Detailed Routing

Jens Vygen

Hangzhou, March 2009

Detailed routing: example

Routing: task

Instance:

- a number of routing planes
- a set of nets, where each net is a set of pins (terminals)
- a set of shapes for each pin, each of which is a rectangle in a routing plane
- a set of blockage shapes
- rules that tell when two shapes are connected and when they are separated
- rules with forbidden patterns (for manufacturability)
- timing constraints, information on power, crosstalk, yield, ... Task:
Compute a feasible routing, i.e. a set of wire shapes for each net, connecting the pins, and separate from blockages and shapes of other nets
- such that all timing constraints are met
- and the (estimated) power consumption is minimized.

Detailed routing: example

Detailed routing: example

Detailed routing: example

Detailed routing: example

Detailed routing: example

04 (M3)

Modelling the routing space by a graph

- Define parallel tracks for each plane, alternatingly horizontally and vertically.
- Distance of tracks is (at least) the minimum space required by a wire
- Via positions where tracks of adjacent planes meet
- Via positions induce vertices on both incident layers

Then a Steiner tree in this graph corresponds to a feasible routing, except that

- pin shapes may not contain any vertex (need special algorithms for local pin access)
- same-net errors may occur (but not often, can usually be repaired at the end)
- in some cases the only feasible routing may be globally off-track (but this is a rare exception)
- special care is needed for wider wires that occupy more than one track (but this can be done)

Routing: simplified view

Find vertex-disjoint Steiner trees connecting given terminal sets in this track graph.

Order of magnitude: 10 million Steiner trees in a graph with 100 billion vertices!
\rightarrow Even linear-time algorithms are too slow!

How to cope with the instance sizes

- route nets sequentially (in a good order)
- compose Steiner trees of paths
- main subroutine: find a shortest path (with respect to good edge weights)
- if no path exists, rip-up and re-route
- The order of the (sub)nets should depend on an estimate how close we are to blocking the (sub)nets
- The weights should reflect waste of routing space and electrical capacitance and resistance. Edges on track should be cheapest, orthogonal edges and vias more expensive

The key subroutine: path search

- find a shortest path in a subgraph of the weighted track graph
- restrict each path search to a relatively small area (computed by global routing)
- goal-oriented search
- more later...

Restrict path search to global routing region (corridor)

Goal-oriented search, future cost, feasible potentials

Given a digraph G with arc costs $c: E(G) \rightarrow \mathbb{R}_{+}$.
A function $\pi: V(G) \rightarrow \mathbb{R}$ is called a feasible potential if the reduced cost $c_{\pi}(e):=c(e)+\pi(v)-\pi(w)$ is nonnegative for each $e=(v, w) \in E(G)$.

Let $s, t \in V(G)$. We look for a shortest s - t-path w.r.t. c.
Observation: A shortest s - t-path w.r.t. c is a shortest $s-t$-path w.r.t. c_{π}, and vice versa.

Suppose $\mathcal{L}(x)$ is a lower bound on the distance from x to t, and $\mathcal{L}(v) \leq c(e)+\mathcal{L}(w)$ for each $e=(v, w) \in E(G)$.
Then $\pi(x):=-\mathcal{L}(x)$ is a feasible potential. $\mathcal{L}(x)$ is also called the future cost at x.

How to compute \mathcal{L}

Set $\mathcal{L}(v)$ to the length of a shortest path from v to T in $\left(G^{\prime}, c^{\prime}\right)$ where G^{\prime} is a supergraph of G and $c^{\prime}(e) \leq c(e)$ for all $e \in E(G)$.

Choose $\left(G^{\prime}, c^{\prime}\right)$ such that \mathcal{L} is a good lower bound which can be computed fast.
A lower bound is good if it is close to the actual distance.

- ℓ_{1}-distance to target. But: the target is not necessarily a point. Need a Voronoi diagram first ($O(n \log n$) preprocessing), then constant time.
- Choose $\left(G^{\prime}, c^{\prime}\right)$ as a suitable subgraph of the track graph (with a simple structure) and, at the same time, supergraph of the current instance (details follow). Let G^{\prime} be defined by the global routing corridor.

Future cost: example

Dijkstra without future cost

Dijkstra with future cost (ℓ_{1}-distance)

Comparison with and without future cost

50 points labelled
24 points labelled

Generalizing Dijkstra's algorithm

Given

- a digraph G with edge lengths $c: E(G) \rightarrow \mathbb{R}_{+}$
- a set $T \subseteq V(G)$
- sets $V_{1}, V_{2}, \ldots, V_{I} \subseteq V(G)$ and $1 \leq k \leq I$ such that

$$
T=\bigcup_{i=1}^{k} V_{i} \text { and } V(G)=\bigcup_{i=1}^{l} V_{i}
$$

we want to determine

$$
d(v):=\operatorname{dist}_{(G, c)}(v, T)
$$

for all $v \in V(G)$.
We label the sets V_{i} instead of single vertices, by functions $d_{i}: V_{i} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ with $d_{i}(u) \geq d(u)$ for all $u \in V_{i}$. Initially, $d_{i}(u):=0$ for $1 \leq i \leq k$ and $u \in V_{i}$, and $d_{i}(u):=\infty$ for $k<i \leq I$ and $u \in V_{i}$. Then we repeatedly apply:
$\operatorname{UPdate}\left(V_{i}, V_{j}\right)$:
Replace $d_{j}(u)$ by $\min \left\{d_{j}(u), \min \left\{d_{i}(v)+\operatorname{dist}_{\left(G\left[V_{i} \cup V_{j}\right], c\right)}(u, v): v \in V_{i}\right\}\right\}$ for all $u \in V_{j}$.

Generalizing Dijkstra's algorithm: optimality conditions

Theorem
Suppose that we have functions $d_{1}, d_{2}, \ldots, d_{l}$ with:

- $d_{i}(u)=0$ for all $u \in V_{i}$ and $i=1, \ldots, k$.
- $d_{i}(u) \geq d(u)$ for all $u \in V_{i}$ and $i=1, \ldots, l$.
- For each edge $e=(v, w) \in E(G)$ and each $i \in\{1, \ldots, l\}$ with $w \in V_{i}$ there exists $a j \in\{1, \ldots, I\}$ with $v \in V_{j}$ and $d_{j}(v) \leq c(e)+d_{i}(w)$.
Then $d(v)=\min \left\{d_{i}(v): i=1, \ldots, l, v \in V_{i}\right\}$ for all $v \in V(G)$.
Proof: Suppose that $d(v)<\min \left\{d_{j}(v): j=1, \ldots, l, v \in V_{j}\right\}$; choose v such that $d(v)$ is minimum; in case of ties the shortest v - T-path P shall have minimum number of edges. Let w be the neighbour of v on P.
By the choice of v, there exists an $i \in\{1, \ldots, l\}$ with $w \in V_{i}$ and $c((v, w))+d_{i}(w)=c((v, w))+d(u)=d(v)<\min \left\{d_{j}(v): j=\right.$ $\left.1, \ldots, l, v \in V_{j}\right\}$. This is a contradiction.
(Peyer, Rautenbach, V. [2006])

Generalized Dijkstra

Set $d_{i}(u):=0$ for $1 \leq i \leq k$ and $u \in V_{i}$.
Set $d_{i}(u):=\infty$ for $k<i \leq I$ and $u \in V_{i}$.
Set $Q:=\{1, \ldots, k\}$ and $\operatorname{key}(i):=0$ for $i=1, \ldots, k$.
WHILE $Q \neq \emptyset$ DO:
Choose $i \in Q$ with $\operatorname{key}(i)$ minimum. Set $Q:=Q \backslash\{i\}$.
Project(i).
Project(i):
Choose $J \subseteq\{1, \ldots, I\} \backslash\{i\}$ such that $\bigcup_{j \in\{i\} \cup J} V_{j}$ contains all neighbours of V_{i}.
FOR $j \in J$:
$\operatorname{Update}\left(V_{i}, V_{j}\right)$.
IF $d_{j}(v)$ changes for some $v \in V_{j}$,
THEN let key (j) be the minimum changed $d_{j}(v), v \in V_{j}$, and set $Q:=Q \cup\{j\}$.

Generalized Diskstra: optimality

Theorem

This algorithm produces functions $d_{1}, d_{2}, \ldots, d_{l}$ satisfying the optimality conditions.
Proof: The statement is obvious for the first two conditions.
Therefore, suppose, for a contradiction, that there exists an edge $e=\{u, v\} \in E(G)$ and an index $i \in\{1, \ldots, /\}$ such that $d_{j}(v)>d_{i}(u)+c(e)$ for all $j \in\{1, \ldots, l\}$ with $v \in V_{j}$.
Then $v \notin V_{i}$. Since $d_{i}(u)<\infty$, we have $i \in Q$ at some moment.
Consider the last time that the algorithm executes Project(i). Note that d_{i} does not change after this moment.
As v is a neighbour of $u \in V_{i}$, there is some $j \in J$ with $v \in V_{j}$ and $\operatorname{Update}\left(V_{i}, V_{j}\right)$ ensures

$$
d_{j}(v) \leq d_{i}(u)+\operatorname{dist}_{G\left[V_{i} \cup V_{j}, c\right)}(u, v) \leq d_{i}(u)+c(e) .
$$

As $d_{j}(v)$ never increases, this is a contradiction.
(Peyer, Rautenbach, V. [2006])

Generalized Diskstra: running time

- If we implement Q by a Fibonacci heap, the running time is is $O(n(\log I+p))$, where p is the time for one PROJECT operation and n is the number of iterations.
- Since every $i \in\{1, \ldots, k\}$ enters Q exactly once and every $i \in\{k+1, \ldots, l\}$ enters Q at most $\left|V_{i}\right|$ times, we only have the bound $n \leq k+\sum_{i=k+1}^{l}\left|V_{i}\right|$ in general.
- If V_{1}, \ldots, V_{l} is a partition of $V(G)$ into one-element sets, then this is the standard algorithm with running time $O(m+n \log n)$, where $n=|V(G)|$ and $m=|E(G)|$.
- Much faster for special graphs, in particular grid graphs
- Sorting V_{k+1}, \ldots, V_{l} such that $c((u, v))>0$ for $(u, v) \in E(G) \cap\left(\left(V_{i} \times\left(V_{j} \backslash V_{i}\right)\right) \cup\left(\left(V_{i} \backslash V_{j}\right) \times V_{j}\right)\right)$ and $i<j$ gives that each $i \in\{k+1, \ldots, I\}$ enters Q at most once for each key.

Modeling the routing space by a grid graph

Let G_{0} be the infinite 3-dimensional grid graph, i.e. $V\left(G_{0}\right)=\mathbb{Z}^{3}$, and
$E\left(G_{0}\right)=\left\{\left\{(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}:\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|=1\right\}$. We assume that for each $z \in \mathbb{Z}$ there are three constants $c_{z, 1}, c_{z, 2}, c_{z} \in \mathbb{R}$ such that

$$
\begin{aligned}
& c(\{(x, y, z),(x+1, y, z)\})=c_{z, 1}, \\
& c(\{(x, y, z),(x, y+1, z)\})=c_{z, 2}, \text { and } \\
& c(\{(x, y, z),(x, y, z+1)\})=c_{z}
\end{aligned}
$$

for all $x, y \in \mathbb{Z}$, This reflects higher costs for vias and jogs and in access planes.
We look for shortest paths w.r.t. c in induced subgraphs of G_{0}.

Generalized Diskstra on grids

Let G be an induced subgraph of the infinite 3-dimensional grid. Write $V(G)$ as the union of rectangles V_{1}, \ldots, V_{l} such that each has $O(\log /)$ neighbours.
Assume that the number of different edge weights is constant.
Then:

- the number of iterations is $O(I)$
- the functions d_{i} can be stored in constant space
- an UPDATE operation takes constant time
- the cardinality of the set J to be considered in the PROJECT operation is $O(\log I)$
\Rightarrow Running time of $O(I \log /)$
(Peyer, Rautenbach, V. [2006])

Generalized Diskstra for accurate future costs

- Consider a supergraph G^{\prime} of the graph G representing the routing area, such that G^{\prime} can be decomposed into few rectangles (and in which distances are not much shorter).
- Apply Generalized Dijkstra to G^{\prime}, labeling these rectangles.
- As $d(v)=\operatorname{dist}_{\left(G^{\prime}, c\right)}(v, T) \leq \operatorname{dist}_{(G, c)}(v, T)$, the numbers $d(v)$ serve as future cost for shortest path computation in G.

Example for accurate future costs

- four layers
- alternating preference directions
- we look for a path from a (green) source to a (red) target
- edge cost 1 in preference direction
- edge cost 4 in orthogonal direction
- edge cost 7 for vias

Example: local routing grid
 pretaif:

Y

X

Y

Example: global routing corrdidors pref. dir.

Example: Hanan grid pref.dir.

Example: Generalized DiJkstra pref. dir.

Example: Generalized Dijkstra pref. dir.

Example: old (ℓ_{1}-distance) versus new future cost pref. dir.

Example: how to compute the future cost

$$
\begin{aligned}
63=\min (& 34+15 \times 4, \\
& 68+5 \times 4, \\
& 84+4 \times 1, \\
& 53+15 \times 1+7, \\
& 63+5 \times 1+7, \\
& 52+4 \times 1+7)
\end{aligned}
$$

The key subroutine: path search

- find a shortest path in a subgraph of the weighted track graph
- restrict each path search to a relatively small area (computed by global routing)
- goal-oriented search
- represent the routing area by a set of intervals (with constant properties)
- label intervals rather than single points

Detailed routing: intervals

(

Path search on intervals

- goal-oriented Dijkstra
- label intervals rather than single vertices
- vertices are not stored anywhere!
- efficient data structure for managing intervals and labels
- algorithm can be viewed again as a special case of GeneralizedDijkstra.

Theorem
We can find a shortest path in $O((d+1) / \log /)$ time, where d is the detour (actual length minus lower bound), and I is the number of intervals in the search space.
Hetzel [1995,1998], Peyer Rautenbach, V. [2007], Humpola [2009]

Labeling intervals: old future cost (ℓ_{1}-distance), layer 1

1260

2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880
>6880

Labeling intervals: old future cost (ℓ_{1}-distance), layer 2

 -

 enirorirlo
 내표1

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880
>6880

Labeling intervals: old future cost (ℓ_{1}-distance), layer 3

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880
>6880

Labeling intervals: new future cost, layer 1

| |
| :--- | :--- | :--- | :--- |
| 10 |

1260
2100
3080
3780
4340
4640
5000
5200
5540
5700
5840
6020
6140
6260
6360
6480
6540
6660
6780
6880
>6880

Labeling intervals: new future cost, layer 2

Labeling intervals: new future cost, layer 3

1260
2100
3080
3780
4340
4640
5000

1

- $\times 2$
\qquad
\qquad
\qquad
\square
\qquad
-

\qquad

Labeling intervals: old versus new future cost

Detailed routing: summary

- huge instances, complicated rules
- model routing space by track graph
- the track graph can have more than 10^{11} vertices
- route nets sequentially, subnets by a variant of Dijkstra's algorithm
- restrict path search to small areas (computed by global routing)
- goal-oriented Dijkstra: use accurate future cost
- label intervals rather than single points
- special algorithms for local pin access
- postprocessing for same-net errors, design for manufacturability

