Resource Sharing

Jens Vygen

Hangzhou, April 2009

Min-max resource sharing

Instance

- finite sets R of resources and C of customers
- for each $c \in C$:
 - a convex set \mathcal{B}_c of **feasible solutions** (a **block**) and
 - a convex resource consumption function $g_c : \mathcal{B}_c \to \mathbb{R}^{\mathcal{R}}_+$
- given by an oracle function $f_c : \mathbb{R}^{\mathcal{R}}_+ \to \mathcal{B}_c$ with

$$\omega^{ op} g_{c}(f_{c}(\omega)) \leq (1+\epsilon_{0}) \inf_{b \in \mathcal{B}_{c}} \omega^{ op} g_{c}(b)$$

for all $\omega \in \mathbb{R}^{\mathcal{R}}_+$ and some $\epsilon_0 \in \mathbb{R}_+$ (a **block solver**).

Task

Find a $b_c \in \mathcal{B}_c$ for each $c \in \mathcal{C}$ with minimum congestion

$$\max_{r\in\mathcal{R}}\sum_{c\in\mathcal{C}}(g_c(b_c))_r\;.$$

Block solvers

A block solver is an oracle function $f_c : \mathbb{R}^{\mathcal{R}}_+ \to \mathcal{B}_c$ with

 $\omega^{\top} g_{c}(f_{c}(\omega)) \leq (1 + \epsilon_{0}) \operatorname{opt}_{c}(\omega)$

for all $\omega \in \mathbb{R}^{\mathcal{R}}_+$ and some $\epsilon_0 \in \mathbb{R}_+$, where

$$\mathsf{opt}_c(\omega) := \inf_{b \in \mathcal{B}_c} \omega^\top g_c(b)$$

The block solver is called

- **strong** if $\epsilon_0 = 0$ or $\epsilon_0 > 0$ can be chosen arbitrary small
- weak otherwise

The block solver is called

bounded if it can also optimize over

 $\{b \in \mathcal{B}_c : g_c(b) \leq \mu \mathbb{1}\}$

for any given $\mu > 0$ ($c \in C$).

unbounded otherwise

Width

Let

$$\lambda^* := \inf \left\{ \max_{r \in \mathcal{R}} \sum_{\boldsymbol{c} \in \mathcal{C}} (g_{\boldsymbol{c}}(\boldsymbol{b}_{\boldsymbol{c}}))_r : \boldsymbol{b}_{\boldsymbol{c}} \in \mathcal{B}_{\boldsymbol{c}}(\boldsymbol{c} \in \mathcal{C})
ight\}$$

(the "optimum congestion"), and

$$\rho := \max\left\{1, \sup\left\{\frac{(g_{c}(b))_{r}}{\lambda^{*}} : r \in \mathcal{R}, c \in \mathcal{C}, b \in \mathcal{B}_{c}\right\}\right\}$$

(the supremum is sometimes called the "width" of the problem)

In case of a bounded block solver, and in most applications, we may assume $\rho = 1$ ("no bottleneck").

Summary of results

min-max resource sharing	block solver	running time	
Grigoriadis, Khachiyan [1994]		$ ilde{O}(\epsilon^{-2} \mathcal{C} ^2 heta)$	
Grigoriadis, Khachiyan [1996]	strong, unbounded	$ ilde{O}(\epsilon^{-2} \mathcal{C} \mathcal{R} heta)$	
Jansen, Zhang [2008]	weak, unbounded	$ ilde{O}(\epsilon^{-2} \mathcal{C} \mathcal{R} heta)$	
Müller, V. [2008]	weak, unbounded	$ ilde{O}(\epsilon^{-2} ho \mathcal{C} heta)$	
Müller, V. [2008]	weak, bounded	$ ilde{O}(\epsilon^{-2} \mathcal{C} heta)$	

fractional packing (all g_c linear)		running time
Plotkin, Shmoys, Tardos [1995] *	strong, unbounded	$ ilde{O}(\epsilon^{-2} ho \mathcal{C} heta)$
Young [1995]	weak, unbounded	
Charikar et al. [1998] *	weak, unbounded	
Bienstock, lyengar [2004]	—	$ ilde{O}(\epsilon^{-1}\cdots)$

Algorithms compute a $(1 + \epsilon_0 + \epsilon)$ -approximate solution. Running times for fixed $\epsilon_0 \ge 0$. Logarithmic terms omitted. Entries with * refer to the feasibility version ($\lambda^* = 1$).

Weak duality

Lemma (Weak duality) Let $\omega \in \mathbb{R}^{\mathcal{R}}_+$ be some cost vector with $\omega^{\top} \mathbb{1} \neq 0$. Then

$$\frac{\sum_{\boldsymbol{c}\in\mathcal{C}}\boldsymbol{opt}_{\boldsymbol{c}}(\omega)}{\omega^{\top}\mathbb{1}} \leq \lambda^*.$$

Proof Let $(b_c \in \mathcal{B}_c)_{c \in \mathcal{C}}$ be a solution with congestion λ^* . Then $\frac{\sum_{c \in \mathcal{C}} \operatorname{opt}_c(\omega)}{\omega^{\top} \mathbb{1}} \leq \frac{\sum_{c \in \mathcal{C}} \omega^{\top} g_c(b_c)}{\omega^{\top} \mathbb{1}} = \frac{\omega^{\top} \sum_{c \in \mathcal{C}} g_c(b_c)}{\omega^{\top} \mathbb{1}} \leq \frac{\omega^{\top} \lambda^* \mathbb{1}}{\omega^{\top} \mathbb{1}} = \lambda^*$

Bounding λ^*

Lemma (Weak duality)

Let $\omega \in \mathbb{R}^{\mathcal{R}}_+$ be some cost vector with $\omega^{\top} \mathbb{1} \neq 0$. Then

$$\frac{\sum_{\boldsymbol{c}\in\mathcal{C}}\boldsymbol{opt}_{\boldsymbol{c}}(\omega)}{\omega^{\top}\mathbb{1}}\leq\lambda^{*}.$$

Corollary Let $b_c := f_c(1)$ ($c \in C$) and $\lambda^{ub} := \max_{r \in \mathcal{R}} \sum_{c \in C} (g_c(b_c))_r$. Then $\frac{\lambda^{ub}}{|\mathcal{R}|(1 + \epsilon_0)} \leq \frac{\sum_{r \in \mathcal{R}} \sum_{c \in C} (g_c(b_c))_r}{|\mathcal{R}|(1 + \epsilon_0)} \leq \frac{\sum_{c \in C} opt_c(1)}{|\mathcal{R}|} \leq \lambda^* \leq \lambda^{ub}.$

Scaling and binary search

We know
$$rac{\lambda^{ub}}{|\mathcal{R}|(1+\epsilon_0)} \leq \lambda^* \leq \lambda^{ub}$$
 .

- 1. Set j := 0.
- 2. Scale $g_c^{(j)}(b) := g_c(b) \frac{2^j}{\lambda^{ub}}$. Note that $\lambda^{*(j)} \leq 1$.
- 3. Find a solution with congestion $\lambda^{(j)} \leq (1 + \epsilon_0 + \frac{1}{4})\lambda^{*(j)} + \frac{1}{4}$.
- 4. If $\lambda^{(j)} \leq \frac{1}{2}$, then increment *j* and go to 2.
- 5. Now $\frac{1}{5(1+\epsilon_0)} \le \lambda^{*(j)} \le 1$.
- 6. Find a solution with congestion $\lambda^{(j)} \leq (1 + \epsilon_0 + \frac{\epsilon}{6})\lambda^{*(j)} + \frac{\epsilon}{6(1+\epsilon)}$.

Lemma (Main Lemma)

Let $\delta, \delta' > 0$. Suppose that $\lambda^* \leq 1$. Then we can compute a solution with congestion at most

$$(1 + \epsilon_0 + \delta)\lambda^* + \delta'$$

in

$$O\left((\delta\delta')^{-1}|\mathcal{C}| heta
ho(1+\epsilon_0)^2\log|\mathcal{R}|
ight)$$

time, where θ is the time for an oracle call.

Core algorithm

Input: An instance of the min-max resource sharing problem. **Output:** A convex combination of vectors in \mathcal{B}_c for each $c \in \mathcal{C}$.

Set
$$t := \left\lceil \frac{4\rho(1+\epsilon_0)^2 \ln |\mathcal{R}|}{\delta' \min\{1,\delta\}} \right\rceil$$
.
Set $\alpha_r := 0$ and $\omega_r := 1$ for each $r \in \mathcal{R}$.
Set $x_{c,b} := 0$ for each $c \in \mathcal{C}$ and $b \in \mathcal{B}_c$.
For $p := 1$ to t do:
For each $c \in \mathcal{C}$ do:
AllocateResources (c) .
Set $x_{c,b} := \frac{1}{t}x_{c,b}$ for each $c \in \mathcal{C}$ and $b \in \mathcal{B}_c$. (normalize)

Core algorithm: subroutine

Set
$$\epsilon_2 := \frac{\min\{1,\delta\}}{4\rho(1+\epsilon_0)^2}$$
.

Procedure AllocateResources(c):

Set $b_c := f_c(\omega)$. (call oracle) Set $x_{c,b_c} := x_{c,b_c} + 1$. Set $\alpha := \alpha + g_c(b_c)$. (update resource consumption) For each $r \in \mathcal{R}$ with $(g_c(b_c))_r \neq 0$ do: Set $\omega_r := e^{\epsilon_2 \alpha_r}$. (update prices)

Proof of performance guarantee (sketch)

Lemma

Let (x, ω) be the output of the algorithm, and let

$$\lambda_r := \sum_{c \in \mathcal{C}} \left(g_c \left(\sum_{b \in \mathcal{B}_c} x_{c,b} b \right) \right)_r$$

and $\lambda := \max_{r \in \mathcal{R}} \lambda_r$. Then

$$\lambda \leq \frac{1}{\epsilon_2 t} \ln \sum_{r \in \mathcal{R}} e^{\epsilon_2 t \lambda_r} = \frac{1}{\epsilon_2 t} \ln (\omega^{\mathsf{T}} \mathbb{1}).$$

Proof: Since the functions g_c are convex, we have for $r \in \mathcal{R}$:

$$\lambda_r \leq \sum_{c \in \mathcal{C}} \sum_{b \in \mathcal{B}_c} x_{c,b}(g_c(b))_r = \frac{\alpha_r}{t} = \frac{1}{\epsilon_2 t} \ln \left(e^{\epsilon_2 \alpha_r} \right) = \frac{1}{\epsilon_2 t} \ln \omega_r$$

Proof of performance guarantee (sketch)

Lemma (Main Lemma)

Let $\delta, \delta' > 0$. Suppose that $\lambda^* \leq 1$. Then the algorithm computes a solution with congestion at most

 $(1+\epsilon_0+\delta)\lambda^*+\delta'$.

Sketch of proof:

- Congestion is at most $\frac{1}{\epsilon_2 t} \ln((\omega^{(t)})^\top \mathbb{1})$.
- Initially, we have $(\omega^{(0)})^{\top} \mathbb{1} = |\mathcal{R}|$.
- Short calculation yields

$$(\omega^{(p)})^{\top} \mathbb{1} \leq (\omega^{(p-1)})^{\top} \mathbb{1} + \epsilon' \sum_{c \in \mathcal{C}} \mathsf{opt}_c(\omega^{(p)}),$$

where $\omega^{(i)}$ is the price vector at the end of the *i*-th phase and $\epsilon' := \epsilon_2(1 + (e - 2)\rho\epsilon_2)(1 + \epsilon_0)$.

Proof of performance guarantee (sketch)

We had
$$(\omega^{(p)})^{\top} \mathbb{1} \leq (\omega^{(p-1)})^{\top} \mathbb{1} + \epsilon' \sum_{c \in \mathcal{C}} \operatorname{opt}_{c}(\omega^{(p)}).$$

By weak duality, $\epsilon' \frac{\sum_{c \in \mathcal{C}} \operatorname{opt}_{c}(\omega^{(p)})}{(\omega^{(p)})^{\top} \mathbb{1}} \leq \epsilon' \lambda^{*} < 1$, and we get
 $(\omega^{(p)})^{\top} \mathbb{1} \leq \frac{1}{1 - \epsilon' \lambda^{*}} (\omega^{(p-1)})^{\top} \mathbb{1}$

and thus

$$(\omega^{(t)})^{ op}\mathbb{1} \, \leq \, rac{|\mathcal{R}|}{(1-\epsilon'\lambda^*)^t} \, = \, |\mathcal{R}| \left(1+rac{\epsilon'\lambda^*}{1-\epsilon'\lambda^*}
ight)^t \, \leq \, |\mathcal{R}| oldsymbol{e}^{t\epsilon'\lambda^*/(1-\epsilon'\lambda^*)} \, .$$

Together with $\lambda \leq \frac{1}{\epsilon_2 t} \ln((\omega^{(t)})^{\top} \mathbb{1})$, this proves the claim.

Main result

Theorem

The presented algorithm computes a $(1 + \epsilon_0 + \epsilon)$ -approximate solution in $O(|\mathcal{C}|\theta\rho(1 + \epsilon_0)^2 \log |\mathcal{R}|(\log |\mathcal{R}| + \epsilon^{-2}(1 + \epsilon_0)))$ time, where θ is the time for an oracle call. (Müller, V. [2008])

Extensions for practical application:

- Most oracle calls not necessary; reuse previous result if still good enough. Use lower bounds to decide
- Speed-up heuristics
- Randomized rounding to extreme points of the blocks
- Re-choose where rounding violates constraints

Application to global routing

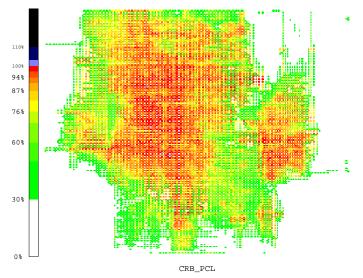
Given a global routing graph (3D grid with millions of vertices).

- Customers = nets (sets of pins; roughly: sets of vertices)
- Resources = edge capacities, power consumption, yield loss, timing constraints, ...
- Objective function is transformed into a constraint
- Block = (convex hull of) set of Steiner trees for a net, with space consumption for each edge
- Resource consumption is nonlinear (but convex) for yield loss, timing, power consumption
- Block solver = approximation algorithm for the Steiner tree problem in the global routing graph (with edge weights)

The algorithm in practice

- In practice, results are much better than theoretical performance guarantees. Usually 10–20 iterations suffice.
- Only few upper bounds are violated; these are corrected easily by *rip-up and re-route*.
- Detailed routing can realize the solution well, due to excellent capacity estimations.
- Small integrality gap and approximate dual solution implies that an infeasibility proof can be found for most infeasible instances.

Congestion map of a difficult instance



RESEARCH INSTITUTE FOR DISCRETE MATHEMATICS, UNIVERSITY OF BONN

Running time in practice

Chip	$ \mathcal{C} $	$ \mathcal{R} $	1 thread	4 threads	8 threads
Α	478,946	894,377	0:15:49	0:04:25	0:02:37
В	786,368	1,949,245	1:18:13	0:23:09	0:14:29
С	529,966	1,091,339	0:48:40	0:13:19	0:08:20
D	959,163	2,794,166	1:12:26	0:21:00	0:10:49
Е	3,590,647	20,392,657	1:16:07	0:23:27	0:15:09
F	5,340,123	23,606,915	0:33:25	0:12:22	0:08:51
G	7,039,094	22,891,145	2:32:48	0:46:12	0:29:08

Summary

- Min-max resource sharing is a very general problem
- We can solve it efficiently for millions of customers and resources
- Yields provably near-optimum solutions for global routing
- Core global optimization of overall routing flow

Thank you!

