑘 .

Hougardy [2014] showed that even when restricted to instances of Euclidean
TSP, the integrality ratio of (2.2) is at least 4

3 .
Similar techniques as for geometric instances apply to the Symmetric TSP

in planar graphs (with nonnegative edge weights). Klein [2008] found an
approximation scheme that has linear running time for every fixed 𝜀 > 0.
An approximation scheme exists even for bounded genus graphs (Demaine,
Hajiaghayi, and Mohar [2010]) and for the even-more-general class of minor-free
graphs (Demaine, Hajiaghayi, and Kawarabayashi [2011], Borradaile, Le, and
Wulff-Nilsen [2017]).

Many variants of Symmetric TSP have been studied, often motivated by
practical applications. We will mention only a few examples here. For a more
comprehensive survey, see Saller, Koehler, and Karrenbauer [2023].

Bérczi, Mnich, and Vincze [2022] studied the Many-Visits TSP, in which
we are given an instance (𝑉, 𝑐) of Symmetric TSP with Triangle Inequality
plus a positive integer 𝑟 (𝑣) for each 𝑣 ∈ 𝑉 and ask for a closed walk that
visits each city 𝑣 exactly 𝑟 (𝑣) times. If 𝑟 (𝑣) is polynomially bounded, one can
just make 𝑟 (𝑣) copies of 𝑣, but in general, the problem is more difficult. Still,
Bérczi, Mnich, and Vincze [2022] devised a 3

2 -approximation algorithm, also
for the path version. Pillai and Singh [2023] devised a black-box reduction to an
LP-based algorithm for Symmetric TSP.

Bender and Chekuri [2000] and Mömke [2015] devised approximation
algorithms for a generalization of Symmetric TSP with Triangle Inequality
where instead of the triangle inequality, it is only required that 𝑐(𝑢, 𝑤) ≤
𝛽(𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤)) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and some 𝛽 > 1. Of course, the
approximation ratios depend on 𝛽.

Chalasani, Motwani, and Rao [1997] and Frank et al. [1998] found a 2-
approximation algorithm for the Bipartite TSP. Here we look for a minimum-
cost Hamiltonian circuit in a complete bipartite graph 𝐾𝑛,𝑛 with edge weights
satisfying the quadrilateral inequality.

Other variants put constraints on the feasible tours. In the Clustered TSP, for
which Guttmann-Beck, Knaan, and Stern [2018] presented a 4-approximation
algorithm, a set of clusters (not necessarily disjoint subsets of 𝑉) is given, and
points in the same cluster must be visited consecutively. See Exercise 17.2 for a
better approximation algorithm in a special case.

Further generalizations of the TSP require a vehicle to transport goods from
pickup locations to delivery locations. There are several variants, depending
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on whether there is only one kind of good and whether the vehicle has limited
capacity; for the most general version, no constant-factor approximation algo-
rithm is known. If there is only one type of good and the vehicle can transport
one unit only, the tour must alternate between pickups and deliveries; this is
equivalent to the Bipartite TSP mentioned earlier.

All these variants can also be formulated in the asymmetric case, but these
have been studied less so far. In Sections 17.4 and 17.5, we will discuss variants
of the TSP in which it is not mandatory to visit all points.

17.4 Prize-Collecting TSP and Orienteering

Several problems have been studied in which, for a given TSP instance, it is
not mandatory to visit all cities. One way to model such problems is as follows.
In addition to an instance (𝑉, 𝑐) of Symmetric or Asymmetric TSP with
Triangle Inequality, we have a penalty (or reward or prize) 𝑝(𝑣) for every
element 𝑣 ∈ 𝑉 . Then we need to collect a certain total reward and/or we have
to pay a penalty if we decide to not visit a city. This kind of problem was
first suggested by Balas [1989]. Without loss of generality, we assume that the
tour must start at a given depot (if this is not given, we can try all possible
starting points). One of the best-studied version is (the symmetric version of)
the following:

Problem 17.7 (Prize-Collecting TSP).

Instance: A finite set 𝑉 (of customers), a depot 𝑠 ∉ 𝑉 , and a cost function
𝑐 : ({𝑠} ∪ 𝑉) × ({𝑠} ∪ 𝑉) → R≥0 that satisfies the triangle
inequality. A penalty 𝑝(𝑣) ≥ 0 for each customer 𝑣 ∈ 𝑉 .

Task: Compute a circuit𝐶 containing 𝑠 such that 𝑐(𝐸 (𝐶))+𝑝(𝑉 \𝑉 (𝐶))
is minimum.

Like TSP, this has an asymmetric and a symmetric version. Following
Bienstock et al. [1993] (with minor changes to adapt to the asymmetric setting),
we show:

Theorem 17.8. If there is an algorithm for Asymmetric TSP that always
computes a solution of cost at most 𝛼 times the value of the Asymmetric TSP
LP (3.2), then there is an (𝛼 + 1)-approximation algorithm for the Asymmetric
Prize-Collecting TSP.

Proof. Let (𝑉, 𝑠, 𝑐, 𝑝) be an instance of the Asymmetric Prize-Collecting
TSP. Adapting the linear program (3.2) for the Asymmetric TSP instance
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({𝑠}∪𝑉, 𝑐), we obtain an LP relaxation for the Asymmetric Prize-Collecting
TSP by introducing a variable 𝑦𝑣 (𝑣 ∈ 𝑉) that indicates whether we visit 𝑣. Let
𝐸 = {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ {𝑠} ∪𝑉, 𝑣 ≠ 𝑤}.

min 𝑐(𝑥) +
∑︁
𝑣∈𝑉

𝑝(𝑣) (1 − 𝑦𝑣)

subject to 𝑥(𝛿(𝑈)) ≥ 2𝑦𝑣 (𝑣 ∈ 𝑈 ⊆ 𝑉)

𝑥(𝛿+ (𝑣)) = 𝑥(𝛿− (𝑣)) (𝑣 ∈ {𝑠} ∪𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸)

0 ≤ 𝑦𝑣 ≤ 1 (𝑣 ∈ 𝑉).

(17.1)

Note that this LP can be solved in polynomial time by Theorem 2.10, using
Corollary 2.8 for the separation problem. Let (𝑥, 𝑦) be an optimum solution.
For a threshold 𝜏 ∈ (0, 1] let 𝑆𝜏 := {𝑣 ∈ 𝑉 : 𝑦𝑣 ≥ 𝜏} and 𝑥𝜏𝑒 := 𝑥𝑒

𝜏
for 𝑒 ∈ 𝐸 .

Then 𝑥𝜏 is a feasible solution to the LP

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2 (𝑈 ⊆ 𝑉, 𝑆𝜏 ∩𝑈 ≠ ∅)

𝑥(𝛿+ (𝑣)) = 𝑥(𝛿− (𝑣)) (𝑣 ∈ {𝑠} ∪𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸).

(17.2)

Now, by Theorem 3.5, the Asymmetric TSP LP (3.2) for ({𝑠} ∪ 𝑆𝜏 , 𝑐) has
value at most 𝑐(𝑥𝜏). By the assumed Asymmetric TSP algorithm, we thus get a
tour for {𝑠} ∪ 𝑆𝜏 that costs at most 𝛼 · 𝑐(𝑥𝜏) = 𝛼

𝜏
· 𝑐(𝑥). Since we do not visit the

customers in 𝑉 \ 𝑆𝜏 , we have to pay a penalty of 𝑝(𝑉 \ 𝑆𝜏) ≤ ∑
𝑣∈𝑉 𝑝(𝑣)

1−𝑦𝑣
1−𝜏 .

We can thus bound the total cost by
𝛼
𝜏
· 𝑐(𝑥) + 1

1−𝜏

∑︁
𝑣∈𝑉

𝑝(𝑣) (1 − 𝑦𝑣).

For 𝜏 = 𝛼
𝛼+1 , this yields an (𝛼 + 1)-approximation algorithm. □

Combining Theorem 17.8 with the (17 + 𝜀)-approximation algorithm for
Asymmetric TSP (Theorem 8.25), we obtain an (18 + 𝜀)-approximation algo-
rithm for the Asymmetric Prize-Collecting TSP. For the symmetric case, we
obtain the approximation ratio 5

2 using Christofides’ algorithm.
The threshold rounding algorithm in the proof of Theorem 17.8 can be

improved by choosing the best 𝜏 depending on 𝑦 (see Exercise 17.3). In the
symmetric case, an approximation guarantee of less than 1.915 was obtained by
Goemans [2009] (improving on Archer et al. [2011]) by combining this with a
primal-dual algorithm that was devised by Goemans and Williamson [1995].
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The threshold rounding algorithm has been improved by Blauth and Nägele
[2023]: They showed how to avoid always paying the penalty for vertices below
the threshold and obtained the approximation ratio of 1.774. The currently best
approximation guarantee for the Symmetric Prize-Collecting TSP, due to
Blauth, Klein, and Nägele [2023], is 1.599.

Besides the Prize-Collecting TSP, several similar problems have been
studied intensively. This includes:

• An instance of 𝑘-TSP has no penalties but an integer 𝑘 and asks for a
minimum-cost circuit that contains 𝑠 and visits 𝑘 customers.

• In the Orienteering Problem, we get a deadline 𝐷 and ask for a circuit 𝐶
with 𝑐(𝐸 (𝐶)) ≤ 𝐷 that contains 𝑠 and maximizes 𝑝(𝑉 (𝐶)).

Variants of these problems ask for a path instead of a circuit, again with a
specified starting point 𝑠 and possibly also with a specified endpoint. All these
variants have natural applications in practice. Blum, Ravi, and Vempala [1999],
Arora and Karakostas [2006], Garg [2005], Chaudhuri et al. [2003], Blum et al.
[2007], Bansal et al. [2004], Nagarajan and Ravi [2011], Chekuri, Korula, and
Pál [2012], and Bateni and Chuzhoy [2013] described approximation algorithms
and reductions between these problems.

However, no constant-factor approximation algorithms for the asymmetric
versions are known.

Open Problem 17.9. Find a constant-factor approximation algorithm for
Asymmetric Orienteering or prove that this would imply P = NP.

Even more general versions of the above-mentioned problems have been
studied, where every city has a deadline or a time window and must be visited
by that deadline (or within its time window). Here the time when a city is visited
is the cost of the initial segment of the tour, from a given starting point to that
city. Another model lets the reward depend on the time when a city is visited.
A special case asks that no customer shall be visited much later than its distance
from the starting point (this is called bounded regret).

A related problem, although it asks for visiting all customers, is known as
the Minimum Latency Problem or the Traveling Repairman Problem. It
asks for a tour 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣𝑛 that minimizes the sum of the latencies – that
is,

∑𝑛
𝑖=1

∑𝑖
𝑗=1 𝑐(𝑣 𝑗−1, 𝑣 𝑗 ). Again, constant-factor approximation algorithms are

known for the symmetric case (see, e.g., Chaudhuri et al. [2003]) but not for the
asymmetric case (see Friggstad and Swamy [2022]).
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17.5 A Priori TSP

Sometimes tours must be planned before we know which customers are to
be visited. We are given an instance (𝑉, 𝑐) of the Asymmetric TSP with
Triangle Inequality and a probability distribution 𝜇 on the subsets of 𝑉 , and
we are asked to compute an order 𝑉 = {𝑣1, . . . , 𝑣𝑛} so that if we visit a random
subset of 𝑉 (the active customers, sampled according to 𝜇) in this order, the
expected total distance is as small as possible. The best-studied case is when
each customer is activated independently. As it is the case in many applications,
let us assume for simplicity that there is a depot 𝑠 that must be visited always.
Then the problem can be formulated as follows.

Problem 17.10 (A Priori TSP).

Instance: A finite set 𝑉 (of customers), a depot 𝑠 ∉ 𝑉 , and a cost function
𝑐 : ({𝑠}∪𝑉)×({𝑠}∪𝑉) → R≥0 that satisfies the triangle inequality.
An activation probability 𝑝(𝑣) ∈ [0, 1] for each customer 𝑣 ∈ 𝑉 .

Task: Compute a circuit𝐶 with vertex set {𝑠}∪𝑉 so thatE𝐴∼𝜇 [𝑐(𝐶𝐴)] is
minimum, where 𝐶𝐴 is the circuit that results from 𝐶 by skipping
the customers in𝑉\𝐴, and 𝜇(𝐴) = ∏

𝑣∈𝐴 𝑝(𝑣)
∏
𝑣∈𝑉\𝐴(1−𝑝(𝑣)).

Only the symmetric case has been studied so far, and so we assume 𝑐 to be
symmetric in the following.

One possible way to design a solution is to select a subset 𝑆 ⊆ 𝑉 , compute
a tour 𝑀 on {𝑠} ∪ 𝑆, and insert edges (𝑟, 𝑣), (𝑣, 𝑟) for all 𝑣 ∈ 𝑉 \ 𝑆, where
𝑟 ∈ {𝑠} ∪ 𝑆 is chosen so that 𝑐(𝑟, 𝑣) + 𝑐(𝑣, 𝑟) is minimum (to obtain a circuit,
we can skip vertices that are visited again). Such a solution is called a master
route solution (with master route 𝑀).

Given a master route solution and a set 𝐴 of active customers, we will think
that we always travel along the master route, and for all 𝑣 ∈ 𝐴, we travel from
the nearest vertex on the master route to 𝑣 and back. See Figure 17.3. The final
cost can only be cheaper than this.

We need two lower bounds. First, let OPT𝐴 denote the minimum cost of a
tour in the Symmetric TSP instance induced by {𝑠} ∪ 𝐴. Then E𝐴∼𝜇 [OPT𝐴] is
the expected cost of an a posteriori optimal tour, which is clearly a lower bound.
The following lower bound is also useful:

Proposition 17.11 (Shmoys and Talwar [2008]). For 𝑆 ⊆ 𝑉 and 𝑣 ∈ 𝑉 , let

𝐷 ({𝑠} ∪ 𝑆, 𝑣) := min
{
2𝑐(𝑣, 𝑟) : 𝑟 ∈ ({𝑠} ∪ 𝑆) \ {𝑣}

}
.
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(a)

𝑠

(c)

𝑠

(b)

𝑠

(d)

𝑠

Figure 17.3 In (a), we see a master route solution with a master route (green)
and connections of the other customers to that master route (red). In (b), the
corresponding Hamiltonian circuit 𝐶 is shown. In (d), we skip the inactive
customers in 𝐶 and obtain the circuit 𝐶𝐴 on the set 𝐴 of active customers (filled).
In (c), the upper bound on 𝑐 (𝐶𝐴) obtained by the master route solution is illustrated.

Then ∑︁
𝑣∈𝑉

𝑝(𝑣) · E𝐴∼𝜇 [𝐷 ({𝑠} ∪ 𝐴, 𝑣)] ≤ 2E𝐴∼𝜇 [OPT𝐴] .

Proof. For any 𝐴 ⊆ 𝑉 , let an optimum TSP tour for 𝐴 visit 𝑠, 𝑎1, . . . , 𝑎𝑘 in
this order, and let 𝑎0 := 𝑎𝑘+1 := 𝑠. Then∑︁

𝑣∈𝐴
𝐷 ({𝑠} ∪ 𝐴, 𝑣) ≤

𝑘∑︁
𝑖=1

2 min {𝑐(𝑎𝑖−1, 𝑎𝑖), 𝑐(𝑎𝑖 , 𝑎𝑖+1)}

≤
𝑘∑︁
𝑖=1
(𝑐(𝑎𝑖−1, 𝑎𝑖) + 𝑐(𝑎𝑖 , 𝑎𝑖+1))

≤ 2 OPT𝐴.

Since the event that 𝑣 belongs to 𝐴 is independent of 𝐷 ({𝑠} ∪ 𝐴, 𝑣), the result
follows by taking the expectation for 𝐴 ∼ 𝜇 on both sides of this inequality. □

The following result is essentially due to Shmoys and Talwar [2008]:

Theorem 17.12. If there is an 𝛼-approximation algorithm for Symmetric TSP,
then there is a randomized (𝛼 + 2)-approximation algorithm for Symmetric
A Priori TSP. This algorithm always computes a master route solution of cost
at most (𝛼 + 2) E𝐴∼𝜇 [OPT𝐴].
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Proof. Choose a random subset 𝑆 of 𝑉 by including each customer 𝑣 inde-
pendently with probability 𝑝(𝑣) – that is, a set 𝑆 is chosen with probability
𝜇(𝑆) = ∏

𝑣∈𝑆 𝑝(𝑣)
∏
𝑣∈𝑉\𝑆 (1 − 𝑝(𝑣)). Run the 𝛼-approximation for Symmet-

ric TSP to obtain a tour 𝑀 on {𝑠} ∪ 𝑆. We compute a master route solution 𝐶
with master route 𝑀 and output 𝐶.

The tour 𝐶𝐴 that results from 𝐶 by skipping the inactive customers (the
elements of 𝑉 \ 𝐴) has expected cost

E𝑆∼𝜇 [E𝐴∼𝜇 [𝑐(𝐶𝐴)]] ≤ E𝑆∼𝜇
𝑐(𝑀) +

∑︁
𝑣∈𝑉\𝑆

𝑝(𝑣)𝐷 ({𝑠} ∪ 𝑆, 𝑣)


≤ E𝑆∼𝜇 [𝛼OPT𝑆] + E𝑆∼𝜇

[∑︁
𝑣∈𝑉

𝑝(𝑣)𝐷 ({𝑠} ∪ 𝑆, 𝑣)
]

= E𝐴∼𝜇 [𝛼OPT𝐴] +
∑︁
𝑣∈𝑉

𝑝(𝑣) E𝐴∼𝜇 [𝐷 ({𝑠} ∪ 𝐴, 𝑣)]

≤ (𝛼 + 2) E𝐴∼𝜇 [OPT𝐴],

where the last inequality follows from Proposition 17.11. □

Note that we even get expected cost (𝛼 + 2) times the expected cost of an
a posteriori optimal tour. Theorem 17.12 yields an expected approximation
ratio 4 using the double tree algorithm (Shmoys and Talwar [2008]), 7

2 using
Christofides’ algorithm (as noted by van Ee and Sitters [2018]), and slightly
better with Theorem 11.20. Blauth et al. [2023] showed that sampling less (more
precisely, including a customer 𝑣 into 𝑆 with probability 1 − (1 − 𝑝(𝑣))0.663

instead of 𝑝(𝑣)) yields an approximation ratio better than 3.1.
Let us define the master route ratio to be the supremum, taken over all

Symmetric A Priori TSP instances, of the ratio of the expected cost of a
best master route solution and the expected cost of an optimum A Priori TSP
solution (where 0

0 := 1). Here, the expected cost of a best master route solution
with master route on {𝑠} ∪ 𝑆 is

OPT𝑆 +
∑︁
𝑣∈𝑉\𝑆

𝑝(𝑣)𝐷 ({𝑠} ∪ 𝑆, 𝑣), (17.3)

and we take the minimum over all 𝑆 ⊆ 𝑉 .
Theorem 17.12 also shows:

Corollary 17.13. The master route ratio is at most 3.

Proof. Set 𝛼 = 1 in Theorem 17.12. □



This material has been published by Cambridge University Press as "Approximation Algorithms
for Traveling Salesman Problems" by Vera Traub and Jens Vygen (https://doi.org/10.1017/
9781009445436). This pre-publication version is free to view and download for personal use only.
Not for re-distribution, re-sale, or use in derivative works.
©Vera Traub and Jens Vygen 2024.

17.5 A Priori TSP 393

Indeed, the proof reveals that the best master route solution is at most 3 times
more expensive than the expected cost of an a posteriori optimal tour. Blauth
et al. [2023] showed that the master route ratio is actually between 2.54 and
2.59. The lower bound is easy to see: There are examples where the best master
route solution is 1

1−𝑒−1/2 times more expensive than the best a priori tour (see
Exercise 17.4).

Shmoys and Talwar [2008] also proposed a deterministic 8-approximation
algorithm for the symmetric case, which was improved by van Zuylen [2011] to
the ratio 6.5. Her algorithm is based on the method of conditional expectations.
It decides for the customers one by one whether to include them into 𝑆 or not,
so that a pessimistic estimator of the final expected cost does not increase. To
define the pessimistic estimator, we consider a fractional relaxation of finding
an optimum master route solution. For 𝑒 ∈ 𝐸 =

({𝑠}∪𝑉
2

)
, we have variables 𝑏𝑒

to indicate whether we buy an edge (include it in the master route) and variables
𝑟𝑣𝑒 (𝑣 ∈ 𝑉) to indicate whether we rent an edge if 𝑣 is active (to connect 𝑣 to the
master route):

min
∑︁
𝑒∈𝐸

𝑐(𝑒)
(
𝑏𝑒 +

∑︁
𝑣∈𝑉

𝑝(𝑣)𝑟𝑣𝑒
)

subject to 𝑏(𝛿(𝑈)) + 𝑟𝑣 (𝛿(𝑈)) ≥ 2 (𝑈 ⊆ 𝑉, 𝑣 ∈ 𝑈)

𝑏𝑒 ≥ 0 (𝑒 ∈ 𝐸)

𝑟𝑣𝑒 ≥ 0 (𝑣 ∈ 𝑉, 𝑒 ∈ 𝐸).

(17.4)

From every feasible solution to this LP, we can construct a feasible solution
to the subtour LP for any subset of customers:

Lemma 17.14. Let 𝑆 ⊆ 𝑉 and 𝑥𝑆 := 𝑏 +∑𝑣∈𝑆 𝑟
𝑣 . Then the value of the subtour

LP (2.2) for ({𝑠} ∪ 𝑆, 𝑐) is at most 𝑐(𝑥𝑆).

Proof. Orient every edge 𝑒 = {𝑣, 𝑤} both ways, set 𝑥 (𝑣,𝑤) = 𝑥 (𝑤,𝑣) = 1
2𝑥{𝑣,𝑤} ,

and apply Theorem 3.5. □

Hence, if we have an algorithm that computes a tour of cost at most 𝛼 times the
value of (2.2), then PE𝑆 := 𝛼𝑐(𝑥𝑆) +∑

𝑣∈𝑉 𝑝(𝑣)𝐷 ({𝑠} ∪ 𝑆, 𝑣) is a pessimistic
estimator (an upper bound on the expected cost of the resulting master route
solution). Moreover, for any disjoint subsets 𝑉0, 𝑉1 ⊆ 𝑉 , we can compute the
conditional expectation E𝑆∼𝜇 [PE𝑆 |𝑉1 ⊆ 𝑆 ⊆ 𝑉 \𝑉0] efficiently. Finally, we can
add a customer to 𝑉0 or 𝑉1 without increasing this conditional expectation (see
van Zuylen [2011] for details).
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We end up with a deterministic algorithm that computes a master route
solution of cost at most

E𝑆∼𝜇 [PE𝑆] ≤ 𝛼 E𝑆∼𝜇 [𝑐(𝑥𝑆)] +
∑︁
𝑣∈𝑉

𝑝(𝑣) E𝑆∼𝜇 [𝐷 ({𝑠} ∪ 𝑆, 𝑣)]

≤ 𝛼
∑︁
𝑒∈𝐸

𝑐(𝑒)
(
𝑏𝑒 +

∑︁
𝑣∈𝑉

𝑝(𝑣)𝑟𝑣𝑒

)
+ 2E𝐴∼𝜇 [OPT𝐴]

≤ (3𝛼 + 2) E𝐴∼𝜇 [OPT𝐴],

where the second inequality follows from Proposition 17.11 and the third inequal-
ity follows from the upper bound on the master route ratio (Corollary 17.13). So
we get an approximation ratio 6.5 for Symmetric A Priori TSP using 𝛼 = 3

2 (by
Wolsey’s analysis of Christofides’ algorithm; Theorem 2.23). Since the master
route ratio is actually less than 2.6, this deterministic algorithm actually has
approximation ratio less than 5.9 (Blauth et al. [2023]).

The techniques presented in this section do not work in the asymmetric
setting, for which essentially nothing is known.

Open Problem 17.15. Find a constant-factor approximation algorithm for
Asymmetric A Priori TSP or prove that this would imply P = NP.

Other stochastic versions of the TSP have been studied as well – see Ganesh,
Maggs, and Panigrahi [2023] for a recent example and further references.

17.6 Vehicle Routing

One of the most natural and frequent applications of the traveling salesman
problem is when a vehicle must visit a certain set of locations (customers) with
a tour that starts and ends at a given depot. When we have more than one vehicle,
the problem generalizes in several ways.

In the first generalization, every vehicle may have its own starting position
(depot), and we want to visit all customers but do not care which vehicle serves
which customers. This problem is a special case of Multi-Path TSP (and
Φ-TSP) and has a simple 2-approximation algorithm (contract the depots, find
a minimum-cost spanning tree, double all edges). If the number of depots is
bounded by a constant, Xu and Rodrigues [2015] devised a 3

2 -approximation
algorithm, and Corollary 16.25 yields a slightly better approximation guarantee.

In another generalization, the vehicles all start at a common depot but have
a capacity constraint. In the simplest case, every vehicle can serve up to 𝑄
customers; this is called the unit-demand special case. As for TSP, there is a
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symmetric and an asymmetric version. In a more general version, customers
have different demands, and there is a limit on the total demand that a vehicle
can serve. We scale down demands so that without loss of generality, the vehicle
capacity is 1:

Problem 17.16 (Capacitated Vehicle Routing).

Instance: A finite set 𝑉 (of customers), a depot 𝑠 ∉ 𝑉 , and a cost function
𝑐 : ({𝑠} ∪ 𝑉) × ({𝑠} ∪ 𝑉) → R≥0 that satisfies the triangle
inequality. A demand 𝑑 (𝑣) ∈ [0, 1] for each customer 𝑣 ∈ 𝑉 .

Task: Compute a set of tours, where each tour is a circuit containing 𝑠,
each customer belongs to exactly one tour, and the total demand
of the customers in a tour is at most 1, such that the total cost of
all tours is minimum.

Haimovich and Rinnooy Kan [1985] proposed the following algorithm for
the symmetric unit-demand special case (where 𝑑 (𝑣) = 1

𝑄
for all 𝑣 ∈ 𝑉). Find

a single tour through {𝑠} ∪𝑉 by applying an approximation algorithm for the
Symmetric TSP with Triangle Inequality to ({𝑠} ∪𝑉, 𝑐). Note that the best
tour that visits all of {𝑠} ∪ 𝑉 costs at most OPT. Then, for the best choice of
𝑖 ∈ {1, . . . , 𝑄}, splitting this tour after 𝑖, 𝑖 +𝑄, 𝑖 + 2𝑄, . . . customers increases
the cost by at most OPT as we will see in Theorem 17.18. Altinkemer and
Gavish [1987] extended this idea to the general case. We need the following
lower bound:

Lemma 17.17. For every Capacitated Vehicle Routing instance (𝑉, 𝑠, 𝑐, 𝑑),
every feasible solution costs at least

∑
𝑣∈𝑉 𝑑 (𝑣) (𝑐(𝑠, 𝑣) + 𝑐(𝑣, 𝑠)).

Proof. Any tour that serves a subset 𝑊 of customers of total demand at
most 1 (and contains 𝑠) has cost at least 𝑐(𝑠, 𝑣) + 𝑐(𝑣, 𝑠) for every 𝑣 ∈ 𝑊 (by
the triangle inequality) and hence at least

∑
𝑣∈𝑊 𝑑 (𝑣) (𝑐(𝑠, 𝑣) + 𝑣(𝑣, 𝑠)). The

assertion follows by summing over all tours in a feasible solution. □

Haimovich and Rinnooy Kan [1985] and Altinkemer and Gavish [1987]
formulated their results for the symmetric case, but they also work in the
asymmetric case:

Theorem 17.18. If there is an 𝛼-approximation algorithm for Symmetric / Asym-
metric TSP, then there is an (𝛼 + 2)-approximation algorithm for Symmetric /
Asymmetric Capacitated Vehicle Routing. For the unit-demand special case,
we obtain an (𝛼 + 1)-approximation.
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Figure 17.4 Illustration of the tour partitioning algorithm from the proof of
Theorem 17.18. The numbers next to the customers show their demands. On the left,
a tour serving {𝑠} ∪ 𝑉 is shown. On the right, we see the Capacitated Vehicle
Routing solution that we obtain from this tour for 𝜏 = 1

8 . Below, there is an
illustration of the customer demands in the order in which they appear in the tour
shown on the left. The customers 𝑣𝑖 with 𝑖 ∈ 𝐼 are highlighted in red.

Proof. Let 𝑇 be a tour serving {𝑠} ∪𝑉 of cost at most 𝛼 · OPT, computed by
the 𝛼-approximation algorithm for Symmetric/Asymmetric TSP (and applying
Lemma 1.8). Let 𝑉 = {𝑣1, . . . , 𝑣𝑛} be the order in which 𝑇 visits the customers.
For an offset 𝜏 randomly chosen in [0, 1), consider the set 𝐼 ⊆ {1, . . . , 𝑛} of
indices 𝑖 for which ⌊𝜏 +∑𝑖−1

𝑗=1 𝑑 (𝑣 𝑗 )⌋ < ⌊𝜏 +
∑𝑖
𝑗=1 𝑑 (𝑣 𝑗 )⌋. See Figure 17.4.

If 𝑖1 and 𝑖2 are two consecutive indices in 𝐼, then the total demand of
𝑣𝑖1+1, . . . , 𝑣𝑖2−1 is less than 1. Hence, by taking the piece of the tour from 𝑣𝑖1 to
𝑣𝑖2 and adding two edges from 𝑠 to 𝑣𝑖1 , one edge from 𝑣𝑖1 to 𝑠, and one edge
from 𝑣𝑖2 to 𝑠, we can design a tour that serves 𝑣𝑖1 only and a tour that serves
𝑣𝑖1+1, . . . , 𝑣𝑖2−1. We proceed analogously for the piece before the first customer
with index in 𝐼 and the piece beginning at the last customer with index in 𝐼.

Summing up, we obtain a feasible solution of total cost at most 𝑐(𝑇) +∑
𝑖∈𝐼 (2𝑐(𝑠, 𝑣𝑖) + 2𝑐(𝑣𝑖 , 𝑠)). In the unit-demand case, the total demand of

𝑣𝑖1 , . . . , 𝑣𝑖2−1 is at most 1, so we do not need the separate single-customer
tour and obtain a solution of total cost at most 𝑐(𝑇) +∑

𝑖∈𝐼 (𝑐(𝑠, 𝑣𝑖) + 𝑐(𝑣𝑖 , 𝑠)).
Now a customer 𝑣𝑖 belongs to 𝐼 with probability 𝑑 (𝑣𝑖). Hence, using

Lemma 17.17, the expected total cost is at most (𝛼 + 2) · OPT, and at most
(𝛼 + 1) · OPT in the unit-demand case. We obtain a deterministic algorithm by
trying all relevant values of 𝜏 (there are at most 𝑛) or by splitting the tour 𝑇 in
the cheapest possible way by dynamic programming. □
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By Theorem 8.25, this yields an approximation ratio 19 + 𝜀 for Asymmetric
Capacitated Vehicle Routing (for any 𝜀 > 0), as well as an approximation
ratio 7

2 for Symmetric Capacitated Vehicle Routing with Christofides’
algorithm (Theorem 1.32), and slightly better with Theorem 11.20. Only recently,
the approximation ratio for Symmetric Capacitated Vehicle Routing (as
well as the unit-demand special case) has been improved by Blauth, Traub,
and Vygen [2023] via a better black-box reduction to Symmetric TSP. The
currently best approximation ratio for Capacitated Vehicle Routing with
general demands is due to Friggstad et al. [2022] (see Exercises 17.6 and 17.7).

Unless P = NP, an algorithm with approximation ratio better than 3
2 does not

exist for Symmetric Capacitated Vehicle Routing Problem: If 𝑐(𝑠, 𝑣) = 1
and 𝑐(𝑣, 𝑤) = 0 for all 𝑣, 𝑤 ∈ 𝑉 , the problem is equivalent to Bin Packing,
and to decide whether two vehicles suffice (equivalently, whether OPT ≤ 4 or
OPT ≥ 6) contains the well-known NP-complete problem Partition.

Many variants have been studied. Vehicles can have capacities and different
depot locations, there can be a distance constraint for every tour, and all other
variants for TSP that we discussed in the previous sections can be applied to
vehicle routing as well.

In practice, the situation is even more complicated. For example, travel times
depend on the time of the day, one needs to schedule breaks, items can have
different pickup and delivery locations as well as time windows, and vehicles
can have different properties. We refer to the book edited by Toth and Vigo
[2014] for a general overview on various aspects of vehicle routing and to Blauth
et al. [2022] for an example of a recent heuristic that can handle all of the above
and is applied successfully in practice.

Although approximation algorithms for special cases, starting with the TSP,
are normally not directly applied in practice, their study has not only greatly
advanced the theory of combinatorial optimization, but also our understanding
of practical problems.

Exercises

17.1 Show that the problem of finding a minimum-weight 2-edge-connected
spanning subgraph of a given complete undirected graph𝐺 = (𝑉, 𝐸)with
weights 𝑐 : 𝐸 → R≥0 that satisfy the triangle inequality is equivalent to
the problem of finding a minimum-weight 2-edge-connected spanning
multi-subgraph in a general connected graph with nonnegative weights.
(Frederickson and Ja’ja’ [1982]; see also Alexander, Boyd, and Elliott-
Magwood [2006])
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17.2 A special case of Clustered TSP has been called TSP with Backhauls.
Here we have a finite metric space (𝑉, 𝑐) where 𝑉 is partitioned into a
set of “linehaul customers,” a set of “backhaul customers,” and a single
depot. Starting at the depot, the linehaul customers must be visited before
the backhaul customers.

(a) Obtain a 3
2 -approximation algorithm with running time 𝑂 (𝑛3).

Hint: Proceed similarly as Christofides’ algorithm, but compose the
spanning tree of two separate trees and find a matching that uses
exactly one edge connecting a linehaul and a backhaul customer.
(Gendreau, Laporte, and Hertz [1997])

(b) Prove that any 𝛼-approximation algorithm for Symmetric TSP im-
plies an (𝛼 + 𝜀)-approximation algorithm for TSP with Backhauls.
Hint: Use the results of Chapter 16.

17.3 Show that choosing 𝜏 uniformly at random from [𝑒−1/𝛼, 1] in Theo-
rem 17.8 yields an approximation ratio 1

1−𝑒−1/𝛼 for the Prize-Collecting
TSP. Note that this can easily be derandomized.
(Goemans [2009])

17.4 Consider an instance (𝑉, 𝑠, 𝑐, 𝑝) of A Priori TSP with 𝑘2 customers
for some 𝑘 ∈ N, grouped into 𝑘 groups, each consisting of 𝑘 customers
that have distance 0 from each other. Let all other distances be 1, and let
𝑝(𝑣) = 1

2𝑘 for all 𝑣 ∈ 𝑉 . Show that for this set of instances, the ratio of
the best master route solution ((17.3) for the best 𝑆) and the overall best
a priori solution tends to 1

1−𝑒−1/2 as 𝑘 →∞.
(Blauth et al. [2023])

17.5 Let 𝜌 denote the integrality ratio of the Asymmetric TSP LP (3.2). For
a Capacitated Vehicle Routing instance (𝑉, 𝑠, 𝑐, 𝑑), let 𝐸 = {(𝑣, 𝑤) :
𝑣, 𝑤 ∈ {𝑠} ∪𝑉, 𝑣 ≠ 𝑤}. Show that the cost of an optimum solution is at
most (𝜌 + 2) times the value of the LP relaxation

min 𝑐(𝑥)

subject to 𝑥(𝛿(𝑈)) ≥ 2𝑑 (𝑈) (∅ ≠ 𝑈 ⊆ 𝑉)

𝑥(𝛿(𝑈)) ≥ 2 (∅ ≠ 𝑈 ⊆ 𝑉)

𝑥(𝛿+ (𝑣)) = 𝑥(𝛿− (𝑣)) (𝑣 ∈ {𝑠} ∪𝑉)

𝑥𝑒 ≥ 0 (𝑒 ∈ 𝐸)

(and hence the integrality ratio of this LP is at most 𝜌 + 2).
17.6 Let 0 < 𝛿 < 1

2 be a constant. Consider an instance of Capacitated
Vehicle Routing. Scale up all demands by a factor 1

1−𝛿 and run the
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algorithm in the proof of Theorem 17.18. In a post-processing step,
merge a single-item tour serving 𝑣𝑖 (for 𝑖 ∈ 𝐼) with the previous tour if
the actual (unscaled) total demand is at most 1. Show that we obtain a
solution of cost at most

𝛼 · OPT + 1
1−𝛿

∑︁
𝑣∈𝑉

(
2𝑑 (𝑣) −min{𝛿, 𝑑 (𝑣)}

)
·
(
𝑐(𝑠, 𝑣) + 𝑐(𝑣, 𝑠)

)
.

(Friggstad et al. [2022])
17.7 Consider the following “relative greedy” algorithm for Capacitated

Vehicle Routing. Let 𝛿 > 0 be a constant, and call a customer 𝑣 big if
𝑑 (𝑣) > 𝛿. For a big customer 𝑣 ∈ 𝑉 , denote by

𝜎(𝑣) := 1
1−𝛿

(
2𝑑 (𝑣) − 𝛿

)
·
(
𝑐(𝑠, 𝑣) + 𝑐(𝑣, 𝑠)

)
.

Initially, let C = ∅ and 𝑉 ′ = 𝑉 . As long as there exists a cycle 𝐶
whose vertices consist of 𝑠 and some big customers from 𝑉 ′ such that
𝑑 (𝑉 (𝐶)) ≤ 1 and 𝑐(𝐸 (𝐶)) ≤ ∑

𝑣∈𝑉 (𝐶 )\{𝑠} 𝜎(𝑣), choose such a cycle
minimizing

𝑐(𝐸 (𝐶))∑
𝑣∈𝑉 (𝐶 )\{𝑠} 𝜎(𝑣)

,

add𝐶 to C , and remove the customers in𝑉 (𝐶) \ {𝑠} from𝑉 ′. At the end,
complete C to a Capacitated Vehicle Routing solution by applying
the algorithm from Exercise 17.6 to 𝑉 ′.

(a) Prove that this algorithm can be implemented to run in polynomial
time.

(b) Show that there always exists a cycle 𝐶 whose vertices consist of 𝑠
and some big customers from 𝑉 ′ such that 𝑑 (𝑉 (𝐶)) ≤ 1 and

𝑐(𝐸 (𝐶))∑
𝑣∈𝑉 (𝐶 )\{𝑠} 𝜎(𝑣)

≤ OPT∑
𝑣∈𝑉 ′:𝑑 (𝑣)>𝛿 𝜎(𝑣)

,

where OPT denotes the cost of an optimum solution to the given
instance of the Capacitated Vehicle Routing Problem.

(c) Prove that the above algorithm is an
(
𝛼 + 1

1−𝛿 + ln(2)
)
-approximation

algorithm.
Note: This is a variant of an algorithm by Friggstad et al. [2022].
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18

State of the Art, Open Problems

In this short concluding chapter, we show two figures that summarize the state
of the art. Moreover, we list again the open problems that we mentioned in this
book.

18.1 Summary of the State of the Art

Figures 18.1 and 18.2 summarize the state of the art for Asymmetric TSP and
Symmetric TSP, respectively, including its path versions and the special cases
in unweighted graphs. These are the eight problems that played principal roles
in this book. We also show what reductions are known between these problems.
Of course, there is also a trivial reduction from each symmetric problem to the
corresponding asymmetric problem.

We show the best-known approximation ratios and the best-known upper
bounds on the integrality ratios of the natural LP relaxations. We remark
that a small improvement for Asymmetric (Path) TSP can be obtained by
Exercises 7.5–7.7. Moreover, a small improvement (to 3

2 −10−34) for Symmetric
TSP was announced very recently by Gurvits, Klein, and Leake [2023], and this
yields essentially the same approximation ratio for Path TSP.

The lower bounds on the approximability are very close to 1 (see Section 17.1).
The lower bounds on the integrality ratios are 2 for all asymmetric problems
(Theorem 3.18), 4

3 for Symmetric TSP and Graph TSP (Proposition 2.24), and
3
2 for the symmetric path versions (Proposition 14.15).

The Graph Path TSP is the only one of the eight problems for which we
know the integrality ratio: It is exactly 3

2 . Nevertheless, we could obtain a better
approximation ratio than 3

2 (Traub and Vygen [2023]). In fact, by the results of
Chapter 16, we know that (Graph) Path TSP is not much harder to approximate
than (Graph) TSP. Although we have currently the same approximation ratio for

400
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Asymmetric TSP and Asymmetric Path TSP, and also the same upper bound
on the integrality ratio, the only known black-box reductions from the latter to
the former lose a factor 2 + 𝜀 (cf. Theorem 9.8) and almost 4 (cf. Theorem 9.21),
respectively.

Asymmetric Path TSP

𝜶 = 17 + 𝜺 𝝆 = 17

Table 9.1 Corollary 9.24

Asymmetric TSP

𝜶 = 17 + 𝜺 𝝆 = 17

Table 7.1 Theorem 8.25

Asymmetric Graph Path TSP

𝜶 = 15 + 𝜺 𝝆 = 15

Table 9.2 Corollary 9.12

Asymmetric Graph TSP

𝜶 = 8 + 𝜺 𝝆 = 8

Table 6.1 Theorem 6.12

𝜶 → (2 + 𝜺)𝜶
Thm 9.8
𝝆 → 4𝝆 − 3
Thm 9.21

𝜶 → 2𝜶 − 1
𝝆 → 2𝝆 − 1

Thm 9.11

Figure 18.1 Approximation ratios (𝛼) and upper bounds on integrality ratios (𝜌)
for asymmetric traveling salesman problems: the state of the art. An arrow from
one problem to another means an approximation or integrality ratio bound for the
former implies an approximation or integrality ratio bound for the latter (the same
by a trivial reduction for the green arcs without labels). The only known lower
bound on the integrality ratio of all these problems is 2 (Theorem 3.18).
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Path TSP

𝜶 = 3
2 − 10−36 𝝆 = 1.5273

Table 16.1 Cor 16.27, Thm 15.24

Symmetric TSP

𝜶 = 3
2 − 10−36 𝝆 = 3

2 − 10−36

Table 10.1 Theorem 11.24

Graph Path TSP

𝜶 = 7
5 + 𝜺 𝝆 = 3

2

Table 14.4 Cor 16.29, 14.22

Graph TSP

𝜶 = 7
5 𝝆 = 7

5

Table 13.1 Theorem 13.21

𝜶 → 𝜶 + 𝜺
Thm 16.26
𝝆 → 3 − 2

𝝆
Thm 14.25

𝜶 → 𝜶 + 𝜺
Thm 16.28

Figure 18.2 Approximation ratios (𝛼) and upper bounds on integrality ratios (𝜌)
for symmetric traveling salesman problems: the state of the art. An arrow from
one problem to another means an approximation or integrality ratio bound for the
former implies an approximation or integrality ratio bound for the latter (the same
by a trivial reduction for the green arcs without labels). As lower bounds on the
integrality ratios, we have 4

3 for Graph TSP and Symmetric TSP (Proposition 2.24)
and 3

2 for (Graph) Path TSP (Proposition 14.15).
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18.2 Open Problems

We conclude this survey by listing some open research problems that we consider
important. Almost all of these problems have been formulated earlier, and indeed
most of them are very natural. None of them seems to be easy. However, given
the remarkable progress that has been made during the last few years, one may
hope that we will see some solutions soon.

Open Problem 1.33. Find an 𝛼-approximation algorithm for Symmetric TSP
for some 𝛼 ≪ 3

2 (say 𝛼 ≤ 1.49).
(The best-known approximation ratio is 3

2 − 1036: see Theorem 11.20.)

Open Problem 2.12. Find a (fully) combinatorial polynomial-time algorithm
to solve the subtour LP (2.2) exactly.
(All known exact algorithms rely on linear programming: see Corol-
lary 2.11.)

Open Problem 2.25. Prove or disprove that the integrality ratio of the subtour
LP (2.2) is 4

3 .
(We know it is at least 4

3 and less than 3
2 : see Proposition 2.24 and

Theorem 10.19.)

Open Problem 2.33. Prove that there exists a polynomial-time solvable LP
relaxation of the Symmetric TSP with Triangle Inequality that
has a smaller integrality ratio than the subtour LP.
(Adding several classes of constraints to the subtour LP is used suc-
cessfully for solving TSP instances exactly, e.g. by Applegate et al.
[2006], and was studied by Goemans [2006].)

Open Problem 3.19. Prove or disprove that the integrality ratio of the LP
relaxation (3.2) of the Asymmetric TSP is 2.
(We know it is at least 2: see Theorem 3.18; and it is at most 17: see
Corollary 8.26; or actually slightly less: see Exercise 7.7.)

Open Problem 5.26. Does there exist a constant𝛼 such that for every connected
undirected graph 𝐻 = (𝑉, 𝐹) and any point 𝑦 in the spanning tree
polytope of𝐻, there exists a spanning tree 𝑆with |𝛿𝑆 (𝑈) | ≤ 𝛼 ·𝑦(𝛿(𝑈))
for all𝑈 ⊆ 𝑉?
(This has been called the thin tree conjecture: see Section 5.5.)

Open Problem 6.16. Devise a 2-approximation algorithm for the Asymmetric
Graph TSP.
(The best-known approximation ratio is 8 + 𝜀: see Theorem 6.12.)
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Open Problem 8.27. Obtain an approximation ratio of (8 + 𝜀) or better for the
Asymmetric TSP.
(This is known only for Asymmetric Graph TSP. The best-known
approximation ratio is 17 + 𝜀: see Theorem 8.25; or actually slightly
less: see Exercise 7.7.)

Open Problem 9.25. Does the LP relaxation (9.1) of the Asymmetric Path
TSP have the same integrality ratio as the LP relaxation (3.2) of the
Asymmetric TSP?
(If 𝜌 denotes the integrality ratio of (3.2), then we only know that the
integrality ratio of (9.1) is at least 𝜌 and at most min{17, 4𝜌 − 3}: see
Corollary 9.24 and Theorem 9.21.)

Open Problem 12.12. What is the approximation ratio of the Mömke–Svensson
algorithm for Graph TSP?
(We know it is at least 4

3 and at most 13
9 : see Exercise 12.3 and

Theorem 12.11.)

Open Problem 13.22. Devise a 4
3 -approximation algorithm for Graph TSP.

(The best-known approximation ratio is 7
5 : see Theorem 13.21.)

Open Problem 15.12. What is the approximation ratio of the Best-of-Many
Christofides algorithm for Path TSP and for the 𝑇-Tour Problem?
(For 𝑇 = ∅, the Symmetric TSP, the answer is 3

2 : see Proposition 15.2.
In general, we only know the upper bound 8

5 : see Theorem 15.11.)

Open Problem 15.25. Prove that the integrality ratio of the LP relaxation (14.1)
of Path TSP is exactly 3

2 .
(We know it is at least 3

2 and less than 1.528: see Proposition 14.15
and Theorem 15.24. We also know that 3

2 is the exact integrality ratio
for Graph Path TSP instances: see Corollary 14.22.)

Open Problem 15.27. Is there a 3
2 -approximation algorithm for the 𝑇-tour

problem?
(This is known only for unweighted graphs and for constant |𝑇 |: see
Exercise 13.8 and Exercise 16.9. For general instances, the best-known
approximation ratio is 11

7 : see Theorem 15.26.)

Open Problem 16.30. Is it true that any 𝛼-approximation algorithm for Asym-
metric TSP implies an (𝛼 + 𝜀)-approximation algorithm for Asym-
metric Path TSP?
(The best-known black-box reduction implies a (2𝛼+𝜀)-approximation
algorithm only: see Theorem 9.8.)
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Open Problem 16.31. Is it true that any 𝛼-approximation algorithm for Sym-
metric TSP implies an (𝛼+𝜀)-approximation algorithm for the𝑇-Tour
Problem?
(This is known only for instances where |𝑇 | is bounded by a constant:
see Exercise 16.9.)

Open Problem 17.1. Improve the lower bounds on the approximability of any
of the studied problems substantially.
(The current bounds are quite close to 1: see Section 17.1.)

Open Problem 17.6. Find an approximation algorithm with an approximation
ratio better than 2 for the Two-Edge-Connected Spanning Subgraph
Problem.
(This is only known in unweighted graphs or in complete graphs with
weights satisfying the triangle inequality.)

Open Problem 17.9. Find a constant-factor approximation algorithm for Asym-
metric Orienteering or prove that this would imply P = NP.
(This is known only for the symmetric special case and for the Asym-
metric Prize-Collecting TSP: see Section 17.4.)

Open Problem 17.15. Find a constant-factor approximation algorithm for
Asymmetric A Priori TSP or prove that this would imply P = NP.
(This is known only for the symmetric special case: see Section 17.5.)
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