A $\left(\frac{3}{2} + \frac{1}{e}\right)$ -Approximation Algorithm for Ordered TSP

Susanne Armbruster¹, Matthias Mnich², and Martin Nägele¹

¹Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of Bonn ²Institute for Algorithms and Complexity, Hamburg University of Technology

Example instance

The Ordered Travelling Salesperson Problem

Input: Complete graph G = (V, E), metric edge costs

 $c \colon E \to \mathbb{R}_{\geq 0}$, distinct vertices $d_1, \ldots, d_k \in V$.

Task: Find a cheapest Hamiltonian cycle C in G that visits

 d_1, \ldots, d_k in this order.

Christofides

TSP tour

Optimal solution wrt. the underlying Euclidean metric

Main result

There is a polynomial-time α -approximation

algorithm for Ordered TSP, where $\alpha = \frac{3}{2} + \frac{1}{6} < 1.868$.

Our Algorithm

a randomized LP rounding approach —

Derandomization: Straightforward using the *method of conditional expectations*.

Generalization: Polynomial-time $(\ell + 1/2 + 1/e^{\ell})$ -approximation for *Precedence-Constrained TSP* with ℓ independent linear orders.

Parity correction 4

Swiss National **Science Foundation**

5

Shortcut an Euler tour respecting the order d_1, \ldots, d_k .

Tour construction

Obtain even degrees through a suitable *T*-join at cost $\leq \frac{1}{2} \cdot c_{LP}$.