Exercise Set 13

Exercise 13.1. Show that for every $k \in \mathbb{N}$ there exists a simple graph G of minimum degree k such that G has exactly one perfect matching.

(3 points)

Exercise 13.2. Let $k \in \mathbb{N}$, $k \geq 1$, and suppose G is a k-regular and (k-1)edge-connected graph with an even number of vertices, and with edge weights $c: E(G) \to \mathbb{R}$. Show that there is a perfect matching M in G with $c(M) \leq (1/k) \cdot c(E(G))$.

(4 points)

Exercise 13.3. Let G be an undirected graph and and n := |V(G)|. Prove that the following linear inquality system with $\mathcal{O}(n^3)$ variables and constraints describes a polytope whose orthogonal projection onto the x-variables yields the spanning tree polyptope P_G of G.

 $\begin{aligned} x_{e} &\geq 0 & (e \in E(G)) \\ z_{u,v,w} &\geq 0 & (\{u,v\} \in E(G), w \in V(G)) \\ z_{u,v,w} + z_{v,u,w} &= x_{e} & (e = \{u,v\} \in E(G), w \in V(G)) \\ \sum_{\{u,v\} \in \delta_{G}(v)} z_{u,v,w} &= 1 & (v \in V(G), w \in V(G) \setminus \{v\}) \\ \sum_{e \in E(G)} x_{e} &= n - 1 \end{aligned}$

(5 points)

Exercise 13.4. Let G = (s + V, E) be a k-edge-connected digraph $(k \ge 1)$ with $|\delta_G^-(s)| = |\delta_G^+(s)|$ and $|\delta_G^+(U)|, |\delta_G^-(U)| \ge k$ for all $\emptyset \ne U \subsetneq V$. Then for every edge $e = (s,t) \in E$, there is an edge $(u,s) \in E$ such that the digraph $G' = (s+V, E \setminus \{(s,t), (u,s)\} \cup \{(u,t)\})$ satisfies $|\delta_{G'}^+(U)|, |\delta_{G'}^-(U)| \ge k$ for all $\emptyset \ne U \subsetneq V$. (*Hint: You may want to prove first that* $X \cup Y$ *has a tight in- or out-degree for any two sets* $X, Y \ni t$ *with tight in- or out-degree.*)

(4 points)

Note: This is a "bonus" sheet, i.e. the 16 points which can be obtained here do not increase the number of points required for exam admission. They are intended for groups with only a few missing points as well as for general exam preparation.

Deadline: January 22^{nd} , 12:00 noon. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws23/cows23.html

In case of any questions feel free to contact me at schuerks@dm.uni-bonn.de.