Exercise Set 7

Exercise 7.1. Let $\lambda_{i j}, 1 \leq i, j \leq n$, be nonnegative numbers with $\lambda_{i j}=\lambda_{j i}$ and $\lambda_{i k} \geq \min \left\{\lambda_{i j}, \lambda_{j k}\right\}$ for any three distinct indices $i, j, k \in\{1, \ldots, n\}$. Show that there exists a graph G with $V(G)=\{1, \ldots, n\}$ and capacities $u: E(G) \rightarrow \mathbb{R}_{+}$such that the local edge-connectivities are precisely the $\lambda_{i j}$.

Hint: Consider a maximum weight spanning tree in $\left(K_{n}, c\right)$, where $c(\{i, j\}):=\lambda_{i j}$.

Exercise 7.2. For an undirected graph G, let P_{G} denote the spanning-tree polytope of G and
$Q_{G}:=\left\{x \in[0,1]^{E(G)}: \sum_{e \in E(G)} x_{e}=|V(G)|-1, \sum_{e \in \delta(X)} x_{e} \geq 1\right.$ for $\left.\emptyset \neq X \nsubseteq V(G)\right\}$.
Prove:
(i) $P_{G} \subseteq Q_{G}$ for every graph G.
(ii) There exists a graph G with $P_{G} \neq Q_{G}$.
(1+1 points)

Exercise 7.3. Let G be a graph, $u: E(G) \rightarrow \mathbb{N} \cup\{\infty\}$ and $b: V(G) \rightarrow \mathbb{N}$. Show that (G, u) has a perfect b-matching if and only if for any two disjoint subsets $X, Y \subseteq V(G)$ the number of connected components C in $G-X-Y$ for which $\sum_{c \in V(C)} b(c)+\sum_{e \in E_{G}(v(C), Y)} u(e)$ is odd does not exceed

$$
\begin{equation*}
\sum_{v \in X} b(v)+\sum_{y \in Y}\left(\sum_{e \in \delta(y)} u(e)-b(y)\right)-\sum_{e \in E_{G}(X, Y)} u(e) \tag{1}
\end{equation*}
$$

(6 points)

Exercise 7.4. Let G be an undirected graph and $T \subseteq V(G)$ such that $|T|$ is even. Show that the convex hull of incidence vectors of T-joins in G is given by the set P of all $x \in[0,1]^{E(G)}$ satisfying
$\sum_{e \in F}\left(1-x_{e}\right)+\sum_{e \in \delta(X) \backslash F} x_{e} \geq 1 \forall X \subseteq V(G), F \subseteq \delta(X)$ such that $|X \cap T|+|F|$ is odd.
Hint: First show that the incidence vector of every T-join in G satisfies the given constraints. Next, show that every vertex of P is the incidence vector of a T-join in G by showing that for each cost function $c \in \mathbb{R}^{E(G)}$, there exists a T-join J such that the incidence vector χ^{J} of J minimizes $c^{T} x$ over P. To this end, let $E^{-}:=\{e \in E(G): c(e)<0\}$ and, for a vector $x \in P$, consider the vector \bar{x} given by

$$
\bar{x}_{e}= \begin{cases}x_{e} & , e \in E(G) \backslash E^{-} \\ 1-x_{e} & , e \in E^{-}\end{cases}
$$

and prove that \bar{x} is contained in the up-hull of the $T \Delta \operatorname{odd}\left(E^{-}\right)$-polyhedron of G.
(4 points)

Deadline: November $30^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:

> http://www.or.uni-bonn.de/lectures/ws23/cows23.html

In case of any questions feel free to contact me at schuerks@or.uni-bonn.de.

