**Global Routing** 

## Jens Vygen

Hangzhou, April 2009

## **Global routing**

- contract regions of approx. 100x100 points to a single vertex
- compute capacities of edges between adjacent regions
- pack Steiner trees with respect to these edge capacities
- global optimization of objective functions
- define a detailed routing area for each net according to its Steiner tree

# Output of global routing: a corridor for each net



## Global routing: simplified problem formulation

#### Instance:

- a global routing (grid) graph with edge capacities
- a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

- the edge capacities are respected,
- some objective function (e.g., netlength, yield, or power) is optimized,
- and the timing constraints are met.

Even simple special cases are *NP*-hard!

### Fractional relaxation: multicommodity flow problem

### Instance:

- An undirected graph G with capacities u : E(G) → Z<sub>+</sub> and lengths I : E(G) → ℝ
- a family N of nets (terminal pairs) with demands w : N → Z<sub>+</sub> and weights c : N → Z<sub>+</sub>

Task: Find a flow  $f_N$  for each N of value w(N) such that

$$\sum_{N\in\mathcal{N}} f_N(e) \leq u(e)$$
 for  $e\in E(G)$ ,

and

$$\sum_{N \in \mathcal{N}} c_N \sum_{e \in E(G)} l(e) f_N(e)$$
 is minimum.

## Multicommodity flows: positive results

- Can be solved by linear programming (but too slow)
- There are combinatorial fully polynomial approximation schemes for the MULTICOMMODITY FLOW PROBLEM: Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein, Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991], Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996], Garg, Könemann [1998], Fleischer [2000], Karakostas [2002]
- If edges have sufficient capacity, randomized rounding can be applied to get an integral solution violating capacity constraints only slightly (Raghavan, Thompson [1987,1991], Raghavan [1988])
- This can be applied to Steiner trees instead of paths, works efficiently for large global routing instances (Albrecht [2001])

But this does not take timing constraints and global objectives (power consumption, yield) into account.

## Example: global routing congestion map



## Constraints and objectives in routing

#### meet timing constraints

- all signals must arrive in time
- delays depend on electrical capacitances of nets
- capacitance of a net depends on length, width, plane, and distance to neighbour wires (nonlinearly!)

#### minimize power consumption

 power consumption roughly proportional to the electrical capacitance, weighted by switching activity

#### minimize cost

 minimize number of masks (number of routing planes), maximize yield (spreading), minimize design effort

## Capacitance estimation

- area capacitance (parallel plate capacitor) proportional to length times width
- fringing capacitance proportional to length
- coupling capacitance proportional to length, inversely proportional to distance to neighbour



### Assign extra space to global wires

We assign to each net  $c \in C$  an element of

$$egin{array}{rll} \hat{\mathcal{B}}_c &:= & \Big\{(b,b')\in [0,1]^{E(G)} imes \mathbb{R}^{E(G)}_+: \ & b ext{ incidence vector of a Steiner tree for } c, \ & b_e=0 \Longrightarrow b'_e=0 ext{ for all } e\in E(G) \Big\}. \end{array}$$

- $b_e = 1$  if and only if the Steiner tree for this net uses edge *e*.
- ▶  $b'_e$  is the extra space allocated to  $c \in C$  along edge e.
- Total capacitance of a wire along *e* can be estimated as a function of b'<sub>e</sub>.

### Min-max resource sharing

Instance

- finite sets R of resources and C of customers
- for each  $c \in C$ :
  - a convex set  $\mathcal{B}_c$  of **feasible solutions** (a **block**) and
  - a convex resource consumption function  $g_c : \mathcal{B}_c \to \mathbb{R}_+^{\mathcal{R}}$
- given by an oracle function  $f_c : \mathbb{R}^{\mathcal{R}}_+ \to \mathcal{B}_c$  with

$$\omega^{ op} g_{c}(f_{c}(\omega)) \leq (1+\epsilon_{0}) \inf_{b \in \mathcal{B}_{c}} \omega^{ op} g_{c}(b)$$

for all  $\omega \in \mathbb{R}^{\mathcal{R}}_+$  and some  $\epsilon_0 \in \mathbb{R}_+$  (a **block solver**).

Task

Find a  $b_c \in \mathcal{B}_c$  for each  $c \in \mathcal{C}$  with minimum congestion

$$\max_{r\in\mathcal{R}}\sum_{c\in\mathcal{C}}(g_c(b_c))_r\;.$$

## Application to global routing

Given a global routing graph (3D grid with millions of vertices).

- Customers = nets (sets of pins; roughly: sets of vertices)
- Resources = edge capacities, power consumption, yield loss, timing constraints, ...
- Objective function is transformed into a constraint
- Block = (convex hull of) set of Steiner trees for a net, with space consumption for each edge
- Resource consumption is nonlinear (but convex) for yield loss, timing, power consumption
- Block solver = approximation algorithm for the Steiner tree problem in the global routing graph (with edge weights)

### Yield analysis: critical area

Consider faults caused by particles with size distribution

$$f(r) := \begin{cases} 0, r < r_0 \\ \frac{c}{r^3}, r \ge r_0 \end{cases}$$

for some  $r_0 \in \mathbb{R}_+$  smaller than the smallest possible particle that can cause a fault, and *c* such that  $\int_0^\infty f(r) dr = 1$ .

Then the critical area w.r.t. extra material faults on plane z is

$$CA_{em}^{z} := \int_{x} \int_{y} \int_{t_{em}(x,y,z)}^{\infty} f(r) dr dy dx,$$

where  $t_{em}(x, y, z)$  is the smallest size of a particle that causes an extra material fault at location (x, y, z).

### Dependence of critical area on area consumption

Example: Critical area of unit length wire of minimum width



## Yield analysis: expected number of faults

Weighted sum of critical areas is used to estimate the number of extra material faults per chip:

$$\mathsf{F}_{em} := \sum_{z} w_{em}^{z} \mathsf{CA}_{em}^{z}$$

Analogously define the number of miss material faults on wire planes,  $F_{wm}$ , and on via planes,  $F_{vm}$ .

Define the estimated total number of faults per chip as  $F := F_{em} + F_{wm} + F_{vm}$ .

The percentage of chips without a fault from one of the above classes is estimated by

The complement  $1 - e^{-F}$  is called the wiring yield loss.

### Modeling yield loss as resource

$$\mathcal{B}_{c} := \operatorname{conv}(\hat{\mathcal{B}_{c}}) = \operatorname{conv}\left(\left\{(b,b')\in[0,1]^{E(G)} imes\mathbb{R}^{E(G)}_{+}:
ight)\right\}$$

*b* incidence vector of a Steiner tree for *c*,

$$b_e = 0 \Longrightarrow b'_e = 0$$
 for all  $e \in E(G) \Big\} \Big).$ 

- ▶  $b'_e$  is the extra space allocated to net  $c \in C$  along edge e.
- model cost (wiring yield loss) depending on extra space by functions *γ<sub>c,e</sub>* : ℝ<sub>+</sub> → ℝ<sub>+</sub> for *c* ∈ C and *e* ∈ *E*(*G*).
- ► Here γ<sub>c,e</sub>(x) is the estimated contribution of edge e, if used by net c with allocated space minwidth(c, e) + x, to the wiring yield loss (similar for power consumption, delay of a path).
- ▶ Note that the functions  $\gamma_{c,e}$  are convex ( $c \in C$ ,  $e \in E(G)$ ).
- $\blacktriangleright$  Resource consumption for new resource  $\gamma$  is given by

$$g_{c}^{\gamma}(b,b') = rac{1}{\Gamma}\sum_{e\in E(G): b_{e}>0} b_{e}\cdot\gamma_{c,e}\left(rac{b'_{e}}{b_{e}}
ight)$$

for  $(b, b') \in \mathcal{B}_c$ , where  $\Gamma$  is an upper bound.

## Randomized rounding

- Let  $\hat{\mathcal{B}}_c \subseteq \mathcal{B}_c$  with  $\mathcal{B}_c = \operatorname{conv}(\hat{\mathcal{B}}_c)$ .
- ▶ Given numbers  $x_{c,b} \ge 0$  for all  $c \in C$  and  $b \in \hat{\mathcal{B}}_c$  with  $\sum_{b \in \hat{\mathcal{B}}_c} x_{c,b} = 1$  for all  $c \in C$ .
- Let  $\lambda := \max_{r \in \mathcal{R}} \sum_{c \in \mathcal{C}} \sum_{b \in \hat{\mathcal{B}}_c} x_{c,b}(g_c(b))_r$ .
- We will compute a solution with

$$\lambda \leq (1+\epsilon) \inf_{b_{\mathcal{C}} \in \mathcal{B}_{\mathcal{C}}(\boldsymbol{c} \in \mathcal{C})} \max_{r \in \mathcal{R}} \sum_{\boldsymbol{c} \in \mathcal{C}} (g_{\boldsymbol{c}}(b_{\boldsymbol{c}}))_{r}$$

for small  $\epsilon > 0$ .

- Consider a "randomly rounded" solution, b̂<sub>c</sub> ∈ B̂<sub>c</sub> for c ∈ C, given as follows.
- Independently for all c ∈ C we choose b ∈ B̂<sub>c</sub> as b̂<sub>c</sub> with probability x<sub>c,b</sub>.

• Let 
$$\hat{\lambda} := \max_{r \in \mathcal{R}} \sum_{c \in \mathcal{C}} (g_c(\hat{b}_c))_r$$
.

Question: can we bound  $\frac{\hat{\lambda}}{\lambda}$  ?

## Chernoff bound

#### Lemma

Let  $X_1, \ldots, X_k$  be independent random variables in [0, 1]. Let  $\mu$  be the sum of their expectations, and let  $\epsilon > 0$ . Then  $X_1 + \cdots + X_k > (1 + \epsilon)\mu$  with probability less than  $e^{-\mu f(\epsilon)}$ , where  $f(\epsilon) := (1 + \epsilon) \ln(1 + \epsilon) - \epsilon$ .

Note that  $f(\epsilon) > 0$  for  $\epsilon > 0$ .

Proof: Let Prob[·] denote the probability of an event, and  $\operatorname{Exp}[\cdot]$ the expectation of a random variable. Using  $(1 + \epsilon)^{x} \leq 1 + \epsilon x$  for  $0 \leq x \leq 1$  and  $1 + x \leq e^{x}$  for  $x \geq 0$  we compute Prob $[X_{1} + \dots + X_{k} > (1 + \epsilon)\mu] = \operatorname{Prob}\left[\frac{\prod_{i=1}^{k}(1+\epsilon)^{X_{i}}}{(1+\epsilon)^{(1+\epsilon)\mu}} > 1\right] \leq$  $\operatorname{Prob}\left[\frac{\prod_{i=1}^{k}(1+\epsilon X_{i})}{(1+\epsilon)^{(1+\epsilon)\mu}} > 1\right] < \operatorname{Exp}\left[\frac{\prod_{i=1}^{k}(1+\epsilon X_{i})}{(1+\epsilon)^{(1+\epsilon)\mu}}\right] = \frac{\prod_{i=1}^{k}(1+\epsilon \operatorname{Exp}[X_{i}])}{(1+\epsilon)^{(1+\epsilon)\mu}} \leq$  $\frac{\prod_{i=1}^{k}e^{\epsilon \operatorname{Exp}[X_{i}]}}{(1+\epsilon)^{(1+\epsilon)\mu}} = \frac{e^{-\mu f(\epsilon)}}{(1+\epsilon)^{(1+\epsilon)\mu}}$ 

(Raghavan, Spencer; see Raghavan [1988] and Chernoff [1952])

## Randomized rounding

Theorem For  $r \in \mathcal{R}$  let  $\rho_r \geq \frac{(g_c(b))_r}{\lambda}$  for all  $b \in \mathcal{B}_c$  and  $c \in \mathcal{C}$ , and let  $\rho := \max_{r \in \mathcal{R}} \rho_r$ . Let  $\Omega := \rho \max \left\{ 1, \ln \left( \sum_{r \in \mathcal{R}} e^{1 - \frac{\rho}{\rho_r}} \right) \right\}$  and  $\delta := (\Omega + e - 2) \sqrt{\frac{\Omega}{f(\Omega + e - 2)}}$ . Then  $\hat{\lambda} \leq \lambda(1 + \delta)$  with positive probability.

### Proof (sketch):

For each resource  $r \in \mathcal{R}$ , apply the above Chernoff bound to the independent random variables  $\frac{(g_c(\hat{b}_c))_r}{\rho_r\lambda}$ ,  $c \in \mathcal{C}$ .

(Müller, V. [2008]; see Raghavan [1988])

#### In practice:

Some violations occur, are fixed by "rip-up and re-route"

## Critical area after detailed routing

| Chip      | Tech. | #Nets     | Netl. Opt. | Yield Opt.       |   |
|-----------|-------|-----------|------------|------------------|---|
| Edgar     | Cu08  | 772,000   | 0.10493    | 0.08586 (-18.2%) | _ |
| Hannelore | Cu08  | 140,000   | 0.01543    | 0.01027 (-33.4%) |   |
| Paul      | Cu08  | 68,000    | 0.00568    | 0.00402 (-29.2%) |   |
| Monika    | Cu11  | 1,502,000 | 0.09505    | 0.08055 (-15.3%) |   |
| Garry     | Cu11  | 827,000   | 0.08017    | 0.06714 (-16.3%) |   |
| Heidi     | Cu11  | 777,000   | 0.05804    | 0.04965 (-14.5%) |   |
| Elena     | Cu11  | 421,000   | 0.03314    | 0.02966 (-10.5%) |   |
| Lotti     | Cu11  | 132,000   | 0.00688    | 0.00575 (-16.4%) |   |
| Ingo      | Cu11  | 58,000    | 0.00505    | 0.00392 (-22.4%) |   |
| Bill      | Cu11  | 11,000    | 0.00833    | 0.00376 (-54.9%) |   |
| Total     |       |           | 0.50190    | 0.41419 (-17.5%) | _ |

(Müller [2006])

## Summary

- Global routing is a generalization of integer multi-commodity flow
- fractional solutions are useful, can be made integral by randomized rounding (with some loss)
- linear programming too slow
- combinatorial fully polynomial time approximation schemes much better
- multi-terminal nets, nonlinear constraints and objectives (like yield, power consumption, timing) can be modeled in terms of the min-max resource sharing problem
- tomorrow: an efficient algorithm for this problem