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Transportation Models

@ large variety of models due to the many modes of
transportation

@ roads
e railroad
o shipping
@ airlines
@ as a consequence different type of equipment and resources
with different characteristics are involved
@ cars, trucks, roads
@ trains, tracks and stations
@ ships and ports
@ planes and airports

@ consider two specific problems



Tanker Scheduling

Basic Characteristics

@ consider the problem from the view of a company
@ the planning process normally is done in a 'rolling horizon’
fashion
@ company operates a fleet of ships consisting of
s own ships {1,..., T}
@ chartered ships
@ the operating costs of these two types are different
@ only the own ships are scheduled

@ using chartered ships only leads to costs and these costs are
given by the spot market



Tanker Scheduling

Basic Characteristics (cont.)

@ each own ship i/ is characterized by its
@ capacity cap;

draught dr;

range of possible speeds

]
]
o location /; and time r; at which it is ready to start next trip
)



Tanker Scheduling

Basic Characteristics (cont.)

@ the company has n cargos to be transported
@ cargo J is characterized by
@ type tj (e.g. crude type)
quantity p;j
load port port] and delivery port port
time windows [rj’, dJ’] and [rjd, df] for loading and delivery
load and unload times ¢/ and t¢
costs ¢ denoting the price which has to be paid on the spot
market to transport cargo j (estimate)

¢ © ¢ ¢ e



Tanker Scheduling

Basic Characteristics (cont.)

@ there are p different ports

@ port k is characterized by

]
o

o

its location

limitations on the physical characteristics (e.g. length, draught,
deadweight, ...) of the ships which may enter the port

local government rules (e.g. in Nigeria a ship has to be loaded
above 90% to be allowed to sail)

o ...



Tanker Scheduling

Basic Characteristics (cont.)

@ the objective is to minimize the total cost of transporting all
cargos

@ hereby a cargo can be assigned to a ship of the company or
'sold’ on the spot market and thus be transported by a
chartered ship

@ costs consist of

@ operating costs for own ships

o spot charter rates

o fuel costs

o port charges, which depend on the deadweight of the ship



Tanker Scheduling

ILP _modeling

@ straightforward choice of variables would be to use
0 — 1-variables for assigning cargos to ships

@ problem: these assignment variables do not define the
schedule/route for the ship and thus feasibility and costs of
the assignment can not be determined

@ alternative approach: generate a set of possible
schedules/routes for each ship and afterwards use assignment
variables to assign schedules/routes to ships

@ problem splits up into two subproblems:

@ generate schedules for ships
& assign schedules to ships



Tanker Scheduling

ILP modeling - generate schedules

@ a schedule for a ship consist of an assignment of cargos to the
ship and a sequence in which the corresponding ports are
visited

@ generation of schedules can be done by ad-hoc heuristics
which consider

@ ship constraints like capacity, speed, availability, . ..
@ port constraints
o time windows of cargos

@ each schedule leads to a certain cost

@ for each ship enough potential schedules should be generated
in order to get feasible and good solutions for the second
subproblem



Tanker Scheduling

ILP modeling - generate schedules (cont.)

@ the output of the first subproblem is

@ a set S; of possible schedules for ship i
@ each schedule | € S; is characterized by
@ a vector (aly,...,a},) where a,’-j =1 if cargo j is transported by
ship i in schedule / and 0 otherwise
@ costs ¢! denoting the incremental costs of operating ship i
under schedule / versus keeping it idle over the planning
horizon
o profit nl = Z}’:l a,’-jcj* — ¢! by using schedule / for ship i
instead of paying the spot market



Tanker Scheduling

ILP modeling - generate schedules (cont.)

@ Remarks:

o all the feasibility constraints of the ports and ships are now
within the schedule

o all cost aspects are summarized in the values c! resp. !

@ the sequences belonging to the schedules determine feasibility
and the costs c,-’ but are not part of the output since they are
not needed in the second subproblem



Tanker Scheduling

ILP modeling - assign schedules to ships

) / 1 if ship i follows schedule /
@ variables x; =

else
-
@ objective: max Z Z mix!
i=1I€S;
@ constraint:
T
° ZZa,(jx,-’ <1, j=1,...,n (each cargo at most once)
i=1 1€S;
° Zx,- <1, i=1,...,T (each ship at most one schedule)
1€S;



Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

@ the ILP model is a set-packing problem and well studied in the
literature

@ can be solved by branch and bound procedures
@ possible branchings:
o chose a variable x/ and branch on the two possibilities x! = 0
and x/ =1
select x/ on base of the solution of the LP-relaxation: choose a
variable with value close to 0.5
@ chose a ship i and branch on the possible schedules | € S;
selection of ship i is e.g. be done using the LP-relaxation:
choose a ship with a highly fractional solution



Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

@ lower bounds can be achieved by generating feasible solutions
via clever heuristics (feasible solution = lower bound since we
have a maximization problem)

@ upper bounds can be obtained via relaxing the integrality
constraints and solving the resulting LP (note, that this
LP-solution is also used for branching!)

o for a small example, the behavior of the branch and bound
method is given in the handouts



Tanker Scheduling

Remarks Two Phase Approach

@ in general the solution after solving the two subproblems is
only a heuristic solution of the overall problem

@ if in the first subproblem all possible schedules/routes for each
ship are generated (i.e. S; is equal to the set 5,-"’” of all feasible
schedules for ship i), the optimal solution of the second
subproblem is an optimal solution for the overall problem

o for real life instances the cardinalities of the sets S/ are too
large to allow a complete generation (i.e. S; is always a
(small) subset of S2")

@ colum generation can be used to improve the overall quality of
the resulting solution



Train Timetabling

General Remarks

@ in the railway world lots of scheduling problems are of
importance

scheduling trains in a timetable

o routing of material

o staff planning

]

<

@ currently lots of subproblems are investigated

@ the goal is to achieve an overall decision support system for
the whole planning process

@ we consider one important subproblem



Train Timetabling

Decomposition of the Train Timetabling

@ mostly the overall railway network consists of some major
stations and 'lines/corridors’ connecting them

Am  Amersfoort

As  Amsterdam Centraal
DH Den Haag Centraal

R Rotterdam Centraal
U Utrecht Centraal

@ a corridor normally consists of two independent one-way tracks

@ having good timetables for the trains in the corridors makes it
often easy to find timetables for the trains on the other lines




Train Timetabling

Scheduling Train on a Track

@ consider a track between two major stations

@ in between the two mayor stations several smaller stations

exists
R R’'dam Centraal Ccs Capelle Schollevaar GG Gouda Goverwelle
RN R’dam Noord NI Nieuwerkerk ad 1Jssel w Woerden
RA R’'dam Alexander G Gouda U Utrecht Centraal

@ trains may or may not stop at these stations

@ trains can only overtake each other at stations



Train Timetabling

Problem Definition Track Scheduling

@ time period 1,...,q, where g is the length of the planning
period (typically measured in minutes; e.g. g = 1440)

@ L+ 1 stations O,...,L

@ L consecutive links;

@ link j connects station j — 1 and j

@ trains travel in the direction from station 0 to L

@ T: set of trains that are candidates to run during planning
period

@ for link j, T; C T denotes the trains passing the link



Train Timetabling

Problem Definition Track Scheduling (cont.)

@ train schedules are depicted in so-called time-space diagrams
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@ diagrams enable user to see conflicts



Train Timetabling

Problem Definition Track Scheduling (cont.)

@ train schedules are depicted in so-called time-space diagrams

O area of
conflict

time
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@ diagrams enable user to see conflicts



Train Timetabling

Problem Definition Track Scheduling (cont.)

@ each train has an most desirable timetable (arrivals,
departures, travel time on links, stopping time at stations),
achieved e.g. via marketing department

@ putting all these most desirable timetables together, surely
will lead to conflicts on the track
@ possibilities to change a timetable:
@ slow down train on link
@ increase stopping time at a station
o modify departure time at first station
o cancel the train



Train Timetabling

Problem Definition Track Scheduling (cont.)

@ cost of deviating from a given time t:
o specifies the revenue loss due to a deviation from #
o the cost function has its minimum in %, is convex, and often

modeled by a piecewise linear function
cost

@ piecewise linear helps in ILP models!



Train Timetabling

Variables for Track Scheduling

@ variables represent departure and arrival times from stations
8 yjj: time train / enters link j

= time train / departs from station j — 1

(defined if i € Tj)
o zj: time train i leaves link j

= time train / arrives at station j

(defined if i € T;)
° cg(y,-j) (¢i(zjj) denotes the cost resulting from the deviation

of the departure time yj; (arrival time z;;) from its most
desirable value



Train Timetabling

Variables for Track Scheduling (cont.)

@ variables resulting from the departures and arrivals times:
o T = z;j — yj: travel time of train i on link j
9 0;j = yij+1 — zj: stopping time of train / at station j
o ci(7y) (cg-(é,-j) denotes the cost resulting from the deviation
of the travel time 7j; (stopping time d;;) from its most
desirable value

d c2 7 % have the mentioned structure

@ all cost functions Cii» €5y €5 Cjf



Train Timetabling

Objective function

@ minimize
L
DD (cf () + c@(zy) + iz — vi))
J=1i€T;
L-1
+2 D i — zy)
j=1ieT;



Train Timetabling

Constraints
@ minimum travel times for train i over link J: 7',-3-""”
. . . . . . . . m,'n
@ minimum stopping times for train i at station j: 5,-j

@ safety distance:
¢ minimum headway between departure times of train h and
train i from station j: Hﬁlj
e minimum headway between arrival times of train h and train i
at station j: Hp;

@ lower and upper bounds on departure and arrival times:

min \,max _min _max
Yii s Yi g



Train Timetabling

Constraints (cont.)

@ to be able to model the minimum headway constraints,
variables have to be introduced which control the order of the
trains on the links

o 1 if train h immediately preceeds train 7 on link j
Xpii =
Y 0 else

@ using the variables xj;;, the minimum headway constraints can
be formulated via 'big M'-constraints:

Yij+1 = Ynj1 + (1 = xpj)M > Hﬁij

Zjj — Zpj + (1 — Xh,'j)/\/l > Hﬁ;j



Train Timetabling

Constraints (cont.)

@ two dummy trains 0 and * are added, representing the start
and end of the planning period (fix departure and arrival times
appropriate ensuring that 0 is sequenced before all other trains
and x after all other trains)



Constraints (cont.)

.yl,J+1

Yi,j+1 Yh,J+1 +(1-

— Zp; + (]. — Xh,_,)M > H?2

Vi > ymin
yIJ < ymax
zj > ZT'"
zj < zTaX
yU > ,7_mln
ZU > 5Umln

Xh,_,)M > Hh'J

hij

DoheTA{iy Xhij =1

ieTi\(hy Xhij =1
Xhij € {07 1}

j=1,.
j=1,.
j=1,.
j=1,.
j=1,.
j=1,.
j=0,.
j=1,.
j=1,.
j=1,.
Jj=1

Train Timetabling

. LieT;
L LieT;
L LieT;
L ieT;
L LieT;
., L—1;
L, L=1,i,heT;
. LiheT;

. LieT;

., L heT;
L iheT;

reT;



Train Timetabling

Remarks on ILP Model

@ the number of 0-1 variables gets already for moderate
instances quite large

@ the single track problem is only a subproblem in the whole
time tabling process and needs therefore to be solved often

@ as a consequence, the computational time for solving the
single track problem must be small

@ this asks for heuristic approaches to solve the single track
problem



Train Timetabling

Decomposition Approach: General ldea

@ schedule the trains iteratively one by one
@ initially, the two dummy trains O and * are scheduled

@ the selection of the next train to be scheduled is done on base
of priorities
@ possible priorities are
o earliest desired departure time
o decreasing order of importance (importance may be e.g.
measured by train type, speed, expected revenue, ...)
@ smallest flexibility in departure and arrival
@ combinations of the above



Train Timetabling

Decomposition Approach: Realization

*]
*]
*]
*]

To: set of already scheduled trains
initially To = {0, *}
after each iteration a schedule of the trains from Ty is given

however, for the next iteration only the sequence in which the
trains from Ty traverse the links is taken into account

Si = (0=jo,j1,- - sJnj>Jn+1 = *): sequence of trains from To
on link j

if train k is chosen to be scheduled in an iteration, we have to
insert k in all sequences S; where k € T;

this problem is called Insert(k, Tp)



Train Timetabling

ILP Formulation of Insert(k, Tq)
Adapt the 'standard’ constraints and the objective to Ty:
min 325y Yier, (e () + cfzg) + < (2 — i)
+ 35 Yier, hVig1 — 2j)
subJect to
yU>ym’" j=1,...,L
yij < y,j"ax Jj=1,...,L i€ ToNT;
z,J>z"”" J=1...,L ieTonT;
<z’"aX Jj=1,...,L i€ ToNT;
L
L

;I'EToﬂT,'

yU>Tm’" J=1...,L ieTonT;

Vijr oz 26 j=1. L1 ieTonT,



Train Timetabling

ILP Formulation of Insert(k. Tq) (cont.)

@ adapt yjjy1 — Yhjt+1 + (1 — xpj)M > Hﬁij for trains from Ty
Yivnd =Yg 2 H o1 forj=1,...,L,i=0,....n
@ adapt zjj — zpj + (1 — xpj)M > H;';ij for trains from Ty

R a - - )
Zji1d ZJI"JZHJ:‘JH—IJ forj=1,...,L,i=0,...,n,



Train Timetabling

ILP Formulation of Insert(k. Tq) (cont.)

@ insert k on link j via variables

{1 if train k immediately precedes train j; on link j
Xijj =

0 else
@ new constraints for j=1,...,L,i=0,...,n
° Yij— Y+ (1= xj)M > ’W’f’kj

® Vi ~ Ykt +(1 _XU)M 2 ij/+1j
® Zxj— Zjj +(1_XU)M>H]I(J
® Zjj— Zkj+ (1= x)M > Hk_],+1j

@ (-1 constraints and sum constraint on x;; values



Train Timetabling

Remarks on ILP Formulation of Insert(k, Tq)

@ the ILP Formulation of Insert(k, Ty) has the same order of
continuous constraints (yjj, z;) but far fewer 0-1 variables
than the original MIP

@ a preprocessing may help to fix xj; variables since on base of
the lower and upper bound on the departure and arrival times
of train k many options may be impossible

@ solving Insert(k, Tp) may be done by branch and bound



Train Timetabling

Solving the overall problem

@ an heuristic for the overall problem may follow the ideas of
the shifting bottleneck heuristic
@ select a new train k (machine) which is most 'urgent’
s solve for this new train k the problem Insert(k, To)
& reoptimize the resulting schedule by rescheduling the trains
from Ty

@ rescheduling of a train / € Ty can be done by solving the
problem Insert(l, To U {k} \ {/}) using the schedule which

results from deleting train / from the schedule achieved by
Insert(k, Top)



