
Combinatorial Optimization
Winter Term 2023/2024

Professor Dr. Stephan Held
Malte Schürks

Programming Exercise 2

Exercise P.1. Task: Implement the Undirected Minimum Mean-Weight Cy-
cle Algorithm from Exercise 6.1.

Usage: Your program should be named min_mean_cycle, and it should be called as
follows:

min_mean_cycle input_graph output_graph

Input: The arguments input_graph and output_graph are mandatory, i.e. your
program should exit with an error message if they are not present. Here, the file
input_graph encodes the input graph for which your program should find a min-
imum mean-weight cycle, and you should write the cycle you found (and nothing
else) to output_graph (see Output below).

The file input_graph is given in DIMACS format, which is used to encode undi-
rected graphs as follows: All lines beginning with a c are comments. Now, ignoring
any comment lines, to encode a graph G, the first line has the format

p edge n m

where n = |V (G)| and m = |E(G)|. From this, V (G) is implicitly identified with
{1, . . . , n}. Note that vertex indices start with 1 in the DIMACS format. The
following m lines have the format

e i j c

representing that {i, j} ∈ E(G) with weight c ∈ Z. You can assume that n, m and
every edge weight c fit into an integer on the machine to be used for evaluation.

Output: Your program should return a minimum mean-weight cycle C in G by
writing the complete DIMACS encoding (including edge weights) of the subgraph
(V (G), E(C)) to the file output_graph (and nothing else). Note that the vertex
set of your output graph should be V (G) (not V (C)). In particular, your pro-
gram should be able to read in output_graph as an input graph file again. If G is
acyclic, then, as a convention, write the DIMACS encoding of the graph (V (G), ∅)
to output_graph.

Programming conditions: Your program should be written in C or C++, although
the use of C++ is strongly encouraged. By default, your program will be com-
piled using g++ 13.2.0 using C++20. Different compilers or compiler versions are
available upon request. Your program will be compiled using -pedantic -Wall
-Wextra -Werror, i.e., all warnings are enabled and each remaining warning will



Combinatorial Optimization
Winter Term 2023/2024

Professor Dr. Stephan Held
Malte Schürks

lead to compilation failure. Program evaluation will be performed on Linux. The
standard library as well as a one of the provided libraries for solving the Minimum
Weight Perfect Matching Problem (see Help below) can be used as you
wish. No other libraries are allowed.

Submission Format: Your submission should consist of a single archive file in the
.zip, .tar.gz or .tar.bz2 format, which contains all contents of your top level directory
(but not the directory itself). For easier testing, your submission must contain
a bash script compile.sh in its top level directory, which builds the executable
(e.g. by directly calling the compiler or by executing some make command) when
called without any arguments. Your executable must be called min_mean_cycle (as
implied above) and be created in a subfolder called bin of the top level directory.
Since you will (most likely) be linking against a library for solving the Minimum
Weight Perfect Matching Problem, you should also provide a copy of the
library located at the correct relative path with your submission.

Algorithm evaluation: The algorithm is to be implemented as described in the ex-
ercise description.

Code evaluation: Your code must implement the Undirected Minimum Mean-
Weight Cycle Algorithm correctly. Running time in practice will also be eval-
uated, as well as the elegance, cleanness and organization of your code. Make sure
to add good documentation and give the variables, functions and types meaningful
names that make their role clear. Break your complicated functions into small sim-
ple ones, break your program into a few units etc. Of course, your program should
not trigger undefined behavior. In particular, your program should be valgrind-
clean, i.e. it should not leak memory and should not perform invalid operations on
memory.

Help: The website for the exercise class contains a set of test instances for test-
ing your code. Moreover, an updated class to store an undirected graph with edge
weights, a public solver for the Minimum Weight Perfect Matching Prob-
lem (blossomV) and example code for reading in a graph and calling the solver is
provided, so you can start implementing the algorithm right away. Included is also
a file README that contains further important information.

(64 points)

Deadline: December 14th, before the lecture. The websites for lecture and exer-
cises can be found at:

http://www.or.uni-bonn.de/lectures/ws23/cows23.html

In case of any questions feel free to contact me at schuerks@or.uni-bonn.de.

http://www.or.uni-bonn.de/lectures/ws23/cows23.html
mailto:schuerks@or.uni-bonn.de

