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Metric TSP
Given a complete graph G and metric weights c : E(G)→ R≥0,
find a Hamiltonian circuit in G with minimum total weight.

I NP-hard
I best known approximation ratio 3

2 (Christofides [1976])
I no 185

184 -approximation algorithm exists unless P = NP
(Lampis [2012])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980])

But recently there has been progress for a special case called
Graphic TSP:
I approximation ratio 1.5− ε (Gharan, Saberi, Singh [2011])
I approximation ratio 1.461 (Mömke, Svensson [2011])
I approximation ratio 1.445 (Mucha [2012])

We will show an approximation ratio of 1.4.
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Graphic TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is called tour or connected-∅-join of G
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Main results
Let G be a connected graph and T ⊆ V (G) with |T | even.
A connected-T -join of G (aka T -tour) is a set F ⊆ E(2G) such that
I (V (G),F ) is connected, and
I v ∈ T ⇔ |F ∩ δ(v)| odd. s

t

T = {s, t}

We improve the approximation ratio for:
I Graphic TSP (smallest tour = connected-∅-join):

from 13
9 (Mucha [2012]) to 7

5

I Connected-T -join (smallest connected-T -join):
from 5

3 (Christofides [1976], Hoogeveen [1991]),
1.578 for T = {s, t} (An, Kleinberg, Shmoys [2012]), to 3

2

I 2ECSS (smallest 2-edge-connected spanning subgraph):
from 17

12 (Cheriyan, Sebő, Szigeti [2001]) to 4
3

Note that doubling edges is necessary (except for 2ECSS)
and tripling edges does not help.
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Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k ) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.
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Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ϕ(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Lovász [1972])
ϕ(G) = 0 if and only if G is factor-critical.

Corollary (Lovász and Plummer [1986])
For every 2-vertex-connected factor-critical graph one can
compute an open odd ear-decomposition in polynomial time.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.
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compute an open odd ear-decomposition in polynomial time.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time,

and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.



Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ϕ(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Lovász [1972])
ϕ(G) = 0 if and only if G is factor-critical.

Corollary (Lovász and Plummer [1986])
For every 2-vertex-connected factor-critical graph one can
compute an open odd ear-decomposition in polynomial time.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.



Proof of the easy direction: ear induction
Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time, and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

change parity here

(keven := # even ears)

Proof of “≥”: fix ear-decomposition and T

I Split pendant ear P at the ver-
tices of T into red and blue part

I Take the smaller part

I Change parity of an endpoint of
P if necessary; delete P; iterate

I This yields a T -join with
≤ 1

2(|V (G)| − 1 + keven) edges
�
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Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS: delete all trivial ears.

The remaining number of edges is at most

5
4(|V (G)| − 1 + keven) +

1
2k3,

where keven is the number of even ears,
and k3 is the number of ears of length 3.

Note: Every ear-decomposition has at least ϕ(G) nontrivial ears
⇒ Every 2ECSS has at least Lϕ := |V (G)| − 1 + ϕ(G) edges.

By Frank’s theorem, we get keven = ϕ(G). Note k3 ≤ 1
2(|V (G)|−1).

This immediately yields a 3
2 -approximation for 2ECSS

(was improved to 17
12 by Cheriyan, Sebő and Szigeti [2001])



Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS: delete all trivial ears.
The remaining number of edges is at most

5
4(|V (G)| − 1 + keven) +

1
2k3,

where keven is the number of even ears,
and k3 is the number of ears of length 3.

Note: Every ear-decomposition has at least ϕ(G) nontrivial ears
⇒ Every 2ECSS has at least Lϕ := |V (G)| − 1 + ϕ(G) edges.

By Frank’s theorem, we get keven = ϕ(G). Note k3 ≤ 1
2(|V (G)|−1).

This immediately yields a 3
2 -approximation for 2ECSS

(was improved to 17
12 by Cheriyan, Sebő and Szigeti [2001])
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New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.
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Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Lemma (Cheriyan, Sebő, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof:
I Compute an ear-decomp. with fewest even ears (Frank [1993])
I Subdivide one edge of each even ear (⇒ factor-critical graph)
I Compute an open odd ear-decomp. (Lovász, Plummer [1986])
I Undo subdivisions⇒ open ear-decomp. with fewest even ears
I Replace non-pendant short ears
I Replace adjacent short ears
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Sketch of proof (some details)

I Replace non-pendant short ears
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Optimizing short ears
I Adding all short ears leaves some

number of connected components

I Internal vertices of short ears may
be incident to trivial ears

I These can be used to replace some
short ears by other short ears

I Goal: minimize the resulting number
of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.
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Eardrums and earmuffs

An eardrum is the set of components of an
induced subgraph with maximum degree 1.

Example: the sets of internal vertices of
short ears in a nice ear-decomposition.

Let M be an eardrum. For f ∈ M let Pf be
the set of paths with internal vertices f .

An earmuff is a set of paths {Pf : f ∈ F} with F ⊆ M,
Pf ∈ Pf for f ∈ F , and (V (G),

⋃
f∈F E(Pf )) is a forest.

Theorem
A maximum earmuff can be computed in polynomial time.

Call the maximum µ(G,M).
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First solution: matroid intersection

I Represent each path P ∈ Pf (f ∈ M) by the set eP of its two
endpoints; let Ef := {eP : P ∈ Pf}.

I Let r be the rank function of the cycle matroid of the
complete graph on V (G).

Theorem (Rado [1942])
Let E be a finite set and r the rank function of a matroid on E.
Let E1,E2, . . . ,Ek ⊆ E. Then

max
{

r({e1, . . . ,ek}) : ei ∈ Ei (i = 1, . . . , k)
}

=

min
{

r
(⋃

i∈I Ei
)
+ k − |I| : I ⊆ {1, . . . , k}

}
.

Note: Special case of matroid intersection.
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Earmuff maximization: example
vertex in VM

vertex in V (G) \ VM

maximum earmuff

other edges

eardrum

sets in I, with
µ(G,M) = r(

⋃
i∈I Ei) + |M| − |I|

cuts in dual solution

No edge belongs to more than 2 cuts. Number of cuts ≥
|V (G)|+ |I| − r(

⋃
i∈I Ei)− 1 = |V (G)| − 1 + |M| − µ(G,M)

Theorem
Any 2ECSS has at least Lµ := |V (G)| −1+ |M| −µ(G,M) edges. �
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New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.
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New algorithm for 2ECSS: proof of main theorem
X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
X Add edges to obtain connectivity.
X Add edges to correct parity.

}
Lµ + πlong edges.

}1
2(|V0|−1+ϕ0(G)) edges.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.



New algorithm for 2ECSS: proof of main theorem
X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
X Add edges to obtain connectivity.
X Add edges to correct parity.

}
Lµ + πlong edges.}1
2(|V0|−1+ϕ0(G)) edges.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.



New algorithm for 2ECSS: proof of main theorem
X Compute a nice ear-decomposition.
X Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

X Take all edges of pendant ears.
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2(|V0|−1+ϕ0(G)) edges.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
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Proof: Since |V0| ≤ |V (G)|+ ϕπ(G)− 2πshort − 4πlong,
correcting parity needs at most 1

2Lϕ − π − πlong edges. �



New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

I Delete all 1-ears. In each of the resulting blocks:

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.
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The Mömke-Svensson lemma

Definition (Mömke and Svensson [2011])
Let G be a 2-vertex-connected graph.
A removable pairing in G consists of a set R of removable edges
and a set of pairwise disjoint pairs of elements of R such that
I deleting any edge set S ⊆ R that contains at most edge out

of each pair does not disconnect the graph
I the two edges of any pair share a vertex, and this vertex is

incident to another edge

Theorem (Mömke and Svensson [2011] )
Given a 2-vertex-connected graph G and a removable pairing
(R,P). Then one can find a tour with at most 4

3 |E(G)| − 2
3 |R|

edges in polynomial time.



Mömke-Svensson applied to ear-decompositions

Theorem
Given a 2-vertex-connected graph G with an ear-decomposition
in which all ears are nontrivial. Then one can find a tour with at
most 4

3(|V (G)| − 1) + 2
3π edges in polynomial time.

Proof: We define the removable pairing as follows:
I For each pendant ear, R will contain exactly one of its edges.
I For each non-pendant ear, R will contain a pair of edges

incident to an internal vertex that is endpoint of another ear.

So |R| = 2(|E(G)| − (|V (G)| − 1))− π.

The Mömke-Svensson lemma yields a tour with at most
4
3 |E(G)| − 2

3 |R| edges. �
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Proof of Mömke-Svensson lemma
Theorem (Mömke and Svensson [2011] )
Given a 2-vertex-connected graph G and a removable pairing
(R,P). Then one can find a tour with at most 4

3 |E(G)| − 2
3 |R|

edges in polynomial time.

Proof: Find an odd join J containing at most one edge of each pair.
Add a second copy of each edge in J \ R.
Delete the edges in J ∩ R.
We get a tour with |E(G)|+ c(J) edges,
where c(e) = −1 for e ∈ R and c(e) = 1 for e /∈ R.

Construct G′ as follows. For each pair P with edges
{u, v}, {v ,w}, add a vertex vP and an edge {vP , v} of weight 0,
and replace the two edges in P by {u, vP}, {vP ,w}.

The all-1
3 -vector is in the odd join polytope of G′, and in its face

defined by x(δ(vP)) = 1 for all pairs P.
Hence there is an odd join J as required with
c(J) ≤ 1

3c(E(G′)) = 1
3 |E(G)| − 2

3 |R|. �
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Example: application of Mömke-Svensson lemma
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New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.



Example: Shorter tour by nicer ears
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New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.
I Delete all 1-ears. In each of the resulting blocks:
I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.



New algorithm for connected-T -joins
I Compute a nice ear-decomposition.
I Optimize clean ears so that they serve best for connectivity.

(Clean ears are short ears without an internal vertex in T .)

I Take all edges of clean ears.
I Apply ear induction to pendant but

not clean ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply

ear induction
to all ears.

Theorem
The new algorithm yields a connected-T -join with at most
3
2L + 1

2ϕ(G)− π edges, where L is a lower bound and π is the
number of pendant ears (after optimization).

Alternative yields at most 3
2L− 1

2ϕ(G) + π edges.

−→ The better of the two has at most 3
2L edges.



Tool for connected-T -joins: ear induction

change parity here

change parity here

I Split pendant ear at vertices in T
(that have wrong parity so far)

I Take smaller part for obtaining
a T -join

I Double smaller part for
obtaining a connected-T -join

I May delete one pair of parallel
edges (if there is one)

This yields a
I T -join with ≤ 1

2(|V (G)| − 1 + keven) edges

I connected T -join with ≤ 3
2(|V (G)|−1)+πclean− 1

2keven− kodd edges

≤ 3
2(|V (G)|−1) + 1

2keven− πnotclean and ≤ 3
2(|V (G)|−1)− 1

2keven+ π
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New algorithm for connected-T -joins
I Compute a nice ear-decomposition.
I Optimize clean ears so that they serve best for connectivity.

Clean ears are short ears without an internal vertex in T .
I Take all edges of clean ears.
I Apply ear induction to pendant but

not clean ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply

ear induction
to all ears.

Theorem
The new algorithm yields a connected-T -join with at most
3
2L + 1

2ϕ(G)− π edges, where L is a lower bound and π is the
number of pendant ears (after optimization).

Alternative yields at most 3
2L− 1

2ϕ(G) + π edges.

−→ The better of the two has at most 3
2L edges.



Using nicer ears, more generally and formally
Definition
Let G be a graph with a nice ear-decomposition, T ⊆ V (G), |T | even.
An ear is clean if it is short and T contains none of its internal vertices.
Let M contain for each clean ear the set of its internal vertices.

Theorem
Let G,T ,M be as above. Suppose the given ear-decomposition
contains a maximum earmuff for M (of cardinality µ).
Then a connected-T -join of cardinality at most Lµ + 1

2Lϕ − π can
be constructed in O(|V (G)|3) time.

Recall:
π = number of pendant ears

Lϕ = |V (G)| − 1 + ϕ(G)

Lµ = |V (G)| − 1 + |M| − µ

Lµ is a lower bound on the optimum (in fact, on the LP value).
Lϕ is a lower bound if T = ∅.



Proof

V0VM

clean ears
V1

other pendant ears

I take all edges of clean ears 3
2 |VM |+ 1

2ϕM
I add edges of G[V0] so that

(VM ∪ V0,E1 ∪ E2) is connected |V0| − 1− µ
I apply ear induction to

non-clean pendant ears 3
2 |V1|+ 1

2ϕ1 − (π − |M|)
I Correct parities on G[V0]

1
2(|V0|+ ϕ0 − 1)

Adding up, using ϕ(G) = ϕ0 + ϕ1 + ϕM , yields

3
2(|V (G)| − 1) + |M| − µ+ 1

2ϕ(G)− π = Lµ + 1
2Lϕ − π

�
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Second solution to earmuff maximization
Let M be a eardrum with VM ∩ T = ∅ (e.g., contain for each clean
ear the set of its internal vertices).
I Let U = V (G) \ VM , where VM =

⋃
M.

I Represent Pf (f ∈ M) by the set Uf of its endpoints.
I Sufficient to find a maximum cardinality subset F ⊆ M with a

forest representative system (ef )f∈F of (Uf )f∈F , i.e.,
I ef ∈

(Uf
2

)
for all f ∈ F ,

I ef 6= ef ′ for f 6= f ′, and
I the graph (U, {ef : f ∈ F}) is a forest.

Theorem (≈ Lovász [1970])
This maximum is µ =

min
{
|M|−

∑
W∈W

(
|{f ∈ M : Uf ⊆W}|−(|W |−1)

)
:W is a partition of U

}
.

(This holds for any finite sets U, M, (Uf )f∈M with ∅ 6= Uf ⊆ U.)

Note: We have an algorithm with running time O(|V (G)||E(G)|)
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Lower bounds and LP relaxations
Theorem (Cheriyan, Sebő, Szigeti [2001])

Lϕ := |V (G)| − 1 + ϕ(G) ≤ LP(G) :=

min
{

x(E(G)) : x ∈ RE(G)
≥0 , x(δ(W )) ≥ 2 for all ∅ 6= W ⊂ V (G)

}
Proof (Sketch): Frank’s theorem⇒ T ⇒ 2-packing of T -cuts. �

Theorem
Lµ := |V (G)| − 1 + |M| − µ ≤ LP(G,T ) :=

min
{

x(E(G)) : x ∈ RE(G)
≥0 ,

x(δ(W )) ≥ 2 for all ∅ 6= W ⊂ V (G) with |W ∩ T | even,

x(δ(W)) ≥ |W| − 1 for all partitionsW of V (G)
}

Proof (Sketch): 2-packing of cuts, including the partition from
min-max theorem for forest representation systems. �
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Summary of Results

We obtained an improved approximation ratio of:
I 7

5 for Graphic TSP
I 3

2 for Connected-T -join
I 4

3 for 2ECSS

I All algorithms combinatorial, running time O(|V (G)|3)
I These bounds are tight.
I These are also upper bounds on the integrality ratios of the

natural LPs for unit weights.



Open problems

I improve approximation ratios (to 4
3 for Graphic TSP?)

I extend to weights (general metrics)
I extend to directed graphs

Thank you!
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Tight example for connected-T -join

s t

|V (G)| = 8k + 5 (Here k = 3.)
T = {s, t}
OPT = 8k + 4
ϕ(G) = 2
π = 1 = 1

2ϕ(G).

Algorithm computes solution with 12k + 6 edges.



Tight example for graphic TSP

|V (G)| = OPT = 10k + 1 (Here k = 3.)
ϕ(G) = 0
L = 10k
π = k = 1

10L.

Algorithm computes solution with 14k edges.



Tight example for 2ECSS

L = |V (G)| = OPT = 24k (Here k = 2.)
ϕ(G) = 1
π = 4k = 1

6L.

Algorithm computes solution with 32k − 1 edges.
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