Detailed Routing
Jens Vygen

Hangzhou, March 2009

Detailed routing: example

| . l
1
His 1 Ll

Routing: task
Instance:

» a number of routing planes
» a set of nets, where each net is a set of pins (terminals)

» a set of shapes for each pin, each of which is a rectangle in a
routing plane

» a set of blockage shapes

» rules that tell when two shapes are connected and when they
are separated

» rules with forbidden patterns (for manufacturability)
» timing constraints, information on power, crosstalk, yield, ...

Task:

Compute a feasible routing, i.e. a set of wire shapes for each net,
connecting the pins, and separate from blockages and shapes of
other nets

» such that all timing constraints are met
» and the (estimated) power consumption is minimized.

Detailed routing: example
— 00 (M1)

| I

|] 1N

;r\i\ii_l \

T
ii
|

e
L
i |

1] I I .

- - | =

=54 - i | o
] | e [
= LIRS
- | — WIRE
]! i [|| || [| Iy | svecrro
- L] L] L] L] M [B VRien Ne

Detailed routing: example

— 01 (V1)
u
u
IIII.. I.II !Il - I.
u u u u
u . u u . u [u u
u u
u u u
u
. o
u : u - u (= ll. - .. AEED u
u u [u
u
u
[
u/m nm u u u WiRe
I?EEE’EQDNET

Detailed routing: example

— 03 (V2)
L
u u u u
L L
L L L L L
L
L L] L L
L L
L L
L L
u
L L
L
L L
. u] el |
L L LIl L L
L
L] L L
L]
L] L L L L
L L
L L L
L
L
L L]
L]
u u WIRE
u SUBGRID
n u MARKED NET

Detailed routing: example

— 04 (M3)

IIIIIIIIIIIIIIIIM w;

8 e e e) e e e e e e e e e e e e |

LT D[] [e ——————— | | | | | | [[[[]]]

——

|

e

i

;

l

HEEEN Hw w

|

|

|

i

_

e) e e e) e e e e e |

I

|

e e e e e e e e e O I O A
|

I

NN
e) e e e e e e e e e

|

8 e e e) e e e e e e e e e |

LLP P[] e [][[[][] LLL LT | e—
e e e e e o e e B

e e)) e e e |

m | [Pl WHHHHH
5) e e e e e e |

WIRE
SUBGRID
MARKED NET

Modelling the routing space by a graph

» Define parallel tracks for each plane, alternatingly
horizontally and vertically.
» Distance of tracks is (at least) the minimum space required
by a wire
» Via positions where tracks of adjacent planes meet
» Via positions induce vertices on both incident layers
Then a Steiner tree in this graph corresponds to a feasible
routing, except that
» pin shapes may not contain any vertex (need special
algorithms for local pin access)
» same-net errors may occur (but not often, can usually be
repaired at the end)
» in some cases the only feasible routing may be globally
off-track (but this is a rare exception)
» special care is needed for wider wires that occupy more than
one track (but this can be done)

Routing: simplified view

Find vertex-disjoint Steiner trees connecting given terminal sets in
this track graph.

Order of magnitude: 10 million Steiner trees in a graph with 100
billion vertices!

— Even linear-time algorithms are too slow!

How to cope with the instance sizes

» route nets sequentially (in a good order)
» compose Steiner trees of paths

» main subroutine: find a shortest path (with respect to good
edge weights)

» if no path exists, rip-up and re-route

» The order of the (sub)nets should depend on an estimate
how close we are to blocking the (sub)nets

» The weights should reflect waste of routing space and
electrical capacitance and resistance. Edges on track should
be cheapest, orthogonal edges and vias more expensive

The key subroutine: path search

» find a shortest path in a subgraph of the weighted track graph

» restrict each path search to a relatively small area (computed
by global routing)

» goal-oriented search
» more later...

Restrict path search to global routing region (corridor)

Goal-oriented search, future cost, feasible potentials

Given a digraph G with arc costs ¢ : E(G) — R;.

A function 7 : V(G) — R is called a feasible potential if the
reduced cost c;(e) := c¢(e) + n(v) — m(w) is nonnegative for each
e=(v,w) e E(G).

Let s,t € V(G). We look for a shortest s-t-path w.r.t. c.

Observation: A shortest s-t-path w.r.t. ¢ is a shortest s-t-path
w.r.t. ¢, and vice versa.

Suppose L(x) is a lower bound on the distance from x to ¢, and
L(v) < c(e) + L(w) for each e = (v, w) € E(G).

Then 7(x) := —L(x) is a feasible potential.

L(x) is also called the future cost at x.

How to compute £

Set L(v) to the length of a shortest path from v to T in (G, ¢’)
where G is a supergraph of G and c’(e) < c(e) for all e € E(G).

Choose (G, ¢’) such that £ is a good lower bound which can be
computed fast.
A lower bound is good if it is close to the actual distance.

» (q-distance to target. But: the target is not necessarily a
point. Need a Voronoi diagram first (O(nlog n)
preprocessing), then constant time.

» Choose (G, ¢’) as a suitable subgraph of the track graph
(with a simple structure) and, at the same time, supergraph
of the current instance (details follow). Let G’ be defined by
the global routing corridor.

Future cost: example

Dijkstra without future cost

o0
q —0—C—P
SO OO OO
O)
OO o000
OO0 OHO D
OO 000000
6660660600

Dijkstra with future cost (¢1-distance)

P
/

Comparison with and without future cost

o0
Q OO
6O OO OG0
) O
S A S B SP B P RSP A S5 A S))
0O OHO)
O OO OO OO
OO0 660060

24 points labelled

50 points labelled

Generalizing Dijkstra’s algorithm

Given

» adigraph G with edge lengths ¢ : E(G) — R

» aset T C V(G)

» sets Vi, Vo,..., V, C V(G)and 1 < k </ such that

T=Ug Viand V(G) = U, Vi.
we want to determine
d(V) = diSt(G7C)(V, T)

forall v € V(G).
We label the sets V; instead of single vertices, by functions
di: Vi — Ry U{oo} with dj(u) > d(u) forall u € V.
Initially, di(u) :==0for1 <i< kand u € V;, and d;(u) := oo for
k <i</landu e V. Then we repeatedly apply:

UPDATE(V;, V;):
Replace dj(u) by
min{dj(u), min{d,-(v) + diSt(G[\/iU\/j],c)(uy V) ve V,}}
forallue V,.

Generalizing Dijkstra’s algorithm: optimality conditions

Theorem
Suppose that we have functions di, s, . .., d; with:

» di(u)=0foralluec Viandi=1,... k.

» di(u) >d(u) forallue Viandi=1,...,1I.

» Foreachedgee= (v,w) e E(G)andeachic {1,...,1}
with w € V; there exists aj c {1,...,I} withv € V; and
di(v) < c(e) + di(w).

Thend(v) =min{di(v):i=1,...,I,ve V;} forallv € V(G).
Proof: Suppose that d(v) < min{dj(v):j=1,...,, ve Vj};
choose v such that d(v) is minimum; in case of ties the shortest

v-T-path P shall have minimum number of edges. Let w be the
neighbour of v on P.

By the choice of v, there exists an i € {1,...,/} with w € V; and
c((v,w)) + di(w) = c((v, w)) + d(u) = d(v) <min{dj(v) : j =
1,...,1, v e V;}. This is a contradiction. O

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA

Setdj(u):=0for1 <i<kanducV,
Set dj(u) = fork <i</landue V.
SetQ:={1,...,k} and key(i) :=0fori=1,... k.
WHILE Q # () DO:
Choose i € Q with key(/) minimum. Set Q := Q\ {i}.
PROJECT(/).

PROJECT(/):

Choose J C {1,...,/}\ {i} such that J;c,, V; contains all
neighbours of V;.

FORj € J:
UPDATE(V}, V)).
IF d;(v) changes for some v € V,
THEN let key(j) be the minimum changed d;(v), v € V,,

and set Q := QU {j}.

GENERALIZED DIJKSTRA: optimality

Theorem
This algorithm produces functions dy, do, . . ., d; satisfying the
optimality conditions.
Proof: The statement is obvious for the first two conditions.
Therefore, suppose, for a contradiction, that there exists an edge
e={u,v} € E(G)andanindex i € {1,...,/} such that
di(v) > dj(u) +c(e) forall j e {1,..., 1} with v e V,.
Then v ¢ V. Since d;(u) < oo, we have i € Q at some moment.
Consider the last time that the algorithm executes PROJECT(/).
Note that d; does not change after this moment.
As v is a neighbour of u € V;, there is some j € J with v € V; and
UPDATE(V;, V;) ensures

dj(v) < di(u) + distgvuvy.c) (U, V) < dj(u) + c(e).
As d;(v) never increases, this is a contradiction. O

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA: running time

» If we implement Q by a Fibonacci heap, the running time is is
O(n(log ! + p)), where p is the time for one PROJECT
operation and n is the number of iterations.

» Since every i € {1,..., k} enters Q exactly once and every
ie{k+1,...,1} enters Q at most |V;| times, we only have
the bound n < k + Z§:k+1 |Vi| in general.

» If Vq,..., V,is a partition of V(G) into one-element sets, then
this is the standard algorithm with running time
O(m—+ nlogn), where n=|V(G)| and m = |E(G)|.

» Much faster for special graphs, in particular grid graphs

» Sorting Vi.1,..., V;such that ¢((u, v)) > 0 for
(u,v) € E(G)N((Vi x (Vi\ Vi) U((Vi\ V) x Vj))and i <
gives thateach i € {k+1,...,/} enters Q at most once for
each key.

Modeling the routing space by a grid graph

Let Gy be the infinite 3-dimensional grid graph, i.e. V(Gy) = Z3,
and

E(Go) = {{(x,y,2),(X', ¥, Z)} : Ix=X| + |y —y'| + |z — 2| = 1}.
We assume that for each z € Z there are three constants
Cz1,Cz2,Cz € R such that

C({(Xaya Z)v (X+ 17ya Z)}) = Cz1,
c({(x,y,2),(x,y +1,2)}) = cz2, and
C({(vaaz)a (X7y72+ 1)}) = CZ

for all x, y € Z, This reflects higher costs for vias and jogs and in

access planes.
We look for shortest paths w.r.t. ¢ in induced subgraphs of Gp.

GENERALIZED DIJKSTRA on grids

Let G be an induced subgraph of the infinite 3-dimensional grid.
Write V(G) as the union of rectangles Vs, ..., V, such that each
has O(log /) neighbours.

Assume that the number of different edge weights is constant.
Then:

» the number of iterations is O(/)
» the functions d; can be stored in constant space
» an UPDATE operation takes constant time

» the cardinality of the set J to be considered in the PROJECT
operation is O(log /)
= Running time of O(/log /)

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA for accurate future costs

» Consider a supergraph G’ of the graph G representing the
routing area, such that G’ can be decomposed into few
rectangles (and in which distances are not much shorter).

» Apply GENERALIZED DIJKSTRA to G/, labeling these
rectangles.

> As d(v) = dist(g) (v, T) < dist(g)(v, T), the numbers d(v)
serve as future cost for shortest path computation in G.

Example for accurate future costs

four layers

alternating preference directions

we look for a path from a (green) source to a (red) target
edge cost 1 in preference direction

edge cost 4 in orthogonal direction

vV vV v v Y

edge cost 7 for vias

Example: local routing grid

pref. dir.

Example: global routing corrdidors

pref. dir.

Example: Hanan grid

pref .dir.

X

Example: GENERALIZED DIJKSTRA

pref. dir.

R

8 30

X 11 15 23
11
/7 9/11 10/ 19
7
7 Z 15
) 77 77T 7T T 777
i
[T 7 7 7 7 7 7 77
) 7 7 7 7 7777
7 77 7 7 7
I 7777777
j

e
= NESR BN
he

74 g?/zs

2) A A A A 4

Example: GENERALIZED DIJKSTRA

pref. dir.

29
X 25 29 37
25
9/21 25/ 25 9/33
21
21 21 29
22
Y 18 22 30
18
1w/ 15/18 26/ %
14
14 14 22
15
X 11 15 23
11
/7 9/11 15/ 19
7
7 Z 15
8
Y

4 8 30
4

Example: old (¢4-distance) versus new future cost

pref. dir.
old: 48
new: 48 -
29
X 25 29 37 57
25
9/21 25/ 25 §/33
21
21 21 29
old: 49
new: 63 4
2
Y 18 22 30 64
18
w14 . /18 2/ 26
14
14 14 22
15
X 11 15 23
11
/7 9/11 15/ 19
7
7 7 15
8
Y

4 8 30 78
4
0 4 26
16, 26
/ 0 old: 36

0 0 22 new: 94

Example: how to compute the future cost

g -

37 (52) 57

W 4
-/ Ve

30 (84) 64

63 =min (34+ 15x4,
68+ 5x4,
84+ 4x1,
53+15x1+7,
63+ 5x1+7,
52+ 4x1+7)

The key subroutine: path search

v

find a shortest path in a subgraph of the weighted track graph

restrict each path search to a relatively small area (computed
by global routing)

goal-oriented search

represent the routing area by a set of intervals (with constant
properties)
label intervals rather than single points

v

v

v

v

Detailed routing: intervals

Path search on intervals

» goal-oriented Dijkstra

» label intervals rather than single vertices

» vertices are not stored anywhere!

» efficient data structure for managing intervals and labels
| 4

algorithm can be viewed again as a special case of
GENERALIZEDDIJKSTRA.

Theorem

We can find a shortest path in O((d + 1)/log /) time, where d is
the detour (actual length minus lower bound), and | is the number
of intervals in the search space.

Hetzel [1995,1998], Peyer Rautenbach, V. [2007], Humpola [2009]

Labeling intervals: old future cost (¢4-distance), layer 1

1260
= 2100
B0 3080
3780
EE@ EA EEE E-r-n-n @-a-m=g=g=8 [H B-a-s 0 0 0 § J-e=-n E-a=-m=-g=a= 4340
H memen -ENEEEE-EEEN NEEED 4640
HE EEEEE=N B E=a=n=n=n
e e @ E]] — 5000
sea@ W h E Esm 5200
e mme 5540
5700
o oo — 5840
[m] oo — 6020
6140
—— DD DDDDDDDDDD 6260
e e B 6360
el @ e 0l 6480
— mem
. - = 6540
6660
. 6780
= 6880

>6880

Labeling intervals: old future cost (¢4-distance), layer 2

D OO0 OO0 DD DD2DD0DDD D0 0 Q0000
© O VO FHOOFOFAF OO0 F O 0 0 0
AN = OO O N0 =AM O I~ 0 0
AN M F 000 0 10 © O O O O O O O OO

A

m
=
=
R B TR TR BT E B |
=
-l

s G A T =0 D B - -

R R == O
P U T O TR B PO TR B O
Eme- @
] =
= L
B R P == R - == BN = BN E
el OeE-m Ee [EEEEEImE B R
L L
] -
— O IIEE = [] cpmpe BRTE TR R
— O DEED @ I D (] mcem = m e

Labeling intervals: old future cost (¢4-distance), layer 3

1260

2100

3080

o wEeeE BB m 3780
Enpm m mm = 4340
anm =] m] 4640
anm =] m] 5000
anm =] m] 5200
D m =] o 5540
Epm m 5700
anm m 5840
anm =] 6020
Epm = 6140
anm =] 6260
6360

6480

6540

= = 6660

= 6780

= 6880

B >6880

Labeling intervals: new future cost, layer 1

1260
2100
3080
— 3780

HEE e] e]l e— e— 4340
Oooom 4640

= 5000
m m
Ihl 5200
5540
5700
m 5840
= 6020
6140
—— DDDDDDDDDDD 6260
I = 6360
6480
6540
6660
6780
6880
6880

Labeling intervals: new future cost, layer 2

1260
2100
3080
3780
4340
4640
5000
5200

1

:

]

I
5540
5700
5840
6020
6140

6260
6360
6480
6540
6660
6780
6880
>6880

jmfman e e [l —
il [l]

Labeling intervals: new future cost, layer 3

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880
>6880

Labeling intervals: old versus new future cost

N 1260
s 2100
g 3080
H 3780
4340 B] mEmm
4640
5000
5200
H 5540 o
. 5700 H
.] 5840 0
H 6020 H
. 6140 .
2 6260 =
6360

EE

Detailed routing: summary

vy Vv v VvVv

vV v v Vv

huge instances, complicated rules
model routing space by track graph
the track graph can have more than 10'" vertices

route nets sequentially, subnets by a variant of Dijkstra’s
algorithm

restrict path search to small areas (computed by global
routing)

goal-oriented Dijkstra: use accurate future cost
label intervals rather than single points
special algorithms for local pin access

postprocessing for same-net errors, design for
manufacturability

