Theorem (Lemma von Farkas, allgemeinster Fall)

Für $A \in \mathbb{R}^{m_1 \times n_1}$, $B \in \mathbb{R}^{m_1 \times n_2}$, $C \in \mathbb{R}^{m_2 \times n_1}$, $D \in \mathbb{R}^{m_2 \times n_2}$, $a \in \mathbb{R}^{m_1}$ und $b \in \mathbb{R}^{m_2}$ hat genau eines der beiden folgenden System eine Lösung: System 1:

$$Ax + By \le a$$

 $Cx + Dy = b$
 $x \ge 0$

System 2:

Theorem (Lemma von Farkas, allgemeinster Fall)

Für $A \in \mathbb{R}^{m_1 \times n_1}$, $B \in \mathbb{R}^{m_1 \times n_2}$, $C \in \mathbb{R}^{m_2 \times n_1}$, $D \in \mathbb{R}^{m_2 \times n_2}$, $a \in \mathbb{R}^{m_1}$ und $b \in \mathbb{R}^{m_2}$ hat genau eines der beiden folgenden System eine Lösung: System 1:

$$Ax + By \le a$$

 $Cx + Dy = b$
 $x \ge 0$

System 2:

Theorem (Lemma von Farkas, allgemeinster Fall)

Für $A \in \mathbb{R}^{m_1 \times n_1}$, $B \in \mathbb{R}^{m_1 \times n_2}$, $C \in \mathbb{R}^{m_2 \times n_1}$, $D \in \mathbb{R}^{m_2 \times n_2}$, $a \in \mathbb{R}^{m_1}$ und $b \in \mathbb{R}^{m_2}$ hat genau eines der beiden folgenden System eine Lösung: System 1:

$$Ax + By \le a$$

 $Cx + Dy = b$
 $x \ge 0$

System 2:

Corollary (Lemma von Farkas, Varianten)

Für $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^m$ gilt:

- (a) Es gibt genau dann einen Vektor $x \in \mathbb{R}^n$ mit $x \ge 0$ und Ax = b, wenn es keinen Vektor $u \in \mathbb{R}^m$ mit $u^t A \ge 0^t$ und $u^t b < 0$ gibt.
- (b) Es gibt genau dann einen Vektor $x \in \mathbb{R}^n$ mit Ax = b, wenn es keinen Vektor $u \in \mathbb{R}^m$ mit $u^t A = 0^t$ und $u^t b < 0$ gibt.

Beweise: Beschränke das vorige Theorem auf ...

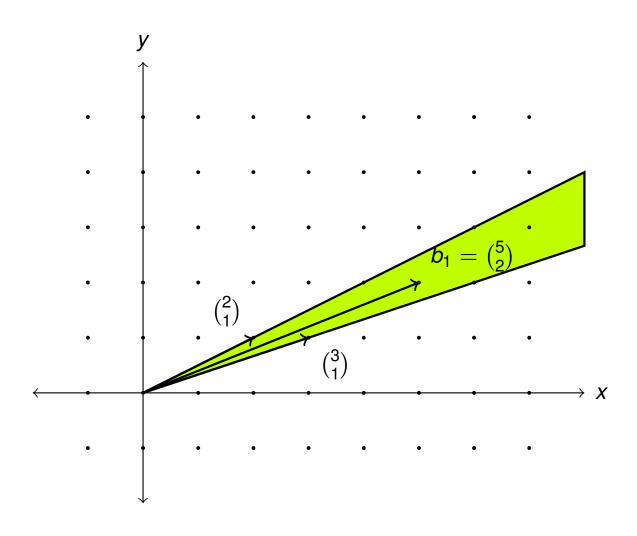
- (a) die Matrix *C* und den Vektor *b*.
- (b) die Matrix *D* und den Vektor *b*.

Version (a) hat eine geometrische Interpretation.

Lemma von Farkas: Illustration:

Beispiel:
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$$
, $b_1 = \binom{5}{2}$ und $b_2 = \binom{1}{3}$.

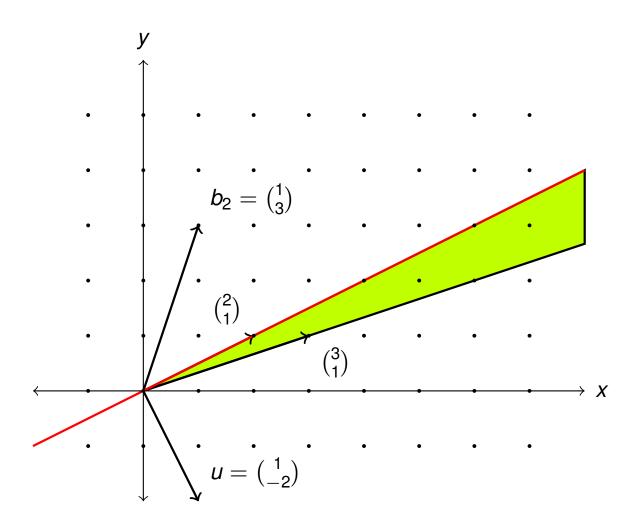
• $b_1 \in cone(\{\binom{2}{1}, \binom{3}{1}\})$



Lemma von Farkas: Illustration:

Beispiel:
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$$
, $b_1 = \binom{5}{2}$ und $b_2 = \binom{1}{3}$.

• b_2 kann vom Kegel durch eine Hyperebene, die orthogonal zu $u = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ ist, getrennt werden.



Starke Dualität

Theorem (Starke Dualität)

Für zwei lineare Programme

$$\max c^t x \qquad (P)$$
s.t. $Ax \leq b$

und

$$min bt y \qquad (D)$$
s.t. $A^{t} y = c$

$$y \geq 0$$

gilt genau eine der folgenden Aussagen:

- (P) und (D) sind beide unzulässig.
- (P) ist unbeschränkt und (D) ist unzulässig.
- (P) ist unzulässig und (D) ist unbeschränkt.
- (P) und (D) sind beide zulässig. Dann haben beide eine Optimallösung und für jede Optimallösung \tilde{x} von (P) und jede Optimallösung \tilde{y} von (D) gilt

$$c^t \tilde{x} = b^t \tilde{y}$$
.

Es seien A,B,C,D,E,F,G,H,K Matrizen und a,b,c,d,e,f Vektoren geeigneter Dimensionen, sodass gilt:

$$\begin{pmatrix} A & B & C \\ D & E & F \\ G & H & K \end{pmatrix} \text{ ist eine } m \times n\text{-Matrix,}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 ist ein Vektor der Länge m und $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ ist ein Vektor der Länge n . Dann gilt

Es seien A,B,C,D,E,F,G,H,K Matrizen und a,b,c,d,e,f Vektoren geeigneter Dimensionen, sodass gilt:

$$\begin{pmatrix} A & B & C \\ D & E & F \\ G & H & K \end{pmatrix} \text{ ist eine } m \times n\text{-Matrix,}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 ist ein Vektor der Länge m und $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ ist ein Vektor der Länge n . Dann gilt

$$\max \left\{ \begin{array}{ccccccc} Ax & + & By & + & Cz & \leq & a \\ Dx & + & Ey & + & Fz & = & b \\ d^tx + e^ty + f^tz & : & Gx & + & Hy & + & Kz & \geq & c \\ & & & & & & \geq & 0 \\ & & & & & z & \leq & 0 \end{array} \right\}$$

Es seien A,B,C,D,E,F,G,H,K Matrizen und a,b,c,d,e,f Vektoren geeigneter Dimensionen, sodass gilt:

$$\begin{pmatrix} A & B & C \\ D & E & F \\ G & H & K \end{pmatrix} \text{ ist eine } m \times n\text{-Matrix,}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 ist ein Vektor der Länge m und $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ ist ein Vektor der Länge n . Dann gilt

Es seien A,B,C,D,E,F,G,H,K Matrizen und a,b,c,d,e,f Vektoren geeigneter Dimensionen, sodass gilt:

$$\begin{pmatrix} A & B & C \\ D & E & F \\ G & H & K \end{pmatrix} \text{ ist eine } m \times n\text{-Matrix,}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 ist ein Vektor der Länge m und $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ ist ein Vektor der Länge n . Dann gilt

Es seien A,B,C,D,E,F,G,H,K Matrizen und a,b,c,d,e,f Vektoren geeigneter Dimensionen, sodass gilt:

$$\begin{pmatrix} A & B & C \\ D & E & F \\ G & H & K \end{pmatrix} \text{ ist eine } m \times n\text{-Matrix,}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 ist ein Vektor der Länge m und $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ ist ein Vektor der Länge n . Dann gilt

Dualisieren

	Primales LP	Duales LP
Variablen	X_1,\ldots,X_n	y_1, \ldots, y_m
Matrix	Α	\mathcal{A}^t
Rechte Seite	b	С
Zielfunktion	max <i>c^t x</i>	min <i>b^t y</i>
Nebenbedingungen	$\left \sum_{j=1}^n a_{ij} x_j \le b_i \right $	$y_i \geq 0$
	$\int_{j=1}^n a_{ij}x_j \geq b_i$	$y_i \leq 0$
		$y_i \in \mathbb{R}$
	$x_j \geq 0$	
	$x_j \leq 0$	$\sum_{i=1}^m a_{ij}y_i \leq c_j$
	$x_j \in \mathbb{R}$	$\sum_{i=1}^m a_{ij}y_i=c_j$