Linear and Integer Programming

e Time: Tuesdays and Thursdays, 16:15 - 17:55 (with 10 minutes
break)

e Place: Gerhard-Konow-Hdrsaal, Lennéstr. 2
e Website:

www.or.uni-bonn.de/lectures/ssl9/1go_ssl19.html

e Lecture notes and all slides can be found on the website.

Final Examination

e Written examination

e Dates: Monday, July 15, 2019 and Saturday, September 21, 2019.
e There will be no third examination in this semester.
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Exercise Classes

e Exercise classes are two hours per week.
e Assignments are released every Thursday.
e There will be programming exercises.

e 50 % of all points in the assignments are required to participate in
the exam.

e Students can work in groups of two.

o All participants of a group have to be able to explain their
solutions.

e Exercise classes begin in the second week.



Possible Time Slots for the Exercise Classes

@ Mo10-12
® Tul0-12
€© Tuld-16
O We 12 - 14
O We 14 -16
O We 16 - 18
@ Thi0-12
®O Thi2-14
O Th14-16
@ Fri0-12
® Fri14-16

We will choose four of these time slots.

Application for the exercise classes: Use the form on the website
WWw.Or.uni-bonn.de/lectures/ssl9/1go_uebung _ssl19.html



e An optimization problem is a pair (/,f) withaset /and f: | — R.
e The elements of / are called feasible solutions of (/, 7).
o If / =1), (/,f) is called infeasible, otherwise we call it feasible.

e The function f is called the objective function of (/. f).

e We ask for an x* € [ (called optimum solution) such that
o forall x € /we have f(x) < f(x*) (then (/. f) is called a
maximization problem)
o forall x € /we have f(x) > f(x*) (then (/. f) is called a
minimization problem).
e (/.f)is unbounded if for all K € R, there is an x € [ with f(x) > K
(for the maximization problem) or an x € [ with f(x) < K (for the
minimization problem).

e An optimization problem is called bounded if it is not unbounded.
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Linear Programming

LINEAR PROGRAMMING
Instance: A matrix A € R™" vectors ¢c € R” and b € R™,

Task:  Find a vector x € R” with Ax < b maximizing c¢'x.

X1
max (3,-2,95) | Xxo
X3

Example:



Standard Forms

Standard inequality form:

max cix
st. Ax < b
Standard equational form:
max ¢l x
st. Ax = b
x > 0

Both forms can be transformed into each other.



Integer Linear Programming

Integer LINEAR PROGRAMMING

Instance: A matrix A € R™*" vectors c € R" and b € R™.

Task:  Find a vector x € Z" with Ax < b maximizing c¢!x.

If only some variables have to be integral = MIXED INTEGER LINEAR
PROGRAMMING (MILP)



Modelling Optimization Problems as LPs

Let G be a directed graph with capacities v : E(G) — R.g and let s
and f be two vertices of GG. A feasible s-t-flow in (G, u) is a mapping
f: E(G) — R>q with
e f(e) <u(e)forall e c E(G) and
e As(v):= > fle)— > f(e)=0forallve V(Q)\ {s,t}.
eci (V) eci; (v)
The value of an s-i-flow f is val(f) = A¢(s).




Modelling Optimization Problems as LPs

MAXIMUM-FLOW PROBLEM

Instance: A directed Graph G, capacities u: E(G) — R,
vertices s, t € V(@G) with s # 1.

Task: Find an s-t-flow f : E(G) — R~ of maximum value.

L P-formulation:

max Yo Xe— Y., Xe

ecds(s) ecé (s)
s.t. Xe > 0 fore e E(G)
Xe < u(e) forec E(G)
Yo Xe— Y. Xe = 0 forve V(G)\ {s,t}

ecds(v) eci; (v)



Modelling Optimization Problems as LPs

BOTTLENECK MAXIMUM-FLOW PROBLEM WITH 2 SOURCES

Instance: A directed Graph G, capacities u: E(G) — R,
three vertices s, 55, t € V(G).

Task: Find a mapping f : E(G) — R~ with
o f(e) <u(e)forall e ¢ E(G) and
e Nf(e)=0forallve V(Q)\{sy,so, 1}
such that min{A¢(s1), A¢(S2)} is maximized

How can this problem be modelled by an LP?
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Duality: Example

11

(P) max 12x;y + 10xo
S.1. 4xy + 2Xo < B
8x1 + 12x% < 7
2X1 — 3X2 < 1

Goal: Find an upper bound on the optimum solution value.

Combine constraint 1 and 2:

1 1
12x1 + 10x0 = 2 - (4X1 —|—2X2)—|— §(8X~| —|—12X2) <2-5+ 5 -/ =13.5.

Combine constraint 2 and 3:

7 4 7 4
12x1+1Ox2:6~(8x1+12x2)+§-(2x1 —3x2)§6-7+§-1 = 9.5.



Duality: Example

(P) max 12x;y + 10xo
S.ti. 4xy + 2Xo < B
8x1 + 12x% < 7
2X1 — 3X2 < 1

General approach: Find numbers uq, up, us € R~ such that

12x1 + 10X = Uy - (4X~| + 2X2) + U> - (8X1 -+ 12X2) + U3 - (2X1 — 3X2).

= SUy + 7Us + Us IS an upper bound on the value of any solution of (P).

— Chose u4, Us, Uz such that 5uy + 7us> + us is minimized.
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Duality: Example

(P) max 12x; + 10xo
st 4xy + 2x < 5
8xy + 12x < 7
2X1 — 3X2 < 1

Determine uy, u», and us by the following linear program:

(D) min 504 + 7u» + Us

st 4uy + 8u + 2u3 = 12
2u; + 12u» — 3uz = 10

U1 > 0

Uo > 0

us > 0

=- Any solution of (D) gives an upper bound for (P).
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Duality: Example
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Duality: Example

(P) max 12x; + 10xo
S.1. 4xy + 2Xo < 5
8xy + 12x < 7
2X1 — 3X2 < 1

Determine uy, u», and us by the following linear program:

(D) min 5u1y + 77U + 1us

st 4uy + 8u + 2u3 = 12
2u; + 12u» — 3uz = 10

U1 > 0

Uo > 0

us > 0

=- Any solution of (D) gives an upper bound for (P).

15



Duality: Example
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Duality: Example

(P) max 12x; + 10xo
st 4xy + 2x < 5
8xy + 12x < 7
2X1 — 3X2 < 1

Determine uy, u», and us by the following linear program:

(D) min 504 + 7u» + Us

st 4uy + 8u + 2u3 = 12
2u; + 12u» — 3uz = 10

U > 0

Uo > 0

us > 0

=- Any solution of (D) gives an upper bound for (P).
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Fourier-Motzkin Elimination |

Given a system of inequalities, check if a solution exists.

3x + 2y + 4z 1
3X + 2z
2X — Y

—X + 2y — Z

—2X

VAN VANRVANE VAN VAR VAN
N B~ W o1 O O

2y + 2z

First step: Get rid of variable x.

18



Fourier-Motzkin Elimination I

3x + 2y + 4z < 10
3x + 2z < 9
2X — Y < 3
—-X + 2y — z < 3
—2X < 4
2y + 2z < 7
IS equivalent to
X = F - 3Y — 32
x < 3 ~ %7
x < 3 + 3y
X > -3 4+ 2y — Z
X > -2

19



Fourier-Motzkin Elimination IlI

—
o
N

X = 3 - 3
x < 3
X < 3+ 3y
X > =3 + 2y
X > -2
2y + 2z

<

wIN WA
N

N

/

This system is feasible if and only if the following system has a

solution:

min{3 -3y -3z 3-32, 3+3V}
2y + 2z

20
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max {—3 + 2y — z,
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Fourier-Motzkin Elimination IV

21

- 10 2
min {3 — 3y -

4
3%

3 —

2
3

Z7

3+ oy}
2y + 2z

/

IA TV

This system can be rewritten in the following way:

—
o

NI NIGT W D |3 W)

_|_

_I_

N N N

WIN IR WA WA
N

27

NIV IV IV IV IV IV

-3
—2
-3
—2
-3
—2

/

+ 2y

+ 2y

+ 2y

max {—3 + 2y — z,

Z

Z

Z

_2}
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Fourier-Motzkin Elimination V

Conversion in standard form:

<
+

©OI00 LIINY LO|Co
<

QI wl=
N

2y +

Wi
N N N N
VAN VAN VANRN VAN VANS VAN VAN

27
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< oI ;o Yo v

lterate these steps and remove all variables.



Theorem (Farkas’ Lemma, most general case)

For Ac RM>xMm B e RMxM2 G c RM™xM e RMx2 gcR™ and
b € R™ exactly one of the two following systems has a feasible
solution:
System 1:
Ax + By < a
Cx + Dy = b
X > 0
System 2:
ulA + vic > 0f
u'B + viD = 0!
u > 0
ula + vib < 0

23
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Corollary

Let A,B,C,D,E,F,G,H,K be matrices and a,b,c,d,e,f be vectors of appropriate
dimensions such that:

A B C
D E F IS an m x n-matrix,
G H K

(

max

O T QO

) is a vector of length m a

p

d'x +ée'y+fz

7\

min { au+ b'v+ clw

\

provided that both sets are non-empty.

d
nd e
f

Ax 4+ By + Cz
Dx + Ey + Fz
Gx + Hy + Kz

X

) Is a vector of length n. Then

4

INIV IV L IA

Alu + Dlv + Gw
Blu + E'v. + Hw
Clu + Flv + Klw

u

w

OO T L

INIVINA TV

\

OO -0 Q

s
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Corollary

Let A,B,C,D,E,F,G,H,K be matrices and a,b,c,d,e,f be vectors of appropriate
dimensions such that:

A B C
D E F IS an m x n-matrix,
G H K

(

max

O T QO

) is a vector of length m a

p

d'x+ey+fz

7\

min { au+ b'v+clw

\

provided that both sets are non-empty.

d
nd e
f

Ax 4+ By + Cz
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Gx + Hy + Kz

X
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4

INIV IV L IA
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u
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OO T L

INIV AN NIV

\

O O w0 Q
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Theorem (Strict Complementary Slackness)

Let max{c'x | Ax < b} and min{b'y | Aly = ¢,y > 0} be a pair of a
primal and a dual linear program that are both feasible. Then, for each
inequality a‘x < b; in Ax < b exactly one of the following two
statements holds:

(a) The primal LP max{c'x | Ax < b} has an optimum solution x* with
alx* < b;.

(b) The dual LP min{b'y | Aly = ¢,y > 0} has an optimum solution
y* with y* > 0.




Max-Flow Problem

Assumption: No edges enter s or leave t.

L P-formulation:

max Z Xe
ecis(s)
2l Xe > 0  forec E(G)
Xe < u(e) foreec E(G)
> Xe— Y X = 0 forve V(G)\({s t}
2 Yo > 0 foree E(G)
YVet+t2zy—2w > 0 fore=(v,w)e E(G),{s,t}n{v,w} =10
Yet+2z, > 0 fore=(v,t)c E(G),v#s
Ye—2zw > 1 fore=(s,w)e E(G),w #t
Ye > 1 fore=(s,t) e E(GQ)

Q




Max-Flow Problem

Assumption: No edges enter s or leave t.

L P-formulation:

max > Xe
eci’(s)
s.t. Xe > 0 for e € E(G)
Xe < u(e) foreec E(G)
Y Xe— Y, Xe = 0 forve V(G)\ {s,t}
ecd(v) eci; (v)

A

Dual LP (simplified):
min > u(e)ye

ecE(G)
S.t. Ye > 0 foree E(G)
Ye+2zy—2w > 0 fore=(v,w)e E(G)
zZs = —1
Zt = 0

\




Max-Flow Problem

Assumption: No edges enter s or leave t.

L P-formulation:

max > Xe
ecis(s)
S.t. Xe > 0 for e € E(G)
Xe < u(e) foreec E(G)
Y Xe— Y Xe = 0 forve V(QG)\ {s,t}
ecs(v) ecés (v)

0 foree E(G)
fore = (v, w) € E(G)

>
_|_
N

<

|
N

S

[NIVAVY,

o

N
|
o

A




Let P = {x € R" | Ax < b} be a polyhedron and F~ C P. Then, the
following statements are equivalent:

(a) F is aface of P.

(b) There is a vector ¢ € R" such that § := max{c'x | x € P} < oo and
F={xecP|cx=54}.

(c) There is a subsystem A'x < b’ of Ax < b such that
F={xeP|Ax=b}#£0.

33



Simplex Algorithm: Example |

max X1 + Xo
St. —Xx4 + Xo + X3 = 1
X1 + X3 = 3
Xo + X5 = 2
X1 , X2, X3 , X4 , X5 2 0
1 0 O
Initial basis: {3,4,5}. = Ag=| 0 1 0
0O 0 1
Simplex tableau:
X3 = 1 + X4 — X
X4 = 3 — X1
Xs = 2 —  Xo
zZ = X1 + Xo

Recent solution: (0,0,1,3,2)

34



Simplex Algorithm: Example |

X3 = 1 + X4 — Xo
X4 = 3 — X 1

X5 = 2 —  Xo
zZ = X1 + Xo

Increase exactly one of the non-basic variables with positive coefficient
in the objective function.
We choose x». How much can we increase it?

Constraints:

x3 =1+ Xy — Xo. Xo cannot get larger than 1.
X4 = 3 — Xq . Nno constraint on x».

X5 = 2 — Xo.  Xo cannot get larger than 2.

Strictest constraint: x5 = 1 + xy — X
= Replace 3 by 2in B.

35



Simplex Algorithm: Example |

First tableau:

X3 = 1 4+ X4 — X

X2 = 3 — Xq

X5 = 2 —  Xo
zZ = X1+ X0

Replace 3 by 2 in the basis B: B = {2,4,5}:
Xo =1+ X1 — Xa.

Second tableau:

X = 1 + X3 — X3
X4 = 3 — X 1

x5 = 1 — X3 + X3
z =1 + 2x4 — X3

Recent solution: (0,1,0,3,1)

36



Simplex Algorithm: Example |

Second tableau:

X =1 + X3 — X3
Xg2 = 3 — X

Xs = 1 — X4 + X3
z =1 4+ 2x9 — X3

Only one candidate: xq
x5 =1 — Xy 4+ x3 is critical. Replace 5by 1in B: B={1,2,4}.
X1 =14 X3 — Xs.

Third tableau:
xx = 1 + X3 — Xs
Xo = 2 — X5
Xq2 = 2 — X3 + Xs
zZ = 3 + X3 — 2Xs

Recent solution: x = (1,2,0,2,0).

37



Simplex Algorithm: Example |

Third tableau:
XX = 1 4+ X3 — Xg
Xo = 2 — X5
X2 = 2 — X3 4+ X
zZ = 3 + X3 — 2Xs

Only one candidate: x3

X4 = 2 — X3 + x5 is critical. Replace 4 by 3in B: B={1,2,3}.
X3 =2 — X4 + X5

Fourth tableau:

X1 = 3 — X4

Xo = 2 —  Xs
X3 = 2 — X4 + Xs
Z = 95 — X4 — X5

Recent solution: x = (3,2,2,0,0).
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Simplex Algorithm: Example |

Fourth tableau:

X1 = 3 — X4

Xo = 2 —  Xs
X3 = 2 — Xa + Xs
Z = 95 — X4 — X5

Recent solution: x = (3,2,2,0,0).

This is an optimum solution!

39



Simplex Algorithm: Example I

Second Example: Unboundedness

40
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Simplex Algorithm: Example Il: Unboundedness

max X1
S.t X1 — Xo + X3
—X1 + Xo + X4
X1, X2 X3 5, X4
Initial basis: B={3,4}
Simplex Tableau:
X3 = 1 X1 + Xo
zZ = X1

Recent solution: x = (0,0,1,2).

vV

oOnN =
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Simplex Algorithm: Example Il: Unboundedness

First Tableau:

X3 = 1 — X1 + Xo
X2 = 2 + X4 — X
Z = X1

Only one candidate: x1. x3 = 1 — X1 4+ X» is critical. Replace 3 by 1 in
B: B=1{1,4}.

X{t=1+4+Xo — X3.

Second Tableau:

X1 = 1 + Xo — X3
Xy, = 3 — X3
z =1 4+ X — X3

Recent solution:
x=(1,0,0,3).



Simplex Algorithm: Example Il: Unboundedness

Second Tableau:

X1 = 1 + Xo — X3
Xg2 = 3 — X3
z =1 4+ X — X3

Only one candidate: x>. No constraint for it!

= The LP is unbounded
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Simplex Algorithm: Example Il

Second Example: Degeneracy

44



Simplex Algorithm: Example Ill: Degeneracy

max X2
St. — x93 + X + X3
Xy , X2 , X3 , X4
Initial basis: B = {3,4}
Simplex Tableau:
X4, = 2 — Xy
zZ = X2

= x = (0,0,0,2): degenerated solution.

45
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Simplex Algorithm: Example Ill: Degeneracy

First Tableau:

X3 = X1 — Xo
X4 = 2 — X1
Z = Xo

Want to increase x». x3 = Xy — Xo is critical. Replace 3 by 2 in B:
B=1{24}.

Xo = X1 — x3. We will replace 3 by 2 in the basis.

But: We cannot increase x.

Second Tableau:

Xo = X1 — X3
X4 = 2 — X 1
Z = X1 — X3

Recent solution: x = (0,0,0,2).



Simplex Algorithm: Example Ill: Degeneracy

Second Tableau:

Xo = X1 — X3
X4 = 2 — X 1
zZ = Xy — X3

Increase x1. X4 = 2 — xy is critical. x; = 2 — x4. New base

B=1{1,2,0,0}.

Third Tableau:
X1 = 2 — X4
Xo = 2 — X3 — X4
Z = 2 — X3 — X4

Optimum solution: x = (2,2,0,0).
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The Simplex Algorithm

Algorithm 1: Simplex Algorithm

Input: Ac R bec R" and c € R"
Output: X € {x € R" | Ax = b, x > 0} maximizing c'x or the message
that max{c'x | Ax = b, x > 0} is unbounded or infeasible
1 Compute a feasible basis B;
2 |f no such basis exists, stop with the message “INFEASIBLE”;
3 Set N={1,....n}\ B and compute the feasible basic solution x for B;

4+ Compute the simplex tableau 2 — P QXNf B:
z = zg + rixy

5 if r < 0 then
| return x = x;
6 Choose o € Nwithr, > 0;

7 if g;, > O for all /i € B then
| return “UNBOUNDED?;

8 Choose /3 ¢ B with gz, < 0 and pﬁ - = max{£- | gio < 0, € B};

9 Set B=(B\ {5}) U {a};
10 GOTO line 3;
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The Simplex Algorithm

Algorithm 2: Simplex Algorithm

Input: Ac R™" bec R™ and c € R"
Output: X € {x € R" | Ax = b, x > 0} maximizing c'x or the message
that max{cix | Ax = b, x > 0} is unbounded or infeasible
1 Compute a feasible basis B;
2 |f no such basis exists, stop with the message “INFEASIBLE”;
3 Set N={1,...,n}\ B and compute the feasible basic solution x for B;

4+ Compute the simplex tableau 8 — P QXN for B;
zZz = Zy -+ I’XN

5 if r < 0 then
| return x = x;
6 Choose o € Nwithr, > 0;

7 if gj, > 0 for all i € B then
| return “UNBOUNDED?;

8 Choose (8 € B with g, < 0 and pﬁ = max{£- | gio < 0, € B};

9 Set B=(B\ {5}) U {a};
10 GOTO line 3;

49




The Simplex Algorithm

Algorithm 3: Simplex Algorithm

Input: Ac R™" bec R™ and c € R"
Output: X € {x € R" | Ax = b, x > 0} maximizing c'x or the message
that max{cix | Ax = b, x > 0} is unbounded or infeasible
1 Compute a feasible basis B;
2 |f no such basis exists, stop with the message “INFEASIBLE”;
3 Set N={1,...,n}\ B and compute the feasible basic solution x for B;

4+ Compute the simplex tableau 8 — P QXN for B;
zZz = Zy -+ I’XN

5 if r < 0 then
| return x = x;
6 Choose o« € Nwithr, > 0;

7 if gj, > 0 for all i € B then
| return “UNBOUNDED?;

8 Choose § € B with g, < 0 and pﬁ = max{£- | gio < 0, € B};

9 Set B=(B\ {5}) U {a};
10 GOTO line 3;
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Let G be a directed graph with capacities v : E(G) — Ry and
numbers b: V(G) — Rwith s b(v) = 0. A feasible

b-flow in (G, u, b) is a mapping 7 : E(G) — R~ with
o f(e) <u(e)forall e c E(G) and

C Ze@g(v) fle) — Zee(saw) f(e) = b(v) forall v € V(G).

Notation:
e b(v): balance of v.
e If b(v) > 0, we call it the supply of v.
o If b(v) < 0, we call it the demand of v.
e Nodes v of G with b(v) > 0 are called sources.
e Nodes v with b(v) < 0 are called sinks.
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Minimum-Cost Flow Problem

e Input: A directed graph G, capacities u : E(G) — R,
numbers b: V(G) — Rwith > 5 b(v) = 0, edge costs
c: E(G)—R.

o Task: Find a b-flow f minimizing > . ¢ c(e) - f(e).




Let G be a directed graph.
e Fore= (v, w) let o= (w, v) its reverse edge.
e Define Gby V(G) = V(G) and E(G) — E(G )U{Z\ e c E(G)).
e Edge costs c: E(G) — R are extended to E( ) by c(e) —c(ey}.

e Let (G, u,b,c)beaMINIMUM-COST FLOW instance and let f be a
b-flow in (G, u). The residual graph G,  is defined by
V(G,¢) := V(G) and

E(Gus) ={e € E(G) | f(e) < u(e)} U {ec E(G)|f(e)>0}.

e For e € E(G) we define the residual capacity by
us(e) = u(e) — f(e) and by us(e) = f(e).
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Augmenting Flow

If P is a subgraph of the residual graph G, s then augmenting
along P by ~ (for v > 0) means increasing P on forward edges
in P (i.e. edges in E(G) N E(P)) by + and reducing it on reverse
edges in P by .
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Let (G, u, b, c) be a MINIMUM-COST FLOW instance with G connected.
A spanning tree structure is a quadruple (r, 7., L, U) where r € V(G),
E(G)=TULUU,|T|=1|V(G)| —1,and (V(G), T) does not contain

an undirected cycle. The b-flow f associated to (r, 7, L, U) is defined

)
o f(e)=u(e)forec U,
o fle)= > b(v)+ > u(e') — > u(e’) for
veCe e’eUNs—(Ce) e’eUNs+(Ce)

e € E(T) where C; is vertex set of the the connected component
for (V(G), T\ {e}) containing v (for e = (v, w)).
The structure (r, T, L, U) is called feasible if 0 < f(e) < u(e) for all
ec E(T). Anedge (v,w) € E(T) is called downward if v is on the
undirected r-w-path in T, otherwise is is called upward.




56

A feasible spanning tree structure (r, T, L, U) is strongly feasible if
0 < f(e) for every downward edge e € E(T) and f(e) < u(e) for every
upward edge e € E(T).

Let (r, T, L, U) be a spanning tree structure. The unique function
7 : V(G) — R with 7(r) =0 and c.(e) := c(e) + n(v) — n(w) = O for
all e = (v,w) € T is called the potential associated to (r, 7, L, U).

y
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Algorithm 4: Network Simplex Algorithm

Input: A MIN-COST-FLOW instance (G, u, b, ¢);
A strongly feasible spanning tree structure (r, 7. L, U).
Output: A minimum-cost flow f.

1 Compute b-flow f and potential = associated to (r, T, L, U);

N

O O A~ W

~N

ep := an edge with ey € L and c.(ey) < 0 or with ¢y € U and ¢, (ey) > 0;
if (No such edge exists) then return f

C := the fund. circuit of e; (if ey € L) or of é_o (if o € U)andlet p = ¢, (ep);

Y := mingeg(c) Ur(€).
e’ .= last edge on C with us(€’) = v when C is traversed starting at the peak;

Let e; be the corresponding edge in G, i.e. € = ey or € :51;

8 Remove ¢, from L or U;
9 Set T = (TU{e})\{ei};

10
11
12
13
14
15
16

if & = ey then Set U =UU/{e};

else Set L = LU {e};

Augment f along ~ by C;

Let X be the connected component of (V(G), T \ {&p}) that contains r;
if eg € 07(X)then Set n(v) =n(v)+pforve V(G)\ X;

ifeg € 07 (X) then Set n(v) = n(v) —pforv e V(G) \ X;

go to line 2;




lllustration:

r
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lllustration:

r

Cost of fundamental circuit = ¢, (e&p).
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o A

BZ
(c,0) (1,0)

(07 _1)

Half-Ball Lemma

B'"n{xeR"|xy>0 C E
with

2 2 n
B oo (n41)2 1 n% — 1 5
E_{XER\ p X1_n+1 + pe Zx,§1 :

vol(E) — ol
Moreover, Vol(B") < e 2+,
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Algorithm 5: Idealized Ellipsoid Algorithm

Input: A separation oracle for a closed convex set K C R”, a number
R > 0 with K C {x € R" | x!x < R?}, and a number ¢ > 0.
Output: An x € K or the message “vol(K) < ¢”

1 Do = 0, AO L= Rzln;
2 for k =0,...,N(R,¢) := [2(n+1)(nIn(2R) +In(1))| do
3 if p, € K then
4 | return py;
5 | Letaec R"be a vector with a'y > alp, forall y € K;
6 bk _ Axa .

ValAa
7 | Pk =Pkt n1ﬁbk;

2

8 | Axi1 = (A — ;25 bikbl);

9 return “vol(K) < €”;
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pi and Ay : exact values
px and Ag: rounded values

Adjust 2\; by multiplying itby 1 =1 + m

xeK=
o _
o (Xx—pP)'Ax (x—px) < 1-35

— 1 N
o X—p)A(x—pk) < 1—7+2vVns |Ac || (R+1lpkl)+
oA ] 2 ia-11 12 "
nol|Ax ||+ (R+llpkl) |A - |A [ - nd

Goal is to choose § such that
—~ 1 _ —~ 1 B
o 2V A || (R+ (1Pl + %A I+ (R+ 1ol 14
1Ak [|né < 7

—— —1
|
T
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Assume that 6 < .’ in iteration k of the ELLIPSOID METHOD. Then:
(a) Ay is positive definite.

(b) llpkll < R2%, [Ipk|l < R2.

(©) [|Akll < R?2%, ||Ak| < R*2*.

(d)

—~ 1
d) ||A '] < R24k, ||Ax || < R24k.
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2 W N =

o O

9

Algorithm 6: Ellipsoid Algorithm

Input: A separation oracle for a closed convex set K C R”, a number
R > 0 with K C {x € R" | x!x < R?}, and a number ¢ > 0
Output: An x € K or the message “vol(K) < ¢”.

pO = Os AO = F‘)Zln;
for k = 0,... . N(R.¢) := [8(n+1)(nIn(2R) + In(1))] do
if p, € K then
L return p;
Let 2 € R" be a vector with a'y > a'p, for all y € K;
L Ad .
by = NeT

Pk11 an approximation of px, 1 := px + n+1 by, with maximum error

5 < (26(N(R,e)+1)16n3)_1;
Ak+1 a symmetric approximation of

Ak+1 = (1 - 2n(n+1)) — 1(Ak n+1 bkb ) with maximum error ¢;

return “vol(K) < ¢”;
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Let P={x ¢ R" | Ax < b} with Ae Q™" and b € Q™. Then, the
following statements are equivalent:

(a) P is integral

(b) Each face of P contains at least one integral vector.

(c) Each minimal face of P contains at least one integral vector.
(d)

d) Each supporting hyperplane of P contains at least one integral
vector.

(e) Each rational supporting hyperplane of P contains at least one
integral vector.

(f) max{c'x | x € P} is attained by an integral vector for each c for
which the maximum is finite.

(g) max{c'x | x € P} is an integer for each integral vector ¢ for which
the maximum is finite.
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A matrix A = (ajj)i-1..m € Z™*""is totally unimodular if and only if for
j=1,..., n

each set R C {1,...,n} there is a partition R = R{UR, such that for
eachie{1,....m}: % icp @j— jicp, @ €{—1,0,1}.

The incidence matrix of an undirected graph G is the matrix
Ag = (ay.e) veve) Which is defined by:

ecE(G)
P 1, ifvee
10, ifvee

The incidence matrix of a directed graph G is the matrix
Ac = (ay.e)vevie) Which is defined by:
ecE(G)
(1, ifv=x
avixy) =143 1 fv=y
L 0,  ifvE{xy}




Let P C R"” be a convex set. Let M be the set of all rational
half-spaces H = {x ¢ R" | ¢'x < ¢} with P C H. Then, we define

P = () H.

HeM

We set P(O) := P and P(1) .= (P") for j € N'\ {0}. P() is the i-th
Gomory-Chvatal-truncation of P.

Yy
Lemma

Let H = {x € R" | c'x < §} be a rational half-space such that the
components of ¢ are relatively prime integers. Then
H=H ={xeR"|cx <|§]}.




