Kombinatorik, Graphen, Matroide 11. Übung

- 1. Es sei (E, \mathcal{F}) ein Matroid mit Abschlussoperator $\sigma: 2^E \to 2^E$. Es seien $X, Y \subseteq E$ mit $\sigma(X) = X$ und $\sigma(Y) = Y$. Beweisen oder widerlegen Sie die folgenden Aussagen:
 - (a) Aus diesen Voraussetzungen folgt $\sigma(X \cap Y) = X \cap Y$.
 - (b) Aus diesen Voraussetzungen folgt $\sigma(X \cup Y) = X \cup Y$. (4 Punkte)
- 2. Sei (E, \mathcal{F}) ein Matroid mit Abschlussoperator $\sigma: 2^E \to 2^E$, und sei $e \in E$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - (a) e ist in jeder Basis enthalten.
 - (b) e ist in keinem Kreis enthalten.
 - (c) Wenn $X \subseteq E$ und $e \in \sigma(X)$, dann $e \in X$.
 - (d) $r(E \setminus \{e\}) = r(E) 1$.
 - (e) Für jedes $X \in \mathcal{F}$ gilt $(X \cup \{e\}) \in \mathcal{F}$. (5 Punkte)
- 3. Es sei (E, \mathcal{F}) ein Matroid, und es seien A und B zwei Teilmengen von E, die jeweils eine Basis enthalten und für die |A| > |B| gilt. Muss es dann auch notwendigerweise ein $x \in A \setminus B$ geben, so dass $A \setminus \{x\}$ eine Basis enthält? Begründen Sie Ihre Antwort. (3 Punkte)
- 4. Es sei (E, \mathcal{F}) ein Matroid. Es seien X und Y zwei disjunkte Teilmengen von E, so dass X in (E, \mathcal{F}) unabhängig ist und Y im dualen Matroid (E, \mathcal{F}^*) unabhängig ist. Zeigen Sie, dass es dann eine Basis B von (E, \mathcal{F}) mit $X \subseteq B$ und eine Basis B^* von (E, \mathcal{F}^*) mit $Y \subseteq B^*$ gibt, so dass B und B^* disjunkt sind. Gilt diese Aussage auch noch in jedem Fall, wenn (E, \mathcal{F}) nur ein Unabhängigkeitssystem ist? (4 Punkte)

Homepage der Übung:

http://www.or.uni-bonn.de/lectures/ss17/kgm_uebung_ss17.html

Abgabe: Donnerstag, 13.7.2017, vor der Vorlesung. Die Abgaben zu diesem Zettel werden korrgiert und bewertet, haben aber keinen Einfluss mehr auf die Klausurzulassung.