Exercise Set 9

Exercise 9.1. Prove that the 1D discrete cosine transform linearly reduces to the discrete Fourier transformation (This shows that it can be solved in $\mathcal{O}(N \log N)$ time). See also in the lecture notes.

(5 points)

Exercise 9.2. Consider the PLACEMENT LEGALIZATION PROBLEM with $y_{\text{max}} - y_{\text{min}} = 1$. We are given an infeasible placement $\tilde{x} : \mathcal{C} \to \mathbb{R}$. Show that there are feasible instances for which there is no optimum solution which is consistent with \tilde{x} , i.e. such that $x(C) < x(C') \Rightarrow \tilde{x}(C) \leq \tilde{x}(C')$.

(5 points)

Exercise 9.3. Consider the following variant of the SINGLE ROW PLACE-MENT WITH FIXED ORDERING problem, in which we minimize the bounding box net length:

Input: A set $C = \{C_1, \ldots, C_n\}$ of circuits, widths $w(C_i) \in \mathbb{R}_+$, an interval $[0, w(\Box)]$, s.t. $\sum_{i=1}^n w(C_i) \leq w(\Box)$. A netlist $(C, P, \gamma, \mathcal{N})$ where the offset of a pin $p \in P$ satisfies $x(p) \in [0, w(\gamma(p))]$. Weights $\alpha : \mathcal{N} \to \mathbb{R}_+$.

Task: Find a feasible placement given by a function $x : \mathcal{C} \to \mathbb{R}$ s.t. $0 \leq x(C_1), x(C_i) + w(C_i) \leq x(C_{i+1})$ for $i = 1, \ldots, n-1$ and $x(C_n) + w(C_n) \leq w(\Box)$, that minimizes

$$\sum_{N \in \mathcal{N}} \alpha(N) \cdot \mathrm{BB}(N).$$

Here, BB(N) denotes the bounding box net length.

Show that there exist $f_i : [0, w(\Box)] \to \mathbb{R}$, i = 1, ..., n, piecewise linear, continuous and convex, such that we can solve this problem by means of the SINGLE ROW ALGORITHM.

(5 points)

Exercise 9.4. Consider the following algorithm to compute a rectilinear Steiner tree Y for a set T of points in the plane \mathbb{R}^2 .

1: Choose $t \in T$ arbitrarily; 2: $Y := (\{t\}, \emptyset), S := T \setminus \{t\}$ 3: while $S \neq \emptyset$ do 4: Choose $s \in S$ with minimum dist(s, Y)if $E(Y) = \emptyset$ then 5: $Y := (\{t, s\}, \{\{t, s\}\})$ 6: 7: else Let $\{u, w\} \in E(Y)$ be an edge which minimizes dist(s, SP(u, w))8: $v := \arg\min\{dist(s, v) \mid v \in SP(u, w)\}$ 9: $Y := (V(Y) \cup \{v\} \cup \{s\}, E(Y) \setminus \{\{u, w\}\} \cup \{\{u, v\}, \{v, w\}, \{v, s\}\})$ 10: 11: end if $S := S \setminus \{s\}$ 12:13: end while

In this notation $SP(u, w) \subset \mathbb{R}^2$ is the area covered by shortest paths between u and w, and dist(s, Y) is the minimum distance between s and the shortest path area SP(u, w) of an edge $\{u, w\} \in E(Y)$.

Show that the algorithm is a $\frac{3}{2}$ -approximation algorithm for the MINIMUM STEINER TREE PROBLEM.

(5 points)

Deadline: June 18^{th} , before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss24/chipss24_ex.html

In case of any questions feel free to contact me at schlomberg@or.uni-bonn.de.