Steiner Trees in Chip Design

Jens Vygen

Hangzhou, March 2009

Introduction

- A digital chip contains millions of gates.
- Each gate produces a signal (0 or 1) once every cycle.
- The output signal of a gate is input to other gates.
- For each gate we need a network that distributes the signal from the root (output of this gate) to the given set of sinks.
- In the simplest case the network is a Steiner tree.
- A set of pins that need to be connected is called a net.

Constraints and objectives

A feasible Steiner tree for a net (=set of pins)

- consists of horizontal and vertical wires on the wiring planes
- and vias connecting wires on different planes
- such that the network of wires, vias and pins is a tree,
- each wire and via has at least a certain minimum width and sufficient distance to blockages and other wires and vias,
- and obeys certain (local) ground rules (for manufacturing).

A Steiner tree is good if it

- consumes little area, avoids congested regions,
- has small electrical capacitance,
- allows for fast signal transmitting from the source to the (critical) sinks,
- can be manufactured well (small yield loss).

Steiner trees at various design stages

- Everywhere:
- shortest rectilinear Steiner trees
- Placement:
- estimates (hypergraph models)
- Timing optimization:
- RC-optimal trees
- buffered trees
- Clock tree design:
- balanced trees
- clustering sinks with bounds on Steiner tree lengths
- Routing:
- packing Steiner trees
- fast search for paths and Steiner trees in huge grids

Characteristics of the instances

- Third dimension very small, can often be neglected
- Number of terminals mostly small, but some very large instances (with millions of terminals)
- Completely blocked regions do not occur often
- Billions of instances must be solved

Shortest rectilinear Steiner trees

- NP-hard (Garey, Johnson [1977])
- approximation scheme (Arora [1998])
- theorems of Hanan [1966] and Hwang [1976]
- exact algorithm for up to 10000 terminals: GeoSteiner (Warme, Winter, Zachariasen [2000])
- fast exact algorithm for up to 9 terminals: FLUTE (Chu, Wong [2008])
- fast approximation algorithm: modification of Prim's algorithm
- many heuristics ...

FLUTE (Chu, Wong [2008])

- Let $I=\left\{\left(x_{1}, y_{\pi_{1}}\right), \ldots,\left(x_{n}, y_{\pi_{n}}\right)\right\}$ with $\left\{\pi_{1}, \ldots, \pi_{n}\right\}=\{1, \ldots, n\}$, $x_{1} \leq \cdots \leq x_{n}$, and $y_{1} \leq \cdots \leq y_{n}$.
- For each permutation π there is a finite set of Steiner trees that are part of the Hanan grid.

- For such a tree T let
$\chi(T):=\left(X_{1}, \ldots, X_{n-1}, Y_{1}, \ldots, Y_{n-1}\right)$, where X_{j} is the number of edges $\left\{\left(x_{j}, y\right),\left(x_{j+1}, y\right)\right\}$ for some y, and Y_{j} is defined analogously $(j=1, \ldots, n-1)$.
- Store all minimal vectors $\chi(T)$ in a table.

For $n=9$ there are about 10^{7} such vectors.

- By simple reductions and symmetry this can be reduced significantly and the vector with the smallest scalar product with $\left(x_{2}-x_{1}, \ldots, x_{n}-x_{n-1}, y_{2}-y_{1}, \ldots, y_{n}-y_{n-1}\right)$ can be found very fast (for $n \leq 9$).

Modification of Prim's algorithm

- Start with a single terminal $s, T=(\{s\}, \emptyset)$.
- For a terminal $t \notin V(T)$ and an edge $\{v, w\} \in E(T)$ let $d(t, v, w):=$ $\min _{z \in \mathbb{R}^{2}}\left(\|t-z\|_{1}+\|v-z\|_{1}+\|w-z\|_{1}-\|v-w\|_{1}\right)$.
- Insert t via z into $\{v, w\}$ where the minimum (over all $t, v, w, z)$ is attained.
- Iterate until all terminals are inserted.

Theorem (folklore)
The resulting Steiner tree is at most 1.5 times longer than optimal.

Proof of performance guarantee

Theorem (folklore)

The resulting Steiner tree is at most 1.5 times longer than optimal.

Proof

- Let T_{i} be the forest T after i iterations of the algorithm $(i=1, \ldots, n-1)$.
- Let Z_{0} be a minimum spanning tree for the terminals.
- For $i=1, \ldots, n-1$ let Z_{i} be a tree with $V\left(Z_{i}\right)=V\left(T_{i}\right)$ and $E\left(T_{i}\right) \subseteq E\left(Z_{i}\right) \subseteq E\left(T_{i}\right) \cup\left(E\left(Z_{i-1} \cap E\left(Z_{0}\right)\right)\right.$.
- Then $c\left(E\left(Z_{i-1}\right)\right) \geq c\left(E\left(Z_{i}\right)\right)$ for $i=1, \ldots, n-1$.
- Note that $Z_{n-1}=T_{n-1}$ and $c\left(E\left(Z_{0}\right)\right)$ is at most $\frac{3}{2}$ times the cost of an optimum Steiner tree.

Number of instances and running times

\# terminals	\# instances	total runtime
2	3726352	11.095 sec
3	598625	2.303 sec
4	294251	1.282 sec
5	145700	0.741 sec
6	75444	0.577 sec
7	43516	0.394 sec
8	27528	0.301 sec
9	26779	0.464 sec
10	19972	0.282 sec
≤ 100	130358	8.500 sec
≤ 1000	1392	1.917 sec
≤ 10000	53	5.015 sec
≤ 100000	21	11.806 sec
≤ 1000000	3	34.749 sec

Instances up to 9 terminals solved optimally. Other trees $<2 \%$ longer on average. Total length $<0.1 \%$ longer than optimum.

Placement: modeling hyperedges (multi-terminal nets)

Let N be a finite set of points in the plane. Define net models:

- Steiner (N) := length of an optimum rectilinear Steiner tree for N. This is expected to be close to the actual routing length.
- $\operatorname{BB}(N):=\max _{p \in N} x(p)-\min _{p \in N} x(p)+\max _{p \in N} y(p)-\min _{p \in N} y(p)$.
- $\operatorname{MST}(N):=$ length of a minimum spanning tree for N, where edge weights are rectilinear distances.
- CLique $(N):=\frac{1}{|N|-1} \sum_{p, p^{\prime} \in N}\left(\left|x(p)-x\left(p^{\prime}\right)\right|+\left|y(p)-y\left(p^{\prime}\right)\right|\right)$.
$-\operatorname{STAR}(N):=\min _{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}} \sum_{p \in N}\left(\left|x(p)-x^{\prime}\right|+\left|y(p)-y^{\prime}\right|\right)$.

Worst case ratios of various net models

Entry (r, c) is $\sup \frac{c(N)}{r(N)}$ over all point sets N with $|N|=n \in \mathbb{N}$.

	BB	STEINER	MST	CLIQUE	STAR
BB	1	1	1	1	1
STEI- NER	$\begin{gathered} \frac{n-1}{\lceil\sqrt{n}\rceil+\left\lceil\frac{n}{\lceil\sqrt{n}\rceil}\right\rceil-2} \\ \frac{[\sqrt{n-2}]}{2}+\frac{3}{4} \\ \hline \end{gathered}$	1	1	$\begin{cases}\frac{9}{8} & (n=4) \\ 1 & (n \neq 4)\end{cases}$	1
MST	$\begin{gathered} \left\lfloor\frac{\sqrt{2 n-1}+1}{2}\right\rfloor \\ \cdots \\ \frac{\sqrt{n}}{\sqrt{2}}+\frac{3}{2} \end{gathered}$	$\frac{3}{2}$	1	$\begin{gathered} 1+\Theta\left(\frac{1}{n}\right) \\ \ldots \\ \frac{3}{2} \end{gathered}$	$\begin{cases}\frac{4}{3} & (n=3) \\ \frac{3}{2} & (n=4) \\ \frac{6}{5} & (n=5) \\ 1 & (n>5)\end{cases}$
CLIQUE	$\frac{\left\lceil\frac{n}{2} \backslash \backslash \frac{n}{2}\right\rfloor}{n-1}$	$\frac{\left\lceil\frac{n}{2} \backslash \backslash \frac{n}{2}\right\rfloor}{n-1}$	$\frac{\left\lceil\frac{n}{2} \backslash \backslash \frac{n}{2}\right\rfloor}{n-1}$	1	1
STAR	$\left\lfloor\frac{n}{2}\right\rfloor$	$\left\lfloor\frac{n}{2}\right\rfloor$	$\left\lfloor\frac{n}{2}\right\rfloor$	$\frac{n-1}{\left\lceil\frac{1}{2}\right\rceil}$	1

(Hwang [1976], Brenner, V. [2001], Rautenbach [2004])

Net models in placement

- STEINER is best, but $N P$-hard to compute
- all others can be computed in $O(n)$ time (BB, STAR) or in $O(n \log n)$ time (MST, CLIQUE).
- in quadratic placement:

$$
\min \sum_{e=\{v, w\} \in E(G)}\left(\left(x_{v}-x_{w}\right)^{2}+\left(y_{v}-y_{w}\right)^{2}\right)
$$

CLIQUE and STAR are used

- BB is often used as a simple measure. As most nets have few pins, this is not too bad.

Clique is the best topology-independent net model

Theorem
For $n \geq 2$, a connected graph G with $\{1, \ldots, n\} \subseteq V(G)$, $c: E(G) \rightarrow \mathbb{R}_{>0}$, and $p:\{1, \ldots, n\} \rightarrow \mathbb{R}^{2}$ let $\mathcal{M}_{(G, c)}(p):=$
$\min \left\{\sum_{e=\{v, w\} \in E(G)} c(e)\|p(v)-p(w)\|_{1} \mid p: V(G) \backslash\{1, \ldots, n\} \rightarrow \mathbb{R}^{2}\right\}$.
Then the ratio of supremum and infimum of
$\left\{\mathcal{M}_{(G, c)}(p) \mid p:\{1, \ldots, n\} \rightarrow \mathbb{R}^{2}, \operatorname{STEINER}(\{p(1), \ldots, p(n)\})=1\right\}$
is minimum for the complete graph K_{n} with unit weights.
(Brenner, V. [2001])

Steiner trees in timing optimization

Instance:

- a root $r \in \mathbb{R}^{2}$,
- a finite set $S \subset \mathbb{R}^{2}$ of sinks,
- for each sink $s \in S$ a maximal feasible delay $d_{\text {max }}(s)$

Task: Compute

- an arborescence A rooted at r whose set of sinks is S, and
- $\psi: V(A) \backslash(\{r\} \cup S) \rightarrow \mathbb{R}^{2}$,
such that $t(r):=\min \left\{0, \min _{s \in S}\left(d_{\max }(s)-\operatorname{delay}_{(A, \psi)}(r, s)\right)\right\}$ is maximum, and the total length is minimum.

Unbuffered ("RC-optimal") trees

Standard delay model:

- capacitance c_{e} and resistance r_{e} of an edge e proportional to its length
- downstream capacitance C_{v} of a vertex v given for sinks and recursively defined by $C_{v}:=\sum_{e=(v, w) \in \delta^{+}(v)}\left(c_{e}+C_{w}\right)$.
- resistance R of source given.
- $\operatorname{delay}_{(A, \psi)}(r, s)=R C_{r}+\sum_{e=(v, w) \in A_{[r, s]}} r_{e}\left(\frac{1}{2} c_{e}+C_{w}\right)$, where $A_{[r, s]}$ is the r-s-path in A.
(Elmore [1948])
- NP-hard (Boese, Kahng, McCoy, Robin [1994])
- in general no optimal solution is part of the Hanan grid.
- Kadodi [1999] and Peyer [2000] gave algorithms for $n \leq 4$.
- no finite algorithm known in general.

Buffered trees: using inverters as repeaters

Buffered trees: an inverter tree

Fast and short repeater tree topologies

New delay model:
$\operatorname{delay}_{(A, \psi)}(r, s)=$

$$
\sum_{(v, w) \in A[r, s]}\left(\operatorname{dist}(v, w)+\left(\left|\delta^{+}(v)\right|-1\right)\right),
$$

where dist denotes ℓ_{1}-distance.

Fact 1: Huffman coding yields optimum latency, but with length $\sum_{s \in S} \operatorname{dist}(r, s)$.
Fact 2: Starting with an isolated root and successively inserting a closest sink is a $\frac{3}{2}$-approximation for the Steiner tree problem.

Fast and short repeater tree topologies

Proposed Algorithm:

- Sort the sinks by $d_{\text {max }}(s)-\operatorname{dist}(r, s)$, in nondecreasing order.
- Start by connecting the first sink to the root.
- Then successively insert the sinks in the above order. Insert s into edge $e \in E(A)$ such that $\min \left\{d_{\max }\left(s^{\prime}\right)-\operatorname{delay}_{A}\left(r, s^{\prime}\right): s^{\prime} \in V(A)\right\}$ is maximum, or the total length is minimum, or a linear combination.

Theorem

If all distances are zero, this also results in the optimum, namely $t(r)=-\left\lceil\log _{2}\left(\sum_{s \in S} 2^{-d_{\max }(s)}\right)\right\rceil$.
Experimental results show that in average, these trees are 0.66\% longer or 0.22 ps worse than the optimum.
(Bartoschek, Held, Rautenbach, V. [2006])

Example of a real inverter tree

blue: source, green: 19 sinks, orange: 9 inverters colored lines: nets

Distributing a signal to many terminals: sink clustering

blue: sinks (terminals, clients)
red: drivers (facilities)

Sink clustering problem

Instance:

- metric space (V, c),
- finite set $\mathcal{D} \subseteq V$ (terminals/clients),
- demands $d: \mathcal{D} \rightarrow \mathbb{R}_{+}$,
- facility opening cost $f \in \mathbb{R}_{+}$,
- capacity $u \in \mathbb{R}_{+}$.

Task: Find a partition $\mathcal{D}=D_{1} \dot{\cup} \cdots \dot{\cup} D_{k}$ and Steiner trees T_{i} for $D_{i}(i=1, \ldots, k)$ with

$$
c\left(E\left(T_{i}\right)\right)+d\left(D_{i}\right) \leq u
$$

for $i=1, \ldots, k$ such that

$$
\sum_{i=1}^{k} c\left(E\left(T_{i}\right)\right)+k \cdot f
$$

is minimum.

Approximation algorithms

Proposition

- There is no (1.5- ϵ)-approximation algorithm (for any $\epsilon>0$) unless $P=N P$.
- There is no $(2-\epsilon)$-approximation algorithm (for any $\epsilon>0$) for any class of metrics where the Steiner tree problem cannot be solved exactly in polynomial time.

Theorem

- There is a polynomial-time 4.099-approximation algorithm for general metric spaces.
- There is an $O(n \log n)$-time 4-approximation algorithm for the rectilinear plane.
(Maßberg and V. [2005])

Extensions

- wires must avoid routing blockages
- repeaters cannot be placed on macros
- thus, unbuffered trees may cross most macros, but not by a long distance
- different wiring planes, with different electrical properties, should be considered
- routing congestion should be avoided
- placement space is limited, too

Steiner trees in routing

- Now compute the exact layout for each net
- Wire shapes must follow certain rules for manufacturability
- Wires for different nets must be apart from each other
- Take previously computed information (e.g., layer assignment) into account
- Observe timing constraints, optimize power consumption or yield

Steiner trees in routing: general approach

- Split task into global and detailed routing
- Global routing includes global optimization, packing Steiner trees
- Detailed routing considers one net at a time
- model routing space by a kind of 3-dimensional grid graph ("track graph", with currently up to 10^{11} vertices)
- vertex and edge weights
- Steiner tree algorithms (like Dreyfus-Wagner): too slow
- compose Steiner trees of paths
- Dijkstra in standard form: too slow
- very fast variants of Dijkstra's algorithm are used here

Summary

- Steiner trees ubiquious in chip design
- minimum length Steiner trees is just one subproblem
- different objectives in placement, timing optimization, routing
- early estimates should match final realization
- many instances
- most, but not all, have only few terminals

