Kombinatorik, Graphen, Matroide 12. Übung

1. Bestimmen Sie die Ramsey-Zahl R(3,4).

(3 Punkte)

- 2. Beweisen Sie den allgemeinen Satz von Ramsey: Es seien k und l_1, \ldots, l_r gegeben. Dann gibt es eine kleinste Zahl $R(k; l_1, \ldots, l_r)$, so dass folgendes gilt: Ist N eine n-elementige Menge mit $n \geq R(k; l_1, \ldots, l_r)$ und sind die k-elementigen Untermengen von N irgendwie mit den Farben $1, \ldots, r$ gefärbt, so gibt es eine Farbe i, so dass in einer l_i -elementigen Untermenge von N alle k-elementigen Teilmengen mit i gefärbt sind. (6 Punkte) Hinweis: Benutzen Sie vollständige Induktion über r. Für r=2 bietet sich eine Induktion über k an.
- 3. Berechnen Sie für $x \neq 1$ die folgende Ausdrücke (d.h. finden Sie eine Darstellung, die eine Auswertung mit einer konstanten Anzahl von Rechenoperationen erlaubt):
 - (a) $\sum_{k=1}^{n} kx^k$

(b)
$$\sum_{k=1}^{n} k^2 x^k$$
 (2+2 Punkte)

4. Für die Zahlen T_n $(n \in \mathbb{N})$ gelte: $T_0 = 5$, $3T_n = 2nT_{n-1} + 5(n!)$ (für n > 0). Lösen Sie die dadurch gegebene Rekursion durch die Wahl geeigneter Summationsfaktoren. (3 Punkte)

Homepage der Übung:

http://www.or.uni-bonn.de/lectures/ss18/kgm_uebung_ss18.html

Abgabe: Dienstag, den 10.7.2018, vor der Vorlesung.

Dieser Zettel hat wird für die Zulassung zur Klausur nicht mehr berücksichtigt.