Exercise Set 8

Exercise 8.1. Consider the metric *s*-*t* path TSP: Given an instance of METRIC TSP and two vertices *s* and *t*, we look for a Hamiltonian *s*-*t* path of minimum weight. Describe a $\frac{5}{3}$ -factor approximation algorithm, generalizing Christofides' Algorithm.

(4 points)

Exercise 8.2. Let (G, u, s, t) be a network and $U := \delta^+(s)$. Let

 $P := \left\{ x \in \mathbb{R}^U_+ : \text{there is an } s\text{-}t \text{ flow } f \text{ in } (G, u) \text{ with } f(e) = x_e \text{ for all } e \in U \right\}.$

Prove that P is a polymatroid.

(4 points)

Exercise 8.3. Let E be a finite set and $P \subseteq \mathbb{R}^E$ be a polymatroid. Show that there is some submodular set function f with $f(\emptyset) = 0$, f monotone, i.e. $f(X) \leq f(Y)$ for all $X \subseteq Y \subseteq E$ and P = P(f).

(4 points)

Exercise 8.4. Prove that a nonempty compact set $P \subseteq \mathbb{R}^n_+$ is a polymatroid if and only if

- (i) For all $0 \le x \le y \in P$ we have $x \in P$.
- (ii) For all $x \in \mathbb{R}^n_+$ and all $y, z \leq x$ with $y, z \in P$ that are maximal with this property (i.e. $y \leq w \leq x$ and $w \in P$ implies w = y, and $z \leq w \leq x$ and $w \in P$ implies w = z) we have $\mathbb{1}y = \mathbb{1}z$, where $\mathbb{1}$ is the vector whose entries are all 1.

(4 points)

Deadline: December 7^{th} , before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws23/cows23.html

In case of any questions feel free to contact me at schuerks@or.uni-bonn.de.