Exercise Set 8

Exercise 8.1. Consider the metric s-t path TSP: Given an instance of Metric TSP and two vertices s and t, we look for a Hamiltonian s - t path of minimum weight. Describe a $\frac{5}{3}$-factor approximation algorithm, generalizing Christofides' Algorithm.

Exercise 8.2. Let (G, u, s, t) be a network and $U:=\delta^{+}(s)$. Let $P:=\left\{x \in \mathbb{R}_{+}^{U}:\right.$ there is an s - t flow f in (G, u) with $f(e)=x_{e}$ for all $\left.e \in U\right\}$. Prove that P is a polymatroid.

Exercise 8.3. Let E be a finite set and $P \subseteq \mathbb{R}^{E}$ be a polymatroid. Show that there is some submodular set function f with $f(\emptyset)=0, f$ monotone, i.e. $f(X) \leq f(Y)$ for all $X \subseteq Y \subseteq E$ and $P=P(f)$.

Exercise 8.4. Prove that a nonempty compact set $P \subseteq \mathbb{R}_{+}^{n}$ is a polymatroid if and only if
(i) For all $0 \leq x \leq y \in P$ we have $x \in P$.
(ii) For all $x \in \mathbb{R}_{+}^{n}$ and all $y, z \leq x$ with $y, z \in P$ that are maximal with this property (i.e. $y \leq w \leq x$ and $w \in P$ implies $w=y$, and $z \leq w \leq x$ and $w \in P$ implies $w=z$) we have $\mathbb{1} y=\mathbb{1} z$, where $\mathbb{1}$ is the vector whose entries are all 1.

Deadline: December $7^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ws23/cows23.html
```

In case of any questions feel free to contact me at schuerks@or.uni-bonn.de

