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Abstract6

In this paper, we consider the task of computing an independent set of maximum weight in a given7

d-claw free graph G = (V, E) equipped with a positive weight function w : V → R+. Thereby, d ≥ 28

is considered a constant. The previously best known approximation algorithm for this problem is9

the local improvement algorithm SquareImp proposed by Berman [2]. It achieves a performance10

ratio of d
2 + ϵ in time O(|V (G)|d+1 · (|V (G)| + |E(G)|) · (d − 1)2 ·

(
d
2ϵ

+ 1
)2) for any ϵ > 0, which has11

remained unimproved for the last twenty years. By considering a broader class of local improvements,12

we obtain an approximation ratio of d
2 − 1

63,700,992 + ϵ for any ϵ > 0 at the cost of an additional13

factor of O(|V (G)|(d−1)2
) in the running time. In particular, our result implies a polynomial time14

d
2 -approximation algorithm. Furthermore, the well-known reduction from the weighted k-Set Packing15

Problem to the Maximum Weight Independent Set Problem in k + 1-claw free graphs provides a16
k+1

2 − 1
63,700,992 + ϵ-approximation algorithm for the weighted k-Set Packing Problem for any ϵ > 0.17

This improves on the previously best known approximation guarantee of k+1
2 + ϵ originating from18

the result of Berman [2].19
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2 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs
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Figure 1 a d-claw C for d = 3

1 Introduction23

For d ≥ 1, a d-claw C [2] is defined to be a star consisting of one center node and a set TC24

of d additional vertices connected to it, which are called the talons of the claw (see Figure 1).25

Moreover, similar to [2], we define a 0-claw to be a graph consisting only of a single vertex v,26

which is regarded as the unique element of TC in this case. An undirected graph G = (V, E)27

is said to be d-claw free if none of its induced subgraphs forms a d-claw. For example, 1-claw28

free graphs do not possess any edges, while 2-claw free graphs are disjoint unions of cliques.29

For natural numbers k ≥ 3, the Maximum Weight Independent Set Problem (MWIS) in30

k + 1-claw free graphs is often studied as a generalization of the weighted k-Set Packing31

Problem, which is defined as follows: Given a family S of sets each of size at most k together32

with a positive weight function w : S → R+, the task is to find a disjoint sub-collection of S33

of maximum weight. By considering the conflict graph GS associated with an instance of34

the weighted k-Set Packing Problem, the vertices of which are given by the sets in S and35

the edges of which represent non-empty set intersections, one obtains a weight preserving36

one-to-one correspondence between feasible solutions to the k-Set Packing Problem and37

independent sets in GS , which can be shown to be k + 1-claw free.38

While as far as the weighted version of the k-Set Packing Problem is concerned, the algorithm39

devised by Berman in 2000 [2] to deal with the MWIS in k + 1-claw free graphs remains40

unchallenged so far, considerable progress has been made for the cardinality variant during41

the last decade. The first improvement over the approximation guarantee of k achieved by a42

simple greedy approach was obtained by Hurkens and Schrijver in 1989 [9], who showed that43

for any ϵ > 0, there exists a constant pϵ for which a local improvement algorithm that first44

computes a maximal collection of disjoint sets and then repeatedly applies local improvements45

of constant size at most pϵ, until no more exist, yields an approximation guarantee of k
2 + ϵ.46

In this context, a disjoint collection X of sets contained in the complement of the current47

solution A is considered a local improvement of size |X| if the sets in X intersect at most48

|X| − 1 sets from A, which are then replaced by the sets in X, increasing the cardinality49

of the found solution. Hurkens and Schrijver also proved that a performance guarantee of50

k
2 is best possible for a local search algorithm only considering improvements of constant51

size, while Hazan, Safra and Schwartz [8] established in 2006 that no o( k
log k )-approximation52

algorithm is possible in general unless P = NP . At the cost of a quasi-polynomial runtime,53

Halldórsson [7] could prove an approximation factor of k+2
3 by applying local improvements54

of size logarithmic in the total number of sets. Cygan, Grandoni and Mastrolilli [5] managed55

to get down to an approximation factor of k+1
3 + ϵ, still with a quasi-polynomial runtime.56

The first polynomial time algorithm improving on the result by Hurkens and Schrijver was57

obtained by Sviridenko and Ward [13] in 2013. By combining means of color coding with58

the algorithm presented in [7], they achieved an approximation ratio of k+2
3 . This result59

was further improved to k+1
3 + ϵ for any fixed ϵ > 0 by Cygan [4], obtaining a polynomial60

runtime doubly exponential in 1
ϵ . The best approximation algorithm for the unweighted61
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k-Set Packing Problem in terms of performance ratio and running time is due to Fürer and62

Yu from 2014 [6], who achieved the same approximation guarantee as Cygan, but a runtime63

that is only singly exponential in 1
ϵ .64

Concerning the unweighted version of the MWIS in d-claw free graphs, as remarked in [13],65

both the result of Hurkens and Schrijver as well as the quasi-polynomial time algorithms66

by Halldórsson and Cygan, Grandoni and Mastrolilli translate to this more general context,67

yielding approximation guarantees of d−1
2 + ϵ, d+1

3 and d
3 + ϵ, respectively. However, it is not68

clear how to extend the color coding approach relying on coloring the underlying universe to69

the setting of d-claw free graphs [13].70

When it comes to the weighted variant of the problem, even less is known. For d ≤ 3, it is71

solvable in polynomial time (see [10] and [12] for the unweighted, [11] for the weighted variant),72

while for d ≥ 4, again no o( d
log d )-approximation algorithm is possible unless P = NP [8].73

Moreover, in contrast to the unit weight case, considering local improvements the size of74

which is bounded by a constant can only slightly improve on the performance ratio of d− 175

obtained by the greedy algorithm since Arkin and Hassin have shown that such an approach76

yields an approximation ratio no better than d− 2 in general [1]. Thereby, analogously to77

the unweighted case, given an independent set A, an independent set X is called a local78

improvement of A if it is disjoint from A and the total weight of the neighbors of X in79

A is strictly smaller than the weight of X. Despite the negative result in [1], Chandra80

and Halldórsson [3] have found that if one does not perform the local improvements in an81

arbitrary order, but in each step augments the current solution A by an improvement X82

that maximizes the ratio between the total weight of the vertices added to and removed83

from A (if exists), the resulting algorithm, which the authors call BestImp, approximates the84

optimum solution within a factor of 2d
3 . By scaling and truncating the weight function to85

ensure a polynomial number of iterations, they obtain a 2d
3 + ϵ-approximation algorithm for86

the MWIS in d-claw free graphs for any ϵ > 0.87

As already mentioned, the currently best known approximation guarantee for the MWIS88

in d-claw free graphs is due to Berman [2], who suggested the algorithm SquareImp, which89

iteratively applies local improvements of the squared weight function that arise as sets of talons90

of claws in G, until no more exist. An induced subgraph C of G is thereby called a claw in G91

if there is some t ≥ 0 such that C constitutes a t-claw. The algorithm SquareImp achieves an92

approximation ratio of d
2 , leading to a polynomial time d

2 + ϵ-approximation algorithm for any93

ϵ > 0. Its running time can be bounded byO(|V (G)|d+1·(|V (G)|+|E(G)|)·(d−1)2·
(

d
2ϵ + 1

)2).94

Berman also provides an example for w ≡ 1 showing that his analysis is tight. It consists of95

a bipartite graph G = (V, E) the vertex set of which splits into a maximal independent set96

A = {1, . . . , d− 1} such that no claw improves |A|, and an optimum solution B =
(

A
1
)
∪
(

A
2
)
,97

whereby the set of edges is given by E = {{a, b} : a ∈ A, b ∈ B, a ∈ b}. As the example uses98

unit weights, he also concludes that applying the same type of local improvement algorithm99

for a different power of the weight function does not provide further improvements.100

However, as also implied by the result in [9], while no small improvements forming the set of101

talons of a claw in the input graph exist in the tight example given by Berman, once this102

additional condition is dropped, improvements of small constant size can be found quite103

easily (see Figure 2). This in turn indicates that considering a less restricted class of local104

improvements may result in a better approximation guarantee.105

In this paper, we revisit the analysis of the algorithm SquareImp proposed by Berman106

and show that whenever it is close to being tight, the instance actually bears a similar107

structure to the tight example given in [2] in a certain sense. By further observing that if108

this is the case, there must exist a local improvement (with respect to the squared weight109
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1 2 3 4 5

{1, 3} {2, 3} {3} {4, 3} {5, 3}

(a) Example for a claw in the tight instance for d = 6. It does not improve A.
1

{1}

2 3 4 5

{1, 3} {2, 3} {3} {4, 3} {5, 3}

(b) {{1}, {1, 3}, {3}} constitutes a local improvement of constant size.

Figure 2 (Part of) the tight instance provided in [2].

function) of size at most d−1+(d−1)2, we can conclude that a local improvement algorithm110

looking for improvements of w2 obeying the aforementioned size bound achieves an improved111

approximation ratio at the cost of an additional O(|V (G)|(d−1)2) factor in the running time.112

The rest of this paper is organized as follows: In Section 2, we review the algorithm SquareImp113

by Berman and give a short overview of the analysis pointing out the results we reuse in the114

analysis of our algorithm. The latter is presented in Section 3, which also provides a detailed115

analysis proving an approximation guarantee of d
2 −

1
63,700,992 + ϵ for any ϵ > 0. Finally,116

Section 4 concludes the paper with some remarks on possibilities to improve on the given117

result, but also difficulties that one might face along the way.118

2 Preliminaries119

In this section, we shortly recap the definitions and main results from [2] that we will employ120

in the analysis of our local improvement algorithm. We first introduce some basic notation121

that is needed for its formal description.122

▶ Definition 1 (neighborhood [2]). Given an undirected graph G = (V, E) and subsets123

U, W ⊆ V of vertices, we define the neighborhood N(U, W ) of U in W as124

N(U, W ) := {w ∈W : ∃u ∈ U : {u, w} ∈ E ∨ u = w}.125

In order to simplify notation, for u ∈ V and W ⊆ V , we write N(u, W ) instead of N({u}, W ).126

▶ Notation 2. Given a weight function w : V → R and some U ⊆ V , we write127

w2(U) :=
∑

u∈U w2(u). Observe that in general, w2(U) ̸= (w(U))2.128

▶ Definition 3 ([2]). Given an undirected graph G = (V, E), a positive weight function129

w : V → R+ and an independent set A ⊆ V , we say that a vertex set B ⊆ V improves w2(A)130

if B is independent in G and w2(A\N(B, A) ∪ B) > w2(A) holds. For a claw C in G, we131

say that C improves w2(A) if its set of talons TC does.132

Observe that an independent set B improves A if and only if we have w2(B) > w2(N(B, A))133

(see Proposition 12). Further note that we do not require B to be disjoint from A.134

Using the notation introduced above, Berman’s algorithm SquareImp [2] can now be for-135

mulated as in Algorithm 1. Observe that by positivity of the weight function, every v ̸∈ A136
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Algorithm 1 SquareImp [2]

Input: an undirected d-claw free graph G = (V, E) and a positive weight function
w : V → R+

Output: an independent set A ⊆ V

1 A← ∅
2 while there exists a claw C in G that improves w2(A) do
3 A← A\N(TC , A) ∪ TC

4 return A

such that A ∪ {v} is independent constitutes the talon of a 0-claw improving w2(A), so the137

algorithm returns a maximal independent set.138

The main idea of the analysis of SquareImp presented in [2] is to charge the vertices in A for139

preventing adjacent vertices in an optimum solution A∗ from being included into A. The140

latter is done by spreading the weight of the vertices in A∗ among their neighbors in the141

maximal independent set A in such a way that no vertex in A receives more than d
2 times its142

own weight. The suggested distribution of weights thereby proceeds in two steps:143

First, each vertex u ∈ A∗ invokes costs of w(v)
2 at each v ∈ N(u, A), leaving a remaining144

weight of w(u)− w(N(u,A))
2 to be distributed. (Note that this term can be negative.)145

In a second step, each vertex in u therefore sends an amount of w(u)− w(N(u,A))
2 to a heaviest146

neighbor it possesses in A, which is captured by the following definition of charges:147

▶ Definition 4 (charges [2]). Let G = (V, E) be an undirected graph and let w : V → R+ be148

a positive weight function. Further assume that an independent set A∗ ⊆ V and a maximal149

independent set A ⊆ V are given. We define a map charge : A∗ ×A→ R as follows:150

For each u ∈ A∗, pick a vertex v ∈ N(u, A) of maximum weight and call it n(u). Observe151

that this is possible, because A is a maximal independent set in G, implying that N(u, A) ̸= ∅152

since either u ∈ A itself or u possesses a neighbor in A.153

Next, for u ∈ A∗ and v ∈ A, define154

charge(u, v) :=
{

w(u)− 1
2 w(N(u, A)) , if v = n(u)

0 , otherwise
.155

156

The definition of charges directly implies the subsequent statement:157

▶ Corollary 5 ([2]). In the situation of Definition 4, we have158

w(A∗) =
∑

u∈A∗

w(N(u, A))
2 +

∑
u∈A∗

charge(u, n(u))159

≤
∑

u∈A∗

w(N(u, A))
2 +

∑
u∈A∗:charge(u,n(u))>0

charge(u, n(u)).160

161

162

The analysis proposed by Berman now proceeds by bounding the total weight sent to163

the vertices in A during the two steps of the cost distribution separately. Lemma 6 thereby164

bounds the weight received in the first step, while Lemma 7 and Lemma 8 take care of the165

total charges invoked. (Note that although we have slightly changed the formulation of the166

subsequent results to suit our purposes, they either appear in [2] in an equivalent form or167

are directly implied by the proofs presented there.)168
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▶ Lemma 6 ([2]). In the situation of Definition 4, if the graph G is d-claw free for some169

d ≥ 2, then170 ∑
u∈A∗

w(N(u, A))
2 ≤ d− 1

2 · w(A).171

172

▶ Lemma 7 ([2]). In the situation of Definition 4, for u ∈ A∗ and v ∈ A with charge(u, v) > 0,173

we have174

w2(u)− w2(N(u, A)\{v}) ≥ 2 · charge(u, v) · w(v).175

176

▶ Lemma 8 ([2]). Let G = (V, E) be d-claw free, d ≥ 2, and w : V → R+. Let further A∗ be177

an independent set in G of maximum weight and let A be independent in G with the property178

that no claw improves w2(A). Then for each v ∈ A, we have179 ∑
u∈A∗:charge(u,v)>0

charge(u, v) ≤ w(v)
2 .180

181

The proofs can be found in the appendix.182

By combining Corollary 5 with the previous lemmata, one obtains Theorem 9, stating an183

approximation guarantee of d
2 :184

▶ Theorem 9 ([2]). Let G = (V, E) be d-claw free, d ≥ 2, and w : V → R+. Let further185

A∗ be an independent set in G of maximum weight and let A be independent in G with the186

property that no claw improves w2(A). Then187

w(A∗) ≤
∑

u∈A∗

w(N(u, A))
2 +

∑
u∈A∗:charge(u,n(u))>0

charge(u, n(u)) ≤ d

2 · w(A).188

189

After having recapitulated the results from [2] that we will reemploy in our analysis, we190

are now prepared to study our algorithm that takes into account a broader class of local191

improvements.192

3 Improving the Approximation Factor193

3.1 The Local Improvement Algorithm194

▶ Definition 10 (Local improvement). Given a d-claw free graph G = (V, E), a strictly positive195

weight function w : V → R+ and an independent set A ⊆ V , we call an independent set X ⊆ V196

a local improvement of w2(A) if |X| ≤ (d− 1)2 + (d− 1) and w2(A\N(X, A) ∪X) > w2(A).197

▶ Proposition 11. Let G, w and A be as in Definition 10. If X is a local improvement of198

w2(A), then A\N(X, A) ∪X is independent in G.199

▶ Proposition 12. Let G, w and A be as in Definition 10. Then an independent set X of200

size at most (d− 1)2 + (d− 1) constitutes a local improvement of A if and only if we have201

w2(N(X, A)) < w2(X).202
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Algorithm 2 Local improvement algorithm

Input: an undirected d-claw free graph G = (V, E) and a positive weight function
w : V → R+

Output: an independent set A ⊆ V

1 A← ∅
2 while there exists a local improvement X of w2(A) do
3 A← A\N(X, A) ∪X

4 return A

Proof. By Definition 1, we have N(X, A) ⊆ A and (A\N(X, A)) ∩X = ∅, so203

w2(A\N(X, A) ∪X) = w2(A\N(X, A)) + w2(X)204

= w2(A)− w2(N(X, A)) + w2(X),205
206

implying the claim. ◀207

The remainder of Section 3 is now dedicated to the analysis of Algorithm 2 for the208

Maximum Weight Independent Set Problem in d-claw free graphs for d ≥ 2. Thereby, the209

main result of this paper is given by the following theorem:210

▶ Theorem 13. If A∗ is an optimum solution to the MWIS in a d-claw free graph G for211

some d ≥ 2 and A denotes the solution returned by Algorithm 2, then we have212

w(A∗) ≤
(

d

2 −
1

63, 700, 992

)
· w(A).213

First, note that Algorithm 2 is correct in the sense that it returns an independent set. This214

follows immediately from the fact that we maintain the property that A is independent215

throughout the algorithm, because ∅ is independent and Proposition 11 tells us that none of216

our update steps can harm this invariant.217

Next, observe that Algorithm 2 is guaranteed to terminate since no set A can be attained218

twice, given that w2(A) strictly increases in each iteration of the while-loop, and there are219

only finitely many possibilities. Furthermore, each iteration runs in polynomial (considering220

d a constant) time O(|V |(d−1)2+d−1 · (|V |+ |E|)), because there are only O(|V |(d−1)2+d−1)221

many possible choices for X and we can check in linear time O(|V |+ |E|) whether a given222

one constitutes a local improvement.223

In order to achieve a polynomial number of iterations, we scale and truncate the weight224

function as explained in [3] and [2]. Given a constant N > 1, we first compute a greedy225

solution A′ and rescale the weight function w such that w(A′) = N · |V | holds. Then, we226

delete vertices v of truncated weight ⌊w(v)⌋ = 0 and run Algorithm 2 with the integral weight227

function ⌊w⌋. In doing so, we know that ⌊w⌋2(A) equals zero initially and must increase by228

at least one in each iteration. On the other hand, at each point, we have229

⌊w⌋2(A) ≤ w2(A) ≤ (w(A))2 ≤ (d− 1)2w2(A′) = (d− 1)2 ·N2 · |V |2,230

which bounds the total number of iterations by the latter term. Finally, if r > 1 specifies the231

approximation guarantee achieved by Algorithm 2, A denotes the solution it returns and A∗
232

is an independent set of maximum weight with respect to the original respectively the scaled,233

but untruncated weight function w, we know that234

r · w(A) ≥ r · ⌊w⌋(A) ≥ ⌊w⌋(A∗) ≥ w(A∗)− |A∗| ≥ w(A∗)− |V | ≥ N − 1
N

· w(A∗),235
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so the approximation ratio increases by a factor of at most N
N−1 .236

3.2 Analysis of the Performance Ratio237

We now move on to the analysis of the approximation guarantee. Denote some optimum238

solution by A∗ and denote the solution found by Algorithm 2 by A. Observe that by positivity239

of the weight function, A must be a maximal independent set, as adding a vertex would240

certainly yield a local improvement of w2(A).241

We first show that for d = 2, our algorithm is actually optimal, so that we can restrict242

ourselves to the case d ≥ 3 for the main analysis. As already remarked earlier, 2-claw free243

graphs are disjoint unions of cliques, so an optimum solution can be found by picking a244

vertex of maximum weight from each clique. But this is precisely what Algorithm 2 does:245

First, we know that it returns a maximal independent set A, which must hence contain246

exactly one vertex per clique.247

Second, if for some of the cliques, A contains a vertex v the weight of which is not maximum248

among all vertices in the clique, and u ̸∈ A belongs to the same clique and has maximum249

weight, then {u} constitutes a local improvement of w2 since we have N(u, A) = {v}250

and w2(v) < w2(u). This contradicts the termination criterion of our algorithm. Hence,251

Algorithm 2 is optimum for d = 2, and we can assume d ≥ 3 in the following.252

For the analysis, we define two constants, δ and ϵ, which we choose to be δ := 1
6 and253

ϵ := 1
5308416 . These choices satisfy a bunch of inequalities that are used throughout the254

analysis and can be found in Appendix B.255

Our goal is to show that Algorithm 2 produces a d−ϵδ
2 -approximation. We use some notation256

as well as most of the analysis of the algorithm SquareImp by Berman. In particular, we257

employ the same definition of neighborhoods and charges. Observe that this is well-defined258

as we have seen that the solution A returned by our algorithm must constitute a maximal259

independent set in the given graph.260

For the remainder of this section, fix d ≥ 3 and some instance of the MWIS in d-claw261

free graphs given by a (d-claw free) graph G = (V, E) and a positive weight function262

w : V → R+ and pick an optimum solution A∗ for the given instance. Let further A denote263

the solution returned by Algorithm 2. We have to prove that w(A∗) ≤ d−ϵδ
2 ·w(A). In doing264

so, the first step of the analysis is to ensure that for almost all vertices u ∈ A∗, the total265

weight of their neighborhood in A is only by a small constant factor larger than the weight of266

u. For this purpose, we consider the set P of “payback vertices“ u ∈ A∗ for which the total267

weight of N(u, A) is at least three times as large as w(u). For these vertices, the first step of268

the weight distribution employed in the analysis by Berman significantly overestimates their269

weight in that they invoke total costs that are by a factor of 1.5 larger. As a consequence,270

we can reduce the total weight sent to A by at least w(P )
2 , making each of the vertices in271

P “pay back“ the unnecessary costs they have created, and still obtain an upper bound on272

w(A∗). But this means that the analysis of Berman, applied to our algorithm, can actually273

only be close to tight if the total weight of P is almost zero, which is the essential statement274

of the following lemma.275

▶ Lemma 14. Let P := {u ∈ A∗ : w(N(u, A)) ≥ 3 · w(u)}. Then for all γ > 0, if276

w(P ) ≥ γ · w(A), we have w(A∗) ≤ d−γ
2 · w(A).277

In order to prove an approximation factor of d−ϵδ
2 , we can hence restrict ourselves to the278

case where w(P ) < ϵδ · w(A) in the following.279

Our next goal is to examine the structure of the neighborhoods N(v, A∗) of vertices v ∈ A280

that receive a total amount of charges that is close to w(v)
2 , that is, for which the analysis of281
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SquareImp, applied to Algorithm 2, is almost tight. More precisely, we only consider those282

neighbors of v sending positive charges to v and try to relate them to the vertices of the form283

{i} respectively {i, j} for i ̸= j (which actually invoke zero charges in the given instance)284

from the tight example. For this purpose, the following definitions are required:285

▶ Definition 15 (Tv). For v ∈ A, we define Tv := {u ∈ A∗ : charge(u, v) > 0}.286

▶ Definition 16 (single vertex). For v ∈ A, we call a vertex u ∈ Tv single if287

(i) w(u)
w(v) ∈ [1−

√
ϵ, 1 +

√
ϵ] and288

(ii) w(N(u, A)) ≤ (1 +
√

ϵ) · w(v).289

▶ Definition 17 (double vertex). For v ∈ A, we call a vertex u ∈ Tv double if |N(u, A)| ≥ 2290

and for v1 = v and v2 a vertex of maximum weight in N(u, A)\{v1}, the following properties291

hold:292

(i) w(u)
w(v1) ∈ [1−

√
ϵ, 1 +

√
ϵ]293

(ii) w(v2)
w(v1) ∈ [1−

√
ϵ, 1] and294

(iii) (2−
√

ϵ) · w(v1) ≤ w(N(u, A)) < 2 · w(u).295

Note that for v1 and v2 as in the previous definition, we have w(v2) ≤ w(v1) since we know296

that v1 = v = n(u) is an element of N(u, A) of maximum weight by definition of Tv and297

charges. Further observe that no vertex can be both single and double since this would imply298

(2−
√

ϵ) · w(v) ≤ w(N(u, A)) ≤ (1 +
√

ϵ) · w(v) and therefore 2−
√

ϵ ≤ 1 +
√

ϵ, as w(v) > 0,299

leading to ϵ ≥ 1
4 contradicting (5).300

The single vertices can be thought of as the vertices of the form {i} from the tight example,301

while the double vertices are in correspondence with those vertices given by sets of size 2,302

although in the given example, these actually would not be considered double themselves303

since they send zero charges.304

▶ Lemma 18. For v ∈ A, we either have
∑

u∈Tv
charge(u, v) ≤ 1−ϵ

2 · w(v), or for each305

u ∈ Tv, we have exactly one of the following:306

(i) u is single or307

(ii) u is double,308

and moreover, there exists at most one u ∈ Tv that is single.309

We would like to provide some motivation why we are actually interested in a statement of310

this type. To this end, first note that if the total weight of those vertices v ∈ A satisfying311 ∑
u∈Tv

charge(u, v) ≤ 1−ϵ
2 · w(v) constitutes some constant fraction of w(A), we get an312

improved approximation factor since we gain an ϵ
2 -fraction of the weight of each such vertex313

when bounding the weight of A∗. On the other hand, if there are only few such vertices314

(in terms of weight), the vertices v ∈ A for which the analysis of SquareImp is almost tight315

when it comes to charges, and for which all vertices in the set Tv can hence be classified as316

being either single or double, possess a large total weight. The set comprising these vertices317

v can be further split into the collection of those vertices that feature a neighbor that is318

single, and the set of those who do not. In order to gain some intuitive understanding of319

why Algorithm 2 achieves a better approximation guarantee than SquareImp, we have to see320

how both types of vertices can be helpful for our analysis.321

For this purpose, let us first consider those vertices v ∈ A all neighbors (in Tv) of which322

are double. Observe that for a double vertex u0 ∈ A∗, its neighborhood N(u0, A) consists323

of two vertices v1 = n(u0) and v2 of roughly the same weight as u0, plus maybe some324

additional vertices the total weight of which is by a factor in the order of
√

ϵ smaller. For325

simplicity, imagine that v1 and v2 have exactly the same weight and that there are no further326
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neighbors of u0 in A. In this situation, it is completely arbitrary whether v1 or v2 is chosen327

as n(u0). In particular, we can bound both of the terms w2(u0)− w2(N(u0, A)\{v1}) and328

w2(u0) − w2(N(u0, A)\{v2}) by 2 · charge(u0, n(u0)) · w(v1) = 2 · charge(u0, n(u0)) · w(v2)329

from below. Moreover, the proof of Lemma 8 tells us that for each v ∈ A, we actually get330

the stronger statement331 ∑
u∈N(v,A∗)

max{0, w2(u)− w2(N(u, A)\{v})} ≤ w2(v).332

When summing over all v ∈ A, while every vertex u ∈ A∗ adds at least 2 · charge(u, n(u)) by333

Lemma 7, our “ideal“ double vertex u0 actually contributes twice as much since it adds an334

amount of at least 2 · charge(u, n(u)) · w(v1/2) for both v1 and v2.335

Although for general double vertices, the situation is more complicated, one can still show that336

w2(u)−w2(N(u, A)\{v1}) amounts to almost 3·charge(u, v1)·w(v1), or u adds approximately337

charge(u, v1) ·w(v2) when it comes to v2. As a consequence, for those vertices v ∈ A receiving338

a total amount of charges of at least 1−ϵ
2 · w(v) and all neighbors of which are double, the339

total charges sent to v can be counted almost three instead of only two times, resulting in340

an improved approximation factor provided the total weight of these vertices constitutes a341

constant fraction of w(A).342

We are therefore left with discussing the role of those v ∈ A that possess at least one single343

neighbor. By Lemma 18, we further know that those v have exactly one single neighbor,344

which we denote by t(v) in the following. Recall that by definition of single vertices, this345

neighbor bears roughly the same weight as v, and v makes up almost all of N(t(v), A) in346

terms of weight. Imagine removing each such vertex v with a single neighbor from A and its347

neighbor t(v) ∈ Tv from A∗. Then the sets of vertices removed from A and A∗, respectively,348

have roughly the same weight. It further constitutes a large fraction of w(A), provided that349

w(P ), as well as the total weight of vertices for which the analysis of SquareImp is not350

close to being tight and the total weight of vertices with only double neighbors are small.351

(Remember that we obtain a better approximation guarantee if this is not the case.) But352

now, given that the ratio between the weights of the sets of vertices we have removed from A353

and A∗, respectively, is close to 1, we must get an improved approximation guarantee unless354

the ratio between the weights of the sets of vertices A′∗ and A′ remaining from A∗ and A is355

way larger than d
2 . But then, we know that we can find a local improvement X of w2(A′) in356

the resulting instance, which can be extended to a local improvement in the original one by357

adding vertices that were removed from A∗ to make up for the additional weight of neighbors358

of X that were removed from A. The existence of this local improvement contradicts the359

termination criterion of Algorithm 2.360

We have therefore outlined the key ideas of the analysis of Algorithm 2 and in particular361

convinced ourselves of the benefit of the lemma. Its proof can be found in the appendix.362

After having seen that all neighbors of vertices v for which the analysis of SquareImp, applied363

to our algorithm, is almost tight, are either double or single, we continue by establishing the364

“usefulness“ of double vertices. As already outlined before, we show that the charges invoked365

by these can be counted almost three instead of only two times, which is captured by the366

next lemma.367

▶ Lemma 19. Let u ∈ Tv be double, let v = v1 and let v2 be a vertex of maximum weight in368

N(u, A)\{v1}. Then at least one of the following inequalities holds:369

(i) w2(u)− w2(N(u, A)\{v1}) ≥ 149
50 · charge(u, v1) · w(v1) or370

(ii) w2(u)− w2(N(u, A)\{v2}) ≥ 49
50 · charge(u, v1) · w(v2).371
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When motivating Lemma 18, we proposed to add charges invoked by vertices in A∗ to a372

certain extent for vertices in A. This rather vague idea is clarified by the next definition as373

well as the two propositions and the lemma it is followed by.374

While Proposition 21 bounds the total amount the neighborhood of each v ∈ A can contribute375

to v in a locally optimal solution, Proposition 22 and Lemma 23 give lower bounds on the376

fraction of the invoked charges non-double and double vertices contribute in total.377

▶ Definition 20 (contribution). Define a contribution map378

contr : A∗ ×A→ R≥0 by setting379

contr(u, v) :=

max
{

0, w2(u)−w2(N(u,A)\{v})
w(v)

}
, if v ∈ N(u, A)

0 , else
.380

▶ Proposition 21. For each v ∈ A, we have
∑

u∈A∗ contr(u, v) ≤ w(v).381

▶ Proposition 22. For each u ∈ A∗, we have382 ∑
v∈A

contr(u, v) ≥ contr(u, n(u)) ≥ 2 · charge(u, n(u)).383

384

▶ Lemma 23. For each double vertex u, we have
∑

v∈A contr(u, v) ≥ 149
50 · charge(u, n(u)).385

▶ Definition 24 (C and D). Let C denote the set of all v ∈ A for which386

(i)
∑

u∈Tv
charge(u, v) > 1−ϵ

2 · w(v) and387

(ii) all vertices in Tv are double.388

Let further D :=
⋃

v∈C Tv.389

Note that all vertices in D are double by definition. The following proposition tells us that390

the total charges invoked by vertices in D constitute a considerable fraction of the weight of391

C.392

▶ Proposition 25.
∑

u∈D charge(u, n(u)) ≥ 1−ϵ
2 · w(C).393

As we have seen that double vertices contribute a factor of at least 149
50 times the charges394

they send, we can finally conclude that we obtain an improved approximation factor unless395

the weight of C is extremely small compared to w(A), which is the statement of the next396

lemma.397

▶ Lemma 26. If w(C) ≥ 25
12 · ϵδ · w(A), then w(A∗) ≤ d−ϵδ

2 · w(A).398

By the previous lemma, we know that we can assume w(C) < 25
12 · ϵδ · w(A) in the following.399

As outlined before, we continue by proving that we get the desired approximation guarantee400

if the set of vertices for which the analysis of SquareImp is not almost tight constitutes at401

least a δ fraction of the weight of A. Let therefore402

B̄ :=
{

v ∈ A :
∑

u∈Tv

charge(u, v) >
1− ϵ

2 · w(v)
}

403

denote the set of vertices for which the analysis of SquareImp is close to being tight.404

▶ Lemma 27. If w(B̄) ≤ (1− δ) · w(A), then d−ϵδ
2 · w(A) ≥ w(A∗).405
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If we have w(B̄) ≤ (1 − δ) · w(A), we achieve the claimed approximation factor of d−ϵδ
2 ,406

so assume w(B̄) > (1 − δ) · w(A) in the following. Let further B := B̄\C. Then we have407

w(B) = w(B̄) − w(C) > (1 − δ − 25
12 · ϵδ) · w(A). By Lemma 18, each vertex v ∈ B has a408

unique neighbor in Tv which is single. Call this neighbor t(v) and let B∗ := {t(v), v ∈ B}.409

We proceed by proving two lemmata that will later help us to transform local improvements410

in the instance arising by deleting the vertices in B, B∗ and P into local improvements in411

the original one. Lemma 28 thereby tells us that for each v ∈ B, the total weight of the412

neighbors of t(v) in A other than v is extremely small, while Lemma 29 establishes a relation413

between the squared weights of v and t(v).414

▶ Lemma 28. For v ∈ B, we have w(N(t(v), A)\{v}) ≤
√

ϵ · w(v).415

▶ Lemma 29. For v ∈ B, we have w(v)2 ≤ w(t(v))2 + (4
√

ϵ + 4ϵ) · w2(v).416

Consider the sets A′ := A\B and A′∗ := A∗\(B∗ ∪ P ) that arise from deleting all vertices417

in B and B∗ ∪ P . As outlined before, we would like to apply the analysis of SquareImp418

to bound the weight of A′∗ in terms of the weight of A′. However, in order to employ the419

definition of charges, we have to make sure that A′ constitutes a maximal independent set in420

G[A′ ∪A′∗]. Showing this property is the purpose of the following lemma.421

▶ Lemma 30. If there exists a vertex u ∈ A′∗ such that N(u, A′) = ∅, then there exist a422

local improvement of w2(A) in the original instance.423

Due to the termination criterion of our algorithm, we know that there is no local improvement424

in the original instance, so the previous lemma tells us that every vertex in A′∗ must possess a425

neighbor in A′ (considering vertices as adjacent to themselves), showing that A′ is a maximal426

independent set in G[A′ ∪A′∗]. We can hence apply the same strategy as in the analysis of427

SquareImp to bound the weight of A′∗ by the weight of A′, letting each vertex send charges428

to its heaviest neighbor in A′, which must exist by the previous arguments. More precisely,429

we apply the definition of charges, Definition 4, to the sub-instance induced by A′ ∪A′∗, in430

which A′∗ is independent and A′ is a maximal independent set. Call the resulting charge431

map charge′ and recall that it is constructed as follows:432

For each u ∈ A′∗, we pick a heaviest neighbor v ∈ N(u, A′) and call it n′(u). Then, for433

u ∈ A′∗ and v ∈ A′, we define434

charge′(u, v) :=
{

w(u)− w(N(u,A′))
2 if v = n′(u)

0 otherwise
.435

For v ∈ A′, let T ′
v := {u ∈ A′∗ : charge′(u, v) > 0} denote the set of vertices in A′∗ that now436

send positive charges to v.437

We show that we obtain the desired approximation ratio, provided438 ∑
u∈T ′

v

charge′(u, v) ≤ d + 2
4 · w(v)439

holds for all v ∈ A′, and that we can find a local improvement of w2(A) in the original440

instance if this is not the case, contradicting the fact that our algorithm did terminate.441

▶ Lemma 31. If
∑

u∈T ′
v

charge′(u, v) ≤ d+2
4 · w(v) holds for all v ∈ A′, then we have442

w(A∗) ≤ d−ϵδ
2 · w(A).443

We are left with proving the following lemma:444
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▶ Lemma 32. For all v ∈ A′, we have445 ∑
u∈T ′

v

charge′(u, v) ≤ d + 2
4 · w(v).446

447

This concludes the proof that Algorithm 2 achieves approximation factor of at most448

d− ϵδ

2 =
d− 1

31850496
2 = d

2 −
1

63700992 .449

By scaling and truncating the weight function , we obtain a polynomial time d
2 −

1
63700992 + ϵ′-450

approximation algorithm for any ϵ′ > 0, whereby the running time depends polynomially on451

1
ϵ′ . In particular, setting ϵ′ := 1

63700992 , we get a polynomial time d
2 -approximation algorithm.452

However, given the fact that the running time of (at least a straightforward implementation453

of) Algorithm 2 is in Ω(|V |(d−1)2+(d−1)), this result remains of only theoretical interest for454

the time being.455

4 Further Remarks456

The proven result indicates that an approximation ratio of d
2 is not the end of the story of457

local improvement algorithms for the Maximum Weight Independent Set Problem in d-claw458

free graphs. This observation is inevitably followed by the question of how far one can still459

get with this approach. Concerning algorithms that only consider local improvements of some460

fixed constant size (possibly dependent on d), the result of Hurkens and Schrijver [9] implies461

a lower bound of d−1
2 for d ≥ 4. This raises the question of whether and how the gap between462

our result, providing an approximation guarantee of d
2 −

1
63700992 + ϵ′ for any ϵ′ > 0, and the463

lower bound of d−1
2 can be closed. Although the choice of our constants ϵ and δ still permits464

some room for optimization, as the rather rough estimates in the proof of the properties465

(1) to (11) indicate, the more critical ones among them still seem to be “tight enough“ to466

limit hope for an improvement in an entirely different order of magnitude. Therefore, we467

also picked our constants in a way keeping the proof of (1)-(11) as short as possible. Some468

further ideas might be required to get substantially closer to an approximation factor of d−1
2 .469

Whether or not the latter is possible could be regarded as a worthwhile subject for further470

research.471
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A Proofs of Lemmata from the Analysis of SquareImp510

Proof of Lemma 6. As A∗ is independent in G, each v ∈ V satisfies |N(v, A∗)| ≤ d − 1,511

because either v ∈ A∗ and N(v, A∗) = {v}, or v ̸∈ A∗ and N(v, A∗) constitutes the set of512

talons of a claw centered at v, provided it is non-empty. ◀513

Proof of Lemma 7. charge(u, v) > 0 implies v = n(u) ∈ N(u, A) and therefore514

w2(N(u, A)\{v}) =
∑

x∈N(u,A)\{v}

w2(x)515

≤
∑

x∈N(u,A)\{v}

w(x) · max
y∈N(u,A)

w(y)516

= w(N(u, A)\{v}) · w(v)517

= (w(N(u, A))− w(v)) · w(v).518
519

From this, we get520

2 · charge(u, v) · w(v) = (2 · w(u)− w(N(u, A))) · w(v)521

= 2 · w(u) · w(v)− w(N(u, A)) · w(v)522

≤ w2(u) + w2(v)− w(N(u, A)) · w(v)523

= w2(u)− (w(N(u, A))− w(v)) · w(v)524

≤ w2(u)− w2(N(u, A)\{v})525
526

as claimed. ◀527

Proof of Lemma 8. Assume for a contradiction that528 ∑
u∈A∗:charge(u,v)>0

charge(u, v) >
w(v)

2529

for some v ∈ A. Then v ̸∈ A∗ since530

{u ∈ A∗ : charge(u, v) > 0} = {v} = N(v, A) = N(v, A∗)531

and532 ∑
u∈A∗:charge(u,v)>0

charge(u, v) = charge(v, v) = w(v)
2533

otherwise. Hence, T := {u ∈ A∗ : charge(u, v) > 0} forms set the of talons of a claw centered534

at v. By Lemma 7, it satisfies535

w2(T ) =
∑
u∈T

w2(u) >
∑
u∈T

w2(N(u, A)\{v}) + w2(v) ≥ w2(N(T, A)),536

contradicting the fact that no claw improves w2(A). ◀537

B Inequalities Satisfied by Our Choice of ϵ and δ538

4− 2 · 6− 9
√

ϵ

4− 10
√

ϵ
− 9
√

ϵ ≥ 49
50 (1)539
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540

9 · (4
√

ϵ + 5ϵ) < 1 (2)541

542

(1 +
√

ϵ) ·
(

1− δ − 25
12 · ϵδ

)
+ 3d

4 ·
(

δ + 25
12 · ϵδ

)
+ ϵδ ≤ d− ϵδ

2 (3)543

544

36
√

ϵ + 45ϵ ≤ 1
32 (4)545

546

0 < ϵ <
16
100 <

1
4 (5)547

548

1− 3
√

ϵ >
1
2 (6)549

550

1 +
√

ϵ <
3d

4 (7)551

552

4 ·
(

1− 3
2 ·
√

ϵ

)
· (1−

√
ϵ) ≥ 3 >

149
50 (8)553

554

49 · (1− ϵ)
100 ≥ 12

25 (9)555

(2− 10
√

ϵ) · 6− 9
√

ϵ

4− 10
√

ϵ
≥ 149

50 (10)556

557

min{2− 10
√

ϵ, 6− 9
√

ϵ, 4− 10
√

ϵ} = 2− 10
√

ϵ > 0 (11)558

Proof. (1):559

4− 2 · 6− 9
√

ϵ

4− 10
√

ϵ
− 9
√

ϵ ≥ 4− 2 · 6
4− 10

1000
− 9

1000 = 4− 1200
399 −

9
1000560

= 1, 596, 000− 1, 200, 000− 3, 591
399, 000 = 392, 409

399, 000561

>
391, 020
399, 000 = 49

50562

563

(2):564

9 · (4
√

ϵ + 5ϵ) < 9 ·
(

4
1000 + 5

1000000

)
< 1.565
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(3):566

(1 +
√

ϵ) ·
(

1− δ − 25
12 · ϵδ

)
+ 3d

4 ·
(

δ + 25
12 · ϵδ

)
+ ϵδ ≤ d− ϵδ

2567

⇔ (1 +
√

ϵ) · (1− δ) +
(

3δ

4 + 3
4 ·

25ϵδ

12

)
· d ≤ d− ϵδ

2568

+ ϵδ ·
(

1− 25
12 · (1 +

√
ϵ)
)

569

⇐ (1 +
√

ϵ) · (1− δ) +
(

3δ

4 + 25ϵδ

16

)
· d + ϵδ ≤ d− ϵδ

2570

⇔ (1 +
√

ϵ) · (1− δ) +
(

3δ

4 + 25ϵδ

16

)
· d + 3

2 · ϵδ ≤ d

2 | δ = 1
6571

⇔ (1 +
√

ϵ) · 5
6 +

(
1
8 + 25ϵ

96

)
· d + ϵ

4 ≤ d

2572

⇔ (1 +
√

ϵ) · 5
6 + 12 + 25ϵ

96 · d + ϵ

4 ≤ 48
96 · d573

⇔ (1 +
√

ϵ) · 5
6 + ϵ

4 ≤ 36− 25ϵ

96 · d574
575

As d ≥ 3 and ϵ < 1, the latter is implied by576

(1 +
√

ϵ) · 5
6 + ϵ

4 ≤ 108− 75ϵ

96577

⇔ (1 +
√

ϵ) · 80 + 24ϵ ≤ 108− 75ϵ578

⇔ 80
√

ϵ + 99ϵ ≤ 28 | ϵ <
1

1000000579

⇐ 80
1000 + 99

1000000 ≤ 28.580
581

(4):582

36
√

ϵ + 45ϵ = 36
2304 + 45

5308416 = 1
64 + 5

589824 <
1
32583

(5): clear584

(6):585

1− 3
√

ϵ > 1− 3
1000 >

1
2586

(7):587

1 +
√

ϵ < 1 + 1√
1000000

= 1 + 1
1000 <

9
4 ≤

3d

4588

(8):589

4 ·
(

1− 3
2 ·
√

ϵ

)
· (1−

√
ϵ) ≥ 4 ·

(
1− 3

2000

)
·
(

1− 1
1000

)
590

= 4 · 1997 · 999
2, 000, 000 = 1, 995, 003

500, 000 > 3 >
149
50591

592

(9):593

49 · (1− ϵ)
100 =

49 ·
(
1− 1

5308416
)

100 >
49 ·

(
1− 1

49
)

100 = 48
100 = 12

25594
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(10):595

(2− 10
√

ϵ) · 6− 9
√

ϵ

4− 10
√

ϵ
>

(
2− 10

1000

)
·

6− 10
1000

4 = 199 · 599
40, 000 = 119, 201

40, 000596

>
119, 200
40, 000 = 149

50597

598

(11): Follows directly from
√

ϵ < 1
1000 . ◀599

C Propositions and Proofs Omitted Due to Page Limit600

The following proposition is helpful to bound the sizes of candidate local improvements we601

consider during the analysis.602

▶ Proposition 33. For any v ∈ A, we have |N(v, A∗)| ≤ d − 1 and for any u ∈ A∗,603

|N(u, A)| ≤ d− 1.604

Proof. For v ∈ A, if further v ∈ A∗, then N(v, A∗) = {v}, because A∗ is independent, and605

therefore |N(v, A∗)| = 1 < 2 ≤ d− 1 since d ≥ 3. If N(v, A∗) is empty, we are also done, so606

assume v ̸∈ A∗ and N(v, A∗) ̸= ∅. Then by independence of A∗, N(v, A∗) forms the set of607

talons of a claw in G centered at v. Consequently, d-claw freeness of G implies the desired608

size bound. The second statement can be obtained analogously. ◀609

Proof of Lemma 14. As for any claw in G, its set of talons possesses a size that is not larger610

than max{1, d − 1} = d − 1 ≤ (d − 1)2 + (d − 1) and is therefore considered as a possible611

improvement during our algorithm, Theorem 9 implies that612 ∑
u∈A∗

w(N(u, A))
2 +

∑
u∈A∗:charge(u,n(u))>0

charge(u, n(u)) ≤ d

2 · w(A).613

614

By definition of charges, we have charge(u, n(u)) = w(u)− w(N(u,A))
2 , so615

d

2 · w(A) ≥
∑

u∈A∗

w(N(u, A))
2 +

∑
u∈A∗:charge(u,n(u))>0

charge(u, n(u))616

=
∑

u∈A∗

w(N(u, A))
2 + max

{
w(u)− w(N(u, A))

2 , 0
}

617

=
∑

u∈A∗

max
{

w(u), w(N(u, A))
2

}
618

≥
∑
u∈P

3
2 · w(u) +

∑
u∈A∗\P

w(u)619

=w(A∗) + w(P )
2 .620

621

Therefore, w(P ) ≥ γ · w(A) implies w(A∗) ≤ d−γ
2 · w(A) as claimed. ◀622

Proof of Lemma 18. If
∑

u∈Tv
charge(u, v) ≤ 1−ϵ

2 ·w(v), we are done, so assume the contrary,623

i.e.624 ∑
u∈Tv

charge(u, v) >
1− ϵ

2 · w(v). (12)625
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We have |Tv| ⊆ N(v, A∗) by definition, so |Tv| ≤ d− 1 by Proposition 33. As Algorithm 2626

has terminated, Tv does not yield a local improvement of w2 and we know that627 ∑
u∈Tv

w2(u) = w2(Tv) ≤ w2(N(Tv, A)) ≤ w2(v) +
∑

u∈Tv

w2(N(u, A)\{v}),628

and the outer inequality is equivalent to629 ∑
u∈Tv

w2(u)− w2(N(u, A)\{v}) ≤ w2(v). (13)630

By Lemma 7, we know that if charge(u, v) > 0 (which is the case for all u ∈ Tv by definition),631

we have632

w2(u)− w2(N(u, A)\{v}) ≥ 2 · charge(u, v) · w(v). (14)633

As w(v) > 0, for u ∈ Tv, let ϵu ≥ 0 such that634

w2(u)− w2(N(u, A)\{v}) = 2 · charge(u, v) · w(v) + ϵu · w2(v). (15)635

Then (12) and (13) imply636

w2(v) ≥
∑

u∈Tv

w2(u)− w2(N(u, A)\{v})637

=
∑

u∈Tv

2 · charge(u, v) · w(v) + ϵu · w(v)2
638

> 2 · 1− ϵ

2 · w2(v) +
∑

u∈Tv

ϵu · w2(v)639

= w2(v) ·
(

1− ϵ +
∑

u∈Tv

ϵu

)
,640

641

and w(v) > 0 yields642 ∑
u∈Tv

ϵu ≤ ϵ. (16)643

We now show that for each u ∈ Tv, one of the conditions listed in the lemma applies:644

Pick u ∈ Tv. By definition of charges, we know that v = n(u) is a neighbor of u in A of645

maximum weight, implying646

w2(N(u, A)\{v}) =
∑

x∈N(u,A)\{v}

w2(x)647

≤
∑

x∈N(u,A)\{v}

w(x) ·max{0, max
y∈N(u,A)\{v}

w(y)}648

= (w(N(u, A))− w(v)) ·max{0, max
y∈N(u,A)\{v}

w(y)}, (17)649

650

whereby max ∅ := −∞. By (15), we therefore obtain651

w2(u)− w2(N(u, A)\{v}) = 2 · charge(u, v) · w(v) + ϵu · w2(v)652

⇔ w2(u)− w2(N(u, A)\{v}) = (2 · w(u)− w(N(u, A))) · w(v)653

+ ϵu · w2(v)654

⇔ w2(u) + w2(v)− w2(N(u, A)\{v}) = (2 · w(u) + w(v)− w(N(u, A))) · w(v)655

+ ϵu · w2(v),656
657
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which results in658

(w(u)− w(v))2 − w2(N(u, A)\{v}) + (w(N(u, A))− w(v)) · w(v) = ϵu · w2(v).659

Applying (17) yields660

(w(u)−w(v))2 +(w(N(u, A))−w(v)) ·(w(v)−max{0, max
y∈N(u,A)\{v}

w(y)}) ≤ ϵu ·w2(v). (18)661

As both summands in (18) are nonnegative since real squares are nonnegative, v ∈ N(u, A)662

is of maximum weight and w > 0, (18) in particular implies that both663

ϵu · w2(v) ≥ (w(u)− w(v))2 and (19)664

ϵu · w2(v) ≥ (w(N(u, A))− w(v)) · (w(v)−max{0, max
y∈N(u,A)\{v}

w(y)}). (20)665

666

From (19), we can infer that |w(u)− w(v)| ≤ √ϵu · w(v), which in turn implies that667

w(u) ≤ w(v) + |w(u)− w(v)| ≤ (1 +
√

ϵu) · w(v) as well as668

w(v) ≤ w(u) + |w(v)− w(u)| ≤ w(u) +
√

ϵu · w(v),669
670

which yields (1−√ϵu) · w(v) ≤ w(u). As a consequence, by (16), we obtain671

w(u)
w(v) ∈ [1−

√
ϵu, 1 +

√
ϵu] ⊆ [1−

√
ϵ, 1 +

√
ϵ]. (21)672

In addition to that, (20) tells us that at least one of the two inequalities673

√
ϵu · w(v) ≥ w(v)−max{0, max

y∈N(u,A)\{v}
w(y)} or (22)674

√
ϵu · w(v) ≥ w(N(u, A))− w(v) (23)675

676

must hold. If (22) applies, the fact that ϵu ≤ ϵ < 1 by (5) and (16), together with w(v) > 0,677

implies that N(u, A)\{v} ≠ ∅, so let v2 ∈ N(u, A)\{v} be of maximum weight. Then678

w(v)− w(v2) ≤
√

ϵu · w(v) and hence679

(1−
√

ϵ) · w(v) ≤ (1−
√

ϵu) · w(v) ≤ w(v2) ≤ w(v) (24)680
681

by maximality of w(v) in N(u, A). From this, we also get682

(2−
√

ϵ) · w(v) ≤ w(v) + w(v2) ≤ w(N(u, A)) < 2 · w(u),683

whereby the last inequality follows from the fact that u sends positive charges to v. Hence,684

together with (21) and (24), all conditions for u being double are fulfilled. In case (23) holds685

true, we get686

w(N(u, A)) ≤ (1 +
√

ϵu) · w(v) ≤ (1 +
√

ϵ) · w(v),687

leaving us with a vertex that is single by (21).688

In order to finally see that there can be at most one vertex u ∈ Tv which is single, observe689

that for a single vertex u, we have690

charge(u, v) = w(u)− w(N(u, A))
2 ≥ (1−

√
ϵ) · w(v)− 1 +

√
ϵ

2 · w(v)691

= 1− 3
√

ϵ

2 · w(v).692
693
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Hence, the existence of at least two single vertices in Tv and (6) would imply694

∑
u∈Tv

charge(u, v) ≥ (1− 3
√

ϵ) · w(v) >
w(v)

2695

and (14), combined with the fact that w(v) > 0, would yield696 ∑
u∈Tv

w2(u)− w2(N(u, A)\{v}) ≥
∑

u∈Tv

2 · charge(u, v) · w(v) > w2(v),697

a contradiction to (13). ◀698

Proof of Lemma 19. We distinguish two cases:699

Case 1: w(v1) ≥ w(u). Then we have700

0 ≤ w(N(u, A))− w(v1) = 2 · (w(u)− charge(u, v1))− w(v1)701

= w(u)− 2 · charge(u, v1) + w(u)− w(v1)702

≤ w(u)− 2 · charge(u, v1)703
704

and therefore705

w2(u)− w2(N(u, A)\{v1}) ≥ w2(u)− (w(N(u, A))− w(v1))2
706

≥ w2(u)− (w(u)− 2 · charge(u, v1))2
707

= w2(u)− w2(u) + 4 · w(u) · charge(u, v1)708

− 4 · charge(u, v1)2
709

= 4 · charge(u, v1) · (w(u)− charge(u, v1)). (25)710
711

Given that for a double vertex, we have712

charge(u, v1) = w(u)− w(N(u, A))
2 ≤ w(u)− 2−

√
ϵ

2 · w(v1)713

≤ w(u)− 2−
√

ϵ

2(1 +
√

ϵ)
· w(u) ≤ w(u)− (2−

√
ϵ) · (1−

√
ϵ)

2 · w(u)714

= w(u) · 2− (2− 3
√

ϵ + ϵ)
2 ≤ 3

2 ·
√

ϵ · w(u)715
716

since 1
1+

√
ϵ

= 1−
√

ϵ
1+

√
ϵ
≥ 1−

√
ϵ, (25) implies717

w2(u)− w2(N(u, A)\{v1}) ≥ 4 ·
(

1− 3
2 ·
√

ϵ

)
· w(u) · charge(u, v1).718

Further knowing that w(u) ≥ (1−
√

ϵ) · w(v1), we finally obtain719

w2(u)− w2(N(u, A)\{v1}) ≥ 4 ·
(

1− 3
2 ·
√

ϵ

)
· (1−

√
ϵ) · w(v1) · charge(u, v1)720

≥ 149
50 · charge(u, v1) · w(v1)721

722

by (8) as claimed.723
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Case 2: w(v1) < w(u). In this case, we get724

w2(u)− w2(N(u, A)\{v1}) = w2(u)− w2(v2)− w2(N(u, A)\{v1, v2})725

= w2(u)− (w(u)− (w(u)− w(v2)))2
726

− w2(N(u, A)\{v1, v2})727

= w2(u)− w2(u) + 2 · w(u) · (w(u)− w(v2))728

− (w(u)− w(v2))2 − w2(N(u, A)\{v1, v2})729

= 2 · w(u) · (w(u)− w(v2))− (w(u)− w(v2))2
730

− w2(N(u, A)\{v1, v2}). (26)731
732

By definition of double vertices and our case assumption, we have733

w(u) > w(v1) ≥ w(v2) ≥ (1−
√

ϵ) · w(v1) ≥ 1−
√

ϵ

1 +
√

ϵ
· w(u) ≥ (1− 2

√
ϵ) · w(u)734

and therefore 0 < w(u)− w(v2) ≤ 2
√

ϵ · w(u) and735

(w(u)− w(v2))2 ≤ 2
√

ϵ · w(u) · (w(u)− w(v2)). (27)736

In addition to that, we get737

w(N(u, A)\{v1, v2}) = w(N(u, A))− w(v1)− w(v2)738

< 2 · w(u)− w(v1)− w(v2)739

≤ 2 · (w(u)− w(v2)),740
741

leading to742

w2(N(u, A)\{v1, v2}) ≤ (w(N(u, A)\{v1, v2}))2
743

≤ 2 ·
(

w(u)− w(v1) + w(v2)
2

)
· 2 · (w(u)− w(v2))744

≤ 2 ·
(

w(u)− w(v1) + w(v2)
2

)
· 4
√

ϵ · w(u)745

= 8
√

ϵ · w(u) ·
(

w(u)− w(v1) + w(v2)
2

)
(28)746

≤ 8
√

ϵ · w(u) · (w(u)− w(v2)). (29)747
748

Combining (26) with w(v1) < w(u), (11), (27) and (29) results in749

w2(u)− w2(N(u, A)\{v1}) ≥ (2− 10
√

ϵ) · w(u) · (w(u)− w(v2))750

≥ (2− 10
√

ϵ) · w(v1) · (w(u)− w(v2)). (30)751
752

As double vertices send positive charges, we further have753

0 < charge(u, v1) = w(u)− w(N(u, A))
2 ≤ w(u)− w(v1) + w(v2)

2754

≤ w(u)− w(v2). (31)755
756

Let therefore α ≥ 1 such that757

w(u)− w(v2) = α ·
(

w(u)− w(v1) + w(v2)
2

)
. (32)758
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Then759

w(u)− w(v1) = 2 ·
(

w(u)− w(v1) + w(v2)
2

)
− (w(u)− w(v2))760

= (2− α) ·
(

w(u)− w(v1) + w(v2)
2

)
. (33)761

762

Consequently, (30), (31) and (32) yield763

w2(u)− w2(N(u, A)\{v1}) ≥ (2− 10
√

ϵ) · w(v1) · (w(u)− w(v2))764

≥ (2− 10
√

ϵ) · α · w(v1) ·
(

w(u)− w(v1) + w(v2)
2

)
765

≥ (2− 10
√

ϵ) · α · w(v1) · charge(u, v1).766
767

If α ≥ 6−9
√

ϵ
4−10

√
ϵ
, whereby numerator and denominator are positive by (11), then we get768

(2− 10
√

ϵ) · α ≥ 149
50 by (10) and are therefore done. We can hence assume α < 6−9

√
ϵ

4−10
√

ϵ
in769

the following. By similar calculations as before, we get770

w2(u)− w2(N(u, A)\{v2}) = w2(u)− w2(v1)− w2(N(u, A)\{v1, v2})771

= w2(u)− (w(u)− (w(u)− w(v1)))2
772

− w2(N(u, A)\{v1, v2})773

= w2(u)− w2(u) + 2 · w(u) · (w(u)− w(v1))774

− (w(u)− w(v1))2 − w2(N(u, A)\{v1, v2})775

= 2 · w(u) · (w(u)− w(v1))− (w(u)− w(v1))2
776

− w2(N(u, A)\{v1, v2}). (34)777
778

By definition of double vertices and our case assumption, we have779

(1−
√

ϵ) · w(u) ≤
(

1−
√

ϵ

1 +
√

ϵ

)
· w(u) = w(u)

1 +
√

ϵ
≤ w(v1) < w(u),780

implying 0 < w(u) − w(v1) ≤
√

ϵ · w(u), as well as w(v2) ≤ w(v1) < w(u), leading to781

0 < w(u)− w(v1) ≤ w(u)− w(v1)+w(v2)
2 . We therefore get782

(w(u)− w(v1))2 ≤
√

ϵ · w(u) ·
(

w(u)− w(v1) + w(v2)
2

)
. (35)783

Together with (28), (33) and (35), (34) leads to784

w2(u)− w2(N(u, A)\{v2}) = 2 · w(u) · (w(u)− w(v1))− (w(u)− w(v1))2
785

− w2(N(u, A)\{v1, v2})786

≥ 2 · w(u) · (2− α) ·
(

w(u)− w(v1) + w(v2)
2

)
787

−
√

ϵ · w(u) ·
(

w(u)− w(v1) + w(v2)
2

)
788

− 8
√

ϵ · w(u) ·
(

w(u)− w(v1) + w(v2)
2

)
789

≥ (4− 2α− 9
√

ϵ) · w(u) ·
(

w(u)− w(v1) + w(v2)
2

)
790

≥ (4− 2α− 9
√

ϵ) · w(v2) · charge(u, v1)791

≥ 49
50 · w(v2) · charge(u, v1),792

793
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whereby the last two inequalities follow from (1), (31), α < 6−9
√

ϵ
4−10

√
ϵ

and our case assumption.794

This finishes the proof of the lemma. ◀795

Proof of Proposition 21. If v ∈ A∗, this is true, because we get N(v, A∗) = N(v, A) = {v}796

and contr(v, v) = w(v) in this case.797

If v ̸∈ A∗, the set T of vertices sending positive contributions to v constitutes the set of798

talons of a claw centered at v and
∑

u∈T contr(u, v) > w(v) would imply that T constitutes799

a local improvement of w2. ◀800

Proof of Proposition 22. The first inequality follows by nonnegativity of the contribution,801

which also implies the second inequality in case charge(u, n(u)) ≤ 0. If charge(u, n(u)) > 0,802

Lemma 7 provides the desired statement. ◀803

Proof of Lemma 23. By Lemma 7, we know that contr(u, n(u)) ≥ 2 · charge(u, n(u)) since804

by definition of a double vertex, u ∈ Tn(u) sends positive charges to n(u). By Lemma 19, we805

further know that for v1 = n(u) and v2 an element of N(u, A)\{v1} of maximum weight, we806

have807

(i) contr(u, v1) ≥ 149
50 · charge(u, v1) and contr(u, v2) ≥ 0 or808

(ii) contr(u, v1) ≥ 2 · charge(u, v1) and contr(u, v2) ≥ 49
50 · charge(u, v1),809

implying contr(u, v1) + contr(u, v2) ≥ 149
50 · charge(u, v1) = 149

50 · charge(u, n(u)) in either case.810

Consequently, nonnegativity of the contribution yields811 ∑
v∈N(u,A)

contr(u, v) ≥ contr(u, v1) + contr(u, v2) ≥ 149
50 · charge(u, n(u))812

as claimed. ◀813

Proof of Proposition 25. As for u ∈ Tv, we have v = n(u) and Tv and Tv′ are in particular814

disjoint for v ̸= v′, we get815 ∑
u∈D

charge(u, n(u)) =
∑
v∈C

∑
u∈Tv

charge(u, v) ≥ 1− ϵ

2 · w(C)816

by definition of C and D. ◀817

Proof of Lemma 26. By Proposition 21, Proposition 22, Lemma 23 and Proposition 25, we818

get819

w(A) ≥
∑
v∈A

∑
u∈A∗

contr(u, v) =
∑

u∈A∗

∑
v∈A

contr(u, v)820

=
∑
u∈D

∑
v∈A

contr(u, v) +
∑

u∈A∗\D

∑
v∈A

contr(u, v)821

≥
∑
u∈D

149
50 · charge(u, n(u)) +

∑
u∈A∗\D

2 · charge(u, n(u))822

=
∑

u∈A∗

2 · charge(u, n(u)) + 49
50 ·

∑
u∈D

charge(u, n(u))823

≥
∑

u∈A∗

2 · charge(u, n(u)) + 49 · (1− ϵ)
100 · w(C)824

≥
∑

u∈A∗

2 · charge(u, n(u)) + 12
25 · w(C)825

826
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by (9), so
∑

u∈A∗ charge(u, n(u)) ≤ w(A)
2 − 6

25 · w(C), and w(C) ≥ 25
12 · ϵδ · w(A) yields827 ∑

u∈A∗ charge(u, n(u)) ≤ 1−ϵδ
2 · w(A). Applying Corollary 5 and Lemma 6 provides the828

desired bound829

w(A∗) ≤ d− 1
2 · w(A) +

∑
u∈A∗

charge(u, n(u)) ≤ d− ϵδ

2 · w(A).830

◀831

Proof of Lemma 27. By (13) and (14) from the proof of Lemma 18, we know that for832

v ∈ B̄, we have
∑

u∈Tv
charge(u, v) ≤ w(v)

2 . Corollary 5 and Lemma 6 from the analysis of833

SquareImp, combined with w(B̄) ≤ (1− δ) ·w(A) and hence w(A)−w(B̄) ≥ δ ·w(A) as well834

as the definition of Tv for v ∈ A lead to835

w(A∗) ≤ d− 1
2 · w(A) +

∑
u∈A∗:charge(u,n(u))>0

charge(u, n(u))836

= d− 1
2 · w(A) +

∑
v∈A

∑
u∈Tv

charge(u, v)837

≤ d− 1
2 · w(A) +

∑
v∈B̄

w(v)
2 +

∑
v∈A\B̄

1− ϵ

2 · w(v)838

= d

2 · w(A)− ϵ

2 · (w(A)− w(B̄))839

≤ d− ϵδ

2 · w(A),840
841

proving the assertion. ◀842

▶ Proposition 34. B → B∗, v 7→ t(v) is a bijection with inverse map n ↾ B∗.843

Proof. Surjectivity follows from the definition of B∗, injectivity from the facts that each844

u ∈ A∗ may send positive charges to at most one v ∈ A and that we have t(v) ∈ Tv for all845

v ∈ B by definition. As for u ∈ B∗, n(u) is the unique vertex in A that u can send positive846

charges to, we must have u = t(n(u)), which implies the second part of the assertion. ◀847

Proof of Lemma 28. Let v ∈ B and u := t(v). By the definition of u = t(v), we have848

v ∈ N(u, A), v = n(u) and u is single. This yields849

w(N(u, A)\{v}) = w(N(u, A))− w(v) ≤ (1 +
√

ϵ) · w(v)− w(v) =
√

ϵ · w(v).850
851

◀852

Proof of Lemma 29. If w(v) ≤ w(t(v)) this is clear since all weights are positive and ϵ > 0853

by (5). Therefore, assume that w(t(v)) < w(v). By the definition of single vertices, we obtain854

w(v) ≤ 1
1−
√

ϵ
· w(t(v)) =

(
1 +

√
ϵ

1−
√

ϵ

)
· w(t(v)) ≤ (1 + 2

√
ϵ) · w(t(v))855

since 0 ≤ ϵ < 1
4 by (5). Consequently, our assumption w(t(v)) < w(v) and the fact that all856

weights are positive yield857

w2(v) ≤ (1 + 2
√

ϵ)2 · w2(t(v)) = (1 + 4
√

ϵ + 4ϵ) · w2(t(v))858

≤ w2(t(v)) + (4
√

ϵ + 4ϵ) · w2(v)859
860

as claimed. ◀861
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A′∗

A′

B∗

B

P
A∗

A

N(u, B)

Tu

N(T, A)\N(u, B)

N(T ∪ {u}, A)

Figure 3 The situation in Lemma 30. Dashed lines indicate edges from vertices in B∗ to vertices
in A of significantly lower weight, thick vertical lines mark the edges connecting v ∈ B to t(v) ∈ B∗.

Proof of Lemma 30. Let u ∈ A′∗ with N(u, A′) = ∅ and define T := {t(v), v ∈ N(u, B)}.862

We show that T ∪ {u} yields a local improvement of w2(A). First, as B ⊆ A, Proposition 33863

and Proposition 34 tell us that |T | = |N(u, B)| ≤ d − 1, so T ∪ {u} contains at most864

d ≤ (d− 1)2 + d− 1 vertices since d ≥ 3. The neighbors of T ∪ {u} in A can be split into the865

neighbors N(u, B) of u in B and the neighbors of T in A that are not contained in N(u, B),866

because N(u, A\B) = N(u, A′) = ∅ by choice of u (see Figure 3). Hence, we get867

w2(N(T ∪ {u}, A)) ≤ w2(N(u, B)) + w2(N(T, A)\N(u, B)). (36)868

By Lemma 29 and Proposition 34, we know that869

w2(N(u, B)) =
∑

v∈N(u,B)

w2(v) ≤
∑

v∈N(u,B)

w2(t(v)) + (4
√

ϵ + 4ϵ) · w2(v)870

=w2(T ) + (4
√

ϵ + 4ϵ) · w2(N(u, B)). (37)871
872

Next, Lemma 28 and Proposition 34 tell us that873

w2(N(T, A)\N(u, B)) ≤
∑
t∈T

w2(N(t, A)\N(u, B))874

=
∑

v∈N(u,B)

w2(N(t(v), A)\N(u, B))875

≤
∑

v∈N(u,B)

w2(N(t(v), A)\{v})876

≤
∑

v∈N(u,B)

ϵ · w2(v)877

= ϵ · w2(N(u, B)). (38)878
879

Combining (36), (37) and (38), we obtain880

w2(N(T ∪ {u}, A)) ≤ (4
√

ϵ + 5ϵ) · w2(N(u, B)) + w2(T ).881

As u ∈ A′∗ = A∗\(B∗ ∪ P ) and by definition of P , we know that882

w(N(u, B)) ≤ w(N(u, A)) ≤ 3 · w(u),883
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so884

(4
√

ϵ + 5ϵ) · w2(N(u, B)) ≤ 9 · (4
√

ϵ + 5ϵ) · w2(u) < w2(u)885

by (2) and since w(u) > 0. Consequently,886

w2(N(T ∪ {u}, A)) < w2(u) + w2(T ) = w2(T ∪ {u})887

since u ∈ A′∗ = A∗\(B∗ ∪ P ) and T ⊆ B∗ and we have found a local improvement as888

claimed. ◀889

Proof of Lemma 31. Observing that G[A′ ∪A′∗] is d-claw free as an induced subgraph of890

G, Corollary 5 and Lemma 6 tell us that891

w(A′∗) ≤
∑

u∈A′∗

w(N(u, A′))
2 +

∑
u∈A′∗:charge′(u,n′(u))>0

charge′(u, n′(u))892

≤ d− 1
2 · w(A′) +

∑
v∈A′

∑
u∈T ′

v

charge′(u, v)893

≤ d− 1
2 · w(A′) +

∑
v∈A′

d + 2
4 · w(v)894

= d− 1
2 · w(A′) + d + 2

4 · w(A′)895

= 3d

4 · w(A′).896
897

Moreover, by Lemma 18 and by definition of t(v) for v ∈ B, we have898

w(B∗) = w({t(v) : v ∈ B}) ≤ (1 +
√

ϵ) · w(B).899

By assumption, we further know that w(P ) ≤ ϵδ ·w(A) as well as w(B) ≥ (1−δ− 25
12 ·ϵδ)·w(A)900

and w(A′) = w(A)− w(B). Putting everything together, we obtain901

w(A∗) = w(B∗) + w(A′∗) + w(P )902

≤ (1 +
√

ϵ) · w(B) + 3d

4 · (w(A)− w(B)) + ϵδ · w(A)903

=
(

3d

4 + ϵδ

)
· w(A)−

(
3d

4 − (1 +
√

ϵ)
)
· w(B) | (7)904

≤
(

3d

4 + ϵδ

)
· w(A)−

(
3d

4 − (1 +
√

ϵ)
)
·
(

1− δ − 25
12 · ϵδ

)
· w(A)905

=
(

(1 +
√

ϵ) ·
(

1− δ − 25
12 · ϵδ

)
+ 3d

4 ·
(

δ + 25
12 · ϵδ

)
+ ϵδ

)
· w(A) | (3)906

≤ d− ϵδ

2 · w(A),907
908

which concludes the proof. ◀909

Proof of Lemma 32. Assume that the assertion does not hold and pick v0 ∈ A′ such that910 ∑
u∈T ′

v0

charge′(u, v0) >
d + 2

4 · w(v0).911
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Let R := {t(v) : v ∈ N(T ′
v0

, B)}. We show that T ′
v0
∪R yields a local improvement of w2(A),912

contradicting the termination criterion of our algorithm.913

As T ′
v0
⊆ N(v0, A∗), Proposition 33 implies that |T ′

v0
| ≤ d− 1. Given that for u ∈ T ′

v0
⊆ A∗,914

N(u, B) ⊆ N(u, A) can contain at most d− 1 elements by Proposition 33, Proposition 34915

implies that |R| = |N(T ′
v0

, B)| ≤ (d − 1)2. Hence, the total size of our improvement is at916

most (d− 1)2 + (d− 1).917

As charge′(u, v0) > 0 for all u ∈ T ′
v0

, Lemma 7 shows that918

w2(u)− w2(N(u, A′)\{v0}) ≥ 2 · charge′(u, v0) · w(v0)919

for all u ∈ T ′
v0

.920

Additionally, for u ∈ T ′
v0

with w(u) ≥ 4 · w(v0), we get921

2 · w(u)− w(N(u, A′)) = 2 · charge′(u, v0)922

and therefore923

w(N(u, A′)) = 2 · w(u)− 2 · charge′(u, v0).924

As v0 is the heaviest neighbor of u in A′ by definition of charges, we further obtain925

w2(N(u, A′)\{v0}) ≤ w2(N(u, A′)) ≤
∑

v∈N(u,A′)

w(v) · w(v0)926

= w(N(u, A′)) · w(v0) = (2 · w(u)− 2 · charge′(u, v0)) · w(v0)927

≤ 2 · w(u) · w(u)
4 − 2 · charge′(u, v0) · w(v0) = w(u)2

2 − 2 · charge′(u, v0) · w(v0).928
929

As a consequence,930

w(u)2

2 − w2(N(u, A′\{v0})) ≥ 2 · charge′(u, v0) · w(v0).931

Let S′
v0

:= {u ∈ T ′
v0

: w(u) ≥ 4 · w(v0)}. Then932

∑
u∈T ′

v0

charge′(u, v0) >
d + 2

4 · w(v0),933
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together with the previous considerations and w(v0) > 0, implies that934 ∑
u∈T ′

v0

w2(u)− w2(N(u, A′)\{v0})935

=
∑

u∈S′
v0

w2(u)
2 − w2(N(u, A′)\{v0}) +

∑
u∈T ′

v0 \S′
v0

w2(u)− w2(N(u, A′)\{v0})936

+
∑

u∈S′
v0

w2(u)
2937

≥
∑

u∈S′
v0

2 · charge′(u, v0) · w(v0) +
∑

u∈T ′
v0 \S′

v0

2 · charge′(u, v0) · w(v0)938

+
∑

u∈S′
v0

w2(u)
2939

=
∑

u∈T ′
v0

2 · charge′(u, v0) · w(v0) +
∑

u∈S′
v0

w2(u)
2940

>

(
1 + d

2

)
· w2(v0) +

∑
u∈S′

v0

w2(u)
2 .941

942

This implies943 ∑
u∈T ′

v0

w2(u) > w2(v0) +
∑

u∈T ′
v0

w2(N(u, A′)\{v0}) +
∑

u∈S′
v0

w2(u)
2 + d

2 · w
2(v0)944

and hence945

w2(T ′
v0

) > w2(N(T ′
v0

, A′)) +
∑

u∈S′
v0

w2(u)
2 + d

2 · w
2(v0)946

≥ w2(N(T ′
v0

, A′)) +
∑

u∈S′
v0

w2(u)
2 +

∑
u∈T ′

v0 \S′
v0

w2(u)
32947

≥ w2(N(T ′
v0

, A′)) +
∑

u∈T ′
v0

w2(u)
32948

= w2(N(T ′
v0

, A′)) + 1
32 · w

2(T ′
v0

) (39)949
950

since |T ′
v0
| ≤ d − 1 and w(u) ≤ 4 · w(v0) for u ∈ T ′

v0
\S′

v0
. We know that we can split the951

neighbors of T ′
v0
∪R in A into the neighbors N(T ′

v0
, A′) of T ′

v0
in A′, the neighbors N(T ′

v0
, B)952

of T ′
v0

in B and the neighbors of R that we did not consider yet, i.e. N(R, A)\N(T ′
v0

, A)953

(see Figure 4). For u ∈ R and v := n(u) ∈ N(T ′
v0

, B) ⊆ N(T ′
v0

, A), we have u = t(v) by954

Proposition 34 and w(N(u, A)\{v}) ≤
√

ϵ · w(v) by Lemma 28. This shows that955

w2(N(R, A)\N(T ′
v0

, A)) ≤ ϵ · w2(N(T ′
v0

, B)).956

As T ′
v0
⊆ A′∗ = A∗\(B∗ ∪ P ), we have957

w2(N(u, B)) ≤ w2(N(u, A)) ≤ 9 · w2(u)958

for all u ∈ T ′
v0

, showing that959

w2(N(T ′
v0

, B)) ≤ w2(N(T ′
v0

, A)) ≤
∑

u∈T ′
v0

w2(N(u, A)) ≤ 9
∑

u∈T ′
v0

w2(u) = 9 · w2(T ′
v0

)960
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A′∗
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P
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N(T ′
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Figure 4 The situation in Lemma 32. Dashed lines indicate edges from vertices in B∗ to vertices
in A of significantly lower weight, thick vertical lines mark the edges connecting v ∈ B to t(v) ∈ B∗.

and hence961

w2(N(R, A)\N(T ′
v0

, A)) ≤ ϵ · w2(N(T ′
v0

, B)) ≤ 9ϵ · w2(T ′
v0

). (40)962

Finally, Lemma 29 and Proposition 34 yield963

w2(N(T ′
v0

, B)) ≤ w2(R) + (4
√

ϵ + 4ϵ) · w2(N(T ′
v0

, B))964

≤ w2(R) + (4
√

ϵ + 4ϵ) · 9 · w2(T ′
v0

)965

= w2(R) + (36
√

ϵ + 36ϵ) · w2(T ′
v0

). (41)966
967

Combining (39), (40) and (41), we get968

w2(N(T ′
v0
∪R, A)) = w2(N(T ′

v0
, A′)) + w2(N(T ′

v0
, B))969

+ w2(N(R, A)\N(T ′
v0

, A))970

< w2(T ′
v0

)− 1
32 · w

2(T ′
v0

) + w2(R)971

+ (36
√

ϵ + 45ϵ) · w2(T ′
v0

)972

≤ w2(T ′
v0

) + w2(R)−
(

1
32 − (36

√
ϵ + 45ϵ)

)
w2(T ′

v0
)973

≤ w2(T ′
v0

) + w2(R)974

= w2(T ′
v0
∪R)975

976

by (4) and since T ′
v0
⊆ A′∗ and R ⊆ B∗ are disjoint. So we indeed get a local improvement977

of w2(A), a contradiction.978

◀979
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