Detailed Routing

Jens Vygen

Hangzhou, March 2009

Routing: task Instance:

- a number of routing planes
- a set of nets, where each net is a set of pins (terminals)
- a set of shapes for each pin, each of which is a rectangle in a routing plane
- a set of blockage shapes
- rules that tell when two shapes are connected and when they are separated
- rules with forbidden patterns (for manufacturability)
- timing constraints, information on power, crosstalk, yield, ...

Task:

Compute a feasible routing, i.e. a set of wire shapes for each net, connecting the pins, and separate from blockages and shapes of other nets

- such that all timing constraints are met
- ▶ and the (estimated) power consumption is minimized.

Modelling the routing space by a graph

- Define parallel tracks for each plane, alternatingly horizontally and vertically.
- Distance of tracks is (at least) the minimum space required by a wire
- Via positions where tracks of adjacent planes meet
- Via positions induce vertices on both incident layers
- Then a Steiner tree in this graph corresponds to a feasible routing, except that
 - pin shapes may not contain any vertex (need special algorithms for local pin access)
 - same-net errors may occur (but not often, can usually be repaired at the end)
 - in some cases the only feasible routing may be globally off-track (but this is a rare exception)
 - special care is needed for wider wires that occupy more than one track (but this can be done)

Find vertex-disjoint Steiner trees connecting given terminal sets in this track graph.

Order of magnitude: 10 million Steiner trees in a graph with 100 billion vertices!

 \rightarrow Even linear-time algorithms are too slow!

How to cope with the instance sizes

- route nets sequentially (in a good order)
- compose Steiner trees of paths
- main subroutine: find a shortest path (with respect to good edge weights)
- if no path exists, rip-up and re-route
- The order of the (sub)nets should depend on an estimate how close we are to blocking the (sub)nets
- The weights should reflect waste of routing space and electrical capacitance and resistance. Edges on track should be cheapest, orthogonal edges and vias more expensive

The key subroutine: path search

- find a shortest path in a subgraph of the weighted track graph
- restrict each path search to a relatively small area (computed by global routing)
- goal-oriented search
- more later...

Restrict path search to global routing region (corridor)

Goal-oriented search, future cost, feasible potentials

Given a digraph *G* with arc costs $c : E(G) \rightarrow \mathbb{R}_+$.

A function $\pi : V(G) \to \mathbb{R}$ is called a feasible potential if the reduced cost $c_{\pi}(e) := c(e) + \pi(v) - \pi(w)$ is nonnegative for each $e = (v, w) \in E(G)$.

Let $s, t \in V(G)$. We look for a shortest *s*-*t*-path w.r.t. *c*.

Observation: A shortest *s*-*t*-path w.r.t. *c* is a shortest *s*-*t*-path w.r.t. c_{π} , and vice versa.

Suppose $\mathcal{L}(x)$ is a lower bound on the distance from x to t, and $\mathcal{L}(v) \leq c(e) + \mathcal{L}(w)$ for each $e = (v, w) \in E(G)$. Then $\pi(x) := -\mathcal{L}(x)$ is a feasible potential. $\mathcal{L}(x)$ is also called the future cost at x.

How to compute $\ensuremath{\mathcal{L}}$

Set $\mathcal{L}(v)$ to the length of a shortest path from v to T in (G', c') where G' is a supergraph of G and $c'(e) \leq c(e)$ for all $e \in E(G)$.

Choose (G', c') such that \mathcal{L} is a good lower bound which can be computed fast.

A lower bound is good if it is close to the actual distance.

- *l*₁-distance to target. But: the target is not necessarily a point. Need a Voronoi diagram first (*O*(*n* log *n*) preprocessing), then constant time.
- Choose (G', c') as a suitable subgraph of the track graph (with a simple structure) and, at the same time, supergraph of the current instance (details follow). Let G' be defined by the global routing corridor.

Future cost: example

Dijkstra without future cost

Dijkstra with future cost (ℓ_1 -distance)

Comparison with and without future cost

50 points labelled

24 points labelled

Generalizing Dijkstra's algorithm

Given

- ▶ a digraph *G* with edge lengths $c : E(G) \rightarrow \mathbb{R}_+$
- a set $T \subseteq V(G)$
- ▶ sets $V_1, V_2, \ldots, V_l \subseteq V(G)$ and $1 \le k \le l$ such that $T = \bigcup_{i=1}^k V_i$ and $V(G) = \bigcup_{i=1}^l V_i$.

we want to determine

$$d(v) := \operatorname{dist}_{(G,c)}(v,T)$$

for all $v \in V(G)$. We label the sets V_i instead of single vertices, by functions $d_i : V_i \to \mathbb{R}_+ \cup \{\infty\}$ with $d_i(u) \ge d(u)$ for all $u \in V_i$. Initially, $d_i(u) := 0$ for $1 \le i \le k$ and $u \in V_i$, and $d_i(u) := \infty$ for $k < i \le l$ and $u \in V_i$. Then we repeatedly apply:

UPDATE
$$(V_i, V_j)$$
:
Replace $d_j(u)$ by
 $\min\{d_j(u), \min\{d_i(v) + \operatorname{dist}_{(G[V_i \cup V_j], c)}(u, v) : v \in V_i\}\}$
for all $u \in V_j$.

Generalizing Dijkstra's algorithm: optimality conditions

Theorem

Suppose that we have functions d_1, d_2, \ldots, d_l with:

- $d_i(u) = 0$ for all $u \in V_i$ and i = 1, ..., k.
- $d_i(u) \ge d(u)$ for all $u \in V_i$ and $i = 1, \ldots, l$.
- For each edge e = (v, w) ∈ E(G) and each i ∈ {1,..., l} with w ∈ V_i there exists a j ∈ {1,..., l} with v ∈ V_j and d_j(v) ≤ c(e) + d_i(w).

Then $d(v) = \min\{d_i(v) : i = 1, \dots, l, v \in V_i\}$ for all $v \in V(G)$.

Proof: Suppose that $d(v) < \min\{d_j(v) : j = 1, ..., l, v \in V_j\}$; choose *v* such that d(v) is minimum; in case of ties the shortest *v*-*T*-path *P* shall have minimum number of edges. Let *w* be the neighbour of *v* on *P*.

By the choice of v, there exists an $i \in \{1, ..., I\}$ with $w \in V_i$ and $c((v, w)) + d_i(w) = c((v, w)) + d(u) = d(v) < \min\{d_j(v) : j = 1, ..., I, v \in V_i\}$. This is a contradiction.

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA

```
Set d_i(u) := 0 for 1 \le i \le k and u \in V_i.
Set d_i(u) := \infty for k < i \le l and u \in V_i.
Set Q := \{1, \dots, k\} and \text{key}(i) := 0 for i = 1, \dots, k.
WHILE Q \ne \emptyset DO:
Choose i \in Q with \text{key}(i) minimum. Set Q := Q \setminus \{i\}.
PROJECT(i).
```

PROJECT(i):

Choose $J \subseteq \{1, ..., l\} \setminus \{i\}$ such that $\bigcup_{j \in \{i\} \cup J} V_j$ contains all neighbours of V_i .

FOR $j \in J$:

UPDATE (V_i, V_j) .

IF $d_i(v)$ changes for some $v \in V_i$,

THEN let key(j) be the minimum changed $d_j(v)$, $v \in V_j$, and set $Q := Q \cup \{j\}$.

GENERALIZED DIJKSTRA: optimality

Theorem

This algorithm produces functions d_1, d_2, \ldots, d_l satisfying the optimality conditions.

Proof: The statement is obvious for the first two conditions. Therefore, suppose, for a contradiction, that there exists an edge $e = \{u, v\} \in E(G)$ and an index $i \in \{1, ..., I\}$ such that $d_i(v) > d_i(u) + c(e)$ for all $j \in \{1, ..., I\}$ with $v \in V_i$.

Then $v \notin V_i$. Since $d_i(u) < \infty$, we have $i \in Q$ at some moment.

Consider the last time that the algorithm executes PROJECT(i). Note that d_i does not change after this moment.

As v is a neighbour of $u \in V_i$, there is some $j \in J$ with $v \in V_j$ and UPDATE(V_i, V_i) ensures

 $d_j(v) \leq d_i(u) + \operatorname{dist}_{(G[V_i \cup V_j],c)}(u,v) \leq d_i(u) + c(e).$ As $d_j(v)$ never increases, this is a contradiction.

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA: running time

- If we implement Q by a Fibonacci heap, the running time is is O(n(log l + p)), where p is the time for one PROJECT operation and n is the number of iterations.
- ▶ Since every $i \in \{1, ..., k\}$ enters *Q* exactly once and every $i \in \{k + 1, ..., l\}$ enters *Q* at most $|V_i|$ times, we only have the bound $n \le k + \sum_{i=k+1}^{l} |V_i|$ in general.
- If V₁,..., V_l is a partition of V(G) into one-element sets, then this is the standard algorithm with running time O(m + n log n), where n = |V(G)| and m = |E(G)|.
- Much faster for special graphs, in particular grid graphs
- Sorting V_{k+1},..., V_l such that c((u, v)) > 0 for (u, v) ∈ E(G) ∩ ((V_i × (V_j \ V_i)) ∪ ((V_i \ V_j) × V_j)) and i < j gives that each i ∈ {k + 1,..., l} enters Q at most once for each key.

Modeling the routing space by a grid graph

Let G_0 be the infinite 3-dimensional grid graph, i.e. $V(G_0) = \mathbb{Z}^3$, and

$$\begin{split} & E(G_0) = \{\{(x,y,z), (x',y',z')\} : |x-x'| + |y-y'| + |z-z'| = 1\}. \\ & \text{We assume that for each } z \in \mathbb{Z} \text{ there are three constants} \\ & c_{z,1}, c_{z,2}, c_z \in \mathbb{R} \text{ such that} \end{split}$$

$$c(\{(x, y, z), (x + 1, y, z)\}) = c_{z,1},$$

$$c(\{(x, y, z), (x, y + 1, z)\}) = c_{z,2}, \text{ and }$$

$$c(\{(x, y, z), (x, y, z + 1)\}) = c_z$$

for all $x, y \in \mathbb{Z}$, This reflects higher costs for vias and jogs and in access planes.

We look for shortest paths w.r.t. c in induced subgraphs of G_0 .

GENERALIZED DIJKSTRA on grids

Let *G* be an induced subgraph of the infinite 3-dimensional grid. Write V(G) as the union of rectangles V_1, \ldots, V_l such that each has $O(\log l)$ neighbours.

Assume that the number of different edge weights is constant. Then:

- the number of iterations is O(I)
- the functions d_i can be stored in constant space
- an UPDATE operation takes constant time
- the cardinality of the set J to be considered in the PROJECT operation is O(log I)
- \Rightarrow Running time of $O(l \log l)$

(Peyer, Rautenbach, V. [2006])

GENERALIZED DIJKSTRA for accurate future costs

- Consider a supergraph G' of the graph G representing the routing area, such that G' can be decomposed into few rectangles (and in which distances are not much shorter).
- Apply GENERALIZED DIJKSTRA to G', labeling these rectangles.
- As d(v) = dist_(G',c)(v, T) ≤ dist_(G,c)(v, T), the numbers d(v) serve as future cost for shortest path computation in G.

Example for accurate future costs

- four layers
- alternating preference directions
- we look for a path from a (green) source to a (red) target
- edge cost 1 in preference direction
- edge cost 4 in orthogonal direction
- edge cost 7 for vias

$\underset{{}_{\text{pref. dir.}}}{\text{Example: local routing grid}}$

Example: global routing corrdidors

Example: Hanan grid

Example: GENERALIZED DIJKSTRA

Example: GENERALIZED DIJKSTRA

Example: old (ℓ_1 -distance) versus new future cost

$$63 = \min (34 + 15 x 4,
68 + 5 x 4,
84 + 4 x 1,
53 + 15 x 1 + 7,
63 + 5 x 1 + 7,
52 + 4 x 1 + 7)$$

The key subroutine: path search

- find a shortest path in a subgraph of the weighted track graph
- restrict each path search to a relatively small area (computed by global routing)
- goal-oriented search
- represent the routing area by a set of intervals (with constant properties)
- label intervals rather than single points

Detailed routing: intervals

Path search on intervals

- goal-oriented Dijkstra
- label intervals rather than single vertices
- vertices are not stored anywhere!
- efficient data structure for managing intervals and labels
- algorithm can be viewed again as a special case of GENERALIZEDDIJKSTRA.

Theorem

We can find a shortest path in $O((d + 1) I \log I)$ time, where d is the detour (actual length minus lower bound), and I is the number of intervals in the search space.

Hetzel [1995,1998], Peyer Rautenbach, V. [2007], Humpola [2009]

Labeling intervals: old future cost (ℓ_1 -distance), layer 1

1260
2100
2100
3080
3780
4340
4640
4040
5000
5200
 5540
5700
5940
5840
6020
 6140
6260
6360
6490
0480
6540
6660
 6780
6880
0000
>6880

Labeling intervals: old future cost (ℓ_1 -distance), layer 2

	••••••	1260
		2100
		3080
		3780
	.	4340
		 4640
		 5000
		5200
IIIII TTIII		5200
		 5540
		 5700
		 5840
		 6020
		 6140
		 6260
1111 BBAAB	. 944444	 6260
***** 88779		 0300
	_111111	 6480
		 6540
		 6660
	l <u>.</u>	 6780
		 6880
		 >6880
		 >0000

Labeling intervals: old future cost (ℓ_1 -distance), layer 3

1260
2100
3080
 2780
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
0140
6260
6360
 6480
 6540
6660
6780
6880
>6880

Labeling intervals: new future cost, layer 1

	1260
	2100
	3080
	3780
	4340
	4640
	5000
	5200
	5540
	5700
	5840
	6020
	6140
	6260
	6360
	6480
	6540
	6660
	6780
	6880
	\6880
	~0000

Labeling intervals: new future cost, layer 2

	1260
	2100
	3080
	3780
	4340
	4640
	5000
	5200
	5540
	5700
	5840
	6020
	6140
= ••	6260
■	6360
	6480
	6540
	6660
	6780
	6880
	>6880

Labeling intervals: new future cost, layer 3

1260
2100
3080
 3780
4340
4640
5000
 5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
 6880
>6880
>0000

Labeling intervals: old versus new future cost

Detailed routing: summary

- huge instances, complicated rules
- model routing space by track graph
- ▶ the track graph can have more than 10¹¹ vertices
- route nets sequentially, subnets by a variant of Dijkstra's algorithm
- restrict path search to small areas (computed by global routing)
- goal-oriented Dijkstra: use accurate future cost
- label intervals rather than single points
- special algorithms for local pin access
- postprocessing for same-net errors, design for manufacturability