Exercise Set 7

Exercise 7.1. Prove that unless P = NP, there is no polynomial time n^{α} approximation algorithm for the QUADRATIC ASSIGNMENT PROBLEM for any $\alpha < 1$ even if $w \equiv 1, c \equiv 0, d : U \times U \rightarrow \{0, 1\}$ is metric and G is a tree.

Hint: Transformation of 4-Partition, where G is chosen as a collection of stars (one for each item) whose centers are connected to (an additional) common root vertex. U can be chosen as |U| = |V(G)|.

(5 points)

Exercise 7.2. Consider quadratic netlength minimization in *x*-dimension based on the (quadratic) CLIQUE netmodel i.e.

$$\text{CLIQUESQ}(N) := \sum_{\{p,q\}\subseteq N} \frac{w(N)}{|N| - 1} \left(x(p) + x(\gamma(p)) - x(q) - x(\gamma(q)) \right)^2$$

(a) Show that CLIQUESQ can be replaced equivalently by the quadratic STARSQ netmodel

STARSQ(N) :=
$$w'(N) \cdot \min\left\{\sum_{p \in N} \left(x(p) + x(\gamma(p)) - c\right)^2 | c \in \mathbb{R}\right\}$$

for an appropriate weight function w'.

(b) For a fixed placement x and a single net N let $l, r \in N$ be defined as $l := \arg\min\{x(p) + x(\gamma(p)) \mid p \in N\}$ and $r := \arg\max\{x(p) + x(\gamma(p)) \mid p \in N\}$. We further define for $p, q \in N$

$$w_{pq}^{\text{B2B}} := \begin{cases} 0 & \text{if } \{p,q\} \cap \{l,r\} = \emptyset, \\ \left| x(q) + x(\gamma(q)) - x(p) - x(\gamma(p)) \right|^{-1} & \text{else.} \end{cases}$$

Show that the CLIQUESQ netlength with weights w^{B2B} equals the (linear) bounding box netlength for placement x.

(3 + 3 points)

Exercise 7.3. Consider the sequence $(a_i)_{i \in \mathbb{N}}$ as defined in Nesterov's Algorithm: $a_0 := 0$ and $a_{k+1} := \frac{1+\sqrt{4a_k^2+1}}{2}$ for $k \in \mathbb{N}$. Show the following properties:

- (a) $a_{k-1}^2 = (a_k 1)a_k$ and $\frac{k}{2} \le a_{k-1} \le k 1$ for all $k \in \mathbb{N}_{>1}$.
- (b) The ratio $\frac{a_k-1}{a_{k+1}}$ increases monotonically and converges to 1.

(2+2 points)

Exercise 7.4. Let G = (V, E) be an undirected graph with edge weights $w : E \to \mathbb{R}_{\geq 0}$ and $k \in \mathbb{N}$. Let $C \subseteq V$ and $f : V \setminus C \to \{1, \ldots, k\}$ be a placement function. We are looking for positions $f : C \to \{1, \ldots, k\}$ s.t.

$$\sum_{e=\{v,w\}\in E} w(e) \cdot |f(v) - f(w)|$$

is minimum. Note that f is not required to be injective.

Prove that this problem can be solved optimally by solving k-1 minimum weight *s*-*t*-cut problems in digraphs with $\mathcal{O}(|V|)$ vertices and $\mathcal{O}(|E|)$ edges.

Hint: Consider digraphs $G_j = (V_j, E_j)$ with $V_j := \{s, t\} \cup C$ and

$$E_j := \left\{ (s, v) : \exists w \in V \setminus C, f(w) \leq j, \{v, w\} \in E \right\} \cup \\ \left\{ (v, w) : v, w \in C, \{v, w\} \in E \right\} \cup \\ \left\{ (v, t) : \exists w \in V \setminus C, f(w) > j, \{v, w\} \in E \right\}$$

(5 points)

Deadline: June 3^{rd} , before the lecture. The websites for lecture and exercises can be found at:

https://www.or.uni-bonn.de/lectures/ss25/chipss25_ex.html

In case of any questions feel free to contact me at heinz@dm.uni-bonn.de.