
Shorter Tours by Nicer Ears
7/5-approximation for graphic TSP,

3/2 for the path version,
and 4/3 for two-edge-connected subgraphs

Jens Vygen

(joint work with András Sebő)

September 21, 2012

Metric TSP
Given a complete graph G and metric weights c : E(G)→ R≥0,
find a Hamiltonian circuit in G with minimum total weight.

I NP-hard
I best known approximation ratio 3

2 (Christofides [1976])
I no 185

184 -approximation algorithm exists unless P = NP
(Lampis [2012])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980])

But recently there has been progress for a special case called
Graphic TSP:
I approximation ratio 1.5− ε (Gharan, Saberi, Singh [2011])
I approximation ratio 1.461 (Mömke, Svensson [2011])
I approximation ratio 1.445 (Mucha [2012])

We will show an approximation ratio of 1.4.

Metric TSP
Given a complete graph G and metric weights c : E(G)→ R≥0,
find a Hamiltonian circuit in G with minimum total weight.

I NP-hard
I best known approximation ratio 3

2 (Christofides [1976])
I no 185

184 -approximation algorithm exists unless P = NP
(Lampis [2012])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980])

But recently there has been progress for a special case called
Graphic TSP:
I approximation ratio 1.5− ε (Gharan, Saberi, Singh [2011])
I approximation ratio 1.461 (Mömke, Svensson [2011])
I approximation ratio 1.445 (Mucha [2012])

We will show an approximation ratio of 1.4.

Metric TSP
Given a complete graph G and metric weights c : E(G)→ R≥0,
find a Hamiltonian circuit in G with minimum total weight.

I NP-hard
I best known approximation ratio 3

2 (Christofides [1976])
I no 185

184 -approximation algorithm exists unless P = NP
(Lampis [2012])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980])

But recently there has been progress for a special case called
Graphic TSP:
I approximation ratio 1.5− ε (Gharan, Saberi, Singh [2011])
I approximation ratio 1.461 (Mömke, Svensson [2011])
I approximation ratio 1.445 (Mucha [2012])

We will show an approximation ratio of 1.4.

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

2
2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

2
2

2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G

Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is called tour or connected-∅-join of G

Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G

Main results
Let G be a connected graph and T ⊆ V (G) with |T | even.
A connected-T -join of G (aka T -tour) is a set F ⊆ E(2G) such that
I (V (G),F) is connected, and
I v ∈ T ⇔ |F ∩ δ(v)| odd. s

t

T = {s, t}

We improve the approximation ratio for:
I Graphic TSP (smallest tour = connected-∅-join):

from 13
9 (Mucha [2012]) to 7

5

I Connected-T -join (smallest connected-T -join):
from 5

3 (Christofides [1976], Hoogeveen [1991]),
1.578 for T = {s, t} (An, Kleinberg, Shmoys [2012]), to 3

2

I 2ECSS (smallest 2-edge-connected spanning subgraph):
from 17

12 (Cheriyan, Sebő, Szigeti [2001]) to 4
3

Note that doubling edges is necessary (except for 2ECSS)
and tripling edges does not help.

Main results
Let G be a connected graph and T ⊆ V (G) with |T | even.
A connected-T -join of G (aka T -tour) is a set F ⊆ E(2G) such that
I (V (G),F) is connected, and
I v ∈ T ⇔ |F ∩ δ(v)| odd. s

t

T = {s, t}

We improve the approximation ratio for:
I Graphic TSP (smallest tour = connected-∅-join):

from 13
9 (Mucha [2012]) to 7

5

I Connected-T -join (smallest connected-T -join):
from 5

3 (Christofides [1976], Hoogeveen [1991]),
1.578 for T = {s, t} (An, Kleinberg, Shmoys [2012]), to 3

2

I 2ECSS (smallest 2-edge-connected spanning subgraph):
from 17

12 (Cheriyan, Sebő, Szigeti [2001]) to 4
3

Note that doubling edges is necessary (except for 2ECSS)
and tripling edges does not help.

Main results
Let G be a connected graph and T ⊆ V (G) with |T | even.
A connected-T -join of G (aka T -tour) is a set F ⊆ E(2G) such that
I (V (G),F) is connected, and
I v ∈ T ⇔ |F ∩ δ(v)| odd. s

t

T = {s, t}

We improve the approximation ratio for:
I Graphic TSP (smallest tour = connected-∅-join):

from 13
9 (Mucha [2012]) to 7

5

I Connected-T -join (smallest connected-T -join):
from 5

3 (Christofides [1976], Hoogeveen [1991]),
1.578 for T = {s, t} (An, Kleinberg, Shmoys [2012]), to 3

2

I 2ECSS (smallest 2-edge-connected spanning subgraph):
from 17

12 (Cheriyan, Sebő, Szigeti [2001]) to 4
3

Note that doubling edges is necessary (except for 2ECSS)
and tripling edges does not help.

Consider blocks separately

So we may assume
that the input graph
2-vertex-connected.

Consider blocks separately

So we may assume
that the input graph
2-vertex-connected.

Consider blocks separately

So we may assume
that the input graph
2-vertex-connected.

Consider blocks separately

So we may assume
that the input graph
2-vertex-connected.

Consider blocks separately

So we may assume
that the input graph
2-vertex-connected.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.
(P2, ...,Pk are all open ears = paths.)

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P2

P1

P3

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ϕ(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Lovász [1972])
ϕ(G) = 0 if and only if G is factor-critical.

Corollary (Lovász and Plummer [1986])
For every 2-vertex-connected factor-critical graph one can
compute an open odd ear-decomposition in polynomial time.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ϕ(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Lovász [1972])
ϕ(G) = 0 if and only if G is factor-critical.

Corollary (Lovász and Plummer [1986])
For every 2-vertex-connected factor-critical graph one can
compute an open odd ear-decomposition in polynomial time.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ϕ(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Lovász [1972])
ϕ(G) = 0 if and only if G is factor-critical.

Corollary (Lovász and Plummer [1986])
For every 2-vertex-connected factor-critical graph one can
compute an open odd ear-decomposition in polynomial time.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time,

and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ϕ(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Lovász [1972])
ϕ(G) = 0 if and only if G is factor-critical.

Corollary (Lovász and Plummer [1986])
For every 2-vertex-connected factor-critical graph one can
compute an open odd ear-decomposition in polynomial time.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

Proof of the easy direction: ear induction
Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

change parity here

(keven := # even ears)

Proof of “≥”: fix ear-decomposition and T

I Split pendant ear P at the ver-
tices of T into red and blue part

I Take the smaller part

I Change parity of an endpoint of
P if necessary; delete P; iterate

I This yields a T -join with
≤ 1

2(|V (G)| − 1 + keven) edges
�

Proof of the easy direction: ear induction
Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

change parity here

(keven := # even ears)

Proof of “≥”: fix ear-decomposition and T

I Split pendant ear P at the ver-
tices of T into red and blue part

I Take the smaller part

I Change parity of an endpoint of
P if necessary; delete P; iterate

I This yields a T -join with
≤ 1

2(|V (G)| − 1 + keven) edges
�

Proof of the easy direction: ear induction
Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

change parity here

(keven := # even ears)

Proof of “≥”: fix ear-decomposition and T

I Split pendant ear P at the ver-
tices of T into red and blue part

I Take the smaller part

I Change parity of an endpoint of
P if necessary; delete P; iterate

I This yields a T -join with
≤ 1

2(|V (G)| − 1 + keven) edges
�

Proof of the easy direction: ear induction
Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

change parity here

(keven := # even ears)

Proof of “≥”: fix ear-decomposition and T

I Split pendant ear P at the ver-
tices of T into red and blue part

I Take the smaller part

I Change parity of an endpoint of
P if necessary; delete P; iterate

I This yields a T -join with
≤ 1

2(|V (G)| − 1 + keven) edges
�

Proof of the easy direction: ear induction
Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

change parity here

(keven := # even ears)

Proof of “≥”: fix ear-decomposition and T

I Split pendant ear P at the ver-
tices of T into red and blue part

I Take the smaller part

I Change parity of an endpoint of
P if necessary; delete P; iterate

I This yields a T -join with
≤ 1

2(|V (G)| − 1 + keven) edges
�

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS: delete all trivial ears.

The remaining number of edges is at most

5
4(|V (G)| − 1 + keven) +

1
2k3,

where keven is the number of even ears,
and k3 is the number of ears of length 3.

Note: Every ear-decomposition has at least ϕ(G) nontrivial ears
⇒ Every 2ECSS has at least Lϕ := |V (G)| − 1 + ϕ(G) edges.

By Frank’s theorem, we get keven = ϕ(G). Note k3 ≤ 1
2(|V (G)|−1).

This immediately yields a 3
2 -approximation for 2ECSS

(was improved to 17
12 by Cheriyan, Sebő and Szigeti [2001])

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS: delete all trivial ears.
The remaining number of edges is at most

5
4(|V (G)| − 1 + keven) +

1
2k3,

where keven is the number of even ears,
and k3 is the number of ears of length 3.

Note: Every ear-decomposition has at least ϕ(G) nontrivial ears
⇒ Every 2ECSS has at least Lϕ := |V (G)| − 1 + ϕ(G) edges.

By Frank’s theorem, we get keven = ϕ(G). Note k3 ≤ 1
2(|V (G)|−1).

This immediately yields a 3
2 -approximation for 2ECSS

(was improved to 17
12 by Cheriyan, Sebő and Szigeti [2001])

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS: delete all trivial ears.
The remaining number of edges is at most

5
4(|V (G)| − 1 + keven) +

1
2k3,

where keven is the number of even ears,
and k3 is the number of ears of length 3.

Note: Every ear-decomposition has at least ϕ(G) nontrivial ears
⇒ Every 2ECSS has at least Lϕ := |V (G)| − 1 + ϕ(G) edges.

By Frank’s theorem, we get keven = ϕ(G). Note k3 ≤ 1
2(|V (G)|−1).

This immediately yields a 3
2 -approximation for 2ECSS

(was improved to 17
12 by Cheriyan, Sebő and Szigeti [2001])

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS: delete all trivial ears.
The remaining number of edges is at most

5
4(|V (G)| − 1 + keven) +

1
2k3,

where keven is the number of even ears,
and k3 is the number of ears of length 3.

Note: Every ear-decomposition has at least ϕ(G) nontrivial ears
⇒ Every 2ECSS has at least Lϕ := |V (G)| − 1 + ϕ(G) edges.

By Frank’s theorem, we get keven = ϕ(G). Note k3 ≤ 1
2(|V (G)|−1).

This immediately yields a 3
2 -approximation for 2ECSS

(was improved to 17
12 by Cheriyan, Sebő and Szigeti [2001])

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS: delete all trivial ears.
The remaining number of edges is at most

5
4(|V (G)| − 1 + keven) +

1
2k3,

where keven is the number of even ears,
and k3 is the number of ears of length 3.

Note: Every ear-decomposition has at least ϕ(G) nontrivial ears
⇒ Every 2ECSS has at least Lϕ := |V (G)| − 1 + ϕ(G) edges.

By Frank’s theorem, we get keven = ϕ(G). Note k3 ≤ 1
2(|V (G)|−1).

This immediately yields a 3
2 -approximation for 2ECSS

(was improved to 17
12 by Cheriyan, Sebő and Szigeti [2001])

New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Lemma (Cheriyan, Sebő, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof:
I Compute an ear-decomp. with fewest even ears (Frank [1993])
I Subdivide one edge of each even ear (⇒ factor-critical graph)
I Compute an open odd ear-decomp. (Lovász, Plummer [1986])
I Undo subdivisions⇒ open ear-decomp. with fewest even ears
I Replace non-pendant short ears
I Replace adjacent short ears

�

Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Lemma (Cheriyan, Sebő, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof:
I Compute an ear-decomp. with fewest even ears (Frank [1993])
I Subdivide one edge of each even ear (⇒ factor-critical graph)
I Compute an open odd ear-decomp. (Lovász, Plummer [1986])
I Undo subdivisions⇒ open ear-decomp. with fewest even ears
I Replace non-pendant short ears
I Replace adjacent short ears

�

Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Lemma (Cheriyan, Sebő, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof:
I Compute an ear-decomp. with fewest even ears (Frank [1993])
I Subdivide one edge of each even ear (⇒ factor-critical graph)
I Compute an open odd ear-decomp. (Lovász, Plummer [1986])
I Undo subdivisions⇒ open ear-decomp. with fewest even ears
I Replace non-pendant short ears
I Replace adjacent short ears

�

Sketch of proof (some details)

I Replace non-pendant short ears

P

Q

(a)

P

Q
u v

(b)

P

Q

v(c)

P

Q
v

(d)

I Replace adjacent short ears

P Q

(e)
q

P Q

(f)

P Q

p q
(g)

P Q

p q
(h)

Sketch of proof (some details)

I Replace non-pendant short ears

P

Q

(a)

P

Q
u v

(b)

P

Q

v(c)

P

Q
v

(d)

I Replace adjacent short ears

P Q

(e)
q

P Q

(f)

P Q

p q
(g)

P Q

p q
(h)

Optimizing short ears
I Adding all short ears leaves some

number of connected components

I Internal vertices of short ears may
be incident to trivial ears

I These can be used to replace some
short ears by other short ears

I Goal: minimize the resulting number
of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Optimizing short ears
I Adding all short ears leaves some

number of connected components

I Internal vertices of short ears may
be incident to trivial ears

I These can be used to replace some
short ears by other short ears

I Goal: minimize the resulting number
of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Optimizing short ears
I Adding all short ears leaves some

number of connected components
I Internal vertices of short ears may

be incident to trivial ears

I These can be used to replace some
short ears by other short ears

I Goal: minimize the resulting number
of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Optimizing short ears
I Adding all short ears leaves some

number of connected components
I Internal vertices of short ears may

be incident to trivial ears
I These can be used to replace some

short ears by other short ears

I Goal: minimize the resulting number
of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Optimizing short ears
I Adding all short ears leaves some

number of connected components
I Internal vertices of short ears may

be incident to trivial ears
I These can be used to replace some

short ears by other short ears
I Goal: minimize the resulting number

of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Optimizing short ears
I Adding all short ears leaves some

number of connected components
I Internal vertices of short ears may

be incident to trivial ears
I These can be used to replace some

short ears by other short ears
I Goal: minimize the resulting number

of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Eardrums and earmuffs

An eardrum is the set of components of an
induced subgraph with maximum degree 1.

Example: the sets of internal vertices of
short ears in a nice ear-decomposition.

Let M be an eardrum. For f ∈ M let Pf be
the set of paths with internal vertices f .

An earmuff is a set of paths {Pf : f ∈ F} with F ⊆ M,
Pf ∈ Pf for f ∈ F , and (V (G),

⋃
f∈F E(Pf)) is a forest.

Theorem
A maximum earmuff can be computed in polynomial time.

Call the maximum µ(G,M).

Eardrums and earmuffs

An eardrum is the set of components of an
induced subgraph with maximum degree 1.

Example: the sets of internal vertices of
short ears in a nice ear-decomposition.

Let M be an eardrum. For f ∈ M let Pf be
the set of paths with internal vertices f .

An earmuff is a set of paths {Pf : f ∈ F} with F ⊆ M,
Pf ∈ Pf for f ∈ F , and (V (G),

⋃
f∈F E(Pf)) is a forest.

Theorem
A maximum earmuff can be computed in polynomial time.

Call the maximum µ(G,M).

Eardrums and earmuffs

An eardrum is the set of components of an
induced subgraph with maximum degree 1.

Example: the sets of internal vertices of
short ears in a nice ear-decomposition.

Let M be an eardrum. For f ∈ M let Pf be
the set of paths with internal vertices f .

An earmuff is a set of paths {Pf : f ∈ F} with F ⊆ M,
Pf ∈ Pf for f ∈ F , and (V (G),

⋃
f∈F E(Pf)) is a forest.

Theorem
A maximum earmuff can be computed in polynomial time.

Call the maximum µ(G,M).

Eardrums and earmuffs

An eardrum is the set of components of an
induced subgraph with maximum degree 1.

Example: the sets of internal vertices of
short ears in a nice ear-decomposition.

Let M be an eardrum. For f ∈ M let Pf be
the set of paths with internal vertices f .

An earmuff is a set of paths {Pf : f ∈ F} with F ⊆ M,
Pf ∈ Pf for f ∈ F , and (V (G),

⋃
f∈F E(Pf)) is a forest.

Theorem
A maximum earmuff can be computed in polynomial time.

Call the maximum µ(G,M).

Eardrums and earmuffs

An eardrum is the set of components of an
induced subgraph with maximum degree 1.

Example: the sets of internal vertices of
short ears in a nice ear-decomposition.

Let M be an eardrum. For f ∈ M let Pf be
the set of paths with internal vertices f .

An earmuff is a set of paths {Pf : f ∈ F} with F ⊆ M,
Pf ∈ Pf for f ∈ F , and (V (G),

⋃
f∈F E(Pf)) is a forest.

Theorem
A maximum earmuff can be computed in polynomial time.

Call the maximum µ(G,M).

First solution: matroid intersection

I Represent each path P ∈ Pf (f ∈ M) by the set eP of its two
endpoints; let Ef := {eP : P ∈ Pf}.

I Let r be the rank function of the cycle matroid of the
complete graph on V (G).

Theorem (Rado [1942])
Let E be a finite set and r the rank function of a matroid on E.
Let E1,E2, . . . ,Ek ⊆ E. Then

max
{

r({e1, . . . ,ek}) : ei ∈ Ei (i = 1, . . . , k)
}

=

min
{

r
(⋃

i∈I Ei
)
+ k − |I| : I ⊆ {1, . . . , k}

}
.

Note: Special case of matroid intersection.

First solution: matroid intersection

I Represent each path P ∈ Pf (f ∈ M) by the set eP of its two
endpoints; let Ef := {eP : P ∈ Pf}.

I Let r be the rank function of the cycle matroid of the
complete graph on V (G).

Theorem (Rado [1942])
Let E be a finite set and r the rank function of a matroid on E.
Let E1,E2, . . . ,Ek ⊆ E. Then

max
{

r({e1, . . . ,ek}) : ei ∈ Ei (i = 1, . . . , k)
}

=

min
{

r
(⋃

i∈I Ei
)
+ k − |I| : I ⊆ {1, . . . , k}

}
.

Note: Special case of matroid intersection.

First solution: matroid intersection

I Represent each path P ∈ Pf (f ∈ M) by the set eP of its two
endpoints; let Ef := {eP : P ∈ Pf}.

I Let r be the rank function of the cycle matroid of the
complete graph on V (G).

Theorem (Rado [1942])
Let E be a finite set and r the rank function of a matroid on E.
Let E1,E2, . . . ,Ek ⊆ E. Then

max
{

r({e1, . . . ,ek}) : ei ∈ Ei (i = 1, . . . , k)
}

=

min
{

r
(⋃

i∈I Ei
)
+ k − |I| : I ⊆ {1, . . . , k}

}
.

Note: Special case of matroid intersection.

Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �

Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �

Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �

Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �

Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �

Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �

Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �

New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS

X Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS

X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS

X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS

X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
X Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS

X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
X Add edges to obtain connectivity.
X Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS: proof of main theorem
X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
X Add edges to obtain connectivity.
X Add edges to correct parity.

}
Lµ + πlong edges.

}1
2(|V0|−1+ϕ0(G)) edges.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS: proof of main theorem
X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
X Add edges to obtain connectivity.
X Add edges to correct parity.

}
Lµ + πlong edges.}1
2(|V0|−1+ϕ0(G)) edges.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

New algorithm for 2ECSS: proof of main theorem
X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
X Add edges to obtain connectivity.
X Add edges to correct parity.

}
Lµ + πlong edges.}1
2(|V0|−1+ϕ0(G)) edges.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.

Proof: Since |V0| ≤ |V (G)|+ ϕπ(G)− 2πshort − 4πlong,
correcting parity needs at most 1

2Lϕ − π − πlong edges. �

New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

I Delete all 1-ears. In each of the resulting blocks:

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.

New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.

New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.

New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.

New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.

The Mömke-Svensson lemma

Definition (Mömke and Svensson [2011])
Let G be a 2-vertex-connected graph.
A removable pairing in G consists of a set R of removable edges
and a set of pairwise disjoint pairs of elements of R such that
I deleting any edge set S ⊆ R that contains at most edge out

of each pair does not disconnect the graph
I the two edges of any pair share a vertex, and this vertex is

incident to another edge

Theorem (Mömke and Svensson [2011])
Given a 2-vertex-connected graph G and a removable pairing
(R,P). Then one can find a tour with at most 4

3 |E(G)| − 2
3 |R|

edges in polynomial time.

Mömke-Svensson applied to ear-decompositions

Theorem
Given a 2-vertex-connected graph G with an ear-decomposition
in which all ears are nontrivial. Then one can find a tour with at
most 4

3(|V (G)| − 1) + 2
3π edges in polynomial time.

Proof: We define the removable pairing as follows:
I For each pendant ear, R will contain exactly one of its edges.
I For each non-pendant ear, R will contain a pair of edges

incident to an internal vertex that is endpoint of another ear.

So |R| = 2(|E(G)| − (|V (G)| − 1))− π.

The Mömke-Svensson lemma yields a tour with at most
4
3 |E(G)| − 2

3 |R| edges. �

Mömke-Svensson applied to ear-decompositions

Theorem
Given a 2-vertex-connected graph G with an ear-decomposition
in which all ears are nontrivial. Then one can find a tour with at
most 4

3(|V (G)| − 1) + 2
3π edges in polynomial time.

Proof: We define the removable pairing as follows:
I For each pendant ear, R will contain exactly one of its edges.
I For each non-pendant ear, R will contain a pair of edges

incident to an internal vertex that is endpoint of another ear.

So |R| = 2(|E(G)| − (|V (G)| − 1))− π.

The Mömke-Svensson lemma yields a tour with at most
4
3 |E(G)| − 2

3 |R| edges. �

Mömke-Svensson applied to ear-decompositions

Theorem
Given a 2-vertex-connected graph G with an ear-decomposition
in which all ears are nontrivial. Then one can find a tour with at
most 4

3(|V (G)| − 1) + 2
3π edges in polynomial time.

Proof: We define the removable pairing as follows:
I For each pendant ear, R will contain exactly one of its edges.
I For each non-pendant ear, R will contain a pair of edges

incident to an internal vertex that is endpoint of another ear.

So |R| = 2(|E(G)| − (|V (G)| − 1))− π.

The Mömke-Svensson lemma yields a tour with at most
4
3 |E(G)| − 2

3 |R| edges. �

Mömke-Svensson applied to ear-decompositions

Theorem
Given a 2-vertex-connected graph G with an ear-decomposition
in which all ears are nontrivial. Then one can find a tour with at
most 4

3(|V (G)| − 1) + 2
3π edges in polynomial time.

Proof: We define the removable pairing as follows:
I For each pendant ear, R will contain exactly one of its edges.
I For each non-pendant ear, R will contain a pair of edges

incident to an internal vertex that is endpoint of another ear.

So |R| = 2(|E(G)| − (|V (G)| − 1))− π.

The Mömke-Svensson lemma yields a tour with at most
4
3 |E(G)| − 2

3 |R| edges. �

Proof of Mömke-Svensson lemma
Theorem (Mömke and Svensson [2011])
Given a 2-vertex-connected graph G and a removable pairing
(R,P). Then one can find a tour with at most 4

3 |E(G)| − 2
3 |R|

edges in polynomial time.

Proof: Find an odd join J containing at most one edge of each pair.
Add a second copy of each edge in J \ R.
Delete the edges in J ∩ R.
We get a tour with |E(G)|+ c(J) edges,
where c(e) = −1 for e ∈ R and c(e) = 1 for e /∈ R.

Construct G′ as follows. For each pair P with edges
{u, v}, {v ,w}, add a vertex vP and an edge {vP , v} of weight 0,
and replace the two edges in P by {u, vP}, {vP ,w}.

The all-1
3 -vector is in the odd join polytope of G′, and in its face

defined by x(δ(vP)) = 1 for all pairs P.
Hence there is an odd join J as required with
c(J) ≤ 1

3c(E(G′)) = 1
3 |E(G)| − 2

3 |R|. �

Proof of Mömke-Svensson lemma
Theorem (Mömke and Svensson [2011])
Given a 2-vertex-connected graph G and a removable pairing
(R,P). Then one can find a tour with at most 4

3 |E(G)| − 2
3 |R|

edges in polynomial time.

Proof: Find an odd join J containing at most one edge of each pair.
Add a second copy of each edge in J \ R.
Delete the edges in J ∩ R.
We get a tour with |E(G)|+ c(J) edges,
where c(e) = −1 for e ∈ R and c(e) = 1 for e /∈ R.

Construct G′ as follows. For each pair P with edges
{u, v}, {v ,w}, add a vertex vP and an edge {vP , v} of weight 0,
and replace the two edges in P by {u, vP}, {vP ,w}.

The all-1
3 -vector is in the odd join polytope of G′, and in its face

defined by x(δ(vP)) = 1 for all pairs P.
Hence there is an odd join J as required with
c(J) ≤ 1

3c(E(G′)) = 1
3 |E(G)| − 2

3 |R|. �

Proof of Mömke-Svensson lemma
Theorem (Mömke and Svensson [2011])
Given a 2-vertex-connected graph G and a removable pairing
(R,P). Then one can find a tour with at most 4

3 |E(G)| − 2
3 |R|

edges in polynomial time.

Proof: Find an odd join J containing at most one edge of each pair.
Add a second copy of each edge in J \ R.
Delete the edges in J ∩ R.
We get a tour with |E(G)|+ c(J) edges,
where c(e) = −1 for e ∈ R and c(e) = 1 for e /∈ R.

Construct G′ as follows. For each pair P with edges
{u, v}, {v ,w}, add a vertex vP and an edge {vP , v} of weight 0,
and replace the two edges in P by {u, vP}, {vP ,w}.

The all-1
3 -vector is in the odd join polytope of G′, and in its face

defined by x(δ(vP)) = 1 for all pairs P.
Hence there is an odd join J as required with
c(J) ≤ 1

3c(E(G′)) = 1
3 |E(G)| − 2

3 |R|. �

Proof of Mömke-Svensson lemma
Theorem (Mömke and Svensson [2011])
Given a 2-vertex-connected graph G and a removable pairing
(R,P). Then one can find a tour with at most 4

3 |E(G)| − 2
3 |R|

edges in polynomial time.

Proof: Find an odd join J containing at most one edge of each pair.
Add a second copy of each edge in J \ R.
Delete the edges in J ∩ R.
We get a tour with |E(G)|+ c(J) edges,
where c(e) = −1 for e ∈ R and c(e) = 1 for e /∈ R.

Construct G′ as follows. For each pair P with edges
{u, v}, {v ,w}, add a vertex vP and an edge {vP , v} of weight 0,
and replace the two edges in P by {u, vP}, {vP ,w}.

The all-1
3 -vector is in the odd join polytope of G′, and in its face

defined by x(δ(vP)) = 1 for all pairs P.
Hence there is an odd join J as required with
c(J) ≤ 1

3c(E(G′)) = 1
3 |E(G)| − 2

3 |R|. �

Example: application of Mömke-Svensson lemma

0
1

1

2 2

2
2

3 3

4 4

5

6 6

1
0

1

1

2 2

2
2

3 3

4 4

5

6 6

1

0
1

1

2 2

2
2

3 3

4 4

5

6 6

1
0

1

1

2 2

2
2

3 3

4 4

5

6 6

1

New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.

Example: Shorter tour by nicer ears

0
1

1

2 2

2
2

3 3

4 4

5

6 6

1
0

1

1

2 2

2
2

3 3

4 4

5

6 6

1

0
1

1

2 2

2
2

3 3

4 4

5

6 6

1
0

1

1

2 2

2
2

3 3

4 4

5

6 6

1

New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.

New algorithm for connected-T -joins
I Compute a nice ear-decomposition.
I Optimize clean ears so that they serve best for connectivity.

(Clean ears are short ears without an internal vertex in T .)

I Take all edges of clean ears.
I Apply ear induction to pendant but

not clean ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply

ear induction
to all ears.

Theorem
The new algorithm yields a connected-T -join with at most
3
2L + 1

2ϕ(G)− π edges, where L is a lower bound and π is the
number of pendant ears (after optimization).

Alternative yields at most 3
2L− 1

2ϕ(G) + π edges.

−→ The better of the two has at most 3
2L edges.

Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges

I connected T -join with ≤ 3
2(|V (G)|−1)+πclean− 1

2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π

Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges

I connected T -join with ≤ 3
2(|V (G)|−1)+πclean− 1

2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π

Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges

I connected T -join with ≤ 3
2(|V (G)|−1)+πclean− 1

2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π

Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges

I connected T -join with ≤ 3
2(|V (G)|−1)+πclean− 1

2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π

Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges

I connected T -join with ≤ 3
2(|V (G)|−1)+πclean− 1

2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π

Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges

I connected T -join with ≤ 3
2(|V (G)|−1)+πclean− 1

2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π

Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges
I connected T -join with ≤ 3

2(|V (G)|−1)+πclean− 1
2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π

New algorithm for connected-T -joins
I Compute a nice ear-decomposition.
I Optimize clean ears so that they serve best for connectivity.

Clean ears are short ears without an internal vertex in T .
I Take all edges of clean ears.
I Apply ear induction to pendant but

not clean ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply

ear induction
to all ears.

Theorem
The new algorithm yields a connected-T -join with at most
3
2L + 1

2ϕ(G)− π edges, where L is a lower bound and π is the
number of pendant ears (after optimization).

Alternative yields at most 3
2L− 1

2ϕ(G) + π edges.

−→ The better of the two has at most 3
2L edges.

Using nicer ears, more generally and formally
Definition
Let G be a graph with a nice ear-decomposition, T ⊆ V (G), |T | even.
An ear is clean if it is short and T contains none of its internal vertices.
Let M contain for each clean ear the set of its internal vertices.

Theorem
Let G,T ,M be as above. Suppose the given ear-decomposition
contains a maximum earmuff for M (of cardinality µ).
Then a connected-T -join of cardinality at most Lµ + 1

2Lϕ − π can
be constructed in O(|V (G)|3) time.

Recall:
π = number of pendant ears

Lϕ = |V (G)| − 1 + ϕ(G)

Lµ = |V (G)| − 1 + |M| − µ

Lµ is a lower bound on the optimum (in fact, on the LP value).
Lϕ is a lower bound if T = ∅.

Proof

V0VM

clean ears
V1

other pendant ears

I take all edges of clean ears 3
2 |VM |+ 1

2ϕM
I add edges of G[V0] so that

(VM ∪ V0,E1 ∪ E2) is connected |V0| − 1− µ
I apply ear induction to

non-clean pendant ears 3
2 |V1|+ 1

2ϕ1 − (π − |M|)
I Correct parities on G[V0]

1
2(|V0|+ ϕ0 − 1)

Adding up, using ϕ(G) = ϕ0 + ϕ1 + ϕM , yields

3
2(|V (G)| − 1) + |M| − µ+ 1

2ϕ(G)− π = Lµ + 1
2Lϕ − π

�

Proof

V0VM

clean ears
V1

other pendant ears

I take all edges of clean ears 3
2 |VM |+ 1

2ϕM

I add edges of G[V0] so that
(VM ∪ V0,E1 ∪ E2) is connected |V0| − 1− µ

I apply ear induction to
non-clean pendant ears 3

2 |V1|+ 1
2ϕ1 − (π − |M|)

I Correct parities on G[V0]
1
2(|V0|+ ϕ0 − 1)

Adding up, using ϕ(G) = ϕ0 + ϕ1 + ϕM , yields

3
2(|V (G)| − 1) + |M| − µ+ 1

2ϕ(G)− π = Lµ + 1
2Lϕ − π

�

Proof

V0VM

clean ears
V1

other pendant ears

I take all edges of clean ears 3
2 |VM |+ 1

2ϕM
I add edges of G[V0] so that

(VM ∪ V0,E1 ∪ E2) is connected |V0| − 1− µ

I apply ear induction to
non-clean pendant ears 3

2 |V1|+ 1
2ϕ1 − (π − |M|)

I Correct parities on G[V0]
1
2(|V0|+ ϕ0 − 1)

Adding up, using ϕ(G) = ϕ0 + ϕ1 + ϕM , yields

3
2(|V (G)| − 1) + |M| − µ+ 1

2ϕ(G)− π = Lµ + 1
2Lϕ − π

�

Proof

V0VM

clean ears
V1

other pendant ears

I take all edges of clean ears 3
2 |VM |+ 1

2ϕM
I add edges of G[V0] so that

(VM ∪ V0,E1 ∪ E2) is connected |V0| − 1− µ
I apply ear induction to

non-clean pendant ears 3
2 |V1|+ 1

2ϕ1 − (π − |M|)

I Correct parities on G[V0]
1
2(|V0|+ ϕ0 − 1)

Adding up, using ϕ(G) = ϕ0 + ϕ1 + ϕM , yields

3
2(|V (G)| − 1) + |M| − µ+ 1

2ϕ(G)− π = Lµ + 1
2Lϕ − π

�

Proof

V0VM

clean ears
V1

other pendant ears

I take all edges of clean ears 3
2 |VM |+ 1

2ϕM
I add edges of G[V0] so that

(VM ∪ V0,E1 ∪ E2) is connected |V0| − 1− µ
I apply ear induction to

non-clean pendant ears 3
2 |V1|+ 1

2ϕ1 − (π − |M|)
I Correct parities on G[V0]

1
2(|V0|+ ϕ0 − 1)

Adding up, using ϕ(G) = ϕ0 + ϕ1 + ϕM , yields

3
2(|V (G)| − 1) + |M| − µ+ 1

2ϕ(G)− π = Lµ + 1
2Lϕ − π

�

Proof

V0VM

clean ears
V1

other pendant ears

I take all edges of clean ears 3
2 |VM |+ 1

2ϕM
I add edges of G[V0] so that

(VM ∪ V0,E1 ∪ E2) is connected |V0| − 1− µ
I apply ear induction to

non-clean pendant ears 3
2 |V1|+ 1

2ϕ1 − (π − |M|)
I Correct parities on G[V0]

1
2(|V0|+ ϕ0 − 1)

Adding up, using ϕ(G) = ϕ0 + ϕ1 + ϕM , yields

3
2(|V (G)| − 1) + |M| − µ+ 1

2ϕ(G)− π = Lµ + 1
2Lϕ − π

�

Second solution to earmuff maximization
Let M be a eardrum with VM ∩ T = ∅ (e.g., contain for each clean
ear the set of its internal vertices).
I Let U = V (G) \ VM , where VM =

⋃
M.

I Represent Pf (f ∈ M) by the set Uf of its endpoints.
I Sufficient to find a maximum cardinality subset F ⊆ M with a

forest representative system (ef)f∈F of (Uf)f∈F , i.e.,
I ef ∈

(Uf
2

)
for all f ∈ F ,

I ef 6= ef ′ for f 6= f ′, and
I the graph (U, {ef : f ∈ F}) is a forest.

Theorem (≈ Lovász [1970])
This maximum is µ =

min
{
|M|−

∑
W∈W

(
|{f ∈ M : Uf ⊆W}|−(|W |−1)

)
:W is a partition of U

}
.

(This holds for any finite sets U, M, (Uf)f∈M with ∅ 6= Uf ⊆ U.)

Note: We have an algorithm with running time O(|V (G)||E(G)|)

Second solution to earmuff maximization
Let M be a eardrum with VM ∩ T = ∅ (e.g., contain for each clean
ear the set of its internal vertices).
I Let U = V (G) \ VM , where VM =

⋃
M.

I Represent Pf (f ∈ M) by the set Uf of its endpoints.
I Sufficient to find a maximum cardinality subset F ⊆ M with a

forest representative system (ef)f∈F of (Uf)f∈F , i.e.,
I ef ∈

(Uf
2

)
for all f ∈ F ,

I ef 6= ef ′ for f 6= f ′, and
I the graph (U, {ef : f ∈ F}) is a forest.

Theorem (≈ Lovász [1970])
This maximum is µ =

min
{
|M|−

∑
W∈W

(
|{f ∈ M : Uf ⊆W}|−(|W |−1)

)
:W is a partition of U

}
.

(This holds for any finite sets U, M, (Uf)f∈M with ∅ 6= Uf ⊆ U.)

Note: We have an algorithm with running time O(|V (G)||E(G)|)

Second solution to earmuff maximization
Let M be a eardrum with VM ∩ T = ∅ (e.g., contain for each clean
ear the set of its internal vertices).
I Let U = V (G) \ VM , where VM =

⋃
M.

I Represent Pf (f ∈ M) by the set Uf of its endpoints.
I Sufficient to find a maximum cardinality subset F ⊆ M with a

forest representative system (ef)f∈F of (Uf)f∈F , i.e.,
I ef ∈

(Uf
2

)
for all f ∈ F ,

I ef 6= ef ′ for f 6= f ′, and
I the graph (U, {ef : f ∈ F}) is a forest.

Theorem (≈ Lovász [1970])
This maximum is µ =

min
{
|M|−

∑
W∈W

(
|{f ∈ M : Uf ⊆W}|−(|W |−1)

)
:W is a partition of U

}
.

(This holds for any finite sets U, M, (Uf)f∈M with ∅ 6= Uf ⊆ U.)

Note: We have an algorithm with running time O(|V (G)||E(G)|)

Lower bounds and LP relaxations
Theorem (Cheriyan, Sebő, Szigeti [2001])

Lϕ := |V (G)| − 1 + ϕ(G) ≤ LP(G) :=

min
{

x(E(G)) : x ∈ RE(G)
≥0 , x(δ(W)) ≥ 2 for all ∅ 6= W ⊂ V (G)

}
Proof (Sketch): Frank’s theorem⇒ T ⇒ 2-packing of T -cuts. �

Theorem
Lµ := |V (G)| − 1 + |M| − µ ≤ LP(G,T) :=

min
{

x(E(G)) : x ∈ RE(G)
≥0 ,

x(δ(W)) ≥ 2 for all ∅ 6= W ⊂ V (G) with |W ∩ T | even,

x(δ(W)) ≥ |W| − 1 for all partitionsW of V (G)
}

Proof (Sketch): 2-packing of cuts, including the partition from
min-max theorem for forest representation systems. �

Lower bounds and LP relaxations
Theorem (Cheriyan, Sebő, Szigeti [2001])

Lϕ := |V (G)| − 1 + ϕ(G) ≤ LP(G) :=

min
{

x(E(G)) : x ∈ RE(G)
≥0 , x(δ(W)) ≥ 2 for all ∅ 6= W ⊂ V (G)

}
Proof (Sketch): Frank’s theorem⇒ T ⇒ 2-packing of T -cuts. �

Theorem
Lµ := |V (G)| − 1 + |M| − µ ≤ LP(G,T) :=

min
{

x(E(G)) : x ∈ RE(G)
≥0 ,

x(δ(W)) ≥ 2 for all ∅ 6= W ⊂ V (G) with |W ∩ T | even,

x(δ(W)) ≥ |W| − 1 for all partitionsW of V (G)
}

Proof (Sketch): 2-packing of cuts, including the partition from
min-max theorem for forest representation systems. �

Summary of Results

We obtained an improved approximation ratio of:
I 7

5 for Graphic TSP
I 3

2 for Connected-T -join
I 4

3 for 2ECSS

I All algorithms combinatorial, running time O(|V (G)|3)
I These bounds are tight.
I These are also upper bounds on the integrality ratios of the

natural LPs for unit weights.

Open problems

I improve approximation ratios (to 4
3 for Graphic TSP?)

I extend to weights (general metrics)
I extend to directed graphs

Thank you!

Open problems

I improve approximation ratios (to 4
3 for Graphic TSP?)

I extend to weights (general metrics)
I extend to directed graphs

Thank you!

Open problems

I improve approximation ratios (to 4
3 for Graphic TSP?)

I extend to weights (general metrics)
I extend to directed graphs

Thank you!

Tight example for connected-T -join

s t

|V (G)| = 8k + 5 (Here k = 3.)
T = {s, t}
OPT = 8k + 4
ϕ(G) = 2
π = 1 = 1

2ϕ(G).

Algorithm computes solution with 12k + 6 edges.

Tight example for graphic TSP

|V (G)| = OPT = 10k + 1 (Here k = 3.)
ϕ(G) = 0
L = 10k
π = k = 1

10L.

Algorithm computes solution with 14k edges.

Tight example for 2ECSS

L = |V (G)| = OPT = 24k (Here k = 2.)
ϕ(G) = 1
π = 4k = 1

6L.

Algorithm computes solution with 32k − 1 edges.

	Introduction
	Ear-Decompositions
	2ECSS
	Earmuff Maximization
	Proof of Main Theorem
	Graphic TSP
	Example
	Connected-T-Joins
	Using nicer ears in general
	Earmuff maximization and lower bounds
	Conclusion
	Appendix: Tight Examples

