d-dimensional arrangement revisited

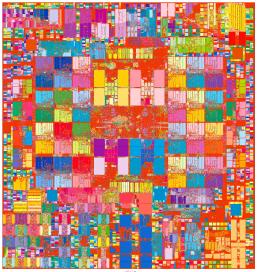
Jens Vygen

University of Bonn

(joint work with Daniel Rotter)

April 16, 2013

Chip design



udin'ny amin'ny faritr'estate (antoine antoine antoine), ao amin'ny amin'n

Chip design

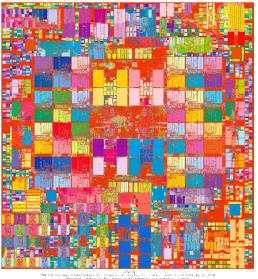
Placement Problem:

Given

a (large) set of rectangular objects with pins, a rectangular chip area, fixed objects and/or pins, and a partition of the set of pins into nets;

place the objects within the chip area without overlaps such that "the pins of every net are close to each other"

Chip design



Placement Problem:

Given

a (large) set of rectangular objects with pins, a rectangular chip area, fixed objects and/or pins, and a partition of the set of pins into nets;

place the objects within the chip area without overlaps such that "the pins of every net are close to each other"

Simplifications: all objects are unit squares with pins in the center, each net has two pins, no fixed objects/pins, measure total ℓ_1 -length

Models with polylogarithmic approximation algorithms

- Vempala [1998]: minimize total length and maximum edge length, O(log^{3.5} n)-approximation
- Even, Guha, Schieber [2000]: embed edges by edge-disjoint paths, minimize area, O(log⁴ n)-approximation

where *n* is the number of objects that are to be placed.

In the following:

2-dimensional arrangement: minimize total length only

d-dimensional arrangement problem

Given: undirected graph G = (V, E) and $k \ge \sqrt[d]{|V|}$

Find: injection $p: V \to \{1, ..., k\}^d$ minimizing $\sum_{\{v, w\} \in E} ||p(v) - p(w)||_1$

- d = 1: linear arrangement problem
- d = 2: interesting model of placement in chip design
- ► this talk: d ≥ 2 fixed; unit weights, but all results generalize to weighted version (given edge weights, take weighted sum)

Approximation algorithms for *d*-dimensional arrangement

Given: undirected graph G = (V, E) and $k \ge \sqrt[d]{|V|}$ Find: injection $p: V \to \{1, ..., k\}^d$ minimizing $\sum_{\{v,w\}\in E} ||p(v) - p(w)||_1$

- d = 1: linear arrangement problem
 - NP-hard: Garey, Johnson [1976]
 - ► O(√log n log log n)-approximation: Feige, Lee [2007] and independently Charikar, Hajiaghayi, Karloff, Rao [2010], improving on Rao, Richa [2004]

Here n = |V|.

Approximation algorithms for *d*-dimensional arrangement

Given: undirected graph G = (V, E) and $k \ge \sqrt[d]{|V|}$ Find: injection $p: V \to \{1, ..., k\}^d$ minimizing $\sum_{\{v, w\} \in E} ||p(v) - p(w)||_1$

- d = 1: linear arrangement problem
 - NP-hard: Garey, Johnson [1976]
 - ► O(√log n log log n)-approximation: Feige, Lee [2007] and independently Charikar, Hajiaghayi, Karloff, Rao [2010], improving on Rao, Richa [2004]
- ► d ≥ 2 (fixed):
 - sketch of O(log² n)-approximation by recursive bipartitioning: Hansen [1989], using Leighton, Rao [1999]
 - can lead to O(log^{3/2} n)-approximation when using Arora, Rao, Vazirani [2009]

Here n = |V|.

Reduction to linear arrangement with "d-dimensional cost"

$$\min\left\{\sum_{\{v,w\}\in E} \sqrt[d]{|p(v)-p(w)|} \middle| p:V \to \{1,\ldots,n\} \text{ bijective}\right\}$$

- reduction proposed by Even, Naor, Rao, Schieber [2000]
- O(log n log log n)-approximation for this problem by Even et al. [2000]
- ► O(√log n)-approximation for this problem by Charikar, Makarychev, Makarychev [2007]

Reduction to linear arrangement with "d-dimensional cost"

$$\min\left\{\sum_{\{v,w\}\in E} \sqrt[d]{|p(v)-p(w)|} \middle| p:V \to \{1,\ldots,n\} \text{ bijective}\right\}$$

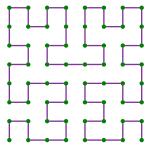
- reduction proposed by Even, Naor, Rao, Schieber [2000]
- O(log n log log n)-approximation for this problem by Even et al. [2000]
- ► O(√log n)-approximation for this problem by Charikar, Makarychev, Makarychev [2007]

Unfortunately, this does not imply the same approximation ratios for *d*-dimensional arrangement!

Reduction to linear arrangement with *d*-dimensional cost

Lemma

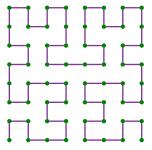
Using Hilbert's space-filling curve, we can find an injection $p : \{1, ..., n\} \rightarrow \{1, ..., k\}^d$ such that $||p(i) - p(j)||_1 \le 4(d+1) \sqrt[d]{|i-j|}$ for all *i*, *j*.



Reduction to linear arrangement with *d*-dimensional cost

Lemma

Using Hilbert's space-filling curve, we can find an injection $p : \{1, ..., n\} \rightarrow \{1, ..., k\}^d$ such that $||p(i) - p(j)||_1 \le 4(d+1) \sqrt[d]{|i-j|}$ for all *i*, *j*.



Corollary

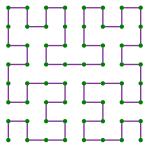
Given a linear arrangement of G with d-dimensional cost γ , we can compute a d-dimensional arrangement of G with cost $O(\gamma)$.

(Even, Naor, Rao, Schieber [2000])

Reduction to linear arrangement with *d*-dimensional cost

Lemma

Using Hilbert's space-filling curve, we can find an injection $p : \{1, ..., n\} \rightarrow \{1, ..., k\}^d$ such that $||p(i) - p(j)||_1 \le 4(d+1) \sqrt[d]{|i-j|}$ for all *i*, *j*.



Corollary

Given a linear arrangement of G with d-dimensional cost γ , we can compute a d-dimensional arrangement of G with cost $O(\gamma)$.

(Even, Naor, Rao, Schieber [2000])

However,

the optimum d-dimensional cost for a linear arrangement can be much larger than the optimum cost of a d-dimensional arrangement.

How good is the reduction?

Theorem

For any graph G = (V, E) and any injection $p : V \to \{1, ..., k\}^d$, there exists a bijection $q : V \to \{1, ..., n\}$ such that

$$\sum_{\{v,w\}\in E} \sqrt[q]{|q(v)-q(w)|} \leq O(\log n) \sum_{\{v,w\}\in E} ||p(v)-p(w)||_1.$$

There are pairs (G, p) for which this bound is tight.

Therefore a factor $O(\log n)$ is lost in this reduction!

Upper bound

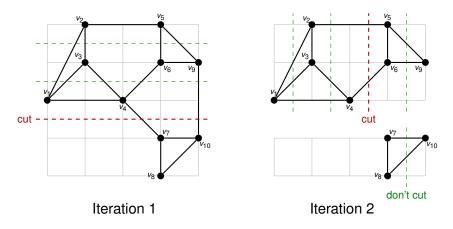
Lemma

For any graph G = (V, E) and any injection $p : V \to \{1, ..., k\}^d$ (where $k, d \in \mathbb{N}$), there exists a bijection $q : V \to \{1, ..., n\}$ such that

$$\sum_{\{v,w\}\in E} \sqrt[d]{|q(v)-q(w)|} \le 32d \ln n \sum_{\{v,w\}\in E} ||p(v)-p(w)||_1.$$

Proof of upper bound (sketch)

- Consider cut coordinates with enough vertices on both sides
- If sufficiently many such coordinates exist, take smallest cut
- Continue with next dimension until each set is a singleton



Yields balanced hierarchical decomposition; order vertices accordingly

Lower bound

Consider the *d*-dimensional hypercube graph (V_k^d, E_k^d) :

•
$$V_k^d = \{1, \dots, k\}^d$$

• $E_k^d = \{\{x, y\} : x, y \in V_k^d, ||x - y||_1 = 1\}$

The identity function is a *d*-dimensional arrangement of cost $\sum_{\{v,w\}\in E_k^d} ||v-w||_1 = |E_k^d| = d(k^d - k^{d-1}) < dn.$

Lemma

Let $d \ge 2$. If $q: V_k^d \to \{1, \ldots, n\}$ is any bijection, then

$$\sum_{\{m{v},m{w}\}\in E_k^d} \sqrt[d]{|m{q}(m{v})-m{q}(m{w})|} >$$

$$\frac{3}{16} \left(1 - \left(\frac{3}{4} \right)^{\frac{d-1}{d}} \right) \left(1 - \left(\frac{3}{4} \right)^{1/d} \right) d \, n \log_2 n - \frac{3dn}{64}.$$

Spreading LP

$$\begin{array}{ll} \min & \sum_{e = \{v, w\} \in E} l(v, w) \\ \text{s.t.} & l(v, w) = l(w, v) \geq 0 & (v, w \in V) \\ & l(u, v) + l(v, w) \geq l(u, w) & (u, v, w \in V) \\ & \sum_{u \in U} l(u, v) \geq \frac{(|U| - 1)^{1 + 1/d}}{4} & (U \subseteq V, v \in U) \end{array}$$

 Can be solved in polynomial time (Even, Naor, Rao, Schieber [2000], Bornstein, Vempala [2004])

Spreading LP

$$\begin{array}{ll} \min & \sum_{e = \{v, w\} \in E} l(v, w) \\ \text{s.t.} & l(v, w) = l(w, v) \geq 0 & (v, w \in V) \\ & l(u, v) + l(v, w) \geq l(u, w) & (u, v, w \in V) \\ & \sum_{u \in U} l(u, v) \geq \frac{(|U| - 1)^{1 + 1/d}}{4} & (U \subseteq V, v \in U) \end{array}$$

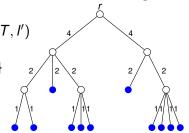
- Can be solved in polynomial time (Even, Naor, Rao, Schieber [2000], Bornstein, Vempala [2004])
- LP value is a lower bound on the optimum cost of a d-dimensional arrangement (Even [2011])
- Implies that the Even-Naor-Rao-Schieber algorithm is indeed an O(log n log log n)-approximation algorithm

Approximating any metric by a tree metric

Lemma (Fakcharoenphol, Rao and Talwar [2004]) Let G = (V, E) be a graph, $n = |V| \ge 2$, and $I : V \times V$ a metric. Then one can compute in polynomial time a 2-hierarchically well-separated tree (T, r, c)such that V is the set of leaves of T, and the induced tree metric l' satisfies:

(a)
$$l'(v, w) \ge l(v, w)$$
 for all $v, w \in V$, and
(b) $\sum_{\{v,w\}\in E} l'(v, w) \le O(\log n) \sum_{\{v,w\}\in E} l(v, w)$.

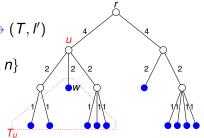
- ► Solve spreading LP → I
- Approximate *l* by tree metric \longrightarrow (*T*, *l'*)
- ► Order of the leaves of *T* in the natural way → *q* : *V* → {1,..., *n*}
- Arrange the vertices according to the Hilbert curve lemma.



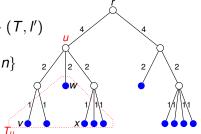
- ► Solve spreading LP → I
- Approximate *l* by tree metric \longrightarrow (*T*, *l'*)
- ► Order of the leaves of *T* in the natural way → *q* : *V* → {1,..., *n*}
- Arrange the vertices according to the Hilbert curve lemma.

Proof of approximation ratio:

• Let $\{v, w\} \in E$ and *u* the nearest common ancestor of *v* and *w*.



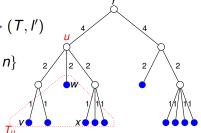
- Solve spreading LP \longrightarrow *I*
- Approximate *l* by tree metric \longrightarrow (*T*, *l'*)
- ► Order of the leaves of *T* in the natural way → *q* : *V* → {1,..., *n*}
- Arrange the vertices according to the Hilbert curve lemma.



Proof of approximation ratio:

- Let $\{v, w\} \in E$ and *u* the nearest common ancestor of *v* and *w*.
- ► Due to the spreading constraints, there is an $x \in T_u$ such that $l(v, x) \ge \frac{1}{4} \sqrt[d]{|T_u| 1}$.

- Solve spreading LP \longrightarrow *I*
- Approximate *l* by tree metric \longrightarrow (*T*, *l'*)
- ► Order of the leaves of *T* in the natural way → *q* : *V* → {1,..., *n*}
- Arrange the vertices according to the Hilbert curve lemma.

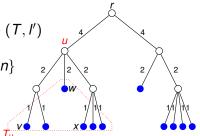


Proof of approximation ratio:

- Let $\{v, w\} \in E$ and *u* the nearest common ancestor of *v* and *w*.
- ► Due to the spreading constraints, there is an $x \in T_u$ such that $l(v, x) \ge \frac{1}{4} \sqrt[d]{|T_u| 1}$. Then,

$$\sqrt[d]{|q(v)-q(w)|} \le \sqrt[d]{|T_u|-1} \le 4 l(v,x) \le 4 l'(v,x) \le 8 l'(v,w).$$

- Solve spreading LP \longrightarrow *I*
- Approximate *l* by tree metric \longrightarrow (*T*, *l'*)
- ► Order of the leaves of *T* in the natural way → *q* : *V* → {1,..., *n*}
- Arrange the vertices according to the Hilbert curve lemma.



Proof of approximation ratio:

- Let $\{v, w\} \in E$ and *u* the nearest common ancestor of *v* and *w*.
- ► Due to the spreading constraints, there is an $x \in T_u$ such that $l(v, x) \ge \frac{1}{4} \sqrt[d]{|T_u| 1}$. Then,

$$\sqrt[d]{|q(v) - q(w)|} \le \sqrt[d]{|T_u| - 1} \le 4 l(v, x) \le 4 l'(v, x) \le 8 l'(v, w).$$

Hence,

$$\sum_{\{v,w\}\in E} \sqrt[d]{|q(v)-q(w)|} \le 8 \sum_{\{v,w\}\in E} l'(v,w) \le O(\log n) \sum_{\{v,w\}\in E} l(v,w).$$

Discussion

Currently best approximation algorithm (see above)

- finds a "high-dimensional embedding" (spreading metric),
- approximates it by a tree metric (by recursive bipartitioning),
- makes it a linear order,
- makes it *d*-dimensional via a space-filling curve.

Poly-time but very slow. No fixed pins etc. O(log n)-approximation

Discussion

Currently best approximation algorithm (see above)

- finds a "high-dimensional embedding" (spreading metric),
- approximates it by a tree metric (by recursive bipartitioning),
- makes it a linear order,
- makes it *d*-dimensional via a space-filling curve.

Poly-time but very slow. No fixed pins etc. $O(\log n)$ -approximation

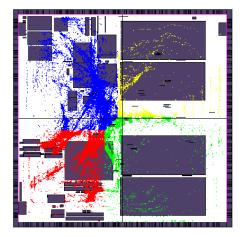
Some of the best heuristics in practice (d = 2) proceed as follows (e.g., BonnPlace, Brenner, Struzyna, Vygen [2008]):

- finds a 2-dimensional embedding (quadratic placement)
- uses recursive quadrisection (Vygen [2005])
- concludes with legalization (Brenner, Vygen [2004])

Fast. Needs fixed pins for "spreading". No approximation guarantee

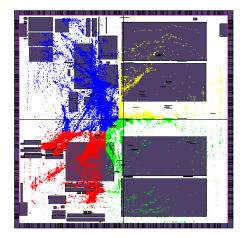
Open problems

Bring theory and practice closer together



Open problems

Bring theory and practice closer together



- Improve approximation guarantee (or prove hardness)
- Obtain O(log n)-approximation without spreading LP
- Generalize to practically more relevant problems
- Prove approximation guarantee for a practical algorithm