Wintersemester 2019/20 Prof. Dr. S. Hougardy Dr. U. Brenner

Einführung in die Diskrete Mathematik 5. Übung

- 1. Sei T ein kostenminimaler aufspannender Baum für einen ungerichteten Graphen G mit nichtnegativen Kantengewichten. G' entstehe aus G, indem ein neuer Knoten s hinzugefügt wird, der mit jedem Knoten aus V(G) durch eine (ebenfalls gewichtete) Kante verbunden ist. Zeigen Sie, wie man aus T und G' in linearer Laufzeit einen kostenminimalen aufspannenden Baum für G' berechnen kann. (5 Punkte)
- 2. Zeigen Sie, wie man in einem gegebenen gerichteten Graphen ein Branching mit maximaler Kardinalität in linearer Laufzeit finden kann. (4 Punkte)
- 3. Betrachten Sie folgenden Algorithmus, um in einem gegebenen gerichteten Graphen G mit Gewichten $l: E(G) \to \mathbb{R}_+$ zu einem Knoten $r \in V(G)$, von dem aus jeder Knoten in G erreichbar ist, eine aufspannende Arboreszenz T mit Wurzel r und minimalem Gewicht $\sum_{e \in E(T)} l(e)$ zu bestimmen: Es sei $G_0 := (V(G), \{e \in E(G) \mid l(e) = 0\})$. Wenn G_0 eine aufspannende Arboreszenz mit Wurzel r enthält, gibt man eine solche zurück. Andernfalls wählt man eine starke Zusammenhangskomponente K von G_0 mit $r \notin V(K)$ und l(e) > 0 für alle $e \in \delta_G^-(V(K))$. Überlegen Sie sich, warum eine solche existiert. Es sei $\alpha := \min\{l(e) \mid e \in \delta_G^-(V(K))\}$. Setze nun $l'(e) := l(e) \alpha$ für $e \in \delta_G^-(V(K))$ und l'(e) := l(e) für $e \in E(G) \setminus \delta_G^-(V(K))$. Dann berechnet man rekursiv eine kostenminimale aufspannende Arboreszenz T mit Wurzel r bezüglich l'. Zeigen Sie, dass T so gewählt werden kann, dass $|\delta_T^-(V(K))| = 1$ gilt. Diese Arboreszenz T gibt man dann zurück.

Beweisen Sie, dass dieser Algorithmus korrekt funktioniert. (6 Punkte)

Abgabe: Dienstag, den 12.11.2019, vor der Vorlesung.