Wintersemester 2013/14 Prof. Dr. J. Vygen Dr. U. Brenner

Einführung in die Diskrete Mathematik 3. Übung

- 1. Sei n eine natürliche Zahl. Zeigen Sie, dass es genau $(n+1)^{n-1}$ Branchings auf der Knotenmenge $\{1,\ldots,n\}$ gibt. (3 Punkte)
- 2. a) Zeigen Sie, dass es Folgen von Heap-Operationen gibt, so dass in einem Fibonacci-Heap die maximale Pfadlänge in einer Arboreszenz $\Theta(n)$ ist, wenn n die Zahl der Elemente ist.
 - b) Zeigen Sie, dass zwei Fibonacci-Heaps mit n_1 und n_2 Elementen in $O(\log(n_1 + n_2))$ Zeit verschmolzen werden können. Das Ergebnis soll also ein Fibonacci-Heap sein, der alle $n_1 + n_2$ Elemente enthält. (3+3 Punkte)
- 3. Ein Telekommunikationsnetzwerk werde durch einen ungerichteten Graphen G modelliert, dessen Kanten voneinander unabhängige Ausfallwahrscheinlichkeiten $p: E(G) \to [0,1]$ haben. Wie findet man in Zeit $O(m+n\log n)$ einen aufspannenden Baum, der die Wahrscheinlichkeit, dass alle seine Kanten funktionieren, maximiert? (2 Punkte)
- 4. Für einen gegebenen ungerichteten Graphen G mit beliebigen Gewichten $c: E(G) \to \mathbb{R}$ soll ein zusammenhängender aufspannender Teilgraph mit minimalem Gewicht bestimmt werden. Wie kann man dieses Problem effizient lösen? (3 Punkte)
- 5. Sei G ein gerichteter Graph mit Kantenlängen $c: E(G) \to \mathbb{R}_+$ und $s, t \in V(G)$. Wir wollen einen kürzesten s-t-Weg finden, indem wir Dijkstras Algorithmus von beiden Knoten s und t aus starten, wobei wir bei der Suche von t aus alle Kanten umdrehen. Wir verwalten alle Knoten also in zwei Heaps R_s und R_t und ordnen jedem Knoten v zwei Abstandslabel $l_s(v)$ und $l_t(v)$ zu. Wir stoppen, sobald ein Knoten $v \in V(G)$ aus beiden Heaps entfernt wurde.
 - a) Geben Sie ein Beispiel an, in dem dann $l_s(v) + l_t(v) > \text{dist}(s,t)$ gilt.
 - b) Wie findet man mit dieser Abbruchbedingung dennoch einen kürzesten s-t-Weg? (2+4 Punkte)

Abgabe: Dienstag, den 5.11.2013, vor der Vorlesung.