
1 / 9

A
(

3
2 +

1
e

)
-Approximation Algorithm for Ordered TSP

Susanne Armbruster1 Matthias Mnich2 Martin Nägele1

1University of Bonn 2TU Hamburg



2 / 9

Motivation: TSP with Precedence Constraints

Precedence Constraints:
Partial order ≺ on ground set

that needs to be respected in tour construction

I Pickup-delivery constraints:
pi ≺ di

I Total order on subset:
d1 ≺ d2 ≺ . . . ≺ dk



3 / 9

Ordered TSP

Input:

Complete G = (V ,E), metric c : E → R≥0.

Distinct vertices d1, . . . , dk .

Task:

Find a cheapest Hamiltonian cycle C in G that
visits d1, . . . , dk in this order.

d1

d2

d3

d4

d5 d6



3 / 9

Ordered TSP

Input:

Complete G = (V ,E), metric c : E → R≥0.

Distinct vertices d1, . . . , dk .

Task:

Find a cheapest Hamiltonian cycle C in G that
visits d1, . . . , dk in this order.

d1

d2

d3

d4

d5 d6



4 / 9

Known and new results

I Immediate 5
2 -approximation:

Direct d1, . . . , dk tour + Christofides TSP tour
[Böckenhauer, Hromkovič, Kneis, Kupke 2006]

I Improved to 5
2 −

2
k for k ≥ 2

[Böckenhauer, Mömke, Steinova 2013]

I Exact DP in O(2r r 2n) time and O(2r rn) space for r = n − k
[Deineko, Hoffmann, Okamoto, Woeginger 2006]

d1

d2

d3

d4

d5 d6

Our main result

There is a polynomial-time α-approximation algo-
rithm for Ordered TSP, where α = 3

2 +
1
e
< 1.868.

[Armbruster, Mnich, Nägele 2024]



4 / 9

Known and new results

I Immediate 5
2 -approximation:

Direct d1, . . . , dk tour + Christofides TSP tour
[Böckenhauer, Hromkovič, Kneis, Kupke 2006]

I Improved to 5
2 −

2
k for k ≥ 2

[Böckenhauer, Mömke, Steinova 2013]

I Exact DP in O(2r r 2n) time and O(2r rn) space for r = n − k
[Deineko, Hoffmann, Okamoto, Woeginger 2006]

d1

d2

d3

d4

d5 d6

Our main result

There is a polynomial-time α-approximation algo-
rithm for Ordered TSP, where α = 3

2 +
1
e
< 1.868.

[Armbruster, Mnich, Nägele 2024]



5 / 9

Our high-level approach

d3

d4

d1

d2

I Split a solution into di -di+1 strolls

I Obtain an LP relaxation through
polyhedral description of s-t strolls

I Round an optimal LP solution



6 / 9

A Held-Karp type relaxation of s-t strolls: The polytope Ps-t

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4

Edge variables
xe ≥ 0

degree constraints
x(δ(v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x(δ(S)) ≥ 1

non s-t cut constraints
x(δ(S)) ≥ 2yv

(with v ∈ S and s, t /∈ S)

ys = yt =
1
2



6 / 9

A Held-Karp type relaxation of s-t strolls: The polytope Ps-t

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4Edge variables

xe ≥ 0

degree constraints
x(δ(v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x(δ(S)) ≥ 1

non s-t cut constraints
x(δ(S)) ≥ 2yv

(with v ∈ S and s, t /∈ S)

ys = yt =
1
2



6 / 9

A Held-Karp type relaxation of s-t strolls: The polytope Ps-t

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4Edge variables

xe ≥ 0

degree constraints
x(δ(v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x(δ(S)) ≥ 1

non s-t cut constraints
x(δ(S)) ≥ 2yv

(with v ∈ S and s, t /∈ S)

ys = yt =
1
2



6 / 9

A Held-Karp type relaxation of s-t strolls: The polytope Ps-t

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4Edge variables

xe ≥ 0

degree constraints
x(δ(v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x(δ(S)) ≥ 1

non s-t cut constraints
x(δ(S)) ≥ 2yv

(with v ∈ S and s, t /∈ S)

ys = yt =
1
2



6 / 9

A Held-Karp type relaxation of s-t strolls: The polytope Ps-t

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4Edge variables

xe ≥ 0

degree constraints
x(δ(v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x(δ(S)) ≥ 1

non s-t cut constraints
x(δ(S)) ≥ 2yv

(with v ∈ S and s, t /∈ S)

ys = yt =
1
2



6 / 9

A Held-Karp type relaxation of s-t strolls: The polytope Ps-t

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4Edge variables

xe ≥ 0

degree constraints
x(δ(v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x(δ(S)) ≥ 1

non s-t cut constraints
x(δ(S)) ≥ 2yv

(with v ∈ S and s, t /∈ S)

ys = yt =
1
2



6 / 9

A Held-Karp type relaxation of s-t strolls: The polytope Ps-t

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4Edge variables

xe ≥ 0

degree constraints
x(δ(v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x(δ(S)) ≥ 1

non s-t cut constraints
x(δ(S)) ≥ 2yv

(with v ∈ S and s, t /∈ S)

ys = yt =
1
2



7 / 9

Our LP-based algorithm

min
∑
e∈E

ce

k∑
i=1

x i
e

k∑
i=1

y i
v = 1 ∀v ∈ V

(x i , y i) ∈ Pdi -di+1 ∀i ∈ {1, . . . k}

1 Solve the LP relaxation

fractional di -di+1 strolls

joint coverage of all vertices

Decompose (x i , y i) and sample a tree Ti connecting
di and di+1 with

E[c(E[Ti ])] = c>x i and

P[v ∈ V [Ti ]] = y i
v for v ∈ V \ {di , di+1} .

2 Sample trees from LP solution

Vertex v 6= dj is not covered by any Ti with probability

k∏
i=1

(1− y i
v) ≤ exp

(
−

k∑
i=1

y i
v

)
=

1
e
.

=⇒ can find a connector at expected cost ≤ 1
e
· cLP.

3 Ensure connectivity

We have x :=
k∑

i=1

x i ∈ PHK.

=⇒ any T -join costs ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

di
di+1

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4

3
4

1
4

1
4

1
4 1

4

1
4

Decompose (x i , y i) and sample a tree Ti connecting
di and di+1 with

E[c(E[Ti ])] = c>x i and

P[v ∈ V [Ti ]] = y i
v for v ∈ V \ {di , di+1} .

2 Sample trees from LP solution

Vertex v 6= dj is not covered by any Ti with probability

k∏
i=1

(1− y i
v) ≤ exp

(
−

k∑
i=1

y i
v

)
=

1
e
.

=⇒ can find a connector at expected cost ≤ 1
e
· cLP.

3 Ensure connectivity

We have x :=
k∑

i=1

x i ∈ PHK.

=⇒ any T -join costs ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

di
di+1

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4

3
4

1
4

1
4

1
4 1

4

1
4

1
4

1
4

1
4

1
4

Decompose (x i , y i) and sample a tree Ti connecting
di and di+1 with

E[c(E[Ti ])] = c>x i and

P[v ∈ V [Ti ]] = y i
v for v ∈ V \ {di , di+1} .

2 Sample trees from LP solution

Vertex v 6= dj is not covered by any Ti with probability

k∏
i=1

(1− y i
v) ≤ exp

(
−

k∑
i=1

y i
v

)
=

1
e
.

=⇒ can find a connector at expected cost ≤ 1
e
· cLP.

3 Ensure connectivity

We have x :=
k∑

i=1

x i ∈ PHK.

=⇒ any T -join costs ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

T3

T4

T1

T2

d3

d4

d1

d2

Expected total cost cLP, preserve marginal coverage.

2 Sample trees from LP solution

Vertex v 6= dj is not covered by any Ti with probability

k∏
i=1

(1− y i
v) ≤ exp

(
−

k∑
i=1

y i
v

)
=

1
e
.

=⇒ can find a connector at expected cost ≤ 1
e
· cLP.

3 Ensure connectivity

We have x :=
k∑

i=1

x i ∈ PHK.

=⇒ any T -join costs ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

T3

T4

T1

T2

d3

d4

d1

d2

Expected total cost cLP, preserve marginal coverage.

2 Sample trees from LP solution

Vertex v 6= dj is not covered by any Ti with probability

k∏
i=1

(1− y i
v) ≤ exp

(
−

k∑
i=1

y i
v

)
=

1
e
.

=⇒ can find a connector at expected cost ≤ 1
e
· cLP.

3 Ensure connectivity

We have x :=
k∑

i=1

x i ∈ PHK.

=⇒ any T -join costs ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

T3

T4

T1

T2

d3

d4

d1

d2

Expected total cost cLP, preserve marginal coverage.

2 Sample trees from LP solution

Possible at expected extra cost ≤ 1
e
· cLP.

3 Ensure connectivity

We have x :=
k∑

i=1

x i ∈ PHK.

=⇒ any T -join costs ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

T3

T4

T1

T2

d3

d4

d1

d2

Expected total cost cLP, preserve marginal coverage.

2 Sample trees from LP solution

Possible at expected extra cost ≤ 1
e
· cLP.

3 Ensure connectivity

We have x :=
k∑

i=1

x i ∈ PHK.

=⇒ any T -join costs ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

T3

T4

T1

T2

d3

d4

d1

d2

Expected total cost cLP, preserve marginal coverage.

2 Sample trees from LP solution

Possible at expected extra cost ≤ 1
e
· cLP.

3 Ensure connectivity

Obtain even degrees at extra cost ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



7 / 9

Our LP-based algorithm

Obtain covering fractional di -di+1 strolls (x i , y i).

1 Solve the LP relaxation

T3

T4

T1

T2

d3

d4

d1

d2

Expected total cost cLP, preserve marginal coverage.

2 Sample trees from LP solution

Possible at expected extra cost ≤ 1
e
· cLP.

3 Ensure connectivity

Obtain even degrees at extra cost ≤ 1
2 · cLP.

4 Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk .

5 Tour construction



8 / 9

Conclusion

Theorem

Randomized
(

3
2 + 1

e

)
-approximation algorithm for Ordered TSP.

I Efficient implementation: LP can be solved in polynomial time via separation

I Derandomization: Following the method of conditional expectations



9 / 9

Related open problems

“Ordered Tree” problem

Input:

OTSP instance

Task:

Find a cheapest spanning tree T in G that con-
tains a path visiting d1, . . . , dk in this order.

Deadline TSP problem

Input:

OTSP instance with deadlines δ1, . . . , δk .

Task:

Find a cheapest Hamiltonian cycle C in G such
that the tour length before di is at most δi .

Immediate 2.5-approximation:
direct d1, . . . , dk tour + Christofides’ tour

Ordered tree solution
of cost (1 + 1

e
) · cLP.

Our algorithm:

d1

d2

d3

d4

d5 d6



9 / 9

Related open problems

“Ordered Tree” problem

Input:

OTSP instance

Task:

Find a cheapest spanning tree T in G that con-
tains a path visiting d1, . . . , dk in this order.

Deadline TSP problem

Input:

OTSP instance with deadlines δ1, . . . , δk .

Task:

Find a cheapest Hamiltonian cycle C in G such
that the tour length before di is at most δi .

Immediate 2.5-approximation:
direct d1, . . . , dk tour + Christofides’ tour

Ordered tree solution
of cost (1 + 1

e
) · cLP.

Our algorithm:

d1

d2

d3

d4

d5 d6



9 / 9

Related open problems

“Ordered Tree” problem

Input:

OTSP instance

Task:

Find a cheapest spanning tree T in G that con-
tains a path visiting d1, . . . , dk in this order.

Deadline TSP problem

Input:

OTSP instance with deadlines δ1, . . . , δk .

Task:

Find a cheapest Hamiltonian cycle C in G such
that the tour length before di is at most δi .

Immediate 2.5-approximation:
direct d1, . . . , dk tour + Christofides’ tour

Ordered tree solution
of cost (1 + 1

e
) · cLP.

Our algorithm:

d1

d2

d3

d4

d5 d6



9 / 9

Related open problems

“Ordered Tree” problem

Input:

OTSP instance

Task:

Find a cheapest spanning tree T in G that con-
tains a path visiting d1, . . . , dk in this order.

Deadline TSP problem

Input:

OTSP instance with deadlines δ1, . . . , δk .

Task:

Find a cheapest Hamiltonian cycle C in G such
that the tour length before di is at most δi .

Immediate 2.5-approximation:
direct d1, . . . , dk tour + Christofides’ tour

Ordered tree solution
of cost (1 + 1

e
) · cLP.

Our algorithm:

d1

d2

d3

d4

d5 d6


