A $\left(\frac{3}{2}+\frac{1}{e}\right)$-Approximation Algorithm for Ordered TSP

Susanne Armbruster ${ }^{1}$, Matthias Mnich ${ }^{2}$, and Martin Nägele ${ }^{1}$

${ }^{1}$ Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of Bonn
${ }^{2}$ Institute for Algorithms and Complexity, Hamburg University of Technology

Optimal solution wrt. the underlying Euclidean metric

The Ordered Travelling Salesperson Problem

Input: Complete graph $G=(V, E)$, metric edge costs
$c: E \rightarrow \mathbb{R}_{\geq 0}$, distinct vertices $d_{1}, \ldots, d_{k} \in V$.
Task: Find a cheapest Hamiltonian cycle C in G that visits d_{1}, \ldots, d_{k} in this order.

Main result
There is a polynomial-time α-approximation
algorithm for Ordered TSP, where $\alpha=\frac{3}{2}+\frac{1}{\mathrm{e}}<1.868$.

Our Algorithm

1 Solve the LP relaxation

$$
\begin{align*}
& \mathrm{c}_{\mathrm{LP}}:=\min \sum_{e \in E} c_{e} \sum_{i=1}^{k} x_{e}^{i} \\
& \sum_{i=1}^{\substack{i=1 \\
k}} y_{v}^{i}=1 \quad \forall v \in V \\
& \left(x^{i}, y^{i}\right) \in P_{d_{i}-d_{i+1}} \forall i \in\{1, \ldots k\}
\end{align*}
$$

Here, P_{s-t} is a Held-Karp type relaxation of $s-t$ paths.

1

A point $(x, y) \in P_{s-t}$ and its decomposition

Previous results

Combined tour: $\alpha=1+\frac{3}{2}=\frac{5}{2}$ Böckenhauer, Mömke, Steinova: $\alpha=\frac{5}{2}-\frac{2}{k}$
[J. Discr. Alg., 2013]
t cut constraints $x(\delta(S)) \geq 1$

Sample trees from LP solution 2

Decompose (x^{i}, y^{i}) and sample a tree T_{i} connecting d_{i} and d_{i+1} with

$$
\mathbb{E}\left[c\left(E\left[T_{i}\right]\right)\right]=c^{\top} x^{i} \quad \text { and }
$$

$$
\mathbb{P}\left[v \in V\left[T_{i}\right]\right]=y_{v}^{i} \quad \text { for } v \in V \backslash\left\{d_{i}, d_{i+1}\right\}
$$

3 Ensure connectivity
Vertex $v \neq d_{j}$ is not covered by any T_{i} with probability

$$
\prod_{i=1}^{k}\left(1-y_{v}^{i}\right) \leq \exp \left(-\sum_{i=1}^{k} y_{v}^{i}\right)=\frac{1}{\mathrm{e}}
$$

\Longrightarrow can find a connector at expected cost $\leq \frac{1}{e} \cdot \mathrm{c}_{\text {LP }}$.

5 Tour construction

Shortcut an Euler tour respecting the order d_{1}, \ldots, d_{k}.

Derandomization: Straightforward using the method of conditional expectations.

Generalization: Polynomial-time $\left(\ell+1 / 2+1 / e^{\ell}\right)$-approximation for Precedence-Constrained TSP with ℓ independent linear orders.

