Exercise Set 4

Exercise 4.1. Formulate the SIMPLE GLOBAL ROUTING PROBLEM as an integer linear program with a polynomial number of variables and constraints.

(5 points)

Exercise 4.2. Prove that the number of oracle calls after $t \in \mathbb{N}$ phases of the core Resource Sharing Algorithm is bounded by

$$t|\mathcal{C}| + \frac{|\mathcal{R}|}{\epsilon} \ln \frac{||y^{(t)}||_1}{|\mathcal{R}|}.$$

Hint: Proceed similarly to the proof of Lemma 5.11 in the lecture notes. (5 points)

Exercise 4.3. (a) Find, for every $m \in \mathbb{N}$, an instance of the Min-Max Resource Sharing Problem with m resources $(m = |\mathcal{R}|)$ and $\lambda^* > 0$ such that

$$\inf\left\{\max_{r\in\mathcal{R}}\sum_{C\in\mathcal{N}}(b_C)_r:b_C\in B_C\right\}\geq |\mathcal{R}|\lambda^*$$

(b) Prove that for every instance of the Min-Max Resource Sharing Problem it holds

$$\inf\left\{\max_{r\in\mathcal{R}}\sum_{C\in\mathcal{N}}(b_C)_r:b_C\in B_C\right\}\leq |\mathcal{R}|\lambda^*.$$
(2+3 points)

Exercise 4.4. Let $G = (A \dot{\cup} B, E)$ be a bipartite graph. Assume that there is a matching covering A. Let $\varepsilon > 0$. Use the Resource Sharing Algorithm to find variables $(x_e)_{e \in E} \in [0, 1]^{E(G)}$ that satisfy

$$\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in A, \qquad \sum_{e \in \delta(w)} x_e \le 1 + \varepsilon \qquad \forall w \in B$$

within a running time of $\mathcal{O}(|E|\frac{\ln|B|}{\varepsilon^2})$.

(5 points)

Deadline: May 13^{th} , before the lecture. The websites for lecture and exercises can be found at:

https://www.or.uni-bonn.de/lectures/ss25/chipss25_ex.html

In case of any questions feel free to contact me at heinz@dm.uni-bonn.de.