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TSP variants – state of the art
Integrality ratios. Upper bounds = approximation ratios unless mentioned otherwise

2ECSS, general weights:
I between 6

5 and 3
2 (Alexander, Boyd, Elliott-Magwood [2006])

2ECSS, unit weights:
I between 8

7 (Boyd, Fu, Sun [2014]) and 4
3 (Sebő, V. [2012])

TSP, general weights:
I between 4

3 and 3
2 (Wolsey [1980])

TSP, unit weights:
I between 4

3 and 7
5 (Sebő, V. [2012])

s-t-path TSP, general weights:
I between 3

2 and 8
5 (Sebő [2013])

s-t-path TSP, unit weights:
I 3

2 (Sebő, V. [2012])

ATSP, general weights:
I between 2 (Boyd, Elliott-Magwood [2005], Charikar, Goemans, Karloff [2006])

and logO(1) log n (Anari and Oveis Gharan [2014]);
apx ratio 8 log n/ log log n (Asadpour, Goemans, Mądry, Oveis Gharan, Saberi [2010])

ATSP, unit weights:
I between 3

2 (Gottschalk [2013]) and 13; apx ratio 27 + ε (Svensson [2015])



s-t-path TSP
“Start at s, visit all cities, end at t , minimize total distance.”

Instance:
I a finite set V (of cities),
I two cities s, t ∈ V (s 6= t), and
I a metric c : V × V → R≥0

Task: find
I a sequence V = {v1, . . . , vn} with s = v1 and t = vn
I such that

∑n−1
i=1 c(vi , vi+1) is minimized.

Previous approximation algorithms:
I 2 (double-tree algorithm) (folklore)

I 5
3 (Christofides’ algorithm) (Hoogeveen [1991])

I 1+
√

5
2 ≈ 1.619 (best-of-many Christofides) (An, Kleinberg, Shmoys [2012])

I 8
5 (best-of-many Christofides) (Sebő [2013])
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LP relaxation
E :=

(V
2

)
, c(x) :=

∑
e={v ,w}∈E

c(v ,w)xe, x(F ) :=
∑
e∈F

xe.

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

xe ≥ 0 (e ∈ E)

s t
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C := {C = δ(U) : x(C) < 2} (narrow cuts, form a chain)
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Best-of-Many-Christofides (An, Kleinberg, Shmoys [2012])

I Solve the LP, let x∗ be an optimum solution.
I Decompose x∗ into spanning trees: write

x∗ =
∑
S∈S

pSχ
S

where S is the set of edge sets of spanning trees,
pS ≥ 0 (S ∈ S) and

∑
S∈S pS = 1.

(Edmonds [1970], Held, Karp [1970], Grötschel, Lovász, Schrijver [1981],
Frank [2011], Genova, Williamson [2015])

I Do parity correction for each S ∈ S with pS > 0:
add a minimum cost TS-join,
where TS contains the vertices whose degree in S has
the wrong parity (even for s or t , odd for other vertices).
(Edmonds [1965], Christofides [1976])

I Take the best of these tours. Shortcut if cities are visited
more than once.



Basic Analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
.

(Edmonds, Johnson [1973])

Example: x∗ is a correction vector for every S.



Correction vectors (An, Kleinberg, Shmoys [2012], Sebő [2013])

Let S = IS
.
∪ JS, where IS is the s-t-path and JS is the TS-join. Let

yS := (1− 2β)χJS + βx∗ + rS

for S ∈ S, where 0 ≤ β ≤ 1
2 , and rS ∈ RE

≥0 satisfies

rS(C) ≥ β(2− x∗(C))

for all S ∈ S and all (narrow) cuts C with |S ∩ C| even.

Then, for every S ∈ S and every TS-cut C we have

yS(C) ≥ 1.

s t

S = IS
.
∪ JS. Narrow cuts (grey) that need parity correction (solid)

contain (at least) one red and one blue edge.



András’s correction vectors (Sebő [2013])

Again, S = IS
.
∪ JS, where IS is the s-t-path and JS is the TS-join.

As above,
yS := (1− 2β)χJS + βx∗ + rS

for S ∈ S, where 0 ≤ β ≤ 1
2 , and rS ∈ RE

≥0 satisfies

rS(C) ≥ β(2− x∗(C))

for all S ∈ S and all C ∈ C with |S ∩ C| even, and∑
S∈S

pSrS ≤ (1− 2β)
∑
S∈S

pSχ
IS .

Implies approximation ratio 1− β. Sebő [2013] obtained β = 2
5 .



New correction vectors
For every S ∈ S and every e ∈ IS, we can distribute (1− 2β)pS to
the correction vectors.

s t

e

Sebő [2013]:
Half goes to yS, repairing cuts C with e ∈ C and |S ∩ C| even.
Half goes into a box for the cut C with S ∩ C = {e}.
If yS needs more to repair even cut C, take from box.

Now:
Distribute according to criticality: C needs β(2−x∗(C))(x∗(C)−1)
Prevents us from increasing β beyond 2

5 if, for a cut C, each tree S
and its edge e ∈ IS ∩ C, there are critical cuts C′, C′′ containing e
(one which is C) with |S ∩ C′| = 1 and |S ∩ C′′| even.

Henceforth: ignore cuts with x∗(C) ≥ 1.73.
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Configurations at a critical cut: edges in S ∩ C

010
011
110

111

020

021

120

022

220

121

121

C← C C→ type C← and C→ are the
next cuts left and right
with x∗(C) < 1.73

green = good (distribute
more than 1−2β

2 to C)

blue = two edges in
(C ∩C←)

.
∪ (C ∩C→)

Note: there are at
most 0.73 edges on
average in each of
C ∩ C← and C ∩ C→

Show:
no 110 or no 021
no 011 or no 120
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Reassembling trees: removing a pair 011 and 120

before:
e0

e1

e2

C

S1

S2

after:
S1

′

S2
′

v0

v2

e0

e1

e2

C

Clean critical cuts off 011/120 from left to right.
Then clean critical cuts off 110/021 from right to left.



Conclusion and open questions

I (My) calculations are rather complicated, also due to
less critical cuts, trees with three edges, . . .

I New approximation ratio 1.599
I Same bound on integrality ratio
I Tighter analysis possible, but not close to 1.5.
I Probably need stronger reassembling for much better ratio
I Extension to T -tours for |T | > 2 possible?
I Application to other TSP variants?

Thank you!

arXiv:1502.03715
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