Exercise Set 6

Exercise 6.1. The Undirected Minimum Mean-Weight Cycle Problem is the following: Given an undirected graph G with edge-weights $c: E(G) \rightarrow \mathbb{R}$, find a cycle C whose mean-weight $c(E(C)) /|E(C)|$ is minimum, or determine that G is acyclic. Consider the following algorithm for the Undirected Minimum Mean-Weight Cycle Problem: First determine with a linear search whether G has cycles or not, and if not return with this information.
Let $\gamma:=\max \{c(e): e \in E(G)\}$ and define a new edge-weight function via $c^{\prime}(e):=$ $c(e)-\gamma$. Let $T:=\emptyset$. Now iterate the following: Find a minimum c^{\prime}-weight T-join J with a polynomial (black-box) algorithm. If $c^{\prime}(J)=0$, return any zero- c^{\prime}-weight cycle. Otherwise, let $\gamma^{\prime}:=c^{\prime}(J) /|J|$, reset c^{\prime} via $c^{\prime}(e) \leftarrow c^{\prime}(e)-\gamma^{\prime}$, and continue.

Show that this algorithm works correctly and runs in polynomial time. Also, explain how to get the cycle to be returned in the case $c^{\prime}(J)=0$.
(4 points)
Exercise 6.2. Let G be an undirected graph and $T \subseteq V(G)$ with $|T|=2 k$ even. Prove that the minimum cardinality of a T-cut in G equals the maximum of $\min _{i=1}^{k} \lambda_{s_{i}, t_{i}}$ over all pairings $T=\left\{s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right\}$, where $\lambda_{s, t}$ denotes the maximum number of pairwise edge-disjoint s - t-paths.
(4 points)
Exercise 6.3. Given an undirected graph G and disjoint sets $S_{e}, S_{o} \subseteq V(G)$, a partial $\left(S_{e}, S_{o}\right)$-join is a set $J \subseteq E(G)$ such that $|\delta(v) \cap J|$ is even for every $v \in S_{e}$ and odd for every $v \in S_{o}$. (In particular, a T-join is the same as a partial $(V(G) \backslash T, T)$-join.) Consider the Minimum Weight Partial $\left(S_{e}, S_{o}\right)$ Join Problem: Given an undirected graph G with edge-weights $c: E(G) \rightarrow \mathbb{R}_{\geq 0}$ and disjoint sets $S_{e}, S_{o} \subseteq V(G)$, find a partial (S_{e}, S_{o})-join of minimum weight, or determine that none exists. Show that this problem can be linearly reduced to the Minimum Weight T-Join Problem.
(4 points)
Exercise 6.4. Let G be a connected graph, $c: E(G) \rightarrow \mathbb{R}$ and $T \subseteq V(G)$. Note that $|T|$ may be either even or odd. Consider the problem of finding a T^{*}-join J^{*} with $\left|T^{*} \Delta T\right| \leq 2$ such that $c\left(J^{*}\right)$ is minimum among all such J^{*}. Show that this problem can be linearly reduced to the Minimum Weight T-Join Problem.

Remark: This problem arises when adapting Christofides' algorithm to the problem of finding a shortest Hamiltonian path with up to one endpoint of the path given in the input.

Deadline: November $23^{\text {rd }}$, before the lecture. The websites for lecture and exercises can be found at:

In case of any questions feel free to contact me at schuerks@or.uni-bonn.de

