Exercise Set 10

Exercise 10.1. Prove that the following constructions yield submodular functions f.

- (i) For $a \in \mathbb{R}^E$ and $a_0 \in \mathbb{R}$, define $f(S) := a_0 + \sum_{i \in S} a_i$.
- (ii) Let $g: 2^E \to \mathbb{R}$ be non-decreasing submodular and $k \in \mathbb{R}$, define $f(S) := \min(g(S), k)$ for all $S \subseteq E$.
- (iii) Let $g: 2^E \to \mathbb{R}$ be submodular, define $f(S) := g(E \setminus S)$ for all $S \subseteq E$.
- (iv) Let $f_1, f_2: 2^E \to \mathbb{R}$ be submodular, define $f:=f_1+f_2$.

(1+1+1+1 points)

Exercise 10.2. Let $f, g: 2^E \to \mathbb{R}$ be two submodular functions. Show:

- (i) If f and g are also non-decreasing with $f(\emptyset) = g(\emptyset) = 0$, then $P(g+f) = P(f) + P(g) := \{x+y : x \in P(f), y \in P(g)\}.$
- (ii) If f g is non-decreasing, then $\min\{f, g\}$ is submodular.

(2+2 points)

Exercise 10.3. Let $f: 2^E \to \mathbb{Z}$ be submodular, non-decreasing with $f(\emptyset) = 0$, and let $r: 2^E \to \mathbb{Z}$ be defined as

$$r(S) := \min\{f(Q) + |S \setminus Q| : Q \subseteq S\}$$

for $S \subseteq E$. Prove that r is the rank function of a matroid, i.e. it is submodular, non-decreasing, and $r(S) \leq |S|$.

(4 points)

There is one more exercise on the flip side!

Exercise 10.4. Let $f: 2^U \to \mathbb{R}$ be a submodular function with $f(\emptyset) = 0$, and let B(f) denote its base polyhedron. Prove that

$$\min\{f(X): X \subseteq U\}$$

$$= \max\left\{\sum_{u \in U} z_u: z \in \mathbb{R}^U \text{ with } \sum_{u \in A} z_u \leq \min\{0, f(A)\} \text{ for all } A \subseteq U\right\}$$

$$= \max\left\{\sum_{u \in U} \min\{0, y_u\}: y \in B(f)\right\}.$$
(4 points)

Deadline: December 21th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws23/cows23.html

In case of any questions feel free to contact me at held@dm.uni-bonn.de.