Exercise Set 12

Exercise 12.1. Let $\alpha > 1$ and $1 \leq \beta < 1+2/(\alpha-1)$. Construct a connected, planar graph G with $w : E(G) \to \mathbb{R}_+$ and $r \in V(G)$ that contains no spanning tree T with the following properties:

- (a) For each $v \in V(G)$: $\operatorname{dist}_{w,T}(r,v) \leq \alpha \cdot \operatorname{dist}_{w,G}(r,v)$.
- (b) For a minimum-spanning tree $M: \sum_{e \in E(T)} w(e) \leq \beta \cdot \sum_{e \in E(M)} w(e)$.

(5 points)

Exercise 12.2. Given a root $r \in \mathbb{R}^2$, a finite set of sinks $S \subset \mathbb{R}^2$, Lagrangean multipliers $(\lambda_s)_{s \in S}$, the rectilinear cost-distance Steiner arborescence problem asks for a Steiner arborescence Y rooted at r, minimizing

$$\sum_{(v,w)\in E(Y)} ||v-w||_1 + \sum_{s\in S} \lambda_s \cdot \left(\sum_{(v,w)\in E(Y_{[r,s]})} ||v-w||_1 \right)$$

Using the light-approximate shortest path tree algorithm, approximate this problem up to a factor of 3 in $\mathcal{O}(n \log n)$.

(5 points)

Exercise 12.3. Let G = (V, E) be an undirected graph with non-negative weights $w : V \to \mathbb{R}$, a set of sinks $T \subset V$, and a root vertex $r \in V \setminus T$. Additionaly, we are given required arrival times $rat : T \to \mathbb{R}$. The goal of the DELAY BOUNDED STEINER TREE PROBLEM is to compute a Steiner tree S of $\{r\} \cup T$ in G with minimum weight, such that for each $t \in T$ the length of the unique r-t path in S is at most rat(t). Assuming $P \neq NP$, show that there is no $\Omega(\log(|T|))$ -approximation algorithm for this problem.

Hint: You may use that it is NP hard to find an $\Omega(\log(n))$ -approximation for SET COVER with n sets.

(5 points)

Exercise 12.4. Let $t_1, ..., t_n \in \mathbb{R}^2_{>0}, r \coloneqq (0,0) \in \mathbb{R}^2, d(x,y) \coloneqq ||x-y||_1$.

- (a) Show that there exists a perfect matching on $t_1, ..., t_n$ with length at most that of a Steiner arborescence on $t_1, ..., t_n$ rooted in r.
- (b) Describe a polynomial time algorithm that computes an $\mathcal{O}(log(n))$ approximation for a minimum length Steiner arborescence on $t_1, ..., t_n$ rooted in r, such that the length of each r- t_i path is $||r t_i||_1$ (i = 1, ..., n).

(2+3 points)

Deadline: July 9^{th} , before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss24/chipss24_ex.html

In case of any questions feel free to contact me at schlomberg@or.uni-bonn.de.