Exercise Set 10

Exercise 10.1. Given a directed acyclic graph G (i.e. G might contain undirected cycles) and nonnegative edge weights, show how to compute a maximum weighted set $C \subset E(G)$ such that there is no directed path in G that contains two edges from C, using a maximum flow algorithm. Such a set C is also called an antichain.

(Given a feasible solution for an instance of the Discrete Time-Cost Tradeoff problem, it possibly can be made cheaper along antichains).

(5 points)

Exercise 10.2. Prove proposition 6.1 from the script.

(5 points)

Exercise 10.3. Let G = (V, E) be an undirected graph with non-negative edge weights $w : E \to \mathbb{R}_{\geq 0}$, a set of sinks $T \subset V$, and a root vertex $r \in V \setminus T$. Additionally, we are given required arrival times $rat : T \to \mathbb{R}$. The goal of the DELAY BOUNDED STEINER TREE PROBLEM is to compute a Steiner tree S of $\{r\} \cup T$ in G with minimum weight, such that for each $t \in T$ the length of the unique r-t path in S is at most rat(t). Assuming $P \neq NP$, show that there is no better than $O(\log(|T|))$ -approximation algorithm for this problem.

Hint: You may use that it is NP hard to find an $(1-o(1))\log(n)$ -approximation for SET COVER with *n* elements.

(5 points)

Exercise 10.4. Let $t_1, ..., t_n \in \mathbb{R}^2_{>0}$, $r \coloneqq (0,0) \in \mathbb{R}^2$, $d(x,y) \coloneqq ||x-y||_1$ and n even.

- (a) Show that there exists a perfect matching on $t_1, ..., t_n$ with length at most that of a Steiner arborescence on $t_1, ..., t_n$ rooted in r.
- (b) Describe a polynomial time algorithm that computes an $\mathcal{O}(log(n))$ approximation for a minimum length Steiner arborescence on $t_1, ..., t_n$ rooted in r, such that the length of each r- t_i path is $||r t_i||_1$ (i = 1, ..., n).

Chip Design Summer Term 2025

(2+3 points)

Deadline: July 1^{st} , before the lecture. The websites for lecture and exercises can be found at:

https://www.or.uni-bonn.de/lectures/ss25/chipss25_ex.html

In case of any questions feel free to contact me at heinz@dm.uni-bonn.de.