A $\left(\frac{3}{2}+\frac{1}{e}\right)$-Approximation Algorithm for Ordered TSP

Susanne Armbruster ${ }^{1}$ Matthias Mnich ${ }^{2} \quad$ Martin Nägele ${ }^{1}$
${ }^{1}$ University of Bonn ${ }^{2}$ TU Hamburg

Motivation: TSP with Precedence Constraints

> Precedence Constraints:
> Partial order \prec on ground set
> that needs to be respected in tour construction

- Pickup-delivery constraints:

$$
p_{i} \prec d_{i}
$$

- Total order on subset:

$$
d_{1} \prec d_{2} \prec \ldots \prec d_{k}
$$

Ordered TSP

Input:

Complete $G=(V, E)$, metric $c: E \rightarrow \mathbb{R}_{\geq 0}$. Distinct vertices d_{1}, \ldots, d_{k}.

Task:
Find a cheapest Hamiltonian cycle C in G that visits d_{1}, \ldots, d_{k} in this order.

Input:

Complete $G=(V, E)$, metric $c: E \rightarrow \mathbb{R}_{\geq 0}$. Distinct vertices d_{1}, \ldots, d_{k}.

Task:

Find a cheapest Hamiltonian cycle C in G that visits d_{1}, \ldots, d_{k} in this order.

Known and new results

- Immediate $\frac{5}{2}$-approximation:

Direct d_{1}, \ldots, d_{k} tour + Christofides TSP tour
[Böckenhauer, Hromkovič, Kneis, Kupke 2006]

- Improved to $\frac{5}{2}-\frac{2}{k}$ for $k \geq 2$
[Böckenhauer, Mömke, Steinova 2013]
- Exact DP in $O\left(2^{r} r^{2} n\right)$ time and $O\left(2^{r} r n\right)$ space for $r=n-k$
[Deineko, Hoffmann, Okamoto, Woeginger 2006]

Known and new results

- Immediate $\frac{5}{2}$-approximation:

Direct d_{1}, \ldots, d_{k} tour + Christofides TSP tour
[Böckenhauer, Hromkovič, Kneis, Kupke 2006]

- Improved to $\frac{5}{2}-\frac{2}{k}$ for $k \geq 2$
[Böckenhauer, Mömke, Steinova 2013]
- Exact DP in $O\left(2^{r} r^{2} n\right)$ time and $O\left(2^{r} r n\right)$ space for $r=n-k$
[Deineko, Hoffmann, Okamoto, Woeginger 2006]

Our main result

There is a polynomial-time α-approximation algorithm for Ordered TSP, where $\alpha=\frac{3}{2}+\frac{1}{\mathrm{e}}<1.868$.

Our high-level approach

- Split a solution into $d_{i}-d_{i+1}$ strolls
- Obtain an LP relaxation through polyhedral description of $s-t$ strolls
- Round an optimal LP solution

Our LP-based algorithm

1 Solve the LP relaxation
$\begin{array}{rlrl}\min \sum_{e \in E} c_{e} \sum_{i=1}^{k} x_{e}^{i} & & \\ \sum_{\substack{i=1 \\\left(x^{i}, y^{i}\right)}} y_{v}^{i} & \in 1 & \forall v \in V \longleftarrow P_{d_{i}-d_{i+1}} & \\ \forall i \in\{1, \ldots k\}\end{array}$
fractional $d_{i}-d_{i+1}$ strolls

1 Solve the LP relaxation
Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.

Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.

2 Sample trees from LP solution

Decompose (x^{i}, y^{i}) and sample a tree T_{i} connecting d_{i} and d_{i+1} with

$$
\mathbb{E}\left[c\left(E\left[T_{i}\right]\right)\right]=c^{\top} x^{i} \quad \text { and }
$$

$$
\mathbb{P}\left[v \in V\left[T_{i}\right]\right]=y_{v}^{i} \quad \text { for } v \in V \backslash\left\{d_{i}, d_{i+1}\right\}
$$

1 Solve the LP relaxation
Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.

2 Sample trees from LP solution
Expected total cost CLP, preserve marginal coverage.

1 Solve the LP relaxation
Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.
2 Sample trees from LP solution
Expected total cost CLP, preserve marginal coverage.

3 Ensure connectivity

Vertex $v \neq d_{j}$ is not covered by any T_{i} with probability

$$
\prod_{i=1}^{k}\left(1-y_{v}^{i}\right) \leq \exp \left(-\sum_{i=1}^{k} y_{v}^{i}\right)=\frac{1}{\mathrm{e}}
$$

\Longrightarrow can find a connector at expected cost $\leq \frac{1}{e} \cdot c_{\text {LP }}$.

1 Solve the LP relaxation
Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.

2
Sample trees from LP solution
Expected total cost CLP, preserve marginal coverage.
3 Ensure connectivity
Possible at expected extra cost $\leq \frac{1}{e} \cdot C_{\text {LP }}$.

1 Solve the LP relaxation
Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.
2 Sample trees from LP solution
Expected total cost CLP, preserve marginal coverage.

3
Ensure connectivity
Possible at expected extra cost $\leq \frac{1}{e} \cdot$ CLP $_{\text {L }}$.

4 Parity correction
We have $x:=\sum_{i=1}^{k} x^{i} \in P_{\text {Нк }}$.

$$
\Longrightarrow \text { any } T \text {-join costs } \leq \frac{1}{2} \cdot \text { CLP. }^{2}
$$

1 Solve the LP relaxation
Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.
2 Sample trees from LP solution
Expected total cost CLP, preserve marginal coverage.

3
Ensure connectivity
Possible at expected extra cost $\leq \frac{1}{e} \cdot \mathrm{C}_{\mathrm{LP}}$.
4 Parity correction
Obtain even degrees at extra cost $\leq \frac{1}{2} \cdot$ CLP.

1 Solve the LP relaxation
Obtain covering fractional $d_{i}-d_{i+1}$ strolls $\left(x^{i}, y^{i}\right)$.

2

Sample trees from LP solution

Expected total cost CLP, preserve marginal coverage.

3
Ensure connectivity
Possible at expected extra cost $\leq \frac{1}{e} \cdot C_{L P}$.

4 Parity correction

Obtain even degrees at extra cost $\leq \frac{1}{2} \cdot \mathrm{C}_{\mathrm{LP}}$.

5 Tour construction
Shortcut an Euler tour respecting the order d_{1}, \ldots, d_{k}.

- Efficient implementation: LP can be solved in polynomial time via separation
- Derandomization: Following the method of conditional expectations

Related open problems

"Ordered Tree" problem

Input:

OTSP instance

Task:

Find a cheapest spanning tree T in G that con-
tains a path visiting d_{1}, \ldots, d_{k} in this order.

$d_{1} \bullet \quad d_{4}$

Related open problems

"Ordered Tree" problem

Input:
OTSP instance

Task:

Find a cheapest spanning tree T in G that con-
tains a path visiting d_{1}, \ldots, d_{k} in this order.

Our algorithm:
Ordered tree solution
of cost $(1+\underline{1}) \cdot C_{\llcorner p}$.

Related open problems

"Ordered Tree" problem

Deadline TSP problem

Input:
OTSP instance

Task:

Find a cheapest spanning tree T in G that contains a path visiting d_{1}, \ldots, d_{k} in this order.

Input:
OTSP instance with deadlines $\delta_{1}, \ldots, \delta_{k}$.

Task:

Find a cheapest Hamiltonian cycle C in G such that the tour length before d_{i} is at most δ_{i}.

Related open problems

"Ordered Tree" problem

Deadline TSP problem

Input:
OTSP instance

Task:

Find a cheapest spanning tree T in G that contains a path visiting d_{1}, \ldots, d_{k} in this order.

Input:
OTSP instance with deadlines $\delta_{1}, \ldots, \delta_{k}$.

Task:

Find a cheapest Hamiltonian cycle C in G such that the tour length before d_{i} is at most δ_{i}.

Our algorithm:
Ordered tree solution
of cost $\left(1+\frac{1}{\mathrm{e}}\right) \cdot \mathrm{C}_{\text {LP }}$

Immediate 2.5-approximation: direct d_{1}, \ldots, d_{k} tour + Christofides' tour

