
Combinatorial Optimization in Chip Design

Jens Vygen

University of Bonn

EURO 2009

Some recent chips

Simplified design flow

Specification and High-Level Design

Logic Synthesis

Global Placement Timing Optimization

Clocktree Generation

Detailed Placement

Global Routing

Detailed Routing

Final Checks

Production
?

?

?

?

?

?

-
�

?

?

Some key problems

��

�� ��

��

��

��

��

��

����

��

��

��

chip area

I/O ports mo−
duledule

mo−

pins

module

I Place:

Given a chip area and rectangular modules with pins,
and a partition of all pins into nets, place the modules without
overlaps such that the total estimated wirelength is minimum.

I Route:

Connect the pins of each net by wires of a given width
and vias (connecting adjacent routing planes), such that
wires of different nets have at least a given minimum distance.

I Buffer:

Given a source and a set of sinks, distribute the
signal from the source to the sinks by wiring and buffers such
that the latest arrival time at a sink is as early as possible.

Some key problems

��

�� ��

��

��

��

��

��

����

��

��

��

chip area

I/O ports mo−
duledule

mo−

pins

module

I Place: Given a chip area and rectangular modules with pins,
and a partition of all pins into nets, place the modules without
overlaps such that the total estimated wirelength is minimum.

I Route:

Connect the pins of each net by wires of a given width
and vias (connecting adjacent routing planes), such that
wires of different nets have at least a given minimum distance.

I Buffer:

Given a source and a set of sinks, distribute the
signal from the source to the sinks by wiring and buffers such
that the latest arrival time at a sink is as early as possible.

Some key problems

��

�� ��

��

��

��

��

��

��

��

��

��

��

I Place: Given a chip area and rectangular modules with pins,
and a partition of all pins into nets, place the modules without
overlaps such that the total estimated wirelength is minimum.

I Route:

Connect the pins of each net by wires of a given width
and vias (connecting adjacent routing planes), such that
wires of different nets have at least a given minimum distance.

I Buffer:

Given a source and a set of sinks, distribute the
signal from the source to the sinks by wiring and buffers such
that the latest arrival time at a sink is as early as possible.

Some key problems

��

�� ��

��

��

��

��

��

��

��

��

��

��

I Place: Given a chip area and rectangular modules with pins,
and a partition of all pins into nets, place the modules without
overlaps such that the total estimated wirelength is minimum.

I Route: Connect the pins of each net by wires of a given width
and vias (connecting adjacent routing planes), such that
wires of different nets have at least a given minimum distance.

I Buffer:

Given a source and a set of sinks, distribute the
signal from the source to the sinks by wiring and buffers such
that the latest arrival time at a sink is as early as possible.

Some key problems

��

��

����

��

��

��

��

��

��

��

����

I Place: Given a chip area and rectangular modules with pins,
and a partition of all pins into nets, place the modules without
overlaps such that the total estimated wirelength is minimum.

I Route: Connect the pins of each net by wires of a given width
and vias (connecting adjacent routing planes), such that
wires of different nets have at least a given minimum distance.

I Buffer:

Given a source and a set of sinks, distribute the
signal from the source to the sinks by wiring and buffers such
that the latest arrival time at a sink is as early as possible.

Some key problems

��

��

��

��

��

����

��

source
sinks

I Place: Given a chip area and rectangular modules with pins,
and a partition of all pins into nets, place the modules without
overlaps such that the total estimated wirelength is minimum.

I Route: Connect the pins of each net by wires of a given width
and vias (connecting adjacent routing planes), such that
wires of different nets have at least a given minimum distance.

I Buffer: Given a source and a set of sinks, distribute the
signal from the source to the sinks by wiring and buffers such
that the latest arrival time at a sink is as early as possible.

Some key problems

��

��

��

��

��

����

��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

source

I Place: Given a chip area and rectangular modules with pins,
and a partition of all pins into nets, place the modules without
overlaps such that the total estimated wirelength is minimum.

I Route: Connect the pins of each net by wires of a given width
and vias (connecting adjacent routing planes), such that
wires of different nets have at least a given minimum distance.

I Buffer: Given a source and a set of sinks, distribute the
signal from the source to the sinks by wiring and buffers such
that the latest arrival time at a sink is as early as possible.

Challenges

I Very difficult combinatorial problems
(quadratic assignment problem, packing Steiner trees, ...)

I Huge instance sizes
(millions of modules and nets, graphs with billions of vertices)

I New technology generations every two years
(resulting in new problems, constraints and objectives)

We need:
I New theory

(existing results and algorithms often insufficient)
I Very fast algorithms and efficient implementations

(to achieve acceptable turn-around time)
I Fast track from new theory to production-ready software

(months instead of years)

Challenges

I Very difficult combinatorial problems
(quadratic assignment problem, packing Steiner trees, ...)

I Huge instance sizes
(millions of modules and nets, graphs with billions of vertices)

I New technology generations every two years
(resulting in new problems, constraints and objectives)

We need:
I New theory

(existing results and algorithms often insufficient)
I Very fast algorithms and efficient implementations

(to achieve acceptable turn-around time)
I Fast track from new theory to production-ready software

(months instead of years)

Moore’s law: number of transistors per chip

1970 1975 1980 1985 1990 1995 2000 2005 2010
1 000

10 000

100 000

1 000 000

10 000 000

100 000 000

1 000 000 000

10 000 000 000

Moore’s law: number of transistors per chip

1970 1975 1980 1985 1990 1995 2000 2005 2010
1 000

10 000

100 000

1 000 000

10 000 000

100 000 000

1 000 000 000

10 000 000 000

Three examples

I Placement and partitioning
I Routing and resource sharing
I Buffering and sink clustering

Global placement by successive partitioning

All state-of-the-art placement tools use
(variants of) quadratic placement and/or
partitioning for global placement,
followed by legalization
(Brenner, Vygen [2004,2009])

Basic idea:
Successively partition the chip area
into smaller and smaller regions and
assign the set of modules to these regions

Minimize netlength in quadratic placement
Minimize movement in partitioning

A single partitioning step (“multisection”)
Instance: A set X of modules, a size size(x) for each x ∈ X ,
and a set R of (sub)regions, a capacity cap(r) for each r ∈ R.

Task: Find an assignment f : X → R
meeting the capacity constraints∑
x∈X :f (x)=r

size(x) ≤ cap(r) for all r ∈ R

such that the total movement∑
x∈X

d(x , f (x))

is minimum.
Here d denotes, e.g., the `1-distance.

But: this problem is NP-hard (includes PARTITION).

A single partitioning step (“multisection”)
Instance: A set X of modules, a size size(x) for each x ∈ X ,
and a set R of (sub)regions, a capacity cap(r) for each r ∈ R.

Task: Find an assignment f : X → R
meeting the capacity constraints∑
x∈X :f (x)=r

size(x) ≤ cap(r) for all r ∈ R

such that the total movement∑
x∈X

d(x , f (x))

is minimum.
Here d denotes, e.g., the `1-distance.

But: this problem is NP-hard (includes PARTITION).

Fractional relaxation

Find g : X × R → R+

with ∑
r∈R

g(x , r)=size(x) for all x ∈ X

and ∑
x∈X

g(x , r) ≤ cap(r) for all r ∈ R

such that ∑
x∈X

∑
r∈R

g(x , r)d(x , r)

is minimum.

Note: |R| � |X |

Solving the fractional relaxation is sufficient

Theorem (Vygen [2005])
Given any optimum solution to the fractional relaxation,
we can compute another optimum solution in O(|X ||R|2) time
that is integral except for |R| − 1 modules.

Proof:
Define V (G) := R = {1, . . . , |R|} and
E(G) :=

{
{r , r ′} : x ∈ X , g(x , r) > 0, g(x , r ′) > 0,

g(x , r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}
}

.
While G contains a cycle, consider g′ and g′′ that result from g
by moving the same amount of flow around the cycle in each
direction.
Both g′ and g′′ must be optimum solutions.
The number of fractions decreases. Iterate. �

Solving the fractional relaxation is sufficient

Theorem (Vygen [2005])
Given any optimum solution to the fractional relaxation,
we can compute another optimum solution in O(|X ||R|2) time
that is integral except for |R| − 1 modules.

Proof:
Define V (G) := R = {1, . . . , |R|} and
E(G) :=

{
{r , r ′} : x ∈ X , g(x , r) > 0, g(x , r ′) > 0,

g(x , r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}
}

.

While G contains a cycle, consider g′ and g′′ that result from g
by moving the same amount of flow around the cycle in each
direction.
Both g′ and g′′ must be optimum solutions.
The number of fractions decreases. Iterate. �

Solving the fractional relaxation is sufficient

Theorem (Vygen [2005])
Given any optimum solution to the fractional relaxation,
we can compute another optimum solution in O(|X ||R|2) time
that is integral except for |R| − 1 modules.

Proof:
Define V (G) := R = {1, . . . , |R|} and
E(G) :=

{
{r , r ′} : x ∈ X , g(x , r) > 0, g(x , r ′) > 0,

g(x , r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}
}

.
While G contains a cycle, consider g′ and g′′ that result from g
by moving the same amount of flow around the cycle in each
direction.

Both g′ and g′′ must be optimum solutions.
The number of fractions decreases. Iterate. �

Solving the fractional relaxation is sufficient

Theorem (Vygen [2005])
Given any optimum solution to the fractional relaxation,
we can compute another optimum solution in O(|X ||R|2) time
that is integral except for |R| − 1 modules.

Proof:
Define V (G) := R = {1, . . . , |R|} and
E(G) :=

{
{r , r ′} : x ∈ X , g(x , r) > 0, g(x , r ′) > 0,

g(x , r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}
}

.
While G contains a cycle, consider g′ and g′′ that result from g
by moving the same amount of flow around the cycle in each
direction.
Both g′ and g′′ must be optimum solutions.
The number of fractions decreases. Iterate. �

Reformulation as Hitchcock transportation problem
Let G be the digraph with V (G) := X ∪̇R and E(G) := X × R. Let

��

��

��

��

�	

�

�

��

��

��

��

��

��

� ��

X

R

cost(x , r) := d(x,r)
size(x)

for x ∈ X , r ∈ R

b(x) := size(x)

for x ∈ X b(r) := −cap(r)
for r ∈ R

Task: Find an uncapacitated b-flow in G of minimum cost.

Algorithms for the Hitchcock problem
Let n := |X | and k := |R|. We assume n ≥ k .

I O(n log n(n log n + kn)) general transshipment algorithm:
Orlin [1993]

I O(n f (k)) with exponential functions f , inefficient already for
very small k : Dyer [1984], Zemel [1984], Tokuyama, Nakano
[1991], Meggido, Tamir [1993], Matsui [1993]

I O(nk2 log2 n): Tokuyama, Nakano [1992, 1995]

I Structure theorem and
very efficient O(n)-algorithm
for k = 4 and d = `1-distance
(quadrisection): Vygen [2005]

I O(nk2(log n + k log k)):
Brenner [2008]

Algorithms for the Hitchcock problem
Let n := |X | and k := |R|. We assume n ≥ k .

I O(n log n(n log n + kn)) general transshipment algorithm:
Orlin [1993]

I O(n f (k)) with exponential functions f , inefficient already for
very small k : Dyer [1984], Zemel [1984], Tokuyama, Nakano
[1991], Meggido, Tamir [1993], Matsui [1993]

I O(nk2 log2 n): Tokuyama, Nakano [1992, 1995]
I Structure theorem and

very efficient O(n)-algorithm
for k = 4 and d = `1-distance
(quadrisection): Vygen [2005]

I O(nk2(log n + k log k)):
Brenner [2008]

Quadrisection based on quadratic placement

General multisection algorithm

I Sort X = {x1, . . . , xn} such that
size(x1) ≥ size(x2) ≥ · · · ≥ size(xn).

I Start with zero flow.
I For i := 1 to n do:

augment flow by an optimum flow from xi to R
of value size(xi) in the residual graph

transform flow to an almost integral one

I Key idea:
In each iteration we have to consider only O(k2) arcs.

I Overall running time: O(nk2(log n + k log k))

(Brenner [2008])

Multisection example

Three examples

I Placement and partitioning
I Routing and resource sharing
I Buffering and sink clustering

Global routing

Due to its complexity and the
huge instances, routing is split
into global and detailed routing

In each routing plane:
contract regions of
approximately 50x50 tracks
to a single vertex

I compute capacities of edges between adjacent regions
I pack Steiner trees with respect to these edge capacities
I global optimization of objective functions
I Steiner tree yields detailed routing area for each net
I Detailed routing computes the detailed wires in these areas

by a very fast goal-oriented interval-labeling variant of
Dijkstra’s algorithm (Peyer, Rautenbach, Vygen [2009])

Global routing

Due to its complexity and the
huge instances, routing is split
into global and detailed routing

In each routing plane:
contract regions of
approximately 50x50 tracks
to a single vertex

I compute capacities of edges between adjacent regions
I pack Steiner trees with respect to these edge capacities
I global optimization of objective functions
I Steiner tree yields detailed routing area for each net
I Detailed routing computes the detailed wires in these areas

by a very fast goal-oriented interval-labeling variant of
Dijkstra’s algorithm (Peyer, Rautenbach, Vygen [2009])

Global routing

Due to its complexity and the
huge instances, routing is split
into global and detailed routing

In each routing plane:
contract regions of
approximately 50x50 tracks
to a single vertex

I compute capacities of edges between adjacent regions
I pack Steiner trees with respect to these edge capacities
I global optimization of objective functions
I Steiner tree yields detailed routing area for each net
I Detailed routing computes the detailed wires in these areas

by a very fast goal-oriented interval-labeling variant of
Dijkstra’s algorithm (Peyer, Rautenbach, Vygen [2009])

Global routing: classical problem formulation

Instance:
I a global routing (grid) graph with edge capacities
I a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

I the edge capacities are respected,
I and (weighted) netlength is minimum.

Even simple special cases are NP-hard!

Timing, yield, power consumption, etc. ignored!

Special case of two-terminal nets: integer multi-commodity flows

Global routing: classical problem formulation

Instance:
I a global routing (grid) graph with edge capacities
I a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

I the edge capacities are respected,
I and (weighted) netlength is minimum.

Even simple special cases are NP-hard!

Timing, yield, power consumption, etc. ignored!

Special case of two-terminal nets: integer multi-commodity flows

Global routing: classical problem formulation

Instance:
I a global routing (grid) graph with edge capacities
I a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

I the edge capacities are respected,
I and (weighted) netlength is minimum.

Even simple special cases are NP-hard!

Timing, yield, power consumption, etc. ignored!

Special case of two-terminal nets: integer multi-commodity flows

Global routing: classical problem formulation

Instance:
I a global routing (grid) graph with edge capacities
I a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

I the edge capacities are respected,
I and (weighted) netlength is minimum.

Even simple special cases are NP-hard!

Timing, yield, power consumption, etc. ignored!

Special case of two-terminal nets: integer multi-commodity flows

Relaxation: fractional multi-commodity flows

I Can be solved by linear programming (but too slow)
I Combinatorial fully polynomial approximation schemes:

Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein,
Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991],
Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996],
Garg, Könemann [1998], Fleischer [2000], Karakostas [2002]

I If edges have sufficient capacity, randomized rounding yields
an integral solution violating capacity constraints only slightly
(Raghavan, Thompson [1987,1991], Raghavan [1988])

I This can be applied to Steiner trees instead of paths, works
efficiently for large global routing instances (Albrecht [2001])

But: this does not take timing constraints and global objectives
(power consumption, yield) into account.

Relaxation: fractional multi-commodity flows

I Can be solved by linear programming (but too slow)
I Combinatorial fully polynomial approximation schemes:

Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein,
Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991],
Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996],
Garg, Könemann [1998], Fleischer [2000], Karakostas [2002]

I If edges have sufficient capacity, randomized rounding yields
an integral solution violating capacity constraints only slightly
(Raghavan, Thompson [1987,1991], Raghavan [1988])

I This can be applied to Steiner trees instead of paths, works
efficiently for large global routing instances (Albrecht [2001])

But: this does not take timing constraints and global objectives
(power consumption, yield) into account.

Relaxation: fractional multi-commodity flows

I Can be solved by linear programming (but too slow)
I Combinatorial fully polynomial approximation schemes:

Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein,
Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991],
Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996],
Garg, Könemann [1998], Fleischer [2000], Karakostas [2002]

I If edges have sufficient capacity, randomized rounding yields
an integral solution violating capacity constraints only slightly
(Raghavan, Thompson [1987,1991], Raghavan [1988])

I This can be applied to Steiner trees instead of paths, works
efficiently for large global routing instances (Albrecht [2001])

But: this does not take timing constraints and global objectives
(power consumption, yield) into account.

Relaxation: fractional multi-commodity flows

I Can be solved by linear programming (but too slow)
I Combinatorial fully polynomial approximation schemes:

Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein,
Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991],
Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996],
Garg, Könemann [1998], Fleischer [2000], Karakostas [2002]

I If edges have sufficient capacity, randomized rounding yields
an integral solution violating capacity constraints only slightly
(Raghavan, Thompson [1987,1991], Raghavan [1988])

I This can be applied to Steiner trees instead of paths, works
efficiently for large global routing instances (Albrecht [2001])

But: this does not take timing constraints and global objectives
(power consumption, yield) into account.

Constraints and objectives in routing

meet timing constraints

I all signals must arrive in time
I delays depend on electrical capacitances of nets
I capacitance of a net depends on length, width, plane, and

distance to neighbour wires (nonlinearly!)

minimize power consumption

I power consumption roughly proportional to the electrical
capacitance, weighted by switching activity

minimize cost

I minimize number of masks (number of routing planes),
maximize yield, minimize design effort

Constraints and objectives in routing

meet timing constraints

I all signals must arrive in time
I delays depend on electrical capacitances of nets
I capacitance of a net depends on length, width, plane, and

distance to neighbour wires (nonlinearly!)

minimize power consumption

I power consumption roughly proportional to the electrical
capacitance, weighted by switching activity

minimize cost

I minimize number of masks (number of routing planes),
maximize yield, minimize design effort

Constraints and objectives in routing

meet timing constraints

I all signals must arrive in time
I delays depend on electrical capacitances of nets
I capacitance of a net depends on length, width, plane, and

distance to neighbour wires (nonlinearly!)

minimize power consumption

I power consumption roughly proportional to the electrical
capacitance, weighted by switching activity

minimize cost

I minimize number of masks (number of routing planes),
maximize yield, minimize design effort

General idea
Compute for each net n

I a Steiner tree T for n,
I and for each edge of T the amount of space

assigned to net n on edge e.

The contribution of (n,e) to
I power consumption
I wiring yield loss (“critical area”)
I delay

depends on whether e is used
and how much space is assigned.
These functions are convex.

space consumption

power consumption
delay

critical area

assigned space

re
so

ur
ce

co
ns

um
pt

io
n

1 2 3 4 5
0

1

2

3

4

5

General idea
Compute for each net n

I a Steiner tree T for n,
I and for each edge of T the amount of space

assigned to net n on edge e.

The contribution of (n,e) to
I power consumption
I wiring yield loss (“critical area”)
I delay

depends on whether e is used
and how much space is assigned.
These functions are convex.

space consumption

power consumption
delay

critical area

assigned space

re
so

ur
ce

co
ns

um
pt

io
n

1 2 3 4 5
0

1

2

3

4

5

Min-max resource sharing
Instance

I finite sets R of resources and C of customers

I for each c ∈ C:
I a convex set Bc of feasible solutions (a block) and
I a convex resource consumption function gc : Bc → RR+

I given by an oracle function fc : RR+ → Bc with

ω>gc(fc(ω)) ≤ (1 + ε0) inf
b∈Bc

ω>gc(b)

for all ω ∈ RR+ and some ε0 ∈ R+ (a block solver).

Task
I Find a bc ∈ Bc for each c ∈ C with minimum congestion

max
r∈R

∑
c∈C

(gc(bc))r .

Min-max resource sharing
Instance

I finite sets R of resources and C of customers
I for each c ∈ C:

I a convex set Bc of feasible solutions (a block) and
I a convex resource consumption function gc : Bc → RR+

I given by an oracle function fc : RR+ → Bc with

ω>gc(fc(ω)) ≤ (1 + ε0) inf
b∈Bc

ω>gc(b)

for all ω ∈ RR+ and some ε0 ∈ R+ (a block solver).

Task
I Find a bc ∈ Bc for each c ∈ C with minimum congestion

max
r∈R

∑
c∈C

(gc(bc))r .

Min-max resource sharing
Instance

I finite sets R of resources and C of customers
I for each c ∈ C:

I a convex set Bc of feasible solutions (a block) and
I a convex resource consumption function gc : Bc → RR+

I given by an oracle function fc : RR+ → Bc with

ω>gc(fc(ω)) ≤ (1 + ε0) inf
b∈Bc

ω>gc(b)

for all ω ∈ RR+ and some ε0 ∈ R+ (a block solver).

Task
I Find a bc ∈ Bc for each c ∈ C with minimum congestion

max
r∈R

∑
c∈C

(gc(bc))r .

Min-max resource sharing
Instance

I finite sets R of resources and C of customers
I for each c ∈ C:

I a convex set Bc of feasible solutions (a block) and
I a convex resource consumption function gc : Bc → RR+

I given by an oracle function fc : RR+ → Bc with

ω>gc(fc(ω)) ≤ (1 + ε0) inf
b∈Bc

ω>gc(b)

for all ω ∈ RR+ and some ε0 ∈ R+ (a block solver).

Task
I Find a bc ∈ Bc for each c ∈ C with minimum congestion

max
r∈R

∑
c∈C

(gc(bc))r .

Application to global routing

Given a global routing graph (3D grid with millions of vertices).
I Customers = nets (sets of pins; roughly: sets of vertices)
I Resources = edge capacities, power consumption, wiring

yield loss, timing constraints, ...
I Objective function is transformed into a constraint
I Block = (convex hull of) set of Steiner trees for a net, with

space consumption for each edge
I Resource consumption is a nonlinear but convex function

for wiring yield loss, timing, power consumption
I Block solver = approximation algorithm for the Steiner tree

problem in the global routing graph (with edge weights)

Algorithm

Input: An instance of the min-max resource sharing problem.
Output: A convex combination of vectors in Bc for each c ∈ C.

For at most dlog |R| log(1 + ε0)e iterations do:

I Scale all resource consumptions and compute t .
I Initialize all resource prizes: ωr := 1 (r ∈ R).
I For p := 1 to t do:

For each c ∈ C:
Find an approximately cheapest solution fc(ω).
Update prizes: ωr depends exponentially on the

total usage of r ∈ R.
I Take the arithmetic mean of the t solutions.

Main result
Theorem (Müller, Vygen [2008])
Our algorithm computes a (1 + ε0 + ε)-approximate solution
in O(|C|θρ(1 + ε0)

2 log |R|(log |R|+ ε−2(1 + ε0))) time, where
ρ is the “width” (usually 1) and θ is the time for an oracle call,
for any ε > 0.

All previous algorithms (Grigoriadis, Khachiyan [1994,1996],
Khandekar [2004], Jansen, Zhang [2008]) depend at least
linearly on |R| or quadratically on |C|!

Extensions for practical application:
I Most oracle calls not necessary;

reuse previous result if still good enough.
Use lower bounds to decide

I Speed-up heuristics
I Efficient parallelization
I Fast approximate block solvers

Main result
Theorem (Müller, Vygen [2008])
Our algorithm computes a (1 + ε0 + ε)-approximate solution
in O(|C|θρ(1 + ε0)

2 log |R|(log |R|+ ε−2(1 + ε0))) time, where
ρ is the “width” (usually 1) and θ is the time for an oracle call,
for any ε > 0.

All previous algorithms (Grigoriadis, Khachiyan [1994,1996],
Khandekar [2004], Jansen, Zhang [2008]) depend at least
linearly on |R| or quadratically on |C|!

Extensions for practical application:
I Most oracle calls not necessary;

reuse previous result if still good enough.
Use lower bounds to decide

I Speed-up heuristics
I Efficient parallelization
I Fast approximate block solvers

Main result
Theorem (Müller, Vygen [2008])
Our algorithm computes a (1 + ε0 + ε)-approximate solution
in O(|C|θρ(1 + ε0)

2 log |R|(log |R|+ ε−2(1 + ε0))) time, where
ρ is the “width” (usually 1) and θ is the time for an oracle call,
for any ε > 0.

All previous algorithms (Grigoriadis, Khachiyan [1994,1996],
Khandekar [2004], Jansen, Zhang [2008]) depend at least
linearly on |R| or quadratically on |C|!

Extensions for practical application:
I Most oracle calls not necessary;

reuse previous result if still good enough.
Use lower bounds to decide

I Speed-up heuristics
I Efficient parallelization
I Fast approximate block solvers

The algorithm in practice
I In practice, results are much better than theory guarantees.

Usually 10–20 iterations suffice.
I Only few upper bounds are violated by randomized rounding;

these are corrected locally by re-choose, rip-up and re-route.
I Detailed routing can realize the solution well, due to excellent

capacity estimations.
I Small integrality gap and approximate dual solution implies

an infeasibility proof for most infeasible instances.

Running times in practice (h:mm:ss):
Chip |C| |R| 1 thread 4 threads 8 threads
A 478 946 894 377 0:15:49 0:04:25 0:02:37
B 786 368 1 949 245 1:18:13 0:23:09 0:14:29
C 529 966 1 091 339 0:48:40 0:13:19 0:08:20
D 959 163 2 794 166 1:12:26 0:21:00 0:10:49
E 3 590 647 20 392 657 1:16:07 0:23:27 0:15:09
F 5 340 123 23 606 915 0:33:25 0:12:22 0:08:51
G 7 039 094 22 891 145 2:32:48 0:46:12 0:29:08

The algorithm in practice
I In practice, results are much better than theory guarantees.

Usually 10–20 iterations suffice.
I Only few upper bounds are violated by randomized rounding;

these are corrected locally by re-choose, rip-up and re-route.
I Detailed routing can realize the solution well, due to excellent

capacity estimations.
I Small integrality gap and approximate dual solution implies

an infeasibility proof for most infeasible instances.

Running times in practice (h:mm:ss):
Chip |C| |R| 1 thread 4 threads 8 threads
A 478 946 894 377 0:15:49 0:04:25 0:02:37
B 786 368 1 949 245 1:18:13 0:23:09 0:14:29
C 529 966 1 091 339 0:48:40 0:13:19 0:08:20
D 959 163 2 794 166 1:12:26 0:21:00 0:10:49
E 3 590 647 20 392 657 1:16:07 0:23:27 0:15:09
F 5 340 123 23 606 915 0:33:25 0:12:22 0:08:51
G 7 039 094 22 891 145 2:32:48 0:46:12 0:29:08

Congestion map of a difficult instance

CRB_PCL

RESEARCH INSTITUTE FOR DISCRETE MATHEMATICS, UNIVERSITY OF BONN

0%

30%

60%

76%

87%

94%

100%

110%

Critical area after detailed routing
Critical area measures the expected percentage of manufactured
chips that will not work due to opens or shorts

Chip # nets old (netlength) new (yield optimization)
Bill 11 287 0.00833 0.00376 (–54.9%)
Ingo 58 765 0.00505 0.00392 (–22.4%)
Paul 68 277 0.00568 0.00402 (–29.2%)
Lotti 132 986 0.00688 0.00575 (–16.4%)
Hanne 140 413 0.01543 0.01027 (–33.4%)
Elena 421 402 0.03314 0.02966 (–10.5%)
Edgar 772 245 0.10493 0.08586 (–18.2%)
Heidi 777 166 0.05804 0.04965 (–14.5%)
Garry 827 569 0.08017 0.06714 (–16.3%)
Monika 1 502 512 0.09505 0.08055 (–15.3%)

(Müller [2006])

Three examples

I Placement and partitioning
I Routing and resource sharing
I Buffering and sink clustering

Buffering and sink clustering

Problem: a signal must be
distributed to a set of sinks.

If the number of sinks is large
(as in clocktree design), the
sink clustering problem is key

blue: sinks
red: facilities

Other important problems for distributing signals include

I topology generation: constructing short and fast Steiner trees
I buffering (dynamic programming)

(Bartoschek, Held, Rautenbach, Vygen [2006,2009])

Sink clustering
Instance:

I metric space (V , c),
I finite set D ⊆ V (of sinks),
I demands d : D → R+,
I facility opening cost f ∈ R+,
I capacity u ∈ R+.

Task:
Find a partition D = D1∪̇ · · · ∪̇Dk and
Steiner trees Ti for Di (i = 1, . . . , k) with

c(E(Ti)) + d(Di) ≤ u

for i = 1, . . . , k such that
k∑

i=1

c(E(Ti)) + kf

is minimum.

Sink clustering
Instance:

I metric space (V , c),
I finite set D ⊆ V (of sinks),
I demands d : D → R+,
I facility opening cost f ∈ R+,
I capacity u ∈ R+.

Task:
Find a partition D = D1∪̇ · · · ∪̇Dk and
Steiner trees Ti for Di (i = 1, . . . , k) with

c(E(Ti)) + d(Di) ≤ u

for i = 1, . . . , k such that
k∑

i=1

c(E(Ti)) + kf

is minimum.

Approximability of sink clustering

Proposition

I There is no (1.5− ε)-approximation algorithm (for any ε > 0)
unless P = NP.

I There is no (2− ε)-approximation algorithm (for any ε > 0)
for any class of metrics where the Steiner tree problem
cannot be solved exactly in polynomial time.

Theorem (Maßberg, Vygen [2008])
Let n := |D|. There is

I a polynomial-time 4.099-approximation and
I an O(n2)-time 5-approximation.

For the rectilinear plane there is
I a polynomial-time (3 + ε)-approximation for any ε > 0 and
I an O(n log n)-time 4-approximation.

Approximability of sink clustering

Proposition

I There is no (1.5− ε)-approximation algorithm (for any ε > 0)
unless P = NP.

I There is no (2− ε)-approximation algorithm (for any ε > 0)
for any class of metrics where the Steiner tree problem
cannot be solved exactly in polynomial time.

Theorem (Maßberg, Vygen [2008])
Let n := |D|. There is

I a polynomial-time 4.099-approximation and
I an O(n2)-time 5-approximation.

For the rectilinear plane there is
I a polynomial-time (3 + ε)-approximation for any ε > 0 and
I an O(n log n)-time 4-approximation.

Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, c).
Let e1, . . . ,en−1 be the edges of F1 so that c(e1) ≥ . . . ≥ c(en−1).
Set Fk := Fk−1 \ {ek−1} for k = 2, . . . ,n.

Lemma
Fk is a minimum weight spanning forest in (D, c) with exactly k
connected components.

Proof: By induction on k . Trivial for k = 1. Let k > 1.
Let F ∗ be a minimum weight k -spanning forest.
Let e ∈ Fk−1 such that F ∗ ∪ {e} is a forest (matroid property).
Then

c(Fk) + c(ek−1) = c(Fk−1) ≤ c(F ∗) + c(e) ≤ c(F ∗) + c(ek−1).

�

Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, c).
Let e1, . . . ,en−1 be the edges of F1 so that c(e1) ≥ . . . ≥ c(en−1).
Set Fk := Fk−1 \ {ek−1} for k = 2, . . . ,n.

Lemma
Fk is a minimum weight spanning forest in (D, c) with exactly k
connected components.

Proof: By induction on k . Trivial for k = 1. Let k > 1.
Let F ∗ be a minimum weight k -spanning forest.
Let e ∈ Fk−1 such that F ∗ ∪ {e} is a forest (matroid property).
Then

c(Fk) + c(ek−1) = c(Fk−1) ≤ c(F ∗) + c(e) ≤ c(F ∗) + c(ek−1).

�

Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, c).
Let e1, . . . ,en−1 be the edges of F1 so that c(e1) ≥ . . . ≥ c(en−1).
Set Fk := Fk−1 \ {ek−1} for k = 2, . . . ,n.

Lemma
Fk is a minimum weight spanning forest in (D, c) with exactly k
connected components.

Proof: By induction on k . Trivial for k = 1. Let k > 1.
Let F ∗ be a minimum weight k -spanning forest.
Let e ∈ Fk−1 such that F ∗ ∪ {e} is a forest (matroid property).

Then

c(Fk) + c(ek−1) = c(Fk−1) ≤ c(F ∗) + c(e) ≤ c(F ∗) + c(ek−1).

�

Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, c).
Let e1, . . . ,en−1 be the edges of F1 so that c(e1) ≥ . . . ≥ c(en−1).
Set Fk := Fk−1 \ {ek−1} for k = 2, . . . ,n.

Lemma
Fk is a minimum weight spanning forest in (D, c) with exactly k
connected components.

Proof: By induction on k . Trivial for k = 1. Let k > 1.
Let F ∗ be a minimum weight k -spanning forest.
Let e ∈ Fk−1 such that F ∗ ∪ {e} is a forest (matroid property).
Then

c(Fk) + c(ek−1) = c(Fk−1) ≤ c(F ∗) + c(e) ≤ c(F ∗) + c(ek−1).

�

Lower bound: Steiner forests

A k -Steiner forest is a forest F with D ⊆ V (F) and exactly k
connected components.

Lemma
1
αc(Fk) is a lower bound for the cost of a minimum weight
k-Steiner forest, where α is the Steiner ratio. �

Lower bound: Steiner forests

A k -Steiner forest is a forest F with D ⊆ V (F) and exactly k
connected components.

Lemma
1
αc(Fk) is a lower bound for the cost of a minimum weight
k-Steiner forest, where α is the Steiner ratio. �

Lower bound: number of facilities
Let t ′ be the smallest integer such that

1
α

c(Ft ′) + d(D) ≤ t ′ · u

Lemma
t ′ is a lower bound for the number of facilities of any solution. �

Let t ′′ be an integer in {t ′, . . . ,n} minimizing

1
α

c(Ft ′′) + t ′′ · f .

Theorem
1
αc(Ft ′′) + t ′′ · f is a lower bound for the cost of an optimal
solution. �

Lower bound: number of facilities
Let t ′ be the smallest integer such that

1
α

c(Ft ′) + d(D) ≤ t ′ · u

Lemma
t ′ is a lower bound for the number of facilities of any solution. �

Let t ′′ be an integer in {t ′, . . . ,n} minimizing

1
α

c(Ft ′′) + t ′′ · f .

Theorem
1
αc(Ft ′′) + t ′′ · f is a lower bound for the cost of an optimal
solution. �

Algorithm

1. Compute a minimum spanning tree on (D, c).
2. Compute t ′′ and spanning forest Ft ′′ as above.
3. Split up overloaded components by a bin packing algorithm.

It can be guaranteed that for each new component at least u
2 of

the load will be removed from the initial forest.

Analysis of the algorithm
Recall: 1

αc(Ft ′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
αc(Ft ′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f Lf .

The cost of the final solution is at most

c(Ft ′′) + t ′′f +
2
u

(
c(Ft ′′) + d(D)

)
f

= αLr + Lf +
2f
u
(
αLr + d(D)

)
≤ αLr + Lf + 2αLf

Theorem (Maßberg, Vygen [2008])
We have a (2α+ 1)-approximation algorithm. �

Computing the initial spanning tree dominates the running time.

Analysis of the algorithm
Recall: 1

αc(Ft ′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
αc(Ft ′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f Lf .

The cost of the final solution is at most

c(Ft ′′) + t ′′f +
2
u

(
c(Ft ′′) + d(D)

)
f

= αLr + Lf +
2f
u
(
αLr + d(D)

)
≤ αLr + Lf + 2αLf

Theorem (Maßberg, Vygen [2008])
We have a (2α+ 1)-approximation algorithm. �

Computing the initial spanning tree dominates the running time.

Analysis of the algorithm
Recall: 1

αc(Ft ′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
αc(Ft ′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f Lf .

The cost of the final solution is at most

c(Ft ′′) + t ′′f +
2
u

(
c(Ft ′′) + d(D)

)
f

= αLr + Lf +
2f
u
(
αLr + d(D)

)
≤ αLr + Lf + 2αLf

Theorem (Maßberg, Vygen [2008])
We have a (2α+ 1)-approximation algorithm. �

Computing the initial spanning tree dominates the running time.

Analysis of the algorithm
Recall: 1

αc(Ft ′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
αc(Ft ′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f Lf .

The cost of the final solution is at most

c(Ft ′′) + t ′′f +
2
u

(
c(Ft ′′) + d(D)

)
f

= αLr + Lf +
2f
u
(
αLr + d(D)

)

≤ αLr + Lf + 2αLf

Theorem (Maßberg, Vygen [2008])
We have a (2α+ 1)-approximation algorithm. �

Computing the initial spanning tree dominates the running time.

Analysis of the algorithm
Recall: 1

αc(Ft ′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
αc(Ft ′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f Lf .

The cost of the final solution is at most

c(Ft ′′) + t ′′f +
2
u

(
c(Ft ′′) + d(D)

)
f

= αLr + Lf +
2f
u
(
αLr + d(D)

)
≤ αLr + Lf + 2αLf

Theorem (Maßberg, Vygen [2008])
We have a (2α+ 1)-approximation algorithm. �

Computing the initial spanning tree dominates the running time.

Experimental results on real-world instances
instance A B C D E F

sinks 3 675 17 140 45 606 54 831 109 224 119 461
MST length 13.72 60.35 134.24 183.37 260.36 314.48

t ′ 117 638 1 475 2 051 3 116 3 998
Lr 8.21 31.68 63.73 102.80 135.32 181.45

Lr + Lf 23.07 112.70 251.06 363.28 531.05 689.19
facilities 161 947 2 171 2 922 4 156 5 525

service cost 12.08 54.23 101.57 159.93 234.34 279.93
total cost 32.52 174.50 377.29 531.03 762.15 981.61

gap (factor) 1.41 1.55 1.59 1.46 1.44 1.42

Reduction of power consumption:
chip Jens Katrin Bert Alex

total # sinks 3 805 137 265 40 298 189 341
largest instance 375 119 461 16 260 35 305

power (W, heuristic) 0.100 0.329 0.306 2.097
power (W, new algorithm) 0.088 0.287 0.283 1.946

gain −11.1% −12.8% −7.5% −7.2%

Experimental results on real-world instances
instance A B C D E F

sinks 3 675 17 140 45 606 54 831 109 224 119 461
MST length 13.72 60.35 134.24 183.37 260.36 314.48

t ′ 117 638 1 475 2 051 3 116 3 998
Lr 8.21 31.68 63.73 102.80 135.32 181.45

Lr + Lf 23.07 112.70 251.06 363.28 531.05 689.19
facilities 161 947 2 171 2 922 4 156 5 525

service cost 12.08 54.23 101.57 159.93 234.34 279.93
total cost 32.52 174.50 377.29 531.03 762.15 981.61

gap (factor) 1.41 1.55 1.59 1.46 1.44 1.42

Reduction of power consumption:
chip Jens Katrin Bert Alex

total # sinks 3 805 137 265 40 298 189 341
largest instance 375 119 461 16 260 35 305

power (W, heuristic) 0.100 0.329 0.306 2.097
power (W, new algorithm) 0.088 0.287 0.283 1.946

gain −11.1% −12.8% −7.5% −7.2%

Conclusion

We discussed three examples:

I Placement and partitioning
I Routing and resource sharing
I Buffering and sink clustering

These algorithms—and many others—are part of the BonnTools.

The BonnTools
I developed by the University of Bonn

(Research Institute for Discrete Mathematics)
I cover all major areas of layout and timing optimization,

I include libraries for combinatorial optimization,
advanced data structures, computational geometry, etc.,

I have more than one million lines of code in C and C++,
I are being used worldwide by IBM and other companies,
I have been used for the design of more than 1000 chips,
I including several complete microprocessor series
I and the most complex chips of major technology companies.

Thanks to all my colleagues and students!

The BonnTools
I developed by the University of Bonn

(Research Institute for Discrete Mathematics)
I cover all major areas of layout and timing optimization,
I include libraries for combinatorial optimization,

advanced data structures, computational geometry, etc.,
I have more than one million lines of code in C and C++,

I are being used worldwide by IBM and other companies,
I have been used for the design of more than 1000 chips,
I including several complete microprocessor series
I and the most complex chips of major technology companies.

Thanks to all my colleagues and students!

The BonnTools
I developed by the University of Bonn

(Research Institute for Discrete Mathematics)
I cover all major areas of layout and timing optimization,
I include libraries for combinatorial optimization,

advanced data structures, computational geometry, etc.,
I have more than one million lines of code in C and C++,
I are being used worldwide by IBM and other companies,
I have been used for the design of more than 1000 chips,
I including several complete microprocessor series
I and the most complex chips of major technology companies.

Thanks to all my colleagues and students!

The BonnTools
I developed by the University of Bonn

(Research Institute for Discrete Mathematics)
I cover all major areas of layout and timing optimization,
I include libraries for combinatorial optimization,

advanced data structures, computational geometry, etc.,
I have more than one million lines of code in C and C++,
I are being used worldwide by IBM and other companies,
I have been used for the design of more than 1000 chips,
I including several complete microprocessor series
I and the most complex chips of major technology companies.

Thanks to all my colleagues and students!

Thank you!

	Introduction
	Placement and partitioning
	Routing and resource sharing
	Buffering and sink clustering
	Conclusion

