Algorithms and Combinatorics 21

Bernhard Korte Jens Vygen

Combinatorial Optimization

Theory and Algorithms

Sixth Edition

Algorithms and Combinatorics

Volume 21

Editorial Board

William J. Cook

Ronald Graham

Bernhard Korte

László Lovász

Avi Wigderson

Günter M. Ziegler

Bernhard Korte • Jens Vygen

Combinatorial Optimization

Theory and Algorithms

Sixth Edition

Bernhard Korte Research Institute for Discrete Mathematics University of Bonn Bonn, Germany Jens Vygen Research Institute for Discrete Mathematics University of Bonn Bonn, Germany

ISSN 0937-5511 ISSN 2197-6783 (electronic) Algorithms and Combinatorics ISBN 978-3-662-56038-9 ISBN 978-3-662-56039-6 (eBook) https://doi.org/10.1007/978-3-662-56039-6

Library of Congress Control Number: 2017958030

Mathematics Subject Classification (2010): 90C27, 68R10, 05C85, 68Q25

© Springer-Verlag GmbH Germany 2000, 2002, 2006, 2008, 2012, 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer-Verlag GmbH, DE The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface to the Sixth Edition

After six years, it was again time for a new edition. Besides updates, new exercises, and a few corrections, it contains the following new material.

Section 7.4 is devoted to shallow-light trees. Section 14.6 contains the recent two-factor approximation algorithm for submodular function maximization. Section 17.5 discusses the Nemhauser-Ullmann algorithm and smoothed analysis. In Section 20.3, we present the $(\ln 4 + \epsilon)$ -factor approximation algorithm for the Steiner tree problem. Finally, Section 20.7 contains the VPN theorem. There are also small additions, e.g. on the integrality ratio in Section 5.1 and kernelization in Section 15.7.

We would like to thank Maxim Babenko, Steffen Böhmer, Ulrich Brenner, György Dósa, Michael Etscheid, Jean Fonlupt, Michel Goemans, Stephan Held, Stefan Hougardy, Jochen Könemann, Solomon Lo, Jens Maßberg, Neil Olver, Dieter Rautenbach, Heiko Röglin, Jan Schneider, Sophie Spirkl, and Uri Zwick for feedback on the previous edition or proofreading new parts.

We hope that, with this new edition, the book remains useful for research and teaching for many years to come.

Bonn, Germany September 2017

Preface to the Fifth Edition

When preparing the first edition of this book, more than 10 years ago, we tried to accomplish two objectives: it should be useful as an advanced graduate textbook but also as a reference work for research. With each new edition, we have to decide how the book can be improved further. Of course, it is less and less possible to describe the growing area comprehensively.

If we included everything that we like, the book would grow beyond a single volume. Since the book is used for many courses, now even sometimes at undergraduate level, we thought that adding some classical material might be more useful than including a selection of the latest results.

In this edition, we added a proof of Cayley's formula, more details on blocking flows, the new faster *b*-matching separation algorithm, an approximation scheme for multidimensional knapsack, and results concerning the multicommodity max-flow min-cut ratio and the sparsest cut problem. There are further small improvements in numerous places and more than 60 new exercises. Of course, we also updated the references to point to the most recent results and corrected some minor errors that were discovered.

We would like to thank Takao Asano, Maxim Babenko, Ulrich Brenner, Benjamin Bolten, Christoph Buchheim, Jean Fonlupt, András Frank, Michael Gester, Stephan Held, Stefan Hougardy, Hiroshi Iida, Klaus Jansen, Alexander Karzanov, Levin Keller, Alexander Kleff, Niko Klewinghaus, Stefan Knauf, Barbara Langfeld, Jens Maßberg, Marc Pfetsch, Klaus Radke, Rabe von Randow, Tomás Salles, Jan Schneider, Christian Schulte, András Sebő, Martin Skutella, Jácint Szabó, and Simon Wedeking for valuable feedback on the previous edition.

We are pleased that this book has been received so well, and further translations are on their way. Editions in Japanese, French, Italian, German, Russian, and Chinese have appeared since 2009 or are scheduled to appear soon. We hope that our book will continue to serve its purpose in teaching and research in combinatorial optimization.

Bonn, Germany September 2011

Preface to the Fourth Edition

With four English editions, and translations into four other languages forthcoming, we are very happy with the development of our book. Again, we have revised, updated, and significantly extended it for this fourth edition. We have added some classical material that may have been missed so far, in particular on linear programming, the network simplex algorithm, and the max-cut problem. We have also added a number of new exercises and up-to-date references. We hope that these changes serve to make our book an even better basis for teaching and research.

We gratefully acknowledge the continuous support of the Union of the German Academies of Sciences and Humanities and the North Rhine-Westphalian (NRW) Academy of Sciences via the long-term research project "Discrete Mathematics and Its Applications." We also thank those who gave us feedback on the third edition, in particular Takao Asano, Christoph Bartoschek, Bert Besser, Ulrich Brenner, Jean Fonlupt, Satoru Fujishige, Marek Karpinski, Jens Maßberg, Denis Naddef, Sven Peyer, Klaus Radke, Rabe von Randow, Dieter Rautenbach, Martin Skutella, Markus Struzyna, Jürgen Werber, Minyi Yue, and Guochuan Zhang, for their valuable comments. At http://www.or.uni-bonn.de/~vygen/co.html, we will continue to maintain updated information about this book.

Bonn, Germany August 2007

Preface to the Third Edition

After 5 years, it was time for a thoroughly revised and substantially extended edition. The most significant feature is a completely new chapter on facility location. No constant-factor approximation algorithms were known for this important class of *NP*-hard problems until 8 years ago. Today there are several interesting and very different techniques that lead to good approximation guarantees, which makes this area particularly appealing also for teaching. In fact, the chapter has arisen from a special course on facility location.

Many of the other chapters have also been extended significantly. The new material includes Fibonacci heaps, Fujishige's new maximum flow algorithm, flows over time, Schrijver's algorithm for submodular function minimization, and the Robins-Zelikovsky Steiner tree approximation algorithm. Several proofs have been streamlined, and many new exercises and references have been added.

We thank those who gave us feedback on the second edition, in particular Takao Asano, Yasuhito Asano, Ulrich Brenner, Stephan Held, Tomio Hirata, Dirk Müller, Kazuo Murota, Dieter Rautenbach, Martin Skutella, Markus Struzyna, and Jürgen Werber, for their valuable comments. Eminently, Takao Asano's notes and Jürgen Werber's proofreading of Chapter 22 helped to improve the presentation at various places.

Again we would like to mention the Union of the German Academies of Sciences and Humanities and the North Rhine-Westphalian Academy of Sciences. Their continuous support via the long-term project "Discrete Mathematics and Its Applications" funded by the German Federal Ministry of Education and Research and the state of North Rhine-Westphalia is gratefully acknowledged.

Bonn, Germany May 2005

Preface to the Second Edition

It was more than a surprise to us that the first edition of this book already went out of print about a year after its first appearance. We were flattered by the many positive and even enthusiastic comments and letters from colleagues and the general readership. Several of our colleagues helped us in finding typographical and other errors. In particular, we thank Ulrich Brenner, András Frank, Bernd Gärtner, and Rolf Möhring. Of course, all errors detected so far have been corrected in this second edition, and references have been updated.

Moreover, the first preface had a flaw. We listed all individuals who helped us in preparing this book. But we forgot to mention the institutional support, for which we make amends here.

It is evident that a book project which took 7 years benefited from many different grants. We would like to mention explicitly the bilateral Hungarian-German Research Project, sponsored by the Hungarian Academy of Sciences and the Deutsche Forschungsgemeinschaft, two Sonderforschungsbereiche (special research units) of the Deutsche Forschungsgemeinschaft, the Ministère Français de la Recherche et de la Technologie and the Alexander von Humboldt Foundation for support via the Prix Alexandre de Humboldt, and the Commission of the European Communities for participation in two projects of DONET. Our most sincere thanks go to the Union of the German Academies of Sciences and Humanities and to the North Rhine-Westphalian Academy of Sciences. Their long-term project "Discrete Mathematics and Its Applications" supported by the German Federal Ministry of Education and Research (BMBF) and the state of North Rhine-Westphalia was of decisive importance for this book.

Bonn, Germany October 2001

Preface to the First Edition

Combinatorial optimization is one of the youngest and most active areas of discrete mathematics and is probably its driving force today. It became a subject in its own right about 50 years ago.

This book describes the most important ideas, theoretical results, and algorithms in combinatorial optimization. We have conceived it as an advanced graduate text which can also be used as an up-to-date reference work for current research. The book includes the essential fundamentals of graph theory, linear and integer programming, and complexity theory. It covers classical topics in combinatorial optimization as well as very recent ones. The emphasis is on theoretical results and algorithms with provably good performance. Applications and heuristics are mentioned only occasionally.

Combinatorial optimization has its roots in combinatorics, operations research, and theoretical computer science. A main motivation is that thousands of real-life problems can be formulated as abstract combinatorial optimization problems. We focus on the detailed study of classical problems which occur in many different contexts, together with the underlying theory.

Most combinatorial optimization problems can be formulated naturally in terms of graphs and as (integer) linear programs. Therefore this book starts, after an introduction, by reviewing basic graph theory and proving those results in linear and integer programming which are most relevant for combinatorial optimization.

Next, the classical topics in combinatorial optimization are studied: minimum spanning trees, shortest paths, network flows, matchings, and matroids. Most of the problems discussed in Chapters 6–14 have polynomial-time ("efficient") algorithms, while most of the problems studied in Chapters 15–21 are *NP*-hard, i.e., a polynomial-time algorithm is unlikely to exist. In many cases, one can at least find approximation algorithms that have a certain performance guarantee. We also mention some other strategies for coping with such "hard" problems.

This book goes beyond the scope of a normal textbook on combinatorial optimization in various aspects. For example, we cover the equivalence of optimization and separation (for full-dimensional polytopes), $O(n^3)$ -implementations of matching algorithms based on ear decompositions, Turing machines, the perfect graph theorem, MAXSNP-hardness, the Karmarkar-Karp algorithm for bin packing, recent approximation algorithms for multicommodity flows, survivable network design,

and the Euclidean traveling salesman problem. All results are accompanied by detailed proofs.

Of course, no book on combinatorial optimization can be absolutely comprehensive. Examples of topics which we mention only briefly or do not cover at all are tree decompositions, separators, submodular flows, path matchings, delta-matroids, the matroid parity problem, location and scheduling problems, nonlinear problems, semidefinite programming, the average-case analysis of algorithms, advanced data structures, parallel and randomized algorithms, and the theory of probabilistically checkable proofs (we cite the *PCP* theorem without proof).

At the end of each chapter, there are a number of exercises containing additional results and applications of the material in that chapter. Some exercises which might be more difficult are marked with an asterisk. Each chapter ends with a list of references, including texts recommended for further reading.

This book arose from several courses on combinatorial optimization and from special classes on topics like polyhedral combinatorics or approximation algorithms. Thus, material for basic and advanced courses can be selected from this book.

We have benefited from discussions and suggestions of many colleagues and friends and – of course – from other texts on this subject. Especially we owe sincere thanks to András Frank, László Lovász, András Recski, Alexander Schrijver, and Zoltán Szigeti. Our colleagues and students in Bonn, Christoph Albrecht, Ursula Bünnagel, Thomas Emden-Weinert, Mathias Hauptmann, Sven Peyer, Rabe von Randow, André Rohe, Martin Thimm, and Jürgen Werber, have carefully read several versions of the manuscript and helped to improve it. Last but not least, we thank Springer-Verlag for the most efficient cooperation.

Bonn, Germany January 2000

Table of Contents

1	Intr	oduction	1
	1.1	Enumeration	
	1.2	Running Time of Algorithms	
	1.3	Linear Optimization Problems	8
	1.4	Sorting	9
	Exe	rcises	11
	Refe	erences	12
2	Graphs		
	2.1	Basic Definitions	15
	2.2	Trees, Circuits, and Cuts	19
	2.3	Connectivity	26
	2.4	Eulerian and Bipartite Graphs	33
	2.5	Planarity	36
	2.6	Planar Duality	43
	Exe	rcises	46
	Refe	erences	49
3	Line	ear Programming	53
	3.1	Polyhedra	54
	3.2	The Simplex Algorithm	58
	3.3	Implementation of the Simplex Algorithm	62
	3.4	Duality	65
	3.5	Convex Hulls and Polytopes	69
	Exe	reises	70
	Refe	erences	72
4	Line	ear Programming Algorithms	75
	4.1	Size of Vertices and Faces	75
	4.2	Continued Fractions	78
	4.3	Gaussian Elimination	81
	4.4	The Ellipsoid Method	84
	45	Khachiyan's Theorem	90

XVIII Table of Contents

	4.6	Separation and Optimization	93
	Exe	rcises	99
	Refe	erences	101
5	Inte	ger Programming	103
	5.1	The Integer Hull of a Polyhedron	
	5.2	Unimodular Transformations	
	5.3	Total Dual Integrality	
	5.4	Totally Unimodular Matrices	
	5.5	Cutting Planes	
	5.6	Lagrangean Relaxation	
	Exe	rcises	
		erences	
6	Spa	nning Trees and Arborescences	133
	6.1	Minimum Spanning Trees	
	6.2	Minimum Weight Arborescences	
	6.3	Polyhedral Descriptions	
	6.4	Packing Spanning Trees and Arborescences	
		rcises	
		erences	
7	Sho	rtest Paths	159
,	7.1	Shortest Paths From One Source	
	7.2	Shortest Paths Between All Pairs of Vertices	
	7.3	Minimum Mean Cycles	
	7.4	Shallow-Light Trees	
		rcises	
		erences	
8	Net	work Flows	177
		Max-Flow-Min-Cut Theorem	
	8.2	Menger's Theorem	
	8.3	The Edmonds-Karp Algorithm	
	8.4	Dinic's, Karzanov's, and Fujishige's Algorithm	
	8.5	The Goldberg-Tarjan Algorithm	
	8.6	Gomory-Hu Trees	
	8.7	The Minimum Capacity of a Cut in an Undirected Graph	
		rcises	
		erences	
9	Min	imum Cost Flows	215
	9.1	Problem Formulation	
	9.2	An Optimality Criterion	
	9.3	Minimum Mean Cycle-Cancelling Algorithm	
	9.4	Successive Shortest Path Algorithm	
	9.5	Orlin's Algorithm	
			<i></i> /

	Table of Contents	XIX
	9.6 The Network Simplex Algorithm	232
	9.7 Flows Over Time	
	Exercises	238
	References	241
10	Maximum Matchings	245
	10.1 Bipartite Matching	
	10.2 The Tutte Matrix	248
	10.3 Tutte's Theorem	250
	10.4 Ear-Decompositions of Factor-Critical Graphs	
	10.5 Edmonds' Matching Algorithm	
	Exercises	
	References	273
11	Weighted Matching	277
	11.1 The Assignment Problem	
	11.2 Outline of the Weighted Matching Algorithm	280
	11.3 Implementation of the Weighted Matching Algorithm	283
	11.4 Postoptimality	
	11.5 The Matching Polytope	
	Exercises	
	References	302
12	b-Matchings and T-Joins	305
	12.1 <i>b</i> -Matchings	305
	12.2 Minimum Weight <i>T</i> -Joins	
	12.3 <i>T</i> -Joins and <i>T</i> -Cuts	
	12.4 The Padberg-Rao Theorem	
	Exercises	
	References	323
13	Matroids	
	13.1 Independence Systems and Matroids	
	13.2 Other Matroid Axioms	
	13.3 Duality	
	13.4 The Greedy Algorithm	
	13.5 Matroid Intersection	
	13.7 Weighted Matroid Intersection	
	Exercises	
	References	
14	Conordizations of Matroids	250
14	Generalizations of Matroids	
	14.1 Greedolds	
	14.3 Minimizing Submodular Functions	
	14.4 Schrijver's Algorithm	

3737	TP-1-1-	- C	0
XX	Table	OT	Contents

	14.5 Symmetric Submodular Functions	373
	14.6 Submodular Function Maximization	
	Exercises	378
	References	382
1.=	ND C 14	205
15	NP-Completeness	
	15.1 Turing Machines	
	15.2 Church's Thesis	
	15.3 <i>P</i> and <i>NP</i>	
	15.4 Cook's Theorem	
	15.5 Some Basic <i>NP</i> -Complete Problems	
	15.6 The Class <i>coNP</i>	
	15.7 NP-Hard Problems	
	Exercises	
	References	419
16	Approximation Algorithms	423
	16.1 Set Covering	
	16.2 The Max-Cut Problem	
	16.3 Colouring	
	16.4 Approximation Schemes	
	16.5 Maximum Satisfiability	
	16.6 The <i>PCP</i> Theorem	
	16.7 L-Reductions	
	Exercises	
	References	
17	The Knapsack Problem	
	17.1 Fractional Knapsack and Weighted Median Problem	
	17.2 A Pseudopolynomial Algorithm	
	17.3 A Fully Polynomial Approximation Scheme	
	17.4 Multi-Dimensional Knapsack	
	17.5 The Nemhauser-Ullmann Algorithm	
	Exercises	
	References	485
18	Bin-Packing	489
	18.1 Greedy Heuristics	
	18.2 An Asymptotic Approximation Scheme	
	18.3 The Karmarkar-Karp Algorithm	
	Exercises	
	References	
19	Multicommodity Flows and Edge-Disjoint Paths	
	19.1 Multicommodity Flows	
	19.2 Algorithms for Multicommodity Flows	
	19.3 Sparsest Cut and Max-Flow Min-Cut Ratio	519

	Table of Content	s XXI
	19.4 The Leighton-Rao Theorem	521
	19.5 Directed Edge-Disjoint Paths Problem	
	19.6 Undirected Edge-Disjoint Paths Problem	
	Exercises	
	References	
20	Network Design Problems	543
	20.1 Steiner Trees	
	20.2 The Robins-Zelikovsky Algorithm	549
	20.3 Rounding the Directed Component LP	555
	20.4 Survivable Network Design	561
	20.5 A Primal-Dual Approximation Algorithm	564
	20.6 Jain's Algorithm	
	20.7 The VPN Problem	578
	Exercises	581
	References	585
21	The Traveling Salesman Problem	591
	21.1 Approximation Algorithms for the TSP	591
	21.2 Euclidean TSP	596
	21.3 Local Search	
	21.4 The Traveling Salesman Polytope	610
	21.5 Lower Bounds	
	21.6 Branch-and-Bound	618
	Exercises	
	References	624
22	Facility Location	629
	22.1 The Uncapacitated Facility Location Problem	
	22.2 Rounding Linear Programming Solutions	
	22.3 Primal-Dual Algorithms	633
	22.4 Scaling and Greedy Augmentation	
	22.5 Bounding the Number of Facilities	
	22.6 Local Search	
	22.7 Capacitated Facility Location Problems	
	22.8 Universal Facility Location	
	Exercises	
	References	662
Not	tation Index	667
Aut	thor Index	671
Sul	hiect Index	683