
Steiner Trees in Chip Design

Jens Vygen

Hangzhou, March 2009

Introduction

I A digital chip contains millions of gates.
I Each gate produces a signal (0 or 1) once every cycle.
I The output signal of a gate is input to other gates.
I For each gate we need a network that distributes the signal

from the root (output of this gate) to the given set of sinks.
I In the simplest case the network is a Steiner tree.
I A set of pins that need to be connected is called a net.

Constraints and objectives

A feasible Steiner tree for a net (=set of pins)
I consists of horizontal and vertical wires on the wiring planes
I and vias connecting wires on different planes
I such that the network of wires, vias and pins is a tree,
I each wire and via has at least a certain minimum width and

sufficient distance to blockages and other wires and vias,
I and obeys certain (local) ground rules (for manufacturing).

A Steiner tree is good if it
I consumes little area, avoids congested regions,
I has small electrical capacitance,
I allows for fast signal transmitting from the source to the

(critical) sinks,
I can be manufactured well (small yield loss).

Steiner trees at various design stages

I Everywhere:
I shortest rectilinear Steiner trees

I Placement:
I estimates (hypergraph models)

I Timing optimization:
I RC-optimal trees
I buffered trees

I Clock tree design:
I balanced trees
I clustering sinks with bounds on Steiner tree lengths

I Routing:
I packing Steiner trees
I fast search for paths and Steiner trees in huge grids

Characteristics of the instances

I Third dimension very small, can often be neglected
I Number of terminals mostly small, but some very large

instances (with millions of terminals)
I Completely blocked regions do not occur often
I Billions of instances must be solved

Shortest rectilinear Steiner trees

I NP-hard (Garey, Johnson [1977])
I approximation scheme (Arora [1998])
I theorems of Hanan [1966] and Hwang [1976]
I exact algorithm for up to 10000 terminals:

GeoSteiner (Warme, Winter, Zachariasen [2000])
I fast exact algorithm for up to 9 terminals:

FLUTE (Chu, Wong [2008])
I fast approximation algorithm: modification of Prim’s algorithm
I many heuristics ...

FLUTE (Chu, Wong [2008])

��

��

��

��
��

1
1
1
1

1 2 2 1
y

y

y
y

y
x x x x x1 2 3 4 5

5

4

3

2

1

I Let I = {(x1, yπ1), . . . , (xn, yπn)}
with {π1, . . . , πn} = {1, . . . , n},
x1 ≤ · · · ≤ xn, and y1 ≤ · · · ≤ yn.

I For each permutation π
there is a finite set of Steiner trees
that are part of the Hanan grid.

I For such a tree T let
χ(T) := (X1, . . . ,Xn−1,Y1, . . . ,Yn−1),
where Xj is the number of edges {(xj , y), (xj+1, y)} for some y ,
and Yj is defined analogously (j = 1, . . . , n − 1).

I Store all minimal vectors χ(T) in a table.
For n = 9 there are about 107 such vectors.

I By simple reductions and symmetry this can be reduced
significantly and the vector with the smallest scalar product
with (x2 − x1, . . . , xn − xn−1, y2 − y1, . . . , yn − yn−1) can be
found very fast (for n ≤ 9).

Modification of Prim’s algorithm

I Start with a single terminal s, T = ({s}, ∅).
I For a terminal t /∈ V (T) and an edge {v ,w} ∈ E (T) let

d(t, v ,w) :=
minz∈R2(||t − z ||1 + ||v − z ||1 + ||w − z ||1 − ||v − w ||1).

I Insert t via z into {v ,w} where the minimum (over all
t, v ,w , z) is attained.

I Iterate until all terminals are inserted.

��

��

��

Theorem (folklore)
The resulting Steiner tree is at most 1.5 times longer than optimal.

Proof of performance guarantee ��

��

��

Theorem (folklore)
The resulting Steiner tree is at most 1.5 times longer than optimal.

Proof
I Let Ti be the forest T after i iterations of the algorithm

(i = 1, . . . , n − 1).
I Let Z0 be a minimum spanning tree for the terminals.
I For i = 1, . . . , n − 1 let Zi be a tree with V (Zi) = V (Ti) and

E (Ti) ⊆ E (Zi) ⊆ E (Ti) ∪ (E (Zi−1 ∩ E (Z0)).
I Then c(E (Zi−1)) ≥ c(E (Zi)) for i = 1, . . . , n − 1.
I Note that Zn−1 = Tn−1 and c(E (Z0)) is at most 3

2 times the
cost of an optimum Steiner tree. �

Number of instances and running times
terminals # instances total runtime

2 3726352 11.095 sec
3 598625 2.303 sec
4 294251 1.282 sec
5 145700 0.741 sec
6 75444 0.577 sec
7 43516 0.394 sec
8 27528 0.301 sec
9 26779 0.464 sec
10 19972 0.282 sec

≤ 100 130358 8.500 sec
≤ 1000 1392 1.917 sec
≤ 10000 53 5.015 sec
≤ 100000 21 11.806 sec
≤ 1000000 3 34.749 sec

Instances up to 9 terminals solved optimally. Other trees < 2%
longer on average. Total length < 0.1% longer than optimum.

Placement: modeling hyperedges (multi-terminal nets)

Let N be a finite set of points in the plane. Define net models:
I steiner(N) := length of an optimum rectilinear Steiner tree

for N. This is expected to be close to the actual routing length.
I bb(N) := max

p∈N
x(p)−min

p∈N
x(p) + max

p∈N
y(p)−min

p∈N
y(p).

I mst(N) := length of a minimum spanning tree for N, where
edge weights are rectilinear distances.

I clique(N) :=
1

|N| − 1
∑

p,p′∈N
(|x(p)−x(p′)|+|y(p)−y(p′)|).

I star(N) := min
(x ′,y ′)∈R2

∑
p∈N

(|x(p)− x ′|+ |y(p)− y ′|).

Worst case ratios of various net models
Entry (r , c) is sup c(N)

r(N) over all point sets N with |N| = n ∈ N.
bb steiner mst clique star

bb 1 1 1 1 1

stei-
ner

n−1
d
√

ne+
⌈

n
d
√

ne

⌉
−2

· · ·
d
√

n−2e
2 + 3

4

1 1
{

9
8 (n = 4)

1 (n 6= 4)
1

mst

b
√
2n−1+1

2 c
· · ·
√

n√
2 + 3

2

3
2 1

1 + Θ
(1

n
)

· · ·
3
2

4
3 (n = 3)
3
2 (n = 4)
6
5 (n = 5)

1 (n > 5)

clique d n
2 eb

n
2 c

n−1
d n
2 eb

n
2 c

n−1
d n
2 eb

n
2 c

n−1 1 1

star b n
2c b n

2c b n
2c

n−1
d n
2 e

1

(Hwang [1976], Brenner, V. [2001], Rautenbach [2004])

Net models in placement

I steiner is best, but NP-hard to compute
I all others can be computed in O(n) time (bb, star)

or in O(n log n) time (mst, clique).
I in quadratic placement:

min
∑

e={v ,w}∈E(G)

(
(xv − xw)2 + (yv − yw)2

)

clique and star are used
I bb is often used as a simple measure. As most nets have few

pins, this is not too bad.

Clique is the best topology-independent net model

Theorem
For n ≥ 2, a connected graph G with {1, . . . , n} ⊆ V (G),
c : E (G)→ R>0, and p : {1, . . . , n} → R2 let
M(G,c)(p) :=

min
{ ∑

e={v ,w}∈E(G)

c(e)||p(v)−p(w)||1

∣∣∣∣∣ p : V (G)\{1, . . . , n} → R2
}
.

Then the ratio of supremum and infimum of{
M(G,c)(p)

∣∣∣p : {1, . . . , n} → R2, steiner({p(1), . . . , p(n)}) = 1
}

is minimum for the complete graph Kn with unit weights.
(Brenner, V. [2001])

Steiner trees in timing optimization

Instance:
I a root r ∈ R2,
I a finite set S ⊂ R2 of sinks,
I for each sink s ∈ S a maximal feasible delay dmax(s)

Task: Compute
I an arborescence A rooted at r whose set of sinks is S, and
I ψ : V (A) \ ({r} ∪ S)→ R2,

such that t(r) := min{0,mins∈S(dmax(s)− delay(A,ψ)(r , s))} is
maximum, and the total length is minimum.

Unbuffered (“RC-optimal”) trees
Standard delay model:

I capacitance ce and resistance re of an edge e proportional to
its length

I downstream capacitance Cv of a vertex v given for sinks and
recursively defined by Cv :=

∑
e=(v ,w)∈δ+(v)(ce + Cw).

I resistance R of source given.
I delay(A,ψ)(r , s) = RCr +

∑
e=(v ,w)∈A[r,s]

re(12ce + Cw),
where A[r ,s] is the r -s-path in A.

(Elmore [1948])

I NP-hard (Boese, Kahng, McCoy, Robin [1994])
I in general no optimal solution is part of the Hanan grid.
I Kadodi [1999] and Peyer [2000] gave algorithms for n ≤ 4.
I no finite algorithm known in general.

Buffered trees: using inverters as repeaters

buffer

inverternand

and

or

nor

Buffered trees: an inverter tree

r2

s21

s22

s23

s24

r1 s11

s12

s13 r3

s31

Fast and short repeater tree topologies

New delay model:
delay(A,ψ)(r , s) =∑

(v ,w)∈A[r ,s]

(
dist(v ,w) + (|δ+(v)|−1)

)
,

where dist denotes `1-distance.

1 2

1

2

Estimated delay (ns)

Ex
ac
t
de
la
y
af
te
r
bu

ffe
rin

g
(n
s)

Fact 1: Huffman coding yields optimum latency, but with length∑
s∈S dist(r , s).

Fact 2: Starting with an isolated root and successively inserting a
closest sink is a 3

2 -approximation for the Steiner tree problem.

Fast and short repeater tree topologies

Proposed Algorithm:
I Sort the sinks by dmax(s)− dist(r , s), in nondecreasing order.
I Start by connecting the first sink to the root.
I Then successively insert the sinks in the above order. Insert s

into edge e ∈ E (A) such that
min{dmax(s ′)− delayA(r , s ′) : s ′ ∈ V (A)} is maximum, or the
total length is minimum, or a linear combination.

Theorem
If all distances are zero, this also results in the optimum, namely
t(r) = −

⌈
log2

(∑
s∈S 2−dmax(s)

)⌉
.

Experimental results show that in average, these trees are 0.66%
longer or 0.22ps worse than the optimum.
(Bartoschek, Held, Rautenbach, V. [2006])

Example of a real inverter tree

blue: source, green: 19 sinks, orange: 9 inverters colored lines: nets

Distributing a signal to many terminals: sink clustering

blue: sinks (terminals, clients) red: drivers (facilities)

Sink clustering problem
Instance:

I metric space (V , c),
I finite set D ⊆ V (terminals/clients),
I demands d : D → R+,
I facility opening cost f ∈ R+,
I capacity u ∈ R+.

Task: Find a partition D = D1∪̇ · · · ∪̇Dk and
Steiner trees Ti for Di (i = 1, . . . , k) with

c(E (Ti)) + d(Di) ≤ u
for i = 1, . . . , k such that

k∑
i=1

c(E (Ti)) + k · f

is minimum.

Approximation algorithms

Proposition
I There is no (1.5− ε)-approximation algorithm (for any ε > 0)

unless P = NP.
I There is no (2− ε)-approximation algorithm (for any ε > 0) for

any class of metrics where the Steiner tree problem cannot be
solved exactly in polynomial time.

Theorem
I There is a polynomial-time 4.099-approximation algorithm for

general metric spaces.
I There is an O(n log n)-time 4-approximation algorithm for the

rectilinear plane.

(Maßberg and V. [2005])

Extensions

I wires must avoid routing blockages
I repeaters cannot be placed on macros
I thus, unbuffered trees may cross most macros, but not by a

long distance
I different wiring planes, with different electrical properties,

should be considered
I routing congestion should be avoided
I placement space is limited, too

Steiner trees in routing

I Now compute the exact layout for each net
I Wire shapes must follow certain rules for manufacturability
I Wires for different nets must be apart from each other
I Take previously computed information (e.g., layer assignment)

into account
I Observe timing constraints, optimize power consumption or

yield

Steiner trees in routing: general approach

I Split task into global and detailed routing
I Global routing includes global optimization, packing Steiner

trees
I Detailed routing considers one net at a time
I model routing space by a kind of 3-dimensional grid graph

(“track graph”, with currently up to 1011 vertices)
I vertex and edge weights
I Steiner tree algorithms (like Dreyfus-Wagner): too slow
I compose Steiner trees of paths
I Dijkstra in standard form: too slow
I very fast variants of Dijkstra’s algorithm are used here

Summary

I Steiner trees ubiquious in chip design
I minimum length Steiner trees is just one subproblem
I different objectives in placement, timing optimization, routing
I early estimates should match final realization
I many instances
I most, but not all, have only few terminals

