
Models in

Transportation

Tim Nieberg



Transportation Models

large variety of models due to the many modes of
transportation

roads
railroad
shipping
airlines

as a consequence different type of equipment and resources
with different characteristics are involved

cars, trucks, roads
trains, tracks and stations
ships and ports
planes and airports

consider two specific problems



Tanker Scheduling

Basic Characteristics

consider the problem from the view of a company

the planning process normally is done in a ’rolling horizon’
fashion

company operates a fleet of ships consisting of

own ships {1, . . . , T}
chartered ships

the operating costs of these two types are different

only the own ships are scheduled

using chartered ships only leads to costs and these costs are
given by the spot market



Tanker Scheduling

Basic Characteristics (cont.)

each own ship i is characterized by its

capacity capi

draught dri
range of possible speeds
location li and time ri at which it is ready to start next trip
. . .



Tanker Scheduling

Basic Characteristics (cont.)

the company has n cargos to be transported

cargo j is characterized by

type tj (e.g. crude type)
quantity pj

load port port l
j and delivery port portd

j

time windows [r l
j , d

l
j ] and [rd

j , dd
j ] for loading and delivery

load and unload times t l
j and td

j

costs c∗

j denoting the price which has to be paid on the spot
market to transport cargo j (estimate)



Tanker Scheduling

Basic Characteristics (cont.)

there are p different ports

port k is characterized by

its location
limitations on the physical characteristics (e.g. length, draught,
deadweight, . . . ) of the ships which may enter the port
local government rules (e.g. in Nigeria a ship has to be loaded
above 90% to be allowed to sail)
. . .



Tanker Scheduling

Basic Characteristics (cont.)

the objective is to minimize the total cost of transporting all
cargos

hereby a cargo can be assigned to a ship of the company or
’sold’ on the spot market and thus be transported by a
chartered ship

costs consist of

operating costs for own ships
spot charter rates
fuel costs
port charges, which depend on the deadweight of the ship



Tanker Scheduling

ILP modeling

straightforward choice of variables would be to use
0 − 1-variables for assigning cargos to ships

problem: these assignment variables do not define the
schedule/route for the ship and thus feasibility and costs of
the assignment can not be determined

alternative approach: generate a set of possible
schedules/routes for each ship and afterwards use assignment
variables to assign schedules/routes to ships

problem splits up into two subproblems:

generate schedules for ships
assign schedules to ships



Tanker Scheduling

ILP modeling - generate schedules

a schedule for a ship consist of an assignment of cargos to the
ship and a sequence in which the corresponding ports are
visited

generation of schedules can be done by ad-hoc heuristics
which consider

ship constraints like capacity, speed, availability, . . .
port constraints
time windows of cargos

each schedule leads to a certain cost

for each ship enough potential schedules should be generated
in order to get feasible and good solutions for the second
subproblem



Tanker Scheduling

ILP modeling - generate schedules (cont.)

the output of the first subproblem is

a set Si of possible schedules for ship i
each schedule l ∈ Si is characterized by

a vector (al
i1, . . . , a

l
in) where al

ij = 1 if cargo j is transported by
ship i in schedule l and 0 otherwise
costs c l

i denoting the incremental costs of operating ship i

under schedule l versus keeping it idle over the planning
horizon
profit π

l
i =

Pn

j=1
al

ijc
∗

j − c l
i by using schedule l for ship i

instead of paying the spot market



Tanker Scheduling

ILP modeling - generate schedules (cont.)

Remarks:

all the feasibility constraints of the ports and ships are now
within the schedule
all cost aspects are summarized in the values c l

i resp. πl
i

the sequences belonging to the schedules determine feasibility
and the costs c l

i but are not part of the output since they are
not needed in the second subproblem



Tanker Scheduling

ILP modeling - assign schedules to ships

variables x l
i =

{

1 if ship i follows schedule l

0 else

objective: max
T

∑

i=1

∑

l∈Si

πl
i x

l
i

constraint:
T

∑

i=1

∑

l∈Si

al
ijx

l
i ≤ 1; j = 1, . . . , n (each cargo at most once)

∑

l∈Si

x l
i ≤ 1; i = 1, . . . , T (each ship at most one schedule)



Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

the ILP model is a set-packing problem and well studied in the
literature

can be solved by branch and bound procedures

possible branchings:

chose a variable x l
i and branch on the two possibilities x l

i = 0
and x l

i = 1
select x l

i on base of the solution of the LP-relaxation: choose a
variable with value close to 0.5
chose a ship i and branch on the possible schedules l ∈ Si

selection of ship i is e.g. be done using the LP-relaxation:
choose a ship with a highly fractional solution



Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

lower bounds can be achieved by generating feasible solutions
via clever heuristics (feasible solution = lower bound since we
have a maximization problem)

upper bounds can be obtained via relaxing the integrality
constraints and solving the resulting LP (note, that this
LP-solution is also used for branching!)

for a small example, the behavior of the branch and bound
method is given in the handouts



Tanker Scheduling

Remarks Two Phase Approach

in general the solution after solving the two subproblems is
only a heuristic solution of the overall problem

if in the first subproblem all possible schedules/routes for each
ship are generated (i.e. Si is equal to the set Sall

i of all feasible
schedules for ship i), the optimal solution of the second
subproblem is an optimal solution for the overall problem

for real life instances the cardinalities of the sets S all
i are too

large to allow a complete generation (i.e. Si is always a
(small) subset of Sall

i )

colum generation can be used to improve the overall quality of
the resulting solution



Train Timetabling

General Remarks

in the railway world lots of scheduling problems are of
importance

scheduling trains in a timetable
routing of material
staff planning
. . .

currently lots of subproblems are investigated

the goal is to achieve an overall decision support system for
the whole planning process

we consider one important subproblem



Train Timetabling

Decomposition of the Train Timetabling

mostly the overall railway network consists of some major
stations and ’lines/corridors’ connecting them

DH

R

As

U

Am Am Amersfoort
As Amsterdam Centraal
DH Den Haag Centraal
R Rotterdam Centraal
U Utrecht Centraal

a corridor normally consists of two independent one-way tracks

having good timetables for the trains in the corridors makes it
often easy to find timetables for the trains on the other lines



Train Timetabling

Scheduling Train on a Track

consider a track between two major stations

in between the two mayor stations several smaller stations
exists

R RN RA CS NI G GG W U

R R’dam Centraal CS Capelle Schollevaar GG Gouda Goverwelle

RN R’dam Noord NI Nieuwerkerk ad IJssel W Woerden

RA R’dam Alexander G Gouda U Utrecht Centraal

trains may or may not stop at these stations

trains can only overtake each other at stations



Train Timetabling

Problem Definition Track Scheduling

time period 1, . . . , q, where q is the length of the planning
period (typically measured in minutes; e.g. q = 1440)

L + 1 stations 0, . . . , L

L consecutive links;

link j connects station j − 1 and j

trains travel in the direction from station 0 to L

T : set of trains that are candidates to run during planning
period

for link j , Tj ⊂ T denotes the trains passing the link



Train Timetabling

Problem Definition Track Scheduling (cont.)

train schedules are depicted in so-called time-space diagrams
U

W

GG

G

NI

CS
RA

RN

R
0 15 30 45 60 75

time

diagrams enable user to see conflicts



Train Timetabling

Problem Definition Track Scheduling (cont.)

train schedules are depicted in so-called time-space diagrams
U

W

GG

G

NI

CS
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RN

R
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time

area of
conflict

diagrams enable user to see conflicts



Train Timetabling

Problem Definition Track Scheduling (cont.)

each train has an most desirable timetable (arrivals,
departures, travel time on links, stopping time at stations),
achieved e.g. via marketing department

putting all these most desirable timetables together, surely
will lead to conflicts on the track

possibilities to change a timetable:

slow down train on link
increase stopping time at a station
modify departure time at first station
cancel the train



Train Timetabling

Problem Definition Track Scheduling (cont.)

cost of deviating from a given time t̂:

specifies the revenue loss due to a deviation from t̂

the cost function has its minimum in t̂, is convex, and often
modeled by a piecewise linear function

t

cost

t̂

piecewise linear helps in ILP models!



Train Timetabling

Variables for Track Scheduling

variables represent departure and arrival times from stations

yij : time train i enters link j

= time train i departs from station j − 1

(defined if i ∈ Tj)
zij : time train i leaves link j

= time train i arrives at station j

(defined if i ∈ Tj)

cd
ij (yij) (ca

ij (zij) denotes the cost resulting from the deviation
of the departure time yij (arrival time zij) from its most
desirable value



Train Timetabling

Variables for Track Scheduling (cont.)

variables resulting from the departures and arrivals times:

τij = zij − yij : travel time of train i on link j

δij = yi ,j+1 − zij : stopping time of train i at station j

cτ
ij (τij) (cδ

ij(δij ) denotes the cost resulting from the deviation
of the travel time τij (stopping time δij) from its most
desirable value

all cost functions cd
ij , c

a
ij , c

τ
ij , c

δ
ij have the mentioned structure



Train Timetabling

Objective function

minimize

L
∑

j=1

∑

i∈Tj

(cd
ij (yij) + ca

ij (zij) + cτ
ij (zij − yij))

+
L−1
∑

j=1

∑

i∈Tj

cδ
ij (yi ,j+1 − zij)



Train Timetabling

Constraints

minimum travel times for train i over link j : τ min
ij

minimum stopping times for train i at station j : δmin
ij

safety distance:

minimum headway between departure times of train h and
train i from station j : Hd

hij

minimum headway between arrival times of train h and train i

at station j : Ha
hij

lower and upper bounds on departure and arrival times:
ymin
ij , ymax

ij , zmin
ij , zmax

ij



Train Timetabling

Constraints (cont.)

to be able to model the minimum headway constraints,
variables have to be introduced which control the order of the
trains on the links

xhij =

{

1 if train h immediately preceeds train i on link j

0 else

using the variables xhij , the minimum headway constraints can
be formulated via ’big M’-constraints:

yi ,j+1 − yh,j+1 + (1 − xhij)M ≥ Hd
hij

zij − zhj + (1 − xhij)M ≥ Ha
hij



Train Timetabling

Constraints (cont.)

two dummy trains 0 and ∗ are added, representing the start
and end of the planning period (fix departure and arrival times
appropriate ensuring that 0 is sequenced before all other trains
and ∗ after all other trains)



Train Timetabling

Constraints (cont.)
yij ≥ ymin

ij j = 1, . . . , L; i ∈ Tj

yij ≤ ymax
ij j = 1, . . . , L; i ∈ Tj

zij ≥ zmin
ij j = 1, . . . , L; i ∈ Tj

zij ≤ zmax
ij j = 1, . . . , L; i ∈ Tj

zij − yij ≥ τmin
ij j = 1, . . . , L; i ∈ Tj

yi ,j+1 − zij ≥ δijmin j = 1, . . . , L − 1; i ∈ Tj

yi ,j+1 − yh,j+1 + (1 − xhij )M ≥ Hd
hij j = 0, . . . , L − 1; i , h ∈ Tj

zij − zhj + (1 − xhij )M ≥ Ha
hij j = 1, . . . , L; i , h ∈ Tj

∑

h∈Tj\{i}
xhij = 1 j = 1, . . . , L; i ∈ Tj

∑

i∈Tj\{h}
xhij = 1 j = 1, . . . , L; h ∈ Tj

xhij ∈ {0, 1} j = 1, . . . , L; i , h ∈ Tj



Train Timetabling

Remarks on ILP Model

the number of 0-1 variables gets already for moderate
instances quite large

the single track problem is only a subproblem in the whole
time tabling process and needs therefore to be solved often

as a consequence, the computational time for solving the
single track problem must be small

this asks for heuristic approaches to solve the single track
problem



Train Timetabling

Decomposition Approach: General Idea

schedule the trains iteratively one by one

initially, the two dummy trains 0 and ∗ are scheduled

the selection of the next train to be scheduled is done on base
of priorities

possible priorities are

earliest desired departure time
decreasing order of importance (importance may be e.g.
measured by train type, speed, expected revenue, . . . )
smallest flexibility in departure and arrival
combinations of the above



Train Timetabling

Decomposition Approach: Realization

T0: set of already scheduled trains

initially T0 = {0, ∗}

after each iteration a schedule of the trains from T0 is given

however, for the next iteration only the sequence in which the
trains from T0 traverse the links is taken into account

Sj = (0 = j0, j1, . . . , jnj
, jnj+1 = ∗): sequence of trains from T0

on link j

if train k is chosen to be scheduled in an iteration, we have to
insert k in all sequences Sj where k ∈ Tj

this problem is called Insert(k ,T0)



Train Timetabling

ILP Formulation of Insert(k ,T0)
Adapt the ’standard’ constraints and the objective to T0:
min

∑L
j=1

∑

i∈Tj
(cd

ij (yij) + ca
ij (zij) + cτ

ij (zij − yij))

+
∑L1

j=1

∑

i∈Tj
cδ
ij(yi ,j+1 − zij)

subject to
yij ≥ ymin

ij j = 1, . . . , L; i ∈ T0 ∩ Tj

yij ≤ ymax
ij j = 1, . . . , L; i ∈ T0 ∩ Tj

zij ≥ zmin
ij j = 1, . . . , L; i ∈ T0 ∩ Tj

zij ≤ zmax
ij j = 1, . . . , L; i ∈ T0 ∩ Tj

zij − yij ≥ τmin
ij j = 1, . . . , L; i ∈ T0 ∩ Tj

yi ,j+1 − zij ≥ δijmin j = 1, . . . , L − 1; i ∈ T0 ∩ Tj



Train Timetabling

ILP Formulation of Insert(k ,T0) (cont.)

adapt yi ,j+1 − yh,j+1 + (1 − xhij)M ≥ Hd
hij for trains from T0

yji+1,j − yji ,j ≥ Hd
ji ji+1,j−1 for j = 1, . . . , L, i = 0, . . . , nj

adapt zij − zhj + (1 − xhij)M ≥ Ha
hij for trains from T0

zji+1,j − zji ,j ≥ Ha
ji ji+1j

for j = 1, . . . , L, i = 0, . . . , nj



Train Timetabling

ILP Formulation of Insert(k ,T0) (cont.)

insert k on link j via variables

xij =

{

1 if train k immediately precedes train ji on link j

0 else

new constraints for j = 1, . . . , L, i = 0, . . . , nj :

yk,j − yji ,j + (1 − xij )M ≥ Hd
jikj

yji+1,j − yk,j + (1 − xij )M ≥ Hd
kji+1j

zk,j − zji ,j + (1 − xij )M ≥ Ha
jikj

zji+1,j − zk,j + (1 − xij )M ≥ Ha
kji+1 j

0-1 constraints and sum constraint on xij values



Train Timetabling

Remarks on ILP Formulation of Insert(k ,T0)

the ILP Formulation of Insert(k ,T0) has the same order of
continuous constraints (yij , zij) but far fewer 0-1 variables
than the original MIP

a preprocessing may help to fix xij variables since on base of
the lower and upper bound on the departure and arrival times
of train k many options may be impossible

solving Insert(k ,T0) may be done by branch and bound



Train Timetabling

Solving the overall problem

an heuristic for the overall problem may follow the ideas of
the shifting bottleneck heuristic

select a new train k (machine) which is most ’urgent’
solve for this new train k the problem Insert(k , T0)
reoptimize the resulting schedule by rescheduling the trains
from T0

rescheduling of a train l ∈ T0 can be done by solving the
problem Insert(l ,T0 ∪ {k} \ {l}) using the schedule which
results from deleting train l from the schedule achieved by
Insert(k ,T0)


