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Global routing

I contract regions of approx. 100x100 points to a single vertex
I compute capacities of edges between adjacent regions
I pack Steiner trees with respect to these edge capacities
I global optimization of objective functions
I define a detailed routing area for each net according to its

Steiner tree



Output of global routing: a corridor for each net



Global routing: simplified problem formulation

Instance:
I a global routing (grid) graph with edge capacities
I a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

I the edge capacities are respected,
I some objective function (e.g., netlength, yield, or power) is

optimized,
I and the timing constraints are met.

Even simple special cases are NP-hard!



Fractional relaxation: multicommodity flow problem

Instance:
I an undirected graph G with capacities u : E(G)→ Z+ and

lengths l : E(G)→ R
I a family N of nets (terminal pairs) with demands w : N → Z+

and weights c : N → Z+

Task: Find a flow fN for each N of value w(N) such that∑
N∈N

fN(e) ≤ u(e) for e ∈ E(G),

and ∑
N∈N

cN

∑
e∈E(G)

l(e)fN(e) is minimum.



Multicommodity flows: positive results

I Can be solved by linear programming (but too slow)
I There are combinatorial fully polynomial approximation

schemes for the MULTICOMMODITY FLOW PROBLEM:
Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein,
Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991],
Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996],
Garg, Könemann [1998], Fleischer [2000], Karakostas [2002]

I If edges have sufficient capacity, randomized rounding can
be applied to get an integral solution violating capacity
constraints only slightly (Raghavan, Thompson [1987,1991],
Raghavan [1988])

I This can be applied to Steiner trees instead of paths, works
efficiently for large global routing instances (Albrecht [2001])

But this does not take timing constraints and global objectives
(power consumption, yield) into account.



Example: global routing congestion map



Constraints and objectives in routing

meet timing constraints

I all signals must arrive in time
I delays depend on electrical capacitances of nets
I capacitance of a net depends on length, width, plane, and

distance to neighbour wires (nonlinearly!)

minimize power consumption

I power consumption roughly proportional to the electrical
capacitance, weighted by switching activity

minimize cost

I minimize number of masks (number of routing planes),
maximize yield (spreading), minimize design effort



Capacitance estimation

I area capacitance (parallel plate capacitor) – proportional to
length times width

I fringing capacitance – proportional to length
I coupling capacitance – proportional to length, inversely

proportional to distance to neighbour

adjacent
wire

wire

silicon substrate



Assign extra space to global wires

We assign to each net c ∈ C an element of

B̂c :=
{

(b,b′) ∈ [0,1]E(G) × RE(G)
+ :

b incidence vector of a Steiner tree for c,

be = 0 =⇒ b′e = 0 for all e ∈ E(G)
}
.

I be = 1 if and only if the Steiner tree for this net uses edge e.
I b′e is the extra space allocated to c ∈ C along edge e.
I Total capacitance of a wire along e can be estimated as a

function of b′e.



Min-max resource sharing
Instance

I finite sets R of resources and C of customers
I for each c ∈ C:

I a convex set Bc of feasible solutions (a block) and
I a convex resource consumption function gc : Bc → RR+

I given by an oracle function fc : RR+ → Bc with

ω>gc(fc(ω)) ≤ (1 + ε0) inf
b∈Bc

ω>gc(b)

for all ω ∈ RR+ and some ε0 ∈ R+ (a block solver).

Task
I Find a bc ∈ Bc for each c ∈ C with minimum congestion

max
r∈R

∑
c∈C

(gc(bc))r .



Application to global routing

Given a global routing graph (3D grid with millions of vertices).
I Customers = nets (sets of pins; roughly: sets of vertices)
I Resources = edge capacities, power consumption, yield

loss, timing constraints, ...
I Objective function is transformed into a constraint
I Block = (convex hull of) set of Steiner trees for a net, with

space consumption for each edge
I Resource consumption is nonlinear (but convex) for yield

loss, timing, power consumption
I Block solver = approximation algorithm for the Steiner tree

problem in the global routing graph (with edge weights)



Yield analysis: critical area

Consider faults caused by particles with size distribution

f (r) :=

{
0, r < r0
c
r3 , r ≥ r0

for some r0 ∈ R+ smaller than the smallest possible particle that
can cause a fault, and c such that

∫∞
0 f (r)dr = 1.

Then the critical area w.r.t. extra material faults on plane z is

CAz
em :=

∫
x

∫
y

∫ ∞
tem(x ,y ,z)

f (r)drdydx ,

where tem(x , y , z) is the smallest size of a particle that causes an
extra material fault at location (x , y , z).



Dependence of critical area on area consumption

Example: Critical area of unit length wire of minimum width
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Yield analysis: expected number of faults
Weighted sum of critical areas is used to estimate the number of
extra material faults per chip:

Fem :=
∑

z

wz
emCAz

em

Analogously define the number of miss material faults on wire
planes, Fwm, and on via planes, Fvm.

Define the estimated total number of faults per chip as
F := Fem + Fwm + Fvm.

The percentage of chips without a fault from one of the above
classes is estimated by

e−F.

The complement 1− e−F is called the wiring yield loss.



Modeling yield loss as resource

Bc := conv(B̂c) = conv
({

(b,b′) ∈ [0,1]E(G) × RE(G)
+ :

b incidence vector of a Steiner tree for c,

be = 0 =⇒ b′e = 0 for all e ∈ E(G)
})
.

I b′e is the extra space allocated to net c ∈ C along edge e.
I model cost (wiring yield loss) depending on extra space by

functions γc,e : R+ → R+ for c ∈ C and e ∈ E(G).
I Here γc,e(x) is the estimated contribution of edge e, if used

by net c with allocated space minwidth(c,e) + x , to the wiring
yield loss (similar for power consumption, delay of a path).

I Note that the functions γc,e are convex (c ∈ C, e ∈ E(G)).
I Resource consumption for new resource γ is given by

gγc (b,b′) =
1
Γ

∑
e∈E(G):be>0

be · γc,e

(
b′e
be

)
for (b,b′) ∈ Bc , where Γ is an upper bound.



Randomized rounding
I Let B̂c ⊆ Bc with Bc = conv(B̂c).
I Given numbers xc,b ≥ 0 for all c ∈ C and b ∈ B̂c with∑

b∈B̂c
xc,b = 1 for all c ∈ C.

I Let λ := maxr∈R
∑

c∈C
∑

b∈B̂c
xc,b(gc(b))r .

I We will compute a solution with

λ ≤ (1 + ε) inf
bc∈Bc(c∈C)

max
r∈R

∑
c∈C

(gc(bc))r

for small ε > 0.
I Consider a “randomly rounded” solution, b̂c ∈ B̂c for c ∈ C,

given as follows.
I Independently for all c ∈ C we choose b ∈ B̂c as b̂c with

probability xc,b.
I Let λ̂ := maxr∈R

∑
c∈C(gc(b̂c))r .

Question: can we bound λ̂
λ ?



Chernoff bound
Lemma
Let X1, . . . ,Xk be independent random variables in [0,1]. Let µ be
the sum of their expectations, and let ε > 0. Then
X1 + · · ·+ Xk > (1 + ε)µ with probability less than e−µf (ε), where
f (ε) := (1 + ε) ln(1 + ε)− ε.

Note that f (ε) > 0 for ε > 0.

Proof: Let Prob[·] denote the probability of an event, and Exp[·]
the expectation of a random variable. Using (1 + ε)x ≤ 1 + εx for
0 ≤ x ≤ 1 and 1 + x ≤ ex for x ≥ 0 we compute

Prob[X1 + · · ·+ Xk > (1 + ε)µ] = Prob
[Qk

i=1(1+ε)Xi

(1+ε)(1+ε)µ > 1
]
≤

Prob
[Qk

i=1(1+εXi )

(1+ε)(1+ε)µ > 1
]
< Exp

[Qk
i=1(1+εXi )

(1+ε)(1+ε)µ

]
=

Qk
i=1(1+εExp[Xi ])

(1+ε)(1+ε)µ ≤Qk
i=1 eε Exp[Xi ]

(1+ε)(1+ε)µ = eεµ

(1+ε)(1+ε)µ = e−µf (ε). �

(Raghavan, Spencer; see Raghavan [1988] and Chernoff [1952])



Randomized rounding

Theorem
For r ∈ R let ρr ≥ (gc(b))r

λ for all b ∈ Bc and c ∈ C, and let

ρ := maxr∈R ρr . Let Ω := ρmax
{

1, ln
(∑

r∈R e1− ρ
ρr

)}
and

δ := (Ω + e − 2)
√

Ω
f (Ω+e−2) .

Then λ̂ ≤ λ(1 + δ) with positive probability.

Proof (sketch):
For each resource r ∈ R, apply the above Chernoff bound to the
independent random variables (gc(b̂c))r

ρrλ
, c ∈ C. �

(Müller, V. [2008]; see Raghavan [1988])

In practice:
Some violations occur, are fixed by “rip-up and re-route”



Critical area after detailed routing

Chip Tech. #Nets Netl. Opt. Yield Opt.
Edgar Cu08 772,000 0.10493 0.08586 (–18.2%)
Hannelore Cu08 140,000 0.01543 0.01027 (–33.4%)
Paul Cu08 68,000 0.00568 0.00402 (–29.2%)
Monika Cu11 1,502,000 0.09505 0.08055 (–15.3%)
Garry Cu11 827,000 0.08017 0.06714 (–16.3%)
Heidi Cu11 777,000 0.05804 0.04965 (–14.5%)
Elena Cu11 421,000 0.03314 0.02966 (–10.5%)
Lotti Cu11 132,000 0.00688 0.00575 (–16.4%)
Ingo Cu11 58,000 0.00505 0.00392 (–22.4%)
Bill Cu11 11,000 0.00833 0.00376 (–54.9%)
Total 0.50190 0.41419 (–17.5%)

(Müller [2006])



Summary

I Global routing is a generalization of integer multi-commodity
flow

I fractional solutions are useful, can be made integral by
randomized rounding (with some loss)

I linear programming too slow
I combinatorial fully polynomial time approximation schemes

much better
I multi-terminal nets, nonlinear constraints and objectives (like

yield, power consumption, timing) can be modeled in terms
of the min-max resource sharing problem

I tomorrow: an efficient algorithm for this problem


