Exercise Set 10

Exercise 10.1. Prove that the following constructions yield submodular functions f.
(i) For $a \in \mathbb{R}^{E}$ and $a_{0} \in \mathbb{R}$, define $f(S):=a_{0}+\sum_{i \in S} a_{i}$.
(ii) Let $g: 2^{E} \rightarrow \mathbb{R}$ be non-decreasing submodular and $k \in \mathbb{R}$, define $f(S):=$ $\min (g(S), k)$ for all $S \subseteq E$.
(iii) Let $g: 2^{E} \rightarrow \mathbb{R}$ be submodular, define $f(S):=g(E \backslash S)$ for all $S \subseteq E$.
(iv) Let $f_{1}, f_{2}: 2^{E} \rightarrow \mathbb{R}$ be submodular, define $f:=f_{1}+f_{2}$.

$$
(1+1+1+1 \text { points })
$$

Exercise 10.2. Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be two submodular functions. Show:
(i) If f and g are also non-decreasing with $f(\emptyset)=g(\emptyset)=0$,
then $P(g+f)=P(f)+P(g):=\{x+y: x \in P(f), y \in P(g)\}$.
(ii) If $f-g$ is non-decreasing, then $\min \{f, g\}$ is submodular.

Exercise 10.3. Let $f: 2^{E} \rightarrow \mathbb{Z}$ be submodular, non-decreasing with $f(\emptyset)=0$, and let $r: 2^{E} \rightarrow \mathbb{Z}$ be defined as

$$
r(S):=\min \{f(Q)+|S \backslash Q|: Q \subseteq S\}
$$

for $S \subseteq E$. Prove that r is the rank function of a matroid, i.e. it is submodular, non-decreasing, and $r(S) \leq|S|$.

There is one more exercise on the flip side!

Exercise 10.4. Let $f: 2^{U} \rightarrow \mathbb{R}$ be a submodular function with $f(\emptyset)=0$, and let $B(f)$ denote its base polyhedron. Prove that

$$
\begin{aligned}
& \min \{f(X): X \subseteq U\} \\
& =\max \left\{\sum_{u \in U} z_{u}: z \in \mathbb{R}^{U} \text { with } \sum_{u \in A} z_{u} \leq \min \{0, f(A)\} \text { for all } A \subseteq U\right\} \\
& =\max \left\{\sum_{u \in U} \min \left\{0, y_{u}\right\}: y \in B(f)\right\}
\end{aligned}
$$

Deadline: December $21^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:

In case of any questions feel free to contact me at held@dm.uni-bonn.de.

