Linear and Integer Programming

e Time: Tuesdays and Thursdays, 12:15 - 13:55 (with 10 minutes
break)

e Place: Gerhard-Konow-Ho6rsaal, Lennéstr. 2
e Website:

WWwW.Or.uni-bonn.de/lectures/wsl6/lgo_wsl6.html

e Lecture notes and all slides can be found on the website.

Final Examination

e Oral examination

e Dates by appointment.




Exercise Classes

e Exercise classes are two hours per week.

e Assignments are released every Tuesday (starting in the second
week).

e There will be programming exercises.

e 50 % of all points in the assignments are required to participate in
the exam.

e Students can work in groups of two.

o All participants of a group have to be able to explain their
solutions.

e Exercise classes begin in the second week.



Possible Time Slots for the Exercise Classes

© Mo10-12
® Tuid-16
®© We10-12
O Wel2-14
® Th10-12
O Th14-16
@ Th16-18
® Fr10-12
© Fri2-14

We will choose two of these time slots.

Application for the exercise classes: See the website
WWw.Or.uni-bonn.de/lectures/wsl6/lgo_uebung wsl6.html



Modelling Optimization Problems as LPs

Let G be a directed graph with capacities u: E(G) — R.gand let s
and t be two vertices of G. A feasible s-t-flow in (G, u) is a mapping
f: E(G) — R>o with

e f(e) < u(e)forall e e E(G) and

0 Ze@g(v) fle) — Ze@a(v) f(e) =0forallve V(G)\ {s,t}.

The value of an s-t-flow f is val(f) = 26652(3) fle) — Ze@a(s) f(e).




Modelling Optimization Problems as LPs

MAXIMUM-FLOW PROBLEM

Instance: A directed Graph G, capacities u: E(G) — R+,
vertices s,t € V(@) with s # t.

Task:  Find an s-t-flow f : E(G) — R>o of maximum value.

L P-formulation:

max Yo Xe— D, Xe

ecis(s) eci ()
s.t. Xe > 0 for e € E(G)
Xe < u(e) foreec E(G)
Yo Xe— Y. Xe = 0 forve V(QG)\ {s,t}

ecit(v) ecs (v)



Duality: Example

(P) max 12x; + 10x»
S.1. 4xy + 2Xo < B
8x; + 12x% < 7
2X1 — 3X2 < 1

Goal: Find an upper bound on the optimum solution value.

Combine constraint 1 and 2:

1 1
12x1 + 10x0 = 2 - (4X1 —|—2X2)—|— §(8X~| —|—12X2) <2-5+ 5 -/ =13.5.

Combine constraint 2 and 3:

7 4 7 4
12x1+1Ox2:6~(8x1+12x2)+§-(2x1 —3x2)§6-7+§-1 = 9.5.



Duality: Example

(P) max 12x; + 10xo
S.1. 4xy + 2Xo < B
8x; + 12x% < 7
2X1 — 3X2 < 1

General approach: Find numbers uq, up, us € R~ such that

12x1 + 10X = Uy - (4X~| + 2X2) + U> - (8X1 -+ 12X2) + U3 - (2X1 — 3X2).

= SUy + 7Us + U3 IS an upper bound on the value of any solution of (P).

= Chose u4, Us, Uz such that 5uy + 7u> + uz is minimized.



Duality: Example

(P) max 12x; + 10xo

S.1. 4xy + 2Xo < b

8xy + 12x% < 7

2X1 — 3X2 < 1

Formulation as a linear program:
(D) min 5Su; + 7u + U3

st. 4u4 + 8u + 2u3 = 12
2uy + 12u» — 3uz = 10
U1 > 0
Uo > 0
us > 0

Any solution of (D) gives an upper bound for (P).



Duality: Example

(P) max 12x; + 10xo

S.1. 4xy + 2Xo < b

8xy + 12x% < 7

2X1 — 3X2 < 1

Formulation as a linear program:
(D) min 5Su; + 7u + U3

st. 4u4 + 8u + 2u3 = 12
2uy + 12u» — 3uz = 10
U1 > 0
Uo > 0
us > 0

Any solution of (D) gives an upper bound for (P).



Duality: Example

(P) max 12x; + 10xo

S.1. 4xy + 2Xo < b

8xy + 12x < 7/

2xX1 — 33X < 1

Formulation as a linear program:
(D) min Su;y + 77U + 1us

st. 4u4 + 8u + 2u3 = 12
2uy + 12u» — 3uz = 10
U1 > 0
Uo > 0
us > 0

Any solution of (D) gives an upper bound for (P).
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Duality: Example
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Fourier-Motzkin Elimination |

Given a system of inequalities, check if a solution exists.

3x + 2y + 4z 1
3X + 2z
2X — Y

—X + 2y — Z

—2X

VAN VANRVANE VAN VAR VAN
N B~ W o1 O O

2y + 2z

First step: Get rid of variable x.

13



Fourier-Motzkin Elimination I

3x + 2y + 4z < 10
3x + 2z < 9
2X — Y < 3
—-X + 2y — z < 3
—2X < 4
2y + 2z < 7
IS equivalent to
X = F - 3Y — 32
x < 3 ~ %7
x < 3 + 3y
X > -3 4+ 2y — Z
X > =2

14



Fourier-Motzkin Elimination IlI

—
o
N

X = 3 - 3

x < 3

X < 3+ 3y

X > =3 + 2y

X > -2
2y + 2z

<

wIN WA
N

N

/

This system is feasible if and only if the following system has a

solution:
min{§ -8y -3z 3-3z §+ )
2y + 2z

15
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Fourier-Motzkin Elimination IV

min{ —%y -3z, 3-%z, 3+3y} max{-3 +2y —z, -2}

>
2y +2z < 7

This system can be rewritten in the following way:

—
o

0%y 4z > 3tz -
Pohy - dex 2
3 - 2z > -3 4+ 2y - z
3 - 2z > -2
3 + 3V > -3 + 2y — z
5 1
2 T 2) > e

2y + 2z < 7

16
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Fourier-Motzkin Elimination V

Conversion in standard form:

<
+

©OI00 LIINY LO|Co
<

QI wl=
N

2y +

Wi
N N N N
VAN VAN VANRN VAN VANS VAN VAN

27
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lterate these steps and remove all variables.



Corollary

Let A,B,C,D,E,F,G,H,K be matrices and a,b,c,d,e,f be vectors of appropriate

dimensions such that:

A B C
D E F IS an m x n-matrix,
G H K

a
( b ) is a vector of length m and (
C

Ax 4+ By + Cz
Dx + Ey + Fz
Gx + Hy + Kz

p

max <{ d'x+ey+fz

min <{ au+ bv+cw

\

provided that both sets are non-empty.
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u

d

f

INIV IV IA
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+ Dlv + G'w
+ E'v. + H'w
+ Flv + K'w

w
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e ) Is a vector of length n.Then

x
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Corollary
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Max-Flow Problem

G Digraph, u: E(G) — R.q, s,t € V(G) with s # 1.

L P-formulation:

max Yo Xe— Y., Xe
ecis(s) ecs ()
s.t. Xe > 0 for e € E(G)
Xe < u(e) foreec E(G)
Yo Xe— Y Xe = 0 forve V(QG)\ {s,t}
ecos(v) ecog (v)

Dual LP:

min Y. u(e)ye
ecE(G)

s.t. Ve 0 foree E(G)

0 fore=(v,w)ec E(G)

—1

0

>
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N
<
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Let P C {x € R" | Ax = b} be a non-empty polyhedron of dimension
n—rank(A). Let A'x < b’ be a minimal system of inequalities such that
P={xeR" Ax = b,A'x < b'}. Then, every inequality in A’x < b’ is
facet-defining for P and every facet of P is given by an inequality of
Ax <Pb.




Simplex Algorithm: Example |

max X1 + Xo
St. — x4 + Xo + X3 = 1
X1 + X3 = 3
Xo + X5 = 2
X1 , X2, X3 , X4 , X5 2 0
1 0 O
Initial basis: {3,4,5}. = Ag=| 0 1 0
0O 0 1
Simplex tableau:
X3 = 1 + X4 — X
X4 = 3 — X1
Xs = 2 —  Xo
zZ = X1 + Xo

Recent solution: (0,0,1,3,2)

26



Simplex Algorithm: Example |

X3 = 1 + X4 — Xo
X4 = 3 — X 1

X5 = 2 —  Xo
zZ = X1 + Xo

Increase exactly one of the non-basic variables with positive coefficient
in the objective function.
We choose x». How much can we increase it?

Constraints:

x3 =1+ Xy — Xo. Xo cannot get larger than 1.
X4 = 3 — Xq . Nno constraint on x».

X5 = 2 — Xo.  Xo cannot get larger than 2.

Strictest constraint: x5 = 1 + xy — X
= Replace 3 by 2in B.

27



Simplex Algorithm: Example |

First tableau:

X3 = 1 4+ X4 — X

X2 = 3 — Xq

X5 = 2 —  Xo
zZ = X1+ X0

Replace 3 by 2 in the basis B: B = {2,4,5}:
Xo =1+ X1 — Xa.

Second tableau:

X = 1 + X3 — X3
X4 = 3 — X 1

x5 = 1 — X3 + X3
z =1 + 2x4 — X3

Recent solution: (0,1,0,3,1)

28



Simplex Algorithm: Example |

Second tableau:

X =1 + X3 — X3
Xg2 = 3 — X

Xs = 1 — X4 + X3
z =1 4+ 2x9 — X3

Only one candidate: xq
x5 =1 — Xy 4+ x3 is critical. Replace 5by 1in B: B={1,2,4}.
X1 =14 X3 — Xs.

Third tableau:
xx = 1 + X3 — Xs
Xo = 2 — X5
Xq2 = 2 — X3 + Xs
zZ = 3 + X3 — 2Xs

Recent solution: x = (1,2,0,2,0).

29



Simplex Algorithm: Example |

Third tableau:
XX = 1 4+ X3 — Xg
Xo = 2 — X5
X2 = 2 — X3 4+ X
zZ = 3 + X3 — 2Xs

Only one candidate: x3

X4 = 2 — X3 + x5 is critical. Replace 4 by 3in B: B={1,2,3}.
X3 =2 — X4 + X5

Fourth tableau:

X1 = 3 — X4

Xo = 2 —  Xs
X3 = 2 — X4 + Xs
Z = 95 — X4 — X5

Recent solution: x = (3,2,2,0,0).

30



Simplex Algorithm: Example |

Fourth tableau:

X1 = 3 — X4

Xo = 2 —  Xs
X3 = 2 — Xa + Xs
Z = 95 — X4 — X5

Recent solution: x = (3,2,2,0,0).

This is an optimum solution!

31



Simplex Algorithm: Example I

Second Example: Unboundedness

32



33

Simplex Algorithm: Example Il: Unboundedness

max X
S.t Xy — Xo + X3
—X{1 + Xo + X4
X1, X2 X3 5, X4
Initial basis: B={3,4}
Simplex Tableau:
X3 = 1 X1 + Xo
zZ = X1

Recent solution: x = (0,0,1,2).

IV

o N =



34

Simplex Algorithm: Example Il: Unboundedness

First Tableau:

X3 = 1 — X1 + Xo
X2 = 2 + X4 — X
Z = X1

Only one candidate: x1. x3 = 1 — X1 4+ X» is critical. Replace 3 by 1 in
B: B=1{1,4}.

X{t=1+4+Xo — X3.

Second Tableau:

X1 = 1 + Xo — X3
Xy, = 3 — X3
z =1 4+ X — X3

Recent solution:
x=(1,0,0,3).



Simplex Algorithm: Example Il: Unboundedness

Second Tableau:

X1 = 1 + Xo — X3
Xg2 = 3 — X3
z =1 4+ X — X3

Only one candidate: x>. No constraint for it!

= The LP is unbounded

35



Simplex Algorithm: Example Il

Second Example: Degeneracy

36
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Simplex Algorithm: Example Ill: Degeneracy

max Xo

St. — x4 + X0 + X
X + Xq
X1 , Xo , X3 , X4

Initial basis: B = {3,4}
Simplex Tableau:

X3 = X1 — Xo
X4 = 2 — X1
Z = Xo

= x = (0,0,0,2): degenerated solution.

Vo

oD O
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Simplex Algorithm: Example Ill: Degeneracy

First Tableau:

X3 = X1 — Xo
X4 = 2 — X1
Z = Xo

Want to increase x>. x3 = Xy — Xo is critical. Replace 3 by 2 in B:
B=1{24}.

Xo = X1 — x3. We will replace 3 by 2 in the basis.

But: We cannot increase Xx».

Second Tableau:

Xo = X1 — X3
X4 = 2 — X 1
Z = X1 — X3

Recent solution: x = (0,0,0,2).



Simplex Algorithm: Example Ill: Degeneracy

Second Tableau:

Xo = X1 — X3
X4 = 2 — X 1
zZ = Xy — X3

Increase x1. X4 = 2 — xy is critical. x; = 2 — x4. New base

B=1{1,2,0,0}.

Third Tableau:
X1 = 2 — X4
Xo = 2 — X3 — X3
Z = 2 — X3 — X4

Optimum solution: x = (2,2,0,0).

39



The Simplex Algorithm

Algorithm 1: Simplex Algorithm

Input: Ac R™" beR™ and c € R”
Output: X € {x € R" | Ax = b, x > 0} maximizing c’x or the message
that max{cix | Ax = b, x > 0} is unbounded or infeasible
1 Compute a feasible basis B;
2 |f no such basis exists, stop with the message “INFEASIBLE”;
3 Set N={1,....n}\ B and compute the feasible basic solution x for B;

4+ Compute the simplex tableau 2 — P QXNf B:
z = zg + rixy

5 if r < 0 then
| return x = x;
6 Choose o € Nwithr, > 0;

7 if g;, > O for all /i € B then
| return “UNBOUNDED?;

8 Choose /3 ¢ B with gz, < 0 and pﬁ - = max{£L | gi, <0,i € BY;

9 Set B=(B\ {5}) U {a};
10 GOTO line 3;

40
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Let G be an directed graph with capacities u : E(G) — R., and
numbers b: V(G) — Rwith s b(v) = 0. A feasible

b-flow in (G, u, b) is a mapping 7 : E(G) — R~ with
o f(e) <u(e)forall e c E(G) and

e Ze@g(v) fle) — Zee(saw) f(e) = b(v) forall v € V(G).

Notation:
e b(v): balance of v.
o If b(v) > 0, we call it the supply of v.
o If b(v) < 0, we call it the demand of v.
e Nodes v of G with b(v) > 0 are called sources.
e Nodes v with b(v) < 0 are called sinks.
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Minimum-Cost Flow Problem

e Input: A directed graph G, capacities u : E(G) — R,
numbers b: V(G) — Rwith > 5 b(v) = 0, edge costs
c: E(G)—R.

o Task: Find a b-flow f minimizing > . ¢ c(e) - f(e).




Let G be a directed graph.
e Fore= (v, w) let o= (w, v) its reverse edge.
. Define Gby V(G) = V(G) and E(G) — E(G )U{Z\ e c E(G)).
e Edge costs c: E(G) — R are extended to E( ) by c(e) —c(ey}.

e Let (G, u,b,c)beaMINIMUM-COST FLOW instance and let f be a
b-flow in (G, u). The residual graph G,  is defined by
V(G,¢) := V(G) and

E(Gus) ={e € E(G) | f(e) < u(e)} U {ec E(G)|f(e)>0}.

e For e € E(G) we define the residual capacity by
us(e) = u(e) — f(e) and by us(e) = f(e).

43
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Augmenting Flow

If P is a subgraph of the residual graph G, s then augmenting
along P by ~ (for v > 0) means increasing P on forward edges
in P (i.e. edges in E(G) N E(P)) by + and reducing it on reverse
edges in P by .
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Algorithm 2: Network Simplex Algorithm

Input: A MIN-COST-FLOW instance (G, u, b, ¢);
A strongly feasible tree structure (r, 7. L. U).
Output: A minimum-cost flow f.

1 Compute b-flow f and potential = associated to (r, T, L, U);

N

o o A~ W

N

ep := an edge with ey € L and c.(ey) < 0 or with ¢y € U and ¢, (ey) > 0;
if (No such edge exists) then return f

C := the fund. circuit of e; (if ey € L) or of é_o (if o € U)andlet p = ¢, (ep);

7Y := MiNg cg (o) Ur(€').
e’ .= last edge on C with us(€’) = v when C is traversed starting at the peak;

Let e; be the corresponding edge in G, i.e. € = ey or € :51;

8 Remove ¢, from L or U;
9 Set T = (TU{ey})\{ei};

10
11
12
13
14
15
16

if & = ey then Set U =UU/{e};

else Set L = LU {e};

Augment f along ~ by C;

Let X be the connected component of (V(G), T \ {&y}) that contains r;
if eg € 07 (X)thenSet n(v) =xn(v)+pforve V(G)\ X;

ifeg € 07 (X) then Set n(v) = n(v) —pforv e V(G) \ X;

go to line 2;




lllustration:

r
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lllustration:

r

Cost of fundamental circuit = ¢, (e&p).
47



o A

BZ
(c,0) (1,0)

(07 _1)

Half-Ball Lemma

B'"n{xeR"|xy>0 C E
with

2 2 n
B oo (n41)2 1 n% — 1 5
E_{XER\ p X1_n+1 + pe Zx,§1 :

vol(E) — ol
Moreover, Vol(B") < e 2+,
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Algorithm 3: Idealized Ellipsoid Algorithm

Input: A separation oracle for a closed convex set K C R", a number
R > 0 with K C {x € R" | x!x < R?}, and a number ¢ > 0.
Output: An x € K or the message “vol(K) < €”

1 Do = 0, AO L= Rzln;
2 for k =0,...,N(R,¢) := [2(n+1)(nIn(2R) +In(1))| do
3 if p, € K then
4 | return py;
5 | Letaec R"be a vector with a'y > alp, forall y € K;
6 bk _ Axa .

ValAa
7 | Pk =Pkt n1ﬁbk;

2

8 | Axi1 = (A — ;25 bikbl);

9 return “vol(K) < €”;
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—~—

px and Aj: exact values
px and Ag: rounded values

x € K:
1 N
o (x—pK)!Ax (x—px) <1

—~ 1 N
o (Xx—p)'AN(X—pk) < 1+2Vn6 |Ac || (R+ lpkll) +
—~ 1 B —~ 1
nd?||Ax [l + (R=+llekl)? 1A - 1A, Il - né
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Adjust Ax by multiplyingitby =1+ m =

~ 1 -~y
(X — Px) Ak (X—pk)—1+ 1 i

~ 41 —~
* (X—pP)' A (x=p) < 11—y

4n?
1 N
o (x—p)'A(Xx—p) < A-zp+2vnd [|Ac || (R+Ilpell)+
—~ 1 B —~ 1
nd®||Ac Il + (R +1lpel)® 1A A - né

Goal is to choose ¢ such that

—~— 1 ~ —~— 1 B —~— 1
o 2/nd ||Ac || (R+lpkll) + no*[[Ac || + (R+[lpel)? 1A - 1A [1nd < g7z

e~ 1
o SlAe Il < g
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2 W N =

o O

9

Algorithm 4: Ellipsoid Algorithm

Input: A separation oracle for a closed convex set K C R", a number
R > 0 with K C {x € R" | x!x < R?}, and a number ¢ > 0
Output: An x € K or the message “vol(K) < ¢”.

pO = Os AO = F‘)Zln;
for k=0,...,N(R,¢) := [8(n+1)(nIn(2R) +In(1))] do
if p, € K then
L return p;
Let 2 € R" be a vector with a'y > ap, for all y € K;
. Aa .
by = NeT

P11 an approximation of px, 1 := px + n+1 by, with maximum error

5 < (26(N(R,e)+1)16n3)_1;
Ak+1 a symmetric approximation of

Ak+1 = (1 - 2n(n+1)) — 1(Ak — n+1 bkb ) with maximum error ¢;

return “vol(K) < €
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Let P C R" be a rational polytope and let x; € P in the interior of P.
Let T € N\ {0} such that size(xp) < log(T) and size(x) < log(T) for
all vertices x of P.

Theorem (Separation — Optimization)

Let c € Q". Given n, ¢, xp, T and a polynomial-time separation oracle
for P, a vertex x* of P attaining max{c'x | x € P} can be found in time
polynomial in n, log(T) and size(c).

Theorem (Optimization — Separation)

Let y € Q". Given n, y, xo, T and an oracle which for given ¢ € Q"
returns a vertex x* of P attaining max{c'x | x € P}, we can implement
a separation oracle for P and y with running time polynomial in n,
log(T) and size(y). If y ¢ P, we can find with this running time a
facet-defining inequality of P that is violated by y.




Interior Point Methods

Primal-dual pair:

Primal: max clx
st. Ax+s = b (1)
s > 0
Dual: min bly
st. Ay = ¢ (2)
y > 0

We want to compute a solution of the dual LP.

e Columns of A are linearly independent
e More rows than columns

54
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Combined constraints:

VIV I
cCooo0 o
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New set of constraints:

>
>
T
(0)]
|

NE
<
=[5
= =
N N
IA
OO ~N= O

n <
VvV V

General strategy:
(I) Compute an initial solution of a modified version of (4): v

(Il) Reduce 1 by a constant factor and adapt x, y and s to the new
value of ;; such that we again get a solution of (4).
lterate this step until 1 is small enough.

(lIl) Compute an optimum solution of the dual LP.
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Assumption: We have a solution (%), x(5) y(5) s(K) of the system

Ax+s = b
Aly = ¢
2
2 (YiSi
mE(e 1) <
y > 0
s > 0

Goal: Find solution p (A1) x (k1) 1y (k1) g(K+1) with
pFE) = (1 = 8) %) (5 € (0, 1) will be defined later).

Notation:
o x(k+1) = x(K) 1 f - ¢ Alg=0
o yItD) =yl 4 g ¢« Af+h=0

Y S(k+1) — S(k) _|_ h



We want y““ VsV to be close to (k).
We have

yEDGEED (0 4 gy(s% 4+ py)

- y(k) o + giS,; (k) + yi(k)hi + gihi

We demand y( ) (k) + giS; ( ) y(k)h Iu(k—H)

Equation system:
Alg = 0
Af+h = 0 ()

sWg +y®p = k) 0Ky my 2
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Proposition

If Ax < b, a'x < 3 is TDI with a integral, then Ax < b, a'x = 3 is also
TDI.

Proof: Let ¢ be an integral vector for which

max{cix | Ax < b, a'x = 5}

— min{bly + B\ —p) | ¥ = 0.\ = 0, Ay + (A —pa=c} )

is finite. Let x*, y*, \*, 1* be optimum primal and dual solutions. Set
c:=c+ [p"|a. Then,

max{cix | Ax < b, alx < 3} 6)
= min{bly+8X|y>0,X>0Aly +a=_¢}

IS finite because x™ Is feasible for the maximum and y* and
N+ [ — p* are feasible for the minimum.
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For each rational polyhedron P C R" there exists a rational
TDIl-system Ax < bwith Ac Z™"and P = {x € R" | Ax < b}. The
vector b can be chosen to be integral if and only if P is integral.

Proof: W.l.o.g. P # (). For each minimal face F of P, define
Cr:={ceR"|c'z=max{cx | x € P} forall z € F}.

Then, Cr is a polyhedral cone. To see this, let P = {Ax < b} be some
description of P. Then Cr is generated by the rows of A that are active
In F.

Let F be a minimal face, and let a4, ..., a; be a Hilbert basis
generating Cr. Choose xo € F, and define 3, := alxp fori =1,... t.
Then, 3; = max{alx | x € P} (i=1,....t). Let Sk be the system

alx < By,...,alx < B;. Allinequalities in Sk are valid for P. Let

Ax < b be the union of the systems S¢ over all minimal faces F of P.
Then, P C {x € R" | Ax < b}.
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A matrix A = (aj) i- tom € 7™ is totally unimodular if and only if for
/=

.....

eachset R C {1, .. n} there is a partition R = R{UR> such that for
each /¢ {1,...,m}. D _jeRm, @i — 2_jem, @j € {—1,0,1}.

Proof: “=:” v

<" Assume: Foreach R C {1,...,n} there is a partition R = R{UR, as
above.

By induction in k: Every k x k-submatrix of A has determinant -1,0, or 1.
k=1.v

Let kK > 1. Let B = (bj); jeq1.... ky @ submatrix of A. W.l.o.g.: B is regular.
We have proved: B* := (det(B))B~' € {—1,0,1}/xk,

b*: first column of B*. Then, Bb* = det(B)e;. Let

R:={je{l,....k} | b #0}. Forie {2,... k}, we have

0= (Bb")i =) _jcrbiyb;,so|{j € R|bj#0}|is even.

Let R = R{UR, such thatZ€R — 2 jer, i €{-1,0, 1}foral|

e {1,...,k}. Thus, for i € {2 k} we have: Z/ER — 2 jer, Di = 0.
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The incidence matrix of an undirected graph G is the matrix
Ag = (ay.e) vevie) Which is defined by:

ecE(G)
P 1, ifvee
Y10, ifvde

The incidence matrix of a directed graph G is the matrix
A = (ay.e) vevie) Which is defined by:
ecE(G)
(1, ifv=x
avxy) =143 1 fv=y
. 0, ifve{x y}
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For every rational polyhedron P, there is a number t with P{) = P,. \

Proof: Let P = {x € R" | Ax < b} with A integral and b rational. We
prove the statement by induction on n + dim(P). The case dim(P) =0
IS trivial.

Case 1: dim(P) < n: v

Case 2: dim(P) = n:

P is rational = P, is rational = P, = {x € R" | Cx < d} with C integral
and d rational. If P, = (), we choose C = Aand d = b — A1l , where A’
arises from A by taking the absolute value of each entry.

Let ¢'x < § be an inequality in Cx < d.

Claim: There is an s € N with P(8) C H := {x ¢ R" | ¢!x < §}.

Proof of the claim: Thereisa 5 > d with P C {x ¢ R" | ¢'x < 3}: If

P, = 0, this is true by construction. If P, -+ (), it follows from the fact that
c'x is bounded over P if and only if it is bounded over P,.
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Algorithm 5: Branch-and-Bound Algorithm

Input: A matrix A € Q=" a vector b € Q™, and a vector ¢ € Q" such that the LP

Output: A vector x € {x € Z" | Ax < b} maximizing c!x or the message that there is no feasible

L=

max{clx | Ax < b} is feasible and bounded.

solution.
—o00; Pyi={xeR"|Ax < b}; K :={Po};

while C # () do

else

Choosea P c C; K := [\ {P};

if P # () then

Let x* be an optimum solution of max{c'x | x € P;} and let ¢* = c'x*;
if c* > L then

if x* € Z" then

Choose / € {1,...,n} with x* & Z;
Poji 1 :={xeP|x <[x]};
Pojio:={xe€P|x>[x"};
C=KU {P2j+1} U {P2j+2};

if L > —oo then

return Xx;

return “There is no feasible solution”;
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Branch-and-Bound: Example

max
subject to

— X1 + 3Xo
—4X1 —+ 6X2
X1 + Xo

X1, X2

X1, X2

N AVARVANR VAN
N O A ©
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—4x1 +6X0 =9 /

N

X1+ Xo =4

Figure : A branch-and-bound example (I).
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— X2:3
— X2:2
—4X1—|—6X2:9/
> X1
X1+ Xo =4

Figure : A branch-and-bound example (lI).
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P; = {0} x [0, 1.5

—4X1—|—6X2:9/_

T \

xg =0 Xo = 1 X1+ Xo =4

Figure : A branch-and-bound example (lll).



