Scheduling
RECAP: Complexity Theory

Tim Nieberg

Recap: Complexity Theory

@ mathematical framework to study the difficulty of algorithmic
problems

Notations/Definitions
@ problem: generic description of a problem (e.g. 1|| > C;)
@ instance of a problem: given set of numerical data (e.g. n,
p1;---, pn)
@ size of an instance /: length of the string necessary to specify
the data (Notation: |/])

@ binary encoding: |I| = n+ Iog(pl) + log(pn)
@ unary encoding: |/|=n+ p; +. + Pn

Complexity Theory

Notations/Definitions

)

)

efficiency of an algorithm: upper bound on number of steps
depending on the size of the instance (worst case
consideration)

big O-notation: for an O(f(n)) algorithm a constant ¢ > 0
and an integer ng exist, such that for an instance / with size
n=|l| and n > ng the number of steps is bounded by cf(n)
Example: 7n3 + 230n + 10log(n) is O(n3)

(pseud)polynomial algorithm: O(p(|/|)) algorithm, where p is
a polynomial and / is coded binary (unary)

Example: an O(nlog(}_ p;j)) algorithm is a polynomial
algorithm and an O(n) p;) algorithm is a pseudopolynomial
algorithm

Recap: Complexity Theory

Classes P and NP

@ a problem is (pseudo)polynomial solvable if a
(pseudo)polynomial algorithm exists which solves the problem

@ Class P: contains all decision problems which are polynomial
solvable

@ Class N'P: contains all decision problems for which - given an
'yes' instance - the correct answer, given a proper clue, can be
verified by a polynomial algorithm

Remark: each optimization problem has a corresponding decision
problem by introducing a threshold for the objective value (does a
schedule exist with objective smaller k?)

Recap: Complexity Theory

Polynomial reduction

@ a decision problem P polynomially reduces to a problem @, if
a polynomial function g exists that transforms instances of P
to instances of @ such that / is a 'yes' instance of P if and
only is g(/) is a "yes' instance of Q
Notation: P o« @
NP-complete

@ a decision problem P € N'P is called NP-complete if all
problems from the class NP polynomially reduce to P

@ an optimization problem is called NP-hard if the
corresponding decision problem is NP-complete

Recap: Complexity Theory

Examples of NP-complete problems:

@ SATISFIABILITY: decision problem in Boolean logic, Cook in
1967 showed that all problems from AP polynomially reduce

to it
@ PARTITION:
o given n positive integers si,...,5, and b=1/23"" | 5;
o does there exist a subset J C [= {1,..., n} such that
D si=b=2 5
jeJ jend

Recap: Complexity Theory

Examples of NP-complete problems (cont.):

@ 3-PARTITION:
@ given 3n positive integers s;, ..., s3, and b with
b/4<sj<b/2, j=1,....3nand b=1/nY}" 5
s do there exist disjoint subsets J; C | = {1,...,3n} such that
ZSj:b; i=1,...,n
Je€Ji

Recap: Complexity Theory

Proving NP-completeness

If an NP-complete problem P can be polynomially reduced to a
problem @ € NP, than this proves that @ is NP-complete
(transitivity of polynomial reductions)

Example: PARTITION o P2||Cpax
Proof: on the board

Famous open problem: Is P = N'P?

@ solving one NP-complete problem polynomially, would imply

P=NP

