Reassembling Trees for the Traveling Salesman

Jens Vygen

University of Bonn

TSP variants - state of the art

Integrality ratios. Upper bounds = approximation ratios unless mentioned otherwise

2ECSS, general weights:

- between $\frac{6}{5}$ and $\frac{3}{2}$ (Alexander, Boyd, Elliott-Magwood [2006])

2ECSS, unit weights:

- between $\frac{8}{7}$ (Boyd, Fu, Sun [2014]) and $\frac{4}{3}$ (Sebő, V. [2012])

TSP, general weights:

- between $\frac{4}{3}$ and $\frac{3}{2}$ (Wolsey [1980])

TSP, unit weights:

- between $\frac{4}{3}$ and $\frac{7}{5}$ (Sebő, V. [2012])
s - t-path TSP, general weights:
- between $\frac{3}{2}$ and $\frac{8}{5}$ (Sebő [2013]) s - t-path TSP, unit weights:
- $\frac{3}{2}$ (Sebő, V. [2012])

ATSP, general weights:

- between 2 (Boyd, Elliott-Magwood [2005], Charikar, Goemans, Karloff [2006]) and $\log ^{O(1)} \log n$ (Anari and Oveis Gharan [2014]); apx ratio $8 \log n / \log \log n$ (Asadpour, Goemans, Mądry, Oveis Gharan, Saberi [2010]) ATSP, unit weights:
- between $\frac{3}{2}$ (Gottschalk [2013]) and 13; apx ratio $27+\epsilon$ (Svensson [2015])

s-t-path TSP

"Start at s, visit all cities, end at t, minimize total distance."
Instance:

- a finite set V (of cities),
- two cities $s, t \in V(s \neq t)$, and
- a metric $c: V \times V \rightarrow \mathbb{R}_{\geq 0}$

Task: find

- a sequence $V=\left\{v_{1}, \ldots, v_{n}\right\}$ with $s=v_{1}$ and $t=v_{n}$
- such that $\sum_{i=1}^{n-1} c\left(v_{i}, v_{i+1}\right)$ is minimized.

s-t-path TSP

"Start at s, visit all cities, end at t, minimize total distance." Instance:

- a finite set V (of cities),
- two cities $s, t \in V(s \neq t)$, and
- a metric $c: V \times V \rightarrow \mathbb{R}_{\geq 0}$

Task: find

- a sequence $V=\left\{v_{1}, \ldots, v_{n}\right\}$ with $s=v_{1}$ and $t=v_{n}$
- such that $\sum_{i=1}^{n-1} c\left(v_{i}, v_{i+1}\right)$ is minimized.

Previous approximation algorithms:

- 2 (double-tree algorithm) (folklore)
- $\frac{5}{3}$ (Christofides' algorithm) (Hoogeveen [1991])
- $\frac{1+\sqrt{5}}{2} \approx 1.619$ (best-of-many Christofides) (An, Kleinberg, Shmoys [2012])
- $\frac{8}{5}$ (best-of-many Christofides) (Sebő [2013])

LP relaxation

$$
E:=\binom{v}{2}, \quad c(x):=\sum_{e=\{v, w\} \in E} c(v, w) x_{e}, \quad x(F):=\sum_{e \in F} x_{e} .
$$

$\min c(x)$
subject to

$$
\begin{array}{rlrl}
x(\delta(U)) & \geq 2 & & (\emptyset \neq U \subset V,|U \cap\{s, t\}| \text { even }) \\
x(\delta(U)) & \geq 1 & & (\emptyset \neq U \subset V,|U \cap\{s, t\}| \text { odd }) \\
x(\delta(v))) & =2 & & (v \in V \backslash\{s, t\}) \\
x(\delta(v)) & =1 & & (v \in\{s, t\}) \\
x_{e} \geq 0 & & (e \in E)
\end{array}
$$

LP relaxation

$$
E:=\binom{v}{2}, \quad c(x):=\sum_{e=\{v, w\} \in E} c(v, w) x_{e}, \quad x(F):=\sum_{e \in F} x_{e} .
$$

$\min c(x)$
subject to $\quad x(\delta(U)) \geq 2 \quad(\emptyset \neq U \subset V,|U \cap\{s, t\}|$ even $)$
$x(\delta(U)) \geq 1 \quad(\emptyset \neq U \subset V,|U \cap\{s, t\}|$ odd $)$
$x(\delta(v))=2 \quad(v \in V \backslash\{s, t\})$
$x(\delta(v))=1 \quad(v \in\{s, t\})$
$x_{e} \geq 0 \quad(e \in E)$

$$
\mathcal{C}:=\{C=\delta(U): x(C)<2\} \text { (narrow cuts, form a chain) }
$$

Best-of-Many-Christofides (An, Kleinberg, Shmoys [2012])

- Solve the LP, let x^{*} be an optimum solution.
- Decompose x^{*} into spanning trees: write

$$
x^{*}=\sum_{S \in \mathcal{S}} p_{S} \chi^{S}
$$

where \mathcal{S} is the set of edge sets of spanning trees,
$p_{S} \geq 0(S \in \mathcal{S})$ and $\sum_{S \in \mathcal{S}} p_{S}=1$.
(Edmonds [1970], Held, Karp [1970], Grötschel, Lovász, Schrijver [1981],
Frank [2011], Genova, Williamson [2015])

- Do parity correction for each $S \in \mathcal{S}$ with $p_{S}>0$: add a minimum cost T_{S}-join, where T_{S} contains the vertices whose degree in S has the wrong parity (even for s or t, odd for other vertices).
(Edmonds [1965], Christofides [1976])
- Take the best of these tours. Shortcut if cities are visited more than once.

Basic Analysis (An, Kleinberg, Shmoys [2012])

The result has cost

$$
\begin{aligned}
& \min _{S \in \mathcal{S}: p_{s}>0}\left(c(S)+\min \left\{c(J): J \text { is a } T_{S^{-}} \text {-join }\right\}\right) \\
\leq & \sum_{S \in \mathcal{S}} p_{S}\left(c(S)+\min \left\{c(J): J \text { is a } T_{\left.\left.S^{-j o i n ~}\right\}\right)}\right.\right. \\
= & c\left(x^{*}\right)+\sum_{S \in \mathcal{S}} p_{S} \min \left\{c(J): J \text { is a } T_{\left.S^{-j o i n ~}\right\}}\right. \\
\leq & c\left(x^{*}\right)+\sum_{S \in \mathcal{S}} p_{S} c\left(y^{S}\right)
\end{aligned}
$$

for any set of correction vectors $y^{\mathcal{S}}(\mathcal{S} \in \mathcal{S})$ such that $y^{\mathcal{S}}$ is in the T_{S}-join polyhedron

$$
\left\{y \in \mathbb{R}_{\geq 0}^{E}: y(C) \geq 1 \forall T_{S} \text {-cuts } C\right\} .
$$

(Edmonds, Johnson [1973])
Example: x^{*} is a correction vector for every S.

Correction vectors (An, Kleinberg, Shmoys [2012], Sebeb [2013])

Let $S=I_{S} \dot{\cup} J_{S}$, where I_{S} is the s - t-path and J_{S} is the T_{S}-join. Let

$$
y^{S}:=(1-2 \beta) \chi^{J_{S}}+\beta x^{*}+r^{S}
$$

for $S \in \mathcal{S}$, where $0 \leq \beta \leq \frac{1}{2}$, and $r^{S} \in \mathbb{R}_{\geq 0}^{E}$ satisfies

$$
r^{S}(C) \geq \beta\left(2-x^{*}(C)\right)
$$

for all $S \in \mathcal{S}$ and all (narrow) cuts C with $|S \cap C|$ even.
Then, for every $S \in \mathcal{S}$ and every T_{S}-cut C we have

$$
y^{S}(C) \geq 1
$$

$S=I_{S} \dot{\cup} J_{S}$. Narrow cuts (grey) that need parity correction (solid) contain (at least) one red and one blue edge.

András's correction vectors (Sebő [2013])

Again, $S=I_{S} \dot{\cup} J_{S}$, where I_{S} is the s - t-path and J_{S} is the T_{S}-join. As above,

$$
y^{S}:=(1-2 \beta) \chi^{J_{S}}+\beta x^{*}+r^{S}
$$

for $S \in \mathcal{S}$, where $0 \leq \beta \leq \frac{1}{2}$, and $r^{S} \in \mathbb{R}_{\geq 0}^{E}$ satisfies

$$
r^{S}(C) \geq \beta\left(2-x^{*}(C)\right)
$$

for all $S \in \mathcal{S}$ and all $C \in \mathcal{C}$ with $|S \cap C|$ even, and

$$
\sum_{S \in \mathcal{S}} p_{S} r^{S} \leq(1-2 \beta) \sum_{S \in \mathcal{S}} p_{S} \chi^{I_{S}}
$$

Implies approximation ratio $1-\beta$. Sebő [2013] obtained $\beta=\frac{2}{5}$.

New correction vectors

For every $S \in \mathcal{S}$ and every $e \in I_{S}$, we can distribute $(1-2 \beta) p_{S}$ to the correction vectors.

Sebő [2013]: Half goes to y^{S}, repairing cuts C with $e \in C$ and $|S \cap C|$ even. Half goes into a box for the cut C with $S \cap C=\{e\}$. If y^{S} needs more to repair even cut C, take from box.

New correction vectors

For every $S \in \mathcal{S}$ and every $e \in I_{S}$, we can distribute $(1-2 \beta) p_{S}$ to the correction vectors.

Sebő [2013]:
Half goes to y^{S}, repairing cuts C with $e \in C$ and $|S \cap C|$ even.
Half goes into a box for the cut C with $S \cap C=\{e\}$.
If y^{S} needs more to repair even cut C, take from box.

Now:

Distribute according to criticality: C needs $\beta\left(2-x^{*}(C)\right)\left(x^{*}(C)-1\right)$
Prevents us from increasing β beyond $\frac{2}{5}$ if, for a cut C, each tree S and its edge $e \in I_{S} \cap C$, there are critical cuts $C^{\prime}, C^{\prime \prime}$ containing e (one which is C) with $\left|S \cap C^{\prime}\right|=1$ and $\left|S \cap C^{\prime \prime}\right|$ even.

Henceforth: ignore cuts with $x^{*}(C) \geq 1.73$.

Configurations at a critical cut: edges in $S \cap C$

type	C_{\leftarrow} and C_{\rightarrow} are the 010
next cuts left and right 011 with $x^{*}(C)<1.73$ 110 111 020 021 120 022 220 121 \quad	
121	

Configurations at a critical cut: edges in $S \cap C$

type	C_{\leftarrow} and C_{\rightarrow} are the 010
next cuts left and right	
011	with $x^{*}(C)<1.73$
110	green $=\operatorname{good}$ (distribute
111	more than $\frac{1-2 \beta}{2}$ to C)
020	
021	
120	
022	
220	
121	
121	

Configurations at a critical cut: edges in $S \cap C$

type	C_{\leftarrow} and C_{\rightarrow} are the next cuts left and right
010	with $x^{*}(C)<1.73$
011	
110	green $=$ good (distribute
111	more than $\frac{1-2 \beta}{2}$ to $\left.C\right)$
020	blue $=$ two edges in
021	$\left(C \cap C_{\leftarrow}\right) \cup\left(C \cap C_{\rightarrow}\right)$
120	Note: there are at
022	most 0.73 edges on
220	$C \cap C_{\leftarrow}$ and $C \cap C_{\rightarrow}$
121	
121	

Configurations at a critical cut: edges in $S \cap C$

Reassembling trees: removing a pair 011 and 120

Clean critical cuts off 011/120 from left to right.
Then clean critical cuts off 110/021 from right to left.

Conclusion and open questions

- (My) calculations are rather complicated, also due to less critical cuts, trees with three edges, ...
- New approximation ratio 1.599
- Same bound on integrality ratio
- Tighter analysis possible, but not close to 1.5.
- Probably need stronger reassembling for much better ratio
- Extension to T-tours for $|T|>2$ possible?
- Application to other TSP variants?

Conclusion and open questions

- (My) calculations are rather complicated, also due to less critical cuts, trees with three edges, ...
- New approximation ratio 1.599
- Same bound on integrality ratio
- Tighter analysis possible, but not close to 1.5.
- Probably need stronger reassembling for much better ratio
- Extension to T-tours for $|T|>2$ possible?
- Application to other TSP variants?

Thank you!

