
Linear and Integer Programming

• Time: Tuesdays and Thursdays, 12:15 - 13:55 (with 10 minutes
break)

• Place: Gerhard-Konow-Hörsaal, Lennéstr. 2
• Website:
www.or.uni-bonn.de/lectures/ws16/lgo_ws16.html

• Lecture notes and all slides can be found on the website.

Final Examination
• Oral examination
• Dates by appointment.

1

Exercise Classes

• Exercise classes are two hours per week.
• Assignments are released every Tuesday (starting in the second

week).
• There will be programming exercises.
• 50 % of all points in the assignments are required to participate in

the exam.
• Students can work in groups of two.
• All participants of a group have to be able to explain their

solutions.
• Exercise classes begin in the second week.

2

Possible Time Slots for the Exercise Classes

1 Mo 10 - 12
2 Tu 14 - 16
3 We 10 - 12
4 We 12 - 14
5 Th 10 - 12
6 Th 14 - 16
7 Th 16 - 18
8 Fr 10 - 12
9 Fr 12 - 14

We will choose two of these time slots.

Application for the exercise classes: See the website
www.or.uni-bonn.de/lectures/ws16/lgo_uebung_ws16.html

3

Modelling Optimization Problems as LPs

Defintion
Let G be a directed graph with capacities u : E(G)→ R>0 and let s
and t be two vertices of G. A feasible s-t-flow in (G,u) is a mapping
f : E(G)→ R≥0 with
• f (e) ≤ u(e) for all e ∈ E(G) and
•
∑

e∈δ+
G (v) f (e)−

∑
e∈δ−G (v) f (e) = 0 for all v ∈ V (G) \ {s, t}.

The value of an s-t-flow f is val(f) =
∑

e∈δ+
G (s) f (e)−

∑
e∈δ−G (s) f (e).

4

Modelling Optimization Problems as LPs

MAXIMUM-FLOW PROBLEM

Instance: A directed Graph G, capacities u : E(G)→ R>0,
vertices s, t ∈ V (G) with s 6= t .

Task: Find an s-t-flow f : E(G)→ R≥0 of maximum value.

LP-formulation:

max
∑

e∈δ+
G (s)

xe −
∑

e∈δ−G (s)

xe

s.t. xe ≥ 0 for e ∈ E(G)
xe ≤ u(e) for e ∈ E(G)∑

e∈δ+
G (v)

xe −
∑

e∈δ−G (v)

xe = 0 for v ∈ V (G) \ {s, t}

5

Duality: Example

(P) max 12x1 + 10x2
s.t. 4x1 + 2x2 ≤ 5

8x1 + 12x2 ≤ 7
2x1 − 3x2 ≤ 1

Goal: Find an upper bound on the optimum solution value.

Combine constraint 1 and 2:

12x1 + 10x2 = 2 · (4x1 + 2x2) +
1
2

(8x1 + 12x2) ≤ 2 · 5 +
1
2
· 7 = 13.5.

Combine constraint 2 and 3:

12x1 + 10x2 =
7
6
· (8x1 + 12x2) +

4
3
· (2x1 − 3x2) ≤ 7

6
· 7 +

4
3
· 1 = 9.5.

6

Duality: Example

(P) max 12x1 + 10x2
s.t. 4x1 + 2x2 ≤ 5

8x1 + 12x2 ≤ 7
2x1 − 3x2 ≤ 1

General approach: Find numbers u1,u2,u3 ∈ R≥0 such that

12x1 + 10x2 = u1 · (4x1 + 2x2) + u2 · (8x1 + 12x2) + u3 · (2x1 − 3x2).

⇒ 5u1 + 7u2 + u3 is an upper bound on the value of any solution of (P).

⇒ Chose u1,u2,u3 such that 5u1 + 7u2 + u3 is minimized.

7

Duality: Example

(P) max 12x1 + 10x2
s.t. 4x1 + 2x2 ≤ 5

8x1 + 12x2 ≤ 7
2x1 − 3x2 ≤ 1

Formulation as a linear program:

(D) min 5u1 + 7u2 + u3
s.t. 4u1 + 8u2 + 2u3 = 12

2u1 + 12u2 − 3u3 = 10
u1 ≥ 0

u2 ≥ 0
u3 ≥ 0

Any solution of (D) gives an upper bound for (P).

8

Duality: Example

(P) max 12x1 + 10x2
s.t. 4x1 + 2x2 ≤ 5

8x1 + 12x2 ≤ 7
2x1 − 3x2 ≤ 1

Formulation as a linear program:

(D) min 5u1 + 7u2 + u3
s.t. 4u1 + 8u2 + 2u3 = 12

2u1 + 12u2 − 3u3 = 10
u1 ≥ 0

u2 ≥ 0
u3 ≥ 0

Any solution of (D) gives an upper bound for (P).

9

Duality: Example

(P) max 12x1 + 10x2
s.t. 4x1 + 2x2 ≤ 5

8x1 + 12x2 ≤ 7
2x1 − 3x2 ≤ 1

Formulation as a linear program:

(D) min 5u1 + 7u2 + 1u3
s.t. 4u1 + 8u2 + 2u3 = 12

2u1 + 12u2 − 3u3 = 10
u1 ≥ 0

u2 ≥ 0
u3 ≥ 0

Any solution of (D) gives an upper bound for (P).

10

Duality: Example

(P) max 12x1 + 10x2
s.t. 4x1 + 2x2 ≤ 5

8x1 + 12x2 ≤ 7
2x1 − 3x2 ≤ 1

Formulation as a linear program:

(D) min 5u1 + 7u2 + u3
s.t. 4u1 + 8u2 + 2u3 = 12

2u1 + 12u2 − 3u3 = 10
u1 ≥ 0

u2 ≥ 0
u3 ≥ 0

Any solution of (D) gives an upper bound for (P).

11

Duality: Example

(P) max 12x1 + 10x2
s.t. 4x1 + 2x2 ≤ 5

8x1 + 12x2 ≤ 7
2x1 − 3x2 ≤ 1

Formulation as a linear program:

(D) min 5u1 + 7u2 + u3
s.t. 4u1 + 8u2 + 2u3 = 12

2u1 + 12u2 − 3u3 = 10
u1 ≥ 0

u2 ≥ 0
u3 ≥ 0

Any solution of (D) gives an upper bound for (P).

12

Fourier-Motzkin Elimination I

Given a system of inequalities, check if a solution exists.

3x + 2y + 4z ≤ 10
3x + 2z ≤ 9
2x − y ≤ 5
−x + 2y − z ≤ 3
−2x ≤ 4

2y + 2z ≤ 7

First step: Get rid of variable x .

13

Fourier-Motzkin Elimination II

3x + 2y + 4z ≤ 10
3x + 2z ≤ 9
2x − y ≤ 5
−x + 2y − z ≤ 3
−2x ≤ 4

2y + 2z ≤ 7

is equivalent to

x ≤ 10
3 − 2

3y − 4
3z

x ≤ 3 − 2
3z

x ≤ 5
2 + 1

2y
x ≥ −3 + 2y − z
x ≥ −2

2y + 2z ≤ 7

14

Fourier-Motzkin Elimination III

x ≤ 10
3 − 2

3y − 4
3z

x ≤ 3 − 2
3z

x ≤ 5
2 + 1

2y
x ≥ −3 + 2y − z
x ≥ −2

2y + 2z ≤ 7

This system is feasible if and only if the following system has a
solution:

min
{10

3 −
2
3y − 4

3z, 3− 2
3z, 5

2 + 1
2y
}
≥ max {−3 + 2y − z, −2}

2y + 2z ≤ 7

15

Fourier-Motzkin Elimination IV

min
{10

3 −
2
3y − 4

3z, 3− 2
3z, 5

2 + 1
2y
}
≥ max {−3 + 2y − z, −2}

2y + 2z ≤ 7

This system can be rewritten in the following way:

10
3 − 2

3y − 4
3z ≥ −3 + 2y − z

10
3 − 2

3y − 4
3z ≥ −2

3 − 2
3z ≥ −3 + 2y − z

3 − 2
3z ≥ −2

5
2 + 1

2y ≥ −3 + 2y − z
5
2 + 1

2y ≥ −2
2y + 2z ≤ 7

16

Fourier-Motzkin Elimination V

Conversion in standard form:

8
3y + 1

3z ≤ 19
3

2
3y + 4

3z ≤ 16
3

8
3y − z ≤ 6

2
3z ≤ 5

3
2y − z ≤ 11

2

−1
2y ≤ 9

2

2y + 2z ≤ 7

Iterate these steps and remove all variables.

17

Corollary
Let A,B,C,D,E ,F ,G,H,K be matrices and a,b,c,d ,e,f be vectors of appropriate
dimensions such that:  A B C

D E F
G H K

 is an m × n-matrix,

 a
b
c

 is a vector of length m and

 d
e
f

 is a vector of length n.Then

max


Ax + By + Cz ≤ a
Dx + Ey + Fz = b

d tx + ety + f tz : Gx + Hy + Kz ≥ c
x ≥ 0

z ≤ 0


=

min


Atu + Dtv + Gtw ≥ d
Btu + E tv + H tw = e

atu + btv + ctw : C tu + F tv + K tw ≤ f
u ≥ 0

w ≤ 0

 ,

provided that both sets are non-empty.
18

Corollary
Let A,B,C,D,E ,F ,G,H,K be matrices and a,b,c,d ,e,f be vectors of appropriate
dimensions such that:  A B C

D E F
G H K

 is an m × n-matrix,

 a
b
c

 is a vector of length m and

 d
e
f

 is a vector of length n.Then

max


Ax + By + Cz ≤ a
Dx + Ey + Fz = b

d tx + ety + f tz : Gx + Hy + Kz ≥ c
x ≥ 0

z ≤ 0


=

min


Atu + Dtv + Gtw ≥ d
Btu + E tv + H tw = e

atu + btv + ctw : C tu + F tv + K tw ≤ f
u ≥ 0

w ≤ 0

 ,

provided that both sets are non-empty.
19

Corollary
Let A,B,C,D,E ,F ,G,H,K be matrices and a,b,c,d ,e,f be vectors of appropriate
dimensions such that:  A B C

D E F
G H K

 is an m × n-matrix,

 a
b
c

 is a vector of length m and

 d
e
f

 is a vector of length n.Then

max


Ax + By + Cz ≤ a
Dx + Ey + Fz = b

d tx + ety + f tz : Gx + Hy + Kz ≥ c
x ≥ 0

z ≤ 0


=

min


Atu + Dtv + Gtw ≥ d
Btu + E tv + H tw = e

atu + btv + ctw : C tu + F tv + K tw ≤ f
u ≥ 0

w ≤ 0

 ,

provided that both sets are non-empty.
20

Corollary
Let A,B,C,D,E ,F ,G,H,K be matrices and a,b,c,d ,e,f be vectors of appropriate
dimensions such that:  A B C

D E F
G H K

 is an m × n-matrix,

 a
b
c

 is a vector of length m and

 d
e
f

 is a vector of length n.Then

max


Ax + By + Cz ≤ a
Dx + Ey + Fz = b

d tx + ety + f tz : Gx + Hy + Kz ≥ c
x ≥ 0

z ≤ 0


=

min


Atu + Dtv + Gtw ≥ d
Btu + E tv + H tw = e

atu + btv + ctw : C tu + F tv + K tw ≤ f
u ≥ 0

w ≤ 0

 ,

provided that both sets are non-empty.
21

Corollary
Let A,B,C,D,E ,F ,G,H,K be matrices and a,b,c,d ,e,f be vectors of appropriate
dimensions such that:  A B C

D E F
G H K

 is an m × n-matrix,

 a
b
c

 is a vector of length m and

 d
e
f

 is a vector of length n.Then

max


Ax + By + Cz ≤ a
Dx + Ey + Fz = b

d tx + ety + f tz : Gx + Hy + Kz ≥ c
x ≥ 0

z ≤ 0


=

min


Atu + Dtv + Gtw ≥ d
Btu + E tv + H tw = e

atu + btv + ctw : C tu + F tv + K tw ≤ f
u ≥ 0

w ≤ 0

 ,

provided that both sets are non-empty.
22

Max-Flow Problem

G Digraph, u : E(G)→ R>0, s, t ∈ V (G) with s 6= t .

LP-formulation:

max
∑

e∈δ+
G (s)

xe −
∑

e∈δ−G (s)

xe

s.t. xe ≥ 0 for e ∈ E(G)
xe ≤ u(e) for e ∈ E(G)∑

e∈δ+
G (v)

xe −
∑

e∈δ−G (v)

xe = 0 for v ∈ V (G) \ {s, t}

Dual LP:

min
∑

e∈E(G)

u(e)ye

s.t. ye ≥ 0 for e ∈ E(G)
ye + zv − zw ≥ 0 for e = (v ,w) ∈ E(G)

zs = −1
zt = 0

23

Max-Flow Problem

G Digraph, u : E(G)→ R>0, s, t ∈ V (G) with s 6= t .

LP-formulation:

max
∑

e∈δ+
G (s)

xe −
∑

e∈δ−G (s)

xe

s.t. xe ≥ 0 for e ∈ E(G)
xe ≤ u(e) for e ∈ E(G)∑

e∈δ+
G (v)

xe −
∑

e∈δ−G (v)

xe = 0 for v ∈ V (G) \ {s, t}

Dual LP:

min
∑

e∈E(G)

u(e)ye

s.t. ye ≥ 0 for e ∈ E(G)
ye + zv − zw ≥ 0 for e = (v ,w) ∈ E(G)

zs = −1
zt = 0

24

Theorem
Let P ⊆ {x ∈ Rn | Ax = b} be a non-empty polyhedron of dimension
n− rank(A). Let A′x ≤ b′ be a minimal system of inequalities such that
P = {x ∈ Rn | Ax = b,A′x ≤ b′}. Then, every inequality in A′x ≤ b′ is
facet-defining for P and every facet of P is given by an inequality of
A′x ≤ b′.

25

Simplex Algorithm: Example I

max x1 + x2
s.t . −x1 + x2 + x3 = 1

x1 + x4 = 3
x2 + x5 = 2

x1 , x2 , x3 , x4 , x5 ≥ 0

Initial basis: {3,4,5}. ⇒ AB =

 1 0 0
0 1 0
0 0 1


Simplex tableau:

x3 = 1 + x1 − x2
x4 = 3 − x1
x5 = 2 − x2
z = x1 + x2

Recent solution: (0,0,1,3,2)
26

Simplex Algorithm: Example I

x3 = 1 + x1 − x2
x4 = 3 − x1
x5 = 2 − x2
z = x1 + x2

Increase exactly one of the non-basic variables with positive coefficient
in the objective function.
We choose x2. How much can we increase it?

Constraints:
x3 = 1 + x1 − x2: x2 cannot get larger than 1.
x4 = 3− x1 : no constraint on x2.
x5 = 2 − x2: x2 cannot get larger than 2.

Strictest constraint: x3 = 1 + x1 − x2
⇒ Replace 3 by 2 in B.

27

Simplex Algorithm: Example I

First tableau:

x3 = 1 + x1 − x2
x4 = 3 − x1
x5 = 2 − x2
z = x1 + x2

Replace 3 by 2 in the basis B: B = {2,4,5}:

x2 = 1 + x1 − x3.

Second tableau:

x2 = 1 + x1 − x3
x4 = 3 − x1
x5 = 1 − x1 + x3
z = 1 + 2x1 − x3

Recent solution: (0,1,0,3,1)
28

Simplex Algorithm: Example I

Second tableau:

x2 = 1 + x1 − x3
x4 = 3 − x1
x5 = 1 − x1 + x3
z = 1 + 2x1 − x3

Only one candidate: x1
x5 = 1− x1 + x3 is critical. Replace 5 by 1 in B: B = {1,2,4}.
x1 = 1 + x3 − x5.
Third tableau:

x1 = 1 + x3 − x5
x2 = 2 − x5
x4 = 2 − x3 + x5
z = 3 + x3 − 2x5

Recent solution: x = (1,2,0,2,0).
29

Simplex Algorithm: Example I

Third tableau:

x1 = 1 + x3 − x5
x2 = 2 − x5
x4 = 2 − x3 + x5
z = 3 + x3 − 2x5

Only one candidate: x3
x4 = 2− x3 + x5 is critical. Replace 4 by 3 in B: B = {1,2,3}.
x3 = 2− x4 + x5
Fourth tableau:

x1 = 3 − x4
x2 = 2 − x5
x3 = 2 − x4 + x5
z = 5 − x4 − x5

Recent solution: x = (3,2,2,0,0).
30

Simplex Algorithm: Example I

Fourth tableau:

x1 = 3 − x4
x2 = 2 − x5
x3 = 2 − x4 + x5
z = 5 − x4 − x5

Recent solution: x = (3,2,2,0,0).

This is an optimum solution!

31

Simplex Algorithm: Example II

Second Example: Unboundedness

32

Simplex Algorithm: Example II: Unboundedness

max x1
s.t . x1 − x2 + x3 = 1

−x1 + x2 + x4 = 2
x1 , x2 , x3 , x4 ≥ 0

Initial basis: B={3,4}
Simplex Tableau:

x3 = 1 − x1 + x2
x4 = 2 + x1 − x2
z = x1

Recent solution: x = (0,0,1,2).

33

Simplex Algorithm: Example II: Unboundedness

First Tableau:

x3 = 1 − x1 + x2
x4 = 2 + x1 − x2
z = x1

Only one candidate: x1. x3 = 1− x1 + x2 is critical. Replace 3 by 1 in
B: B = {1,4}.
x1 = 1 + x2 − x3.
Second Tableau:

x1 = 1 + x2 − x3
x4 = 3 − x3
z = 1 + x2 − x3

Recent solution:
x = (1,0,0,3).

34

Simplex Algorithm: Example II: Unboundedness

Second Tableau:

x1 = 1 + x2 − x3
x4 = 3 − x3
z = 1 + x2 − x3

Only one candidate: x2. No constraint for it!

⇒ The LP is unbounded

35

Simplex Algorithm: Example III

Second Example: Degeneracy

36

Simplex Algorithm: Example III: Degeneracy

max x2
s.t . −x1 + x2 + x3 = 0

x1 + x4 = 2
x1 , x2 , x3 , x4 ≥ 0

Initial basis: B = {3,4}
Simplex Tableau:

x3 = x1 − x2
x4 = 2 − x1
z = x2

⇒ x = (0,0,0,2): degenerated solution.

37

Simplex Algorithm: Example III: Degeneracy

First Tableau:

x3 = x1 − x2
x4 = 2 − x1
z = x2

Want to increase x2. x3 = x1 − x2 is critical. Replace 3 by 2 in B:
B = {2,4}.
x2 = x1 − x3. We will replace 3 by 2 in the basis.
But: We cannot increase x2.
Second Tableau:

x2 = x1 − x3
x4 = 2 − x1
z = x1 − x3

Recent solution: x = (0,0,0,2).

38

Simplex Algorithm: Example III: Degeneracy

Second Tableau:

x2 = x1 − x3
x4 = 2 − x1
z = x1 − x3

Increase x1. x4 = 2− x1 is critical. x1 = 2− x4. New base
B = {1,2,0,0}.
Third Tableau:

x1 = 2 − x4
x2 = 2 − x3 − x3
z = 2 − x3 − x4

Optimum solution: x = (2,2,0,0).

39

The Simplex Algorithm

Algorithm 1: Simplex Algorithm
Input: A ∈ Rm×n, b ∈ Rm, and c ∈ Rn

Output: x̃ ∈ {x ∈ Rn | Ax = b, x ≥ 0} maximizing ctx or the message
that max{ctx | Ax = b, x ≥ 0} is unbounded or infeasible

1 Compute a feasible basis B;
2 If no such basis exists, stop with the message “INFEASIBLE”;
3 Set N = {1, . . . ,n} \ B and compute the feasible basic solution x for B;

4 Compute the simplex tableau
xB = p + QxN
z = z0 + r txN

for B;

5 if r ≤ 0 then
return x̃ = x ;

6 Choose α ∈ N with rα > 0;
7 if qiα ≥ 0 for all i ∈ B then

return “UNBOUNDED”;
8 Choose β ∈ B with qβα < 0 and pβ

qβα
= max{ pi

qiα
| qiα < 0, i ∈ B};

9 Set B = (B \ {β}) ∪ {α};
10 GOTO line 3;

40

Definition
Let G be an directed graph with capacities u : E(G)→ R>0 and
numbers b : V (G)→ R with

∑
v∈V (G) b(v) = 0. A feasible

b-flow in (G,u,b) is a mapping f : E(G)→ R≥0 with
• f (e) ≤ u(e) for all e ∈ E(G) and
•
∑

e∈δ+
G (v) f (e)−

∑
e∈δ−G (v) f (e) = b(v) for all v ∈ V (G).

Notation:
• b(v): balance of v .
• If b(v) > 0, we call it the supply of v .
• If b(v) < 0, we call it the demand of v .
• Nodes v of G with b(v) > 0 are called sources.
• Nodes v with b(v) < 0 are called sinks.

41

Minimum-Cost Flow Problem
• Input: A directed graph G, capacities u : E(G)→ R>0,

numbers b : V (G)→ R with
∑

v∈V (G) b(v) = 0, edge costs
c : E(G)→ R.

• Task: Find a b-flow f minimizing
∑

e∈E(G) c(e) · f (e).

42

Definition
Let G be a directed graph.

• For e = (v ,w) let
←
e= (w , v) its reverse edge.

• Define
↔
G by V (

↔
G) = V (G) and E(

↔
G) = E(G)∪̇{

←
e | e ∈ E(G)}.

• Edge costs c : E(G)→ R are extended to E(
↔
G) by c(

←
e) := −c(e).

• Let (G,u,b, c) be a MINIMUM-COST FLOW instance and let f be a
b-flow in (G,u). The residual graph Gu,f is defined by
V (Gu,f) := V (G) and

E(Gu,f) := {e ∈ E(G) | f (e) < u(e)} ∪̇ {
←
e∈ E(

↔
G) | f (e) > 0}.

• For e ∈ E(G) we define the residual capacity by
uf (e) = u(e)− f (e) and by uf (

←
e) = f (e).

43

Augmenting Flow
If P is a subgraph of the residual graph Gu,f then augmenting f
along P by γ (for γ > 0) means increasing P on forward edges
in P (i.e. edges in E(G) ∩ E(P)) by γ and reducing it on reverse
edges in P by γ.

44

Algorithm 2: Network Simplex Algorithm
Input: A MIN-COST-FLOW instance (G,u,b, c);

A strongly feasible tree structure (r ,T ,L,U).
Output: A minimum-cost flow f .

1 Compute b-flow f and potential π associated to (r ,T ,L,U);
2 e0 := an edge with e0 ∈ L and cπ(e0) < 0 or with e0 ∈ U and cπ(e0) > 0;

3 if (No such edge exists) then return f

4 C := the fund. circuit of e0 (if e0 ∈ L) or of
←
e0 (if e0 ∈ U) and let ρ = cπ(e0);

5 γ := mine′∈E(C) uf (e′).
6 e′ := last edge on C with uf (e′) = γ when C is traversed starting at the peak;

7 Let e1 be the corresponding edge in G, i.e. e′ = e1 or e′ =
←
e1;

8 Remove e0 from L or U;
9 Set T = (T ∪ {e0}) \ {e1};

10 if e′ = e1 then Set U = U ∪ {e1};
11 else Set L = L ∪ {e1};
12 Augment f along γ by C;
13 Let X be the connected component of (V (G),T \ {e0}) that contains r ;
14 if e0 ∈ δ+(X) then Set π(v) = π(v) + ρ for v ∈ V (G) \ X ;
15 ife0 ∈ δ−(X) then Set π(v) = π(v)− ρ for v ∈ V (G) \ X ;
16 go to line 2;

45

Illustration:

T :

r

46

Illustration:

T :

r

peak

e0(∈ L)

uf (e) > 0

Cost of fundamental circuit = cπ(e0).
47

(1, 0)

(0, 1)

(0,−1)

(c, 0)

B2

E

Half-Ball Lemma

Bn ∩ {x ∈ Rn | x1 ≥ 0} ⊆ E

with

E =

{
x ∈ Rn | (n + 1)2

n2

(
x1 −

1
n + 1

)2

+
n2 − 1

n2

n∑
i=2

x2
i ≤ 1

}
.

Moreover, vol(E)
vol(Bn) ≤ e−

1
2(n+1) .

48

Algorithm 3: Idealized Ellipsoid Algorithm
Input: A separation oracle for a closed convex set K ⊆ Rn, a number

R > 0 with K ⊆ {x ∈ Rn | x tx ≤ R2}, and a number ε > 0.
Output: An x ∈ K or the message “vol(K) < ε”.

1 p0 := 0, A0 := R2In;
2 for k = 0, . . . ,N(R, ε) := b2(n + 1)(n ln(2R) + ln(1

ε))c do
3 if pk ∈ K then
4 return pk ;

5 Let ā ∈ Rn be a vector with āty ≥ ātpk for all y ∈ K ;
6 bk := Ak ā√

āt Ak ā
;

7 pk+1 := pk + 1
n+1bk ;

8 Ak+1 := n2

n2−1(Ak − 2
n+1bkbt

k);

9 return “vol(K) < ε”;

49

p̃k and Ãk : exact values
pk and Ak : rounded values

x ∈ K :

• (x − p̃k)t Ãk
−1

(x − p̃k) ≤ 1

• (x − pk)tA−1
k (x − pk) ≤ 1 + 2

√
nδ ‖Ãk

−1
‖ (R + ‖p̃k‖) +

nδ2‖Ãk
−1
‖+ (R + ‖pk‖)2 ‖A−1

k ‖ · ‖Ãk
−1
‖ · nδ

50

Adjust Ãk by multiplying it by µ = 1 + 1
2n(n+1)

. ⇒

(x − p̃k)
t Ãk
−1

(x − p̃k) =
1

1 + 1
2n(n+1)

< 1− 1
4n2 .

• (x − p̃k)
t Ãk
−1

(x − p̃k) ≤ 1− 1
4n2

• (x − pk)
tA−1

k (x − pk) ≤ 1− 1
4n2 +2

√
nδ ‖Ãk

−1
‖ (R + ‖p̃k‖)+

nδ2‖Ãk
−1
‖+ (R + ‖pk‖)2 ‖A−1

k ‖ · ‖Ãk
−1
‖ · nδ

Goal is to choose δ such that

• 2
√

nδ ‖Ãk
−1
‖ (R + ‖p̃k‖) + nδ2‖Ãk

−1
‖ + (R + ‖pk‖)2 ‖A−1

k ‖ · ‖Ãk
−1
‖nδ < 1

4n2

• δ‖Ãk+1
−1
‖ < 1

4(n+1)3

51

Algorithm 4: Ellipsoid Algorithm
Input: A separation oracle for a closed convex set K ⊆ Rn, a number

R > 0 with K ⊆ {x ∈ Rn | x tx ≤ R2}, and a number ε > 0
Output: An x ∈ K or the message “vol(K) < ε”.

1 p0 := 0, A0 := R2In;
2 for k = 0, . . . ,N(R, ε) := d8(n + 1)(n ln(2R) + ln(1

ε))e do
3 if pk ∈ K then
4 return pk ;

5 Let ā ∈ Rn be a vector with āty ≥ ātpk for all y ∈ K ;
6 bk := Ak ā√

āt Ak ā
;

7 pk+1 an approximation of p̃k+1 := pk + 1
n+1bk with maximum error

δ <
(
26(N(R,ε)+1)16n3)−1

;
8 Ak+1 a symmetric approximation of

Ãk+1 :=
(

1 + 1
2n(n+1)

)
n2

n2−1(Ak − 2
n+1bkbt

k) with maximum error δ;

9 return “vol(K) < ε”;

52

Let P ⊆ Rn be a rational polytope and let x0 ∈ P in the interior of P.
Let T ∈ N \ {0} such that size(x0) ≤ log(T) and size(x) ≤ log(T) for
all vertices x of P.

Theorem (Separation→ Optimization)

Let c ∈ Qn. Given n, c, x0, T and a polynomial-time separation oracle
for P, a vertex x∗ of P attaining max{ctx | x ∈ P} can be found in time
polynomial in n, log(T) and size(c).

Theorem (Optimization→ Separation)

Let y ∈ Qn. Given n, y , x0, T and an oracle which for given c ∈ Qn

returns a vertex x∗ of P attaining max{ctx | x ∈ P}, we can implement
a separation oracle for P and y with running time polynomial in n,
log(T) and size(y). If y 6∈ P, we can find with this running time a
facet-defining inequality of P that is violated by y .

53

Interior Point Methods

Primal-dual pair:

Primal: max ctx
s.t. Ax + s = b

s ≥ 0
(1)

Dual: min bty
s.t. Aty = c

y ≥ 0
(2)

We want to compute a solution of the dual LP.

May assume:
• Columns of A are linearly independent
• More rows than columns

54

Combined constraints:

Ax + s = b
Aty = c
y ts = 0

y ≥ 0
s ≥ 0

(3)

55

New set of constraints:

Ax + s = b
Aty = c

m∑
i=1

(
yi si
µ − 1

)2
≤ 1

4

y > 0
s > 0

(4)

General strategy:
(I) Compute an initial solution of a modified version of (4): X

(II) Reduce µ by a constant factor and adapt x , y and s to the new
value of µ such that we again get a solution of (4).
Iterate this step until µ is small enough.

(III) Compute an optimum solution of the dual LP.

56

Assumption: We have a solution µ(k), x (k), y (k), s(k) of the system

Ãx + s = b̃
Ãty = c̃∑m+2

i=1

(
yi si
µ − 1

)2
≤ 1

4

y > 0
s > 0

Goal: Find solution µ(k+1), x (k+1), y (k+1), s(k+1) with
µ(k+1) = (1− δ)µ(k) (δ ∈ (0,1) will be defined later).

Notation:

• x (k+1) = x (k) + f
• y (k+1) = y (k) + g
• s(k+1) = s(k) + h

⇒ • Ãtg = 0
• Ãf + h = 0

57

We want y (k+1)
i s(k+1)

i to be close to µ(k+1).

We have

y (k+1)
i s(k+1)

i = (y (k)
i + gi)(s(k)

i + hi)

= y (k)
i s(k)

i + gis
(k)
i + y (k)

i hi + gihi

We demand y (k)
i s(k)

i + gis
(k)
i + y (k)

i hi = µ(k+1)

Equation system:

Ãtg = 0
Ãf + h = 0

s(k)
i gi + y (k)

i hi = µ(k+1) − y (k)
i s(k)

i i = 1, . . . ,m + 2
(∗)

58

Proposition

If Ax ≤ b,atx ≤ β is TDI with a integral, then Ax ≤ b,atx = β is also
TDI.

Proof: Let c be an integral vector for which

max{ctx | Ax ≤ b,atx = β}
= min{bty + β(λ− µ) | y ≥ 0, λ, µ ≥ 0,Aty + (λ− µ)a = c} (5)

is finite. Let x∗, y∗, λ∗, µ∗ be optimum primal and dual solutions. Set
c̃ := c + dµ∗ea. Then,

max{c̃tx | Ax ≤ b,atx ≤ β}
= min{bty + βλ | y ≥ 0, λ ≥ 0,Aty + λa = c̃} (6)

is finite because x∗ is feasible for the maximum and y∗ and
λ∗ + dµ∗e − µ∗ are feasible for the minimum.
. . .

59

Theorem
For each rational polyhedron P ⊆ Rn there exists a rational
TDI-system Ax ≤ b with A ∈ Zm×n and P = {x ∈ Rn | Ax ≤ b}. The
vector b can be chosen to be integral if and only if P is integral.

Proof: W.l.o.g. P 6= ∅. For each minimal face F of P, define

CF := {c ∈ Rn | ctz = max{ctx | x ∈ P} for all z ∈ F}.

Then, CF is a polyhedral cone. To see this, let P = {Ãx ≤ b̃} be some
description of P. Then CF is generated by the rows of Ã that are active
in F .
Let F be a minimal face, and let a1, . . . ,at be a Hilbert basis
generating CF . Choose x0 ∈ F , and define βi := at

i x0 for i = 1, . . . , t .
Then, βi = max{at

i x | x ∈ P} (i = 1, . . . , t). Let SF be the system
at

1x ≤ β1, . . . ,at
tx ≤ βt . All inequalities in SF are valid for P. Let

Ax ≤ b be the union of the systems SF over all minimal faces F of P.
Then, P ⊆ {x ∈ Rn | Ax ≤ b}.

60

Theorem
A matrix A = (aij) i=1,...,m

j=1,...,n
∈ Zm×n is totally unimodular if and only if for

each set R ⊆ {1, . . . ,n} there is a partition R = R1∪̇R2 such that for
each i ∈ {1, . . . ,m}:

∑
j∈R1

aij −
∑

j∈R2
aij ∈ {−1,0,1}.

Proof: “⇒:” X
“⇐:” Assume: For each R ⊆ {1, . . . ,n} there is a partition R = R1∪̇R2 as
above.
By induction in k : Every k × k -submatrix of A has determinant -1,0, or 1.
k = 1: X
Let k > 1. Let B = (bij)i,j∈{1,...,k} a submatrix of A. W.l.o.g.: B is regular.
We have proved: B∗ := (det(B))B−1 ∈ {−1,0,1}k×k .
b∗: first column of B∗. Then, Bb∗ = det(B)e1. Let
R := {j ∈ {1, . . . , k} | b∗j 6= 0}. For i ∈ {2, . . . , k}, we have
0 = (Bb∗)i =

∑
j∈R bijb∗j , so |{j ∈ R | bij 6= 0}| is even.

Let R = R1∪̇R2 such that
∑

j∈R1
bij −

∑
j∈R2

bij ∈ {−1,0,1} for all
i ∈ {1, . . . , k}. Thus, for i ∈ {2, . . . , k}, we have:

∑
j∈R1

bij −
∑

j∈R2
bij = 0.

61

The incidence matrix of an undirected graph G is the matrix
AG = (av ,e) v∈V (G)

e∈E(G)

which is defined by:

av ,e =

{
1, if v ∈ e
0, if v 6∈ e

The incidence matrix of a directed graph G is the matrix
AG = (av ,e) v∈V (G)

e∈E(G)

which is defined by:

av ,(x ,y) =


−1, if v = x
1, if v = y
0, if v 6∈ {x , y}

62

Theorem:

For every rational polyhedron P, there is a number t with P(t) = PI .

Proof: Let P = {x ∈ Rn | Ax ≤ b} with A integral and b rational. We
prove the statement by induction on n + dim(P). The case dim(P) = 0
is trivial.
Case 1: dim(P) < n: X
Case 2: dim(P) = n:
P is rational⇒ PI is rational⇒ PI = {x ∈ Rn | Cx ≤ d} with C integral
and d rational. If PI = ∅, we choose C = A and d = b − A′11n where A′

arises from A by taking the absolute value of each entry.
Let ctx ≤ δ be an inequality in Cx ≤ d .
Claim: There is an s ∈ N with P(s) ⊆ H := {x ∈ Rn | ctx ≤ δ}.
Proof of the claim: There is a β ≥ δ with P ⊆ {x ∈ Rn | ctx ≤ β}: If
PI = ∅, this is true by construction. If PI 6= ∅, it follows from the fact that
ctx is bounded over P if and only if it is bounded over PI .

63

Algorithm 5: Branch-and-Bound Algorithm
Input: A matrix A ∈ Qm×n, a vector b ∈ Qm, and a vector c ∈ Qn such that the LP

max{ct x | Ax ≤ b} is feasible and bounded.
Output: A vector x̃ ∈ {x ∈ Zn | Ax ≤ b} maximizing ct x or the message that there is no feasible

solution.
1 L := −∞; P0 := {x ∈ Rn | Ax ≤ b}; K := {P0};
2 while K 6= ∅ do
3 Choose a Pj ∈ K; K := K \ {Pj};
4 if Pj 6= ∅ then
5 Let x∗ be an optimum solution of max{ct x | x ∈ Pj} and let c∗ = ct x∗;
6 if c∗ > L then
7 if x∗ ∈ Zn then
8 L := c∗;
9 x̃ := x∗;

10 else
11 Choose i ∈ {1, . . . , n} with x∗i 6∈ Z;

12 P2j+1 := {x ∈ Pj | xi ≤ bx∗i c};
13 P2j+2 := {x ∈ Pj | xi ≥ dx∗i e};
14 K := K ∪ {P2j+1} ∪ {P2j+2};

15 if L > −∞ then
16 return x̃ ;

17 else
18 return “There is no feasible solution”;

64

Branch-and-Bound: Example

max −x1 + 3x2
subject to −4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4
x1, x2 ≥ 0
x1, x2 ∈ Z

65

x∗

x1 + x2 = 4

−4x1 + 6x2 = 9

x1

x2

P0

Figure : A branch-and-bound example (I).

66

x1 + x2 = 4

−4x1 + 6x2 = 9

x∗
x2 = 2

x2 = 3

x1

x2

P2 = ∅

P1

Figure : A branch-and-bound example (II).

67

x1 + x2 = 4

−4x1 + 6x2 = 9

x∗

x1

x2

x1 = 0 x2 = 1

P3 = {0} × [0,1.5]

P4

Figure : A branch-and-bound example (III).

68

