
Detailed Routing

Jens Vygen

Hangzhou, March 2009

Detailed routing: example

Routing: task
Instance:

I a number of routing planes
I a set of nets, where each net is a set of pins (terminals)
I a set of shapes for each pin, each of which is a rectangle in a

routing plane
I a set of blockage shapes
I rules that tell when two shapes are connected and when they

are separated
I rules with forbidden patterns (for manufacturability)
I timing constraints, information on power, crosstalk, yield, ...

Task:
Compute a feasible routing, i.e. a set of wire shapes for each net,
connecting the pins, and separate from blockages and shapes of
other nets

I such that all timing constraints are met
I and the (estimated) power consumption is minimized.

Detailed routing: example
00 (M1)

Detailed routing: example
01 (V1)

Detailed routing: example
02 (M2)

Detailed routing: example
03 (V2)

Detailed routing: example
04 (M3)

Modelling the routing space by a graph
I Define parallel tracks for each plane, alternatingly

horizontally and vertically.
I Distance of tracks is (at least) the minimum space required

by a wire
I Via positions where tracks of adjacent planes meet
I Via positions induce vertices on both incident layers

Then a Steiner tree in this graph corresponds to a feasible
routing, except that

I pin shapes may not contain any vertex (need special
algorithms for local pin access)

I same-net errors may occur (but not often, can usually be
repaired at the end)

I in some cases the only feasible routing may be globally
off-track (but this is a rare exception)

I special care is needed for wider wires that occupy more than
one track (but this can be done)

Routing: simplified view

Find vertex-disjoint Steiner trees connecting given terminal sets in
this track graph.

Order of magnitude: 10 million Steiner trees in a graph with 100
billion vertices!

→ Even linear-time algorithms are too slow!

How to cope with the instance sizes

I route nets sequentially (in a good order)
I compose Steiner trees of paths
I main subroutine: find a shortest path (with respect to good

edge weights)
I if no path exists, rip-up and re-route

I The order of the (sub)nets should depend on an estimate
how close we are to blocking the (sub)nets

I The weights should reflect waste of routing space and
electrical capacitance and resistance. Edges on track should
be cheapest, orthogonal edges and vias more expensive

The key subroutine: path search

I find a shortest path in a subgraph of the weighted track graph
I restrict each path search to a relatively small area (computed

by global routing)
I goal-oriented search
I more later...

Restrict path search to global routing region (corridor)

Goal-oriented search, future cost, feasible potentials

Given a digraph G with arc costs c : E(G)→ R+.

A function π : V (G)→ R is called a feasible potential if the
reduced cost cπ(e) := c(e) + π(v)− π(w) is nonnegative for each
e = (v ,w) ∈ E(G).

Let s, t ∈ V (G). We look for a shortest s-t-path w.r.t. c.

Observation: A shortest s-t-path w.r.t. c is a shortest s-t-path
w.r.t. cπ, and vice versa.

Suppose L(x) is a lower bound on the distance from x to t , and
L(v) ≤ c(e) + L(w) for each e = (v ,w) ∈ E(G).
Then π(x) := −L(x) is a feasible potential.
L(x) is also called the future cost at x .

How to compute L

Set L(v) to the length of a shortest path from v to T in (G′, c′)
where G′ is a supergraph of G and c′(e) ≤ c(e) for all e ∈ E(G).

Choose (G′, c′) such that L is a good lower bound which can be
computed fast.
A lower bound is good if it is close to the actual distance.

I `1-distance to target. But: the target is not necessarily a
point. Need a Voronoi diagram first (O(n log n)
preprocessing), then constant time.

I Choose (G′, c′) as a suitable subgraph of the track graph
(with a simple structure) and, at the same time, supergraph
of the current instance (details follow). Let G′ be defined by
the global routing corridor.

Future cost: example

Dijkstra without future cost

Dijkstra with future cost (`1-distance)

Comparison with and without future cost

50 points labelled 24 points labelled

Generalizing Dijkstra’s algorithm
Given

I a digraph G with edge lengths c : E(G)→ R+

I a set T ⊆ V (G)
I sets V1,V2, . . . ,Vl ⊆ V (G) and 1 ≤ k ≤ l such that

T =
⋃k

i=1 Vi and V (G) =
⋃l

i=1 Vi .
we want to determine

d(v) := dist(G,c)(v ,T)

for all v ∈ V (G).
We label the sets Vi instead of single vertices, by functions
di : Vi → R+ ∪ {∞} with di(u) ≥ d(u) for all u ∈ Vi .
Initially, di(u) := 0 for 1 ≤ i ≤ k and u ∈ Vi , and di(u) :=∞ for
k < i ≤ l and u ∈ Vi . Then we repeatedly apply:

UPDATE(Vi ,Vj):
Replace dj(u) by

min{dj(u),min{di(v) + dist(G[Vi∪Vj],c)(u, v) : v ∈ Vi}}
for all u ∈ Vj .

Generalizing Dijkstra’s algorithm: optimality conditions
Theorem
Suppose that we have functions d1,d2, . . . ,dl with:

I di(u) = 0 for all u ∈ Vi and i = 1, . . . , k.
I di(u) ≥ d(u) for all u ∈ Vi and i = 1, . . . , l .
I For each edge e = (v ,w) ∈ E(G) and each i ∈ {1, . . . , l}

with w ∈ Vi there exists a j ∈ {1, . . . , l} with v ∈ Vj and
dj(v) ≤ c(e) + di(w).

Then d(v) = min{di(v) : i = 1, . . . , l , v ∈ Vi} for all v ∈ V (G).
Proof: Suppose that d(v) < min{dj(v) : j = 1, . . . , l , v ∈ Vj};
choose v such that d(v) is minimum; in case of ties the shortest
v -T -path P shall have minimum number of edges. Let w be the
neighbour of v on P.
By the choice of v , there exists an i ∈ {1, . . . , l} with w ∈ Vi and
c((v ,w)) + di(w) = c((v ,w)) + d(u) = d(v) < min{dj(v) : j =
1, . . . , l , v ∈ Vj}. This is a contradiction. �

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA

Set di(u) := 0 for 1 ≤ i ≤ k and u ∈ Vi .
Set di(u) :=∞ for k < i ≤ l and u ∈ Vi .
Set Q := {1, . . . , k} and key(i) := 0 for i = 1, . . . , k .
WHILE Q 6= ∅ DO:

Choose i ∈ Q with key(i) minimum. Set Q := Q \ {i}.
PROJECT(i).

PROJECT(i):
Choose J ⊆ {1, . . . , l} \ {i} such that

⋃
j∈{i}∪J Vj contains all

neighbours of Vi .
FOR j ∈ J:

UPDATE(Vi ,Vj).
IF dj(v) changes for some v ∈ Vj ,
THEN let key(j) be the minimum changed dj(v), v ∈ Vj ,

and set Q := Q ∪ {j}.

GENERALIZED DIJKSTRA: optimality

Theorem
This algorithm produces functions d1,d2, . . . ,dl satisfying the
optimality conditions.
Proof: The statement is obvious for the first two conditions.
Therefore, suppose, for a contradiction, that there exists an edge
e = {u, v} ∈ E(G) and an index i ∈ {1, . . . , l} such that
dj(v) > di(u) + c(e) for all j ∈ {1, . . . , l} with v ∈ Vj .
Then v 6∈ Vi . Since di(u) <∞, we have i ∈ Q at some moment.
Consider the last time that the algorithm executes PROJECT(i).
Note that di does not change after this moment.
As v is a neighbour of u ∈ Vi , there is some j ∈ J with v ∈ Vj and
UPDATE(Vi ,Vj) ensures

dj(v) ≤ di(u) + dist(G[Vi∪Vj],c)(u, v) ≤ di(u) + c(e).
As dj(v) never increases, this is a contradiction. �

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA: running time

I If we implement Q by a Fibonacci heap, the running time is is
O(n(log l + p)), where p is the time for one PROJECT

operation and n is the number of iterations.
I Since every i ∈ {1, . . . , k} enters Q exactly once and every

i ∈ {k + 1, . . . , l} enters Q at most |Vi | times, we only have
the bound n ≤ k +

∑l
i=k+1 |Vi | in general.

I If V1, . . . ,Vl is a partition of V (G) into one-element sets, then
this is the standard algorithm with running time
O(m + n log n), where n = |V (G)| and m = |E(G)|.

I Much faster for special graphs, in particular grid graphs
I Sorting Vk+1, . . . ,Vl such that c((u, v)) > 0 for

(u, v) ∈ E(G) ∩ ((Vi × (Vj \ Vi)) ∪ ((Vi \ Vj)× Vj)) and i < j
gives that each i ∈ {k + 1, . . . , l} enters Q at most once for
each key.

Modeling the routing space by a grid graph

Let G0 be the infinite 3-dimensional grid graph, i.e. V (G0) = Z3,
and
E(G0) = {{(x , y , z), (x ′, y ′, z ′)} : |x − x ′|+ |y − y ′|+ |z − z ′| = 1}.
We assume that for each z ∈ Z there are three constants
cz,1, cz,2, cz ∈ R such that

c({(x , y , z), (x + 1, y , z)}) = cz,1,

c({(x , y , z), (x , y + 1, z)}) = cz,2, and
c({(x , y , z), (x , y , z + 1)}) = cz

for all x , y ∈ Z, This reflects higher costs for vias and jogs and in
access planes.
We look for shortest paths w.r.t. c in induced subgraphs of G0.

GENERALIZED DIJKSTRA on grids

Let G be an induced subgraph of the infinite 3-dimensional grid.
Write V (G) as the union of rectangles V1, . . . ,Vl such that each
has O(log l) neighbours.
Assume that the number of different edge weights is constant.
Then:

I the number of iterations is O(l)
I the functions di can be stored in constant space
I an UPDATE operation takes constant time
I the cardinality of the set J to be considered in the PROJECT

operation is O(log l)
⇒ Running time of O(l log l)

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA for accurate future costs

I Consider a supergraph G′ of the graph G representing the
routing area, such that G′ can be decomposed into few
rectangles (and in which distances are not much shorter).

I Apply GENERALIZED DIJKSTRA to G′, labeling these
rectangles.

I As d(v) = dist(G′,c)(v ,T) ≤ dist(G,c)(v ,T), the numbers d(v)
serve as future cost for shortest path computation in G.

Example for accurate future costs

I four layers
I alternating preference directions
I we look for a path from a (green) source to a (red) target
I edge cost 1 in preference direction
I edge cost 4 in orthogonal direction
I edge cost 7 for vias

Example: local routing grid

X

Y

X

Y

pref. dir.

Example: global routing corrdidors
pref. dir.

X

Y

X

Y

Example: Hanan grid

X

pref .dir.

Y

X

Y

Example: GENERALIZED DIJKSTRA

0 22

4

0

19

8

15

26

30

15 2311

117

4

0

7

0

4

8

16

19

26

7

11

7

15

7 11

pref. dir.

X

Y

X

Y

Example: GENERALIZED DIJKSTRA

0 22

4

0

19

8

15

30

1511

117

4

0

7

4

8

7

14 14 22

11

15

22

14

18

7 11

14 18

25
21

25

29

292121

26

26

3321

19

16

7

0

18 2614

2218 30

21 25 33

25 29 37 57

64

71

78

23

pref. dir.

X

Y

X

Y

26

Example: old (`1-distance) versus new future cost

0 22

4

0

19

8

15

30

1511

117

4

0

7

4

8

7

14 14 22

11

15

22

14

18

7 11

14 18

25
21

25

29

292121

26

26

3321

19

16

7

0

18 2614

2218 30

21 25 33

25 29 37 57

64

71

78

23

pref. dir.

X

Y

X

Y

26
old: 36

new: 94

new: 63
old: 49

new: 48
old: 48

new: 77
old: 41

Example: how to compute the future cost

53 + 15 x 1 + 7,
63 + 5 x 1 + 7,

)

68 + 5 x 4,

52 + 4 x 1 + 7

63 = min (34 + 15 x 4,

37 57(52)

(63)

64(84)

(68)

30

(53)X

Y (34)

84 + 4 x 1,

The key subroutine: path search

I find a shortest path in a subgraph of the weighted track graph
I restrict each path search to a relatively small area (computed

by global routing)
I goal-oriented search
I represent the routing area by a set of intervals (with constant

properties)
I label intervals rather than single points

Detailed routing: intervals

Path search on intervals

I goal-oriented Dijkstra
I label intervals rather than single vertices
I vertices are not stored anywhere!
I efficient data structure for managing intervals and labels
I algorithm can be viewed again as a special case of

GENERALIZEDDIJKSTRA.

Theorem
We can find a shortest path in O((d + 1)l log l) time, where d is
the detour (actual length minus lower bound), and l is the number
of intervals in the search space.
Hetzel [1995,1998], Peyer Rautenbach, V. [2007], Humpola [2009]

Labeling intervals: old future cost (`1-distance), layer 1

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

Labeling intervals: old future cost (`1-distance), layer 2

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

Labeling intervals: old future cost (`1-distance), layer 3

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

Labeling intervals: new future cost, layer 1

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

Labeling intervals: new future cost, layer 2

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

Labeling intervals: new future cost, layer 3

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

Labeling intervals: old versus new future cost
1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880

>6880

1

Detailed routing: summary

I huge instances, complicated rules
I model routing space by track graph
I the track graph can have more than 1011 vertices
I route nets sequentially, subnets by a variant of Dijkstra’s

algorithm
I restrict path search to small areas (computed by global

routing)
I goal-oriented Dijkstra: use accurate future cost
I label intervals rather than single points
I special algorithms for local pin access
I postprocessing for same-net errors, design for

manufacturability

