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The Ordered Travelling Salesperson Problem

Input: Complete graph G = (V , E), metric edge costs

c : E → R≥0, distinct vertices d1, . . . , dk ∈ V .

Task: Find a cheapest Hamiltonian cycle C in G that visits

d1, . . . , dk in this order.

Main result

There is a polynomial-time 𝛼-approximation

algorithm for Ordered TSP, where 𝛼 = 3
2 +

1
e < 1.868.

Derandomization: Straightforward using
the method of conditional expectations.

Generalization: Polynomial-time (ℓ + 1/2 + 1/eℓ)-approximation for
Precedence-Constrained TSP with ℓ independent linear orders.
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underlying Euclidean metric
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Previous results

Direct
d1, . . . , dk tour

Christofides
TSP tour

Combined tour: 𝛼 = 1 + 3
2 =

5
2

Böckenhauer, Mömke, Steinova: 𝛼 = 5
2 −

2
k

[J. Discr. Alg., 2013]

— a randomized LP rounding approach —

Our Algorithm

cLP B min
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ce
k∑︁
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x ie

k∑︁
i=1

y iv = 1 ∀v ∈ V

(x i, y i) ∈ Pdi-di+1 ∀i ∈ {1, . . . k}

Here, Ps-t is a Held-Karp type relaxation of s-t paths.

1 Solve the LP relaxation

Decompose (x i, y i) and sample a tree Ti connecting
di and di+1 with

E[c(E [Ti])] = c>x i and
P[v ∈ V [Ti]] = y iv for v ∈ V \ {di, di+1} .

2Sample trees from LP solution

Vertex v ≠ dj is not covered by any Ti with probability
k∏
i=1

(1 − y iv) ≤ exp
(
−

k∑︁
i=1

y iv
)
=
1
e

.

=⇒ can find a connector at expected cost ≤ 1
e · cLP.

3 Ensure connectivity

Obtain even degrees through a suitable T -join at cost ≤ 1
2 · cLP.

4Parity correction

Shortcut an Euler tour respecting the order d1, . . . , dk.
5 Tour construction
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4Edge variables

xe ≥ 0

degree constraints
x (𝛿 (v)) = 2yv

Vertex visit
variables yv ≥ 0

s-t cut constraints
x (𝛿 (S)) ≥ 1

non s-t cut constraints
x (𝛿 (S)) ≥ 2yv

(with v ∈ S and s, t ∉ S)

ys = yt = 1
2

A point (x, y) ∈ Ps-t and its decomposition
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Tree decomposition
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