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Motivation: TSP with Precedence Constraints

Precedence Constraints:
Partial order < on ground set
that needs to be respected in tour construction

» Pickup-delivery constraints: > Total order on subset:
pi < d dy < b <...=<0dk
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Ordered TSP

Input:
Complete G = (V, E), metric ¢: E — R>o.
Distinct vertices df, . . ., dk.

Task:

Find a cheapest Hamiltonian cycle C in G that
visits di, . . ., dk in this order.
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Known and new results

> Immediate 3-approximation:
Direct d, . .., dx tour + Christofides TSP tour
[Bockenhauer, Hromkovi¢, Kneis, Kupke 2006]

> Improvedto 2 — 2 for k > 2
[Béckenhauer, Mémke, Steinova 2013]

> Exact DP in O(2"r?n) time and O(2rn) space for r = n — k
[Deineko, Hoffmann, Okamoto, Woeginger 2006]
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[Deineko, Hoffmann, Okamoto, Woeginger 2006]

Our main result

There is a polynomial-time a-approximation algo-
rithm for Ordered TSP, where v = 2+ 1 < 1.868.

[Armbruster, Mnich, Nagele 2024]
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Our high-level approach

>

>

Split a solution into d;-di+1 strolls

Obtain an LP relaxation through
polyhedral description of s-t strolls

Round an optimal LP solution
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A Held-Karp type relaxation of s-t strolls: The polytope Ps.;
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A Held-Karp type relaxation of s-t strolls: The polytope Ps.;
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Our LP-based algorithm

1 Solve the LP relaxation
k
min Z Ce Z X,

ecE i=1
k .
ZyL = VYveVv
1

(X77yi) € Pya,, VYVie{l,...k}

fractional dj-d+1 strolls

joint coverage of all vertices
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Our LP-based algorithm

1 Solve the LP relaxation

Obtain covering fractional di-diy1 strolls (x', y').
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Our LP-based algorithm

Solve the LP relaxation)

Obtain covering fractional di-di+ strolls (x', y').

2 Sample trees from LP solution

Decompose (x' Y ) and sample a tree T; connecting
d; and di+1 with

E[c(E[T])] = ¢ ¥ and
Plve V[T]l=y, forve V\{d,d} .
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Our LP-based algorithm

@Solve the LP relaxation)

Obtain covering fractional di-di+ strolls (x', y').

2 Sample trees from LP solution

Expected total cost cip, preserve marginal coverage.
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Our LP-based algorithm

@Solve the LP relaxation)

Obtain covering fractional di-di1 strolls (x', y').

@Sample trees from LP solution)
Expected total cost cip, preserve marginal coverage.

3 Ensure connectivity

Vertex v # d is not covered by any T; with probability

f[(1—y£)§exp(—2k:yi) =é :

i=1

—> can find a connector at expected cost <

1
e

« CLp.
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Our LP-based algorithm

@Solve the LP relaxation)

Obtain covering fractional di-di1 strolls (x', y').

@Sample trees from LP solution)
Expected total cost cip, preserve marginal coverage.

@Ensure connectivity)

Possible at expected extra cost <

4 Parity correction

k
We have x = Zx’ € Puk.

i=1

1
o CLp.

= any T-join costs < 1 - Cip.
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Our LP-based algorithm

@Solve the LP relaxation)

Obtain covering fractional di-di1 strolls (x', y').
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Expected total cost cip, preserve marginal coverage.

@Ensure connectivity)

Possible at expected extra cost <

4 Parity correction
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Our LP-based algorithm

Solve the LP relaxation)

Obtain covering fractional di-di1 strolls (x', y').

@Sample trees from LP solution)

Expected total cost cip, preserve marginal coverage.

Ensure connectivity)

Possible at expected extra cost <

n Parity correction

Obtain even degrees at extra cost < % - CLp.

5 Tour construction

1
S CLp.

Shortcut an Euler tour respecting the order di, . . ., dk.

ol

ds

ds
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Conclusion

Randomized (g + )-approximation algorithm for Ordered TSP.

1
e

> Efficient implementation: LP can be solved in polynomial time via separation

» Derandomization: Following the method of conditional expectations
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Related open problems

“Ordered Tree” problem

Input:
OTSP instance

Task:
Find a cheapest spanning tree T in G that con-
tains a path visiting d, . . . , dk in this order.
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Related open problems

“Ordered Tree” problem Deadline TSP problem

Input: Input:

OTSP instance OTSP instance with deadlines d1, . . ., d«.
Task: Task:

Find a cheapest spanning tree T in G that con- Find a cheapest Hamiltonian cycle C in G such

tains a path visiting d, . . . , dk in this order. that the tour length before d; is at most §;.

A
ds
Our algorithm: ds ds
Ordered tree solution Immediate 2.5-approximation:
of cost (14 1) - ce. direct o, . . ., dy tour + Christofides’ tour

d, %
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