Exercise Set 3

Exercise 3.1. In the following we use the notation

$$
S_{B_{2}}\left(B_{n}\right):=\max \left\{S_{B_{2}}(f): f \in B_{n}\right\}
$$

for $n \in \mathbb{N}$. Further, for $f \in B_{n}$, let $f_{0}:=f_{\left.\right|_{x_{n}=0}} \in B_{n-1}$ and $f_{1}=f_{\left.\right|_{x_{n}=1}} \in$ B_{n-1}. One can write f as a decoding circuit in the following way:

$$
\begin{equation*}
f=\left(\bar{x}_{n} \wedge f_{0}\right) \vee\left(x_{n} \wedge f_{1}\right) \tag{1}
\end{equation*}
$$

By applying this representation recursively, it follows that $S_{B_{2}}\left(B_{n}\right) \leq 2^{n}-3$. The goal of this exercise is to improve this bound.
(a) Let $S_{B_{2}}^{*}\left(B_{k}\right)$ denote the circuit complexity of computing all functions in B_{k} (such a circuit has $2^{2^{k}}$ outputs). Use (1) to show that

$$
S_{B_{2}}^{*}\left(B_{k}\right) \in \mathcal{O}\left(2^{2^{k}}\right)
$$

(b) Use (a) to show that $S_{B_{2}}\left(B_{n}\right) \in \mathcal{O}\left(2^{n} / n\right)$.

Exercise 3.2. Let $n \in \mathbb{N}$. Construct an AND-prefix graph that has

- $\{\wedge\}$-depth at most $\log n+\log \log n+\mathcal{O}(1)$,
- $\{\wedge\}$-size at most $3 n+\mathcal{O}(1)$,
- and a maximum fanout of two.

You may use repeaters to bound the fanout.

Exercise 3.3. Consider the following recursively defined family of Boolean functions $f_{2 n, m} \in B_{2 n+m+1}(n, m \in \mathbb{N})$:

$$
\begin{array}{lll}
f_{0,0}\left(x_{0}\right) & =x_{0} \\
f_{0, m}\left(x_{0}, \ldots, x_{m}\right) & & =x_{0} \wedge f_{0, m-1}^{*}\left(x_{1}, \ldots, x_{m}\right) \\
f_{2 n, m}\left(x_{0}, \ldots, x_{2 n+m}\right) & =x_{0} \wedge f_{2 n-2, m}\left(x_{2}, \ldots, x_{2 n+m}\right) & (m \geq 1) \\
(m \geq 0, n \geq 1)
\end{array}
$$

where $f^{*}\left(x_{1}, \ldots, x_{n}\right):=\neg f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in B_{n}$ is the dual function of a function $f \in B_{n}$. Prove the following split equation

$$
\begin{aligned}
f_{2 n, 2 k+m+1}\left(x_{0}, x_{1}, \ldots, x_{2 n+2 k+m+1}\right)= & f_{2 n, 2 k}\left(x_{0}, \ldots, x_{2 n+2 k}\right) \\
& \wedge f_{2 k, m}^{*}\left(x_{2 n+1}, x_{2 n+2}, \ldots, x_{2 n+2 k+m+1}\right)
\end{aligned}
$$

Exercise 3.4. Let $m \in \mathbb{N}$. Show that a circuit C for $f_{0, m}$ over the basis $\{\wedge, \vee\}$ with depth $D(C) \leq \log _{2} m+\log _{2} \log _{2} m+\mathcal{O}(1)$ and size $S(C) \in$ $\mathcal{O}(m \log m)$ can be computed in time $\mathcal{O}(m \log m)$.
(5 points)

Deadline: April $30^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss24/chipss24_ex.html
In case of any questions feel free to contact me at schlomberg@or.uni-bonn.de.

