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Abstract

We revisit the d-dimensional arrangement problem and analyze the performance
ratios of previously proposed algorithms based on the linear arrangement problem with
d-dimensional cost. The two problems are related via space-filling curves and recursive
balanced bipartitioning. We prove that the worst-case ratio of the optimum solutions
of these problems is Θ(log n), where n is the number of vertices of the graph. This
invalidates two previously published proofs of approximation ratios for d-dimensional
arrangement. Furthermore, we conclude that the currently best known approximation
ratio for this problem is O(log n).

1 Introduction

We revisit the d-dimensional arrangement problem (d-dimAP) for d ∈ N: given an
undirected graph G = (V (G), E(G)) and an integer k ≥ d

√
|V (G)|, find an injection

p : V (G) → {1, . . . , k}d minimizing
∑
{v,w}∈E(G) ||p(v) − p(w)||1. Throughout this paper,

we write n = |V (G)| and m = |E(G)|, and d is a fixed constant. The case d = 2 is an
interesting (though simplified) model of VLSI placement.

Already the case d = 1, known as the Optimal Linear Arrangement Problem,
is NP-hard (Garey, Johnson and Stockmeyer [1976]). The currently best known approx-
imation guarantee is O(

√
log n log log n), due to Charikar et al. [2010] and Feige and Lee

[2007] (improving an earlier result of Rao and Richa [2004]).
For the general case, Hansen [1989] sketched an algorithm that recursively bipartitions

the vertex set using an algorithm proposed by Leighton and Rao [1999]. The Leighton-Rao
algorithm computes a c-balanced cut (i.e., the set of edges with exactly one endpoint in
U for a set U ⊂ V (G) with cn ≤ |U | ≤ (1 − c)n) that is at most O(log n) times larger
than a minimum c′-balanced cut, for some constants 0 < c < c′ < 1

2 . This can lead to
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an O(log2 n)-approximation algorithm for d-dimAP, although Hansen did not give a full
proof.

The Leighton-Rao result was improved by Arora, Rao and Vazirani [2009], who ob-
tained O(

√
log n) instead of O(log n). Arora, Hazan and Kale [2010] obtained the same

ratio by a faster algorithm. Using this algorithm for the recursive bipartitioning improves
Hansen’s result by a factor of O(

√
log n).

Even et al. [2000] presented an O(log n log logn)-approximation algorithm for the linear
arrangement problem with d-dimensional cost (d-LAP): given a graph G, find a bijection
p : V (G) → {1, . . . , n} such that

∑
{v,w}∈E(G)

d
√
|p(v)− p(w)| is minimized. Charikar,

Makarychev and Makarychev [2007] used the result of Arora, Rao and Vazirani [2009] to
obtain an O(

√
log n)-approximation algorithm for d-LAP for any d ≥ 2.

Both, Even et al. [2000] and Charikar, Makarychev and Makarychev [2007], claimed
that their approximation algorithm for d-LAP implies an approximation algorithm for
d-dimAP with the same performance ratio for every fixed d. The idea, proposed by Even
et al. [2000], is to transform the linear arrangement into a d-dimensional arrangement
according to a discrete space-filling curve; this is essentially [Even et al. [2000], Lemma
12] (except that they did not address the case n < kd explicitly):

Lemma 1 (essentially Even et al. [2000], Lemma 12) For any n, d, k ∈ N with n ≤
kd, there exists an injection p : {1, . . . , n} → {1, . . . , k}d such that ||p(i) − p(j)||1 ≤
4(d+ 1) d

√
|i− j| for all i, j ∈ {1, . . . , n}, and such a mapping can be computed in O(n(d+

log n) + log k) time.

Our proof follows Even et al. [2000], but contains an explicit construction of a suitable
space-filling curve through the d-dimensional grid, also in the case n < kd.

Proof: Let s := dlog2
d
√
ne and l := 2s. Consider the s-th step of the construction of

the d-dimensional version of Hilbert’s [1891] space-filling curve (see Sagan [1994]), say
q : {1, . . . , ld} → {1, . . . , l}d. For any i, j ∈ {1, . . . , ld} with i 6= j let t = dlog2

d
√
|i− j|e;

then 2d(t−1) < |i− j| ≤ 2dt and hence ||q(i)− q(j)||1 < (d+ 1)2t < 2(d+ 1) d
√
|i− j|.

Let k′ = min{k, l} and S = {bli/k′c : i = 1, . . . , k′}d. Writing q(j) = (q1(j), . . . , qd(j)),
we finally set p(j) := (dk′q1(j′)/le, . . . , dk′qd(j′)/le) for j = 1, . . . , n, where j′ = min{i :
|{q(1), . . . , q(i)}∩S| = j}. Note that p is injective and ||p(i)− p(j)||1 ≤ ||q(i′)− q(j′)||1 ≤
2(d+ 1) d

√
|i′ − j′| ≤ 2(d+ 1) d

√
2d|i− j| = 4(d+ 1) d

√
|i− j| for any i and j. 2

See Figure 1 for an example. Hence, for any graph, any solution of d-LAP can be
transformed to a solution of d-dimAP such that the cost increases at most by a factor
4(d + 1). However, this transformation does not preserve the approximation ratio, as we
point out in this note. This is because the optimum value of d-LAP is not bounded by a
constant factor times the optimum value of d-dimAP. A factor Θ(log n) is lost because of
the following theorem, our main result:
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(a) Hilbert’s curve q for d = 2 and s = 3.
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(b) The resulting injection p for d =
2, n = 23, and k = 5.

Figure 1: left: Hilbert’s curve q for d = 2 and s = 3; right: the resulting injection p for d = 2,
n = 23, and k = 5. The figure shows the graph with edges {q(i), q(i+ 1)}, i = 1, . . . , 63 on the left
and the graph with edges {p(i), p(i+ 1)}, i = 1, . . . , 22 on the right. Note that p results from q by
considering only the points in S (which here means erasing the second, fifth, and seventh row and
column), and omitting the last kd − n points.

Theorem 2 Let d ∈ N, d ≥ 2. For any graph G and any injection p : V (G)→ {1, . . . , k}d
(where k ∈ N), there exists a bijection q : V (G)→ {1, . . . , n} such that∑

{v,w}∈E(G)

d
√
|q(v)− q(w)| ≤ O(log n)

∑
{v,w}∈E(G)

||p(v)− p(w)||1.

There are pairs (G, p) for which this bound is tight.

Consequently, the analysis of the algorithms of Even et al. [2000] and Charikar, Maka-
rychev and Makarychev [2007] only yields approximation ratios of O(log2 n log log n) and
O(log n

√
log n), respectively. However, a different proof (see Section 4) shows that the algo-

rithm of Even et al. [2000] does indeed achieve the claimed performance ratioO(log n log log n).
Moreover, from a result of Fakcharoenphol, Rao and Talwar [2004] we can deduce the cur-
rently best known approximation ratio of O(log n); this will be shown in Section 4.
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Banerjee et al. [2009] suggested a similar algorithm for d = 2. They claimed an
approximation ratio of O( 4

√
log n

√
m log log n) (and a weaker ratio for hypergraphs). Un-

fortunately, their proof contains an error, too (the complete graph is a counterexample
to [Banerjee et al. [2009], Lemma 2]). However, the claimed approximation ratio is any-
way worse than the trivial O(

√
m), which is obtained by an arbitrary injection of the

non-isolated vertices to {1, . . . , d
√

2me}2.
We note that d-dimAP is not known to be MAXSNP-hard for any d ∈ N (but see

Ambühl, Mastrolilli and Svensson [2011] and Devanur et al. [2006]).
The next two sections contain a proof of Theorem 2.

2 Upper Bound

We first consider the direction needed for proving approximation ratios for d-dimAP via
d-LAP and space-filling curves.

Lemma 3 For any graph G and any injection p : V (G) → {1, . . . , k}d (where k, d ∈ N),
there exists a bijection q : V (G)→ {1, . . . , n} such that∑

{v,w}∈E(G)

d
√
|q(v)− q(w)| ≤ 32d lnn

∑
{v,w}∈E(G)

||p(v)− p(w)||1.

This essentially generalizes [Charikar, Makarychev and Makarychev [2007], Theorem
2.1, part I] (they consider the case where p is a one-dimensional bijection). The following
proof is inspired by theirs, but the analysis is more involved. The basic idea is to partition
the vertex set recursively. In each iteration, large vertex sets are partitioned into two sets
of approximately equal size (up to a constant factor) according to their j-th coordinates
in p, where j changes in each iteration. Then all vertices in one set will precede all vertices
in the other set in q.

Proof: We write p(v) = (p1(v), . . . , pd(v)) for v ∈ V (G). Let γ = 4d2−1
4d2

. Note that

1− γd = (1− γ)
∑d−1

i=0 γ
i ≤ d(1− γ) = 1

4d and 1
2 < γd < 1.

We construct q as follows. Let i := 1 and r1(v) := 0 for all v ∈ V (G). Repeat the
following until (r1(v), . . . , ri(v)) 6= (r1(w), . . . , ri(w)) for all v, w ∈ V (G) with v 6= w. At
termination, the lexicographical order of these vectors determines q.

In iteration i we will consider coordinates pji(v) for v ∈ V (G), where ji = 1+(i mod d).
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Figure 2: Example of the first two iterations of the algorithm defined in the proof of Lemma 3.
Here, n = 10 and d = 2, hence γ = 15

16 and γd = 225
256 . In iteration 2, we have |X(0,0)| = 1 <

1
2

d
√
γin/2 ≈ 1.048. Hence, we will not partition V(0,0) = {v7, v8, v10} in iteration 2.

We write Si = {(r1(v), . . . , ri(v)) : v ∈ V (G)}. For each s ∈ Si let

Vs = {v ∈ V (G) : (r1(v), . . . , ri(v)) = s},
as = min{x : |{v ∈ Vs : pji(v) ≥ x+ 1}| ≤ γd|Vs|},
bs = max{x : |{v ∈ Vs : pji(v) ≤ x}| ≤ γd|Vs|},
Xs = {as, . . . , bs}.

Note that bs + 1 ≥ as because |{v ∈ Vs : pji(v) ≥ as}|+ |{v ∈ Vs : pji(v) ≤ bs + 1}| >
γd|Vs|+ γd|Vs| > |Vs|.

Let us sketch the idea behind these definitions. Partitioning Vs into the set of vertices
for which the ji-th coordinate is at most x and the rest yields sufficiently small parts if
x ∈ Xs. However, we will only perform such a partitioning step if |Xs| is sufficiently large,
and then we will pick a coordinate x ∈ Xs that yields the smallest cut. If |Vs| is large,
then |Xs| will be large for at least one coordinate, and so we will make progress after at
most d iterations. We will now give the details.

There are two cases. If |Xs| ≤ 1
2

d
√
γin/2, then we set ri+1(v) := 0 for all v ∈ Vs.

Otherwise, we “split” Vs: for x ∈ Xs and v ∈ Vs let rx(v) := 0 if pji(v) ≤ x and rx(v) :=
1 otherwise. Choose x ∈ Xs such that

∑
{v,w}∈E(G[Vs])

|rx(v) − rx(w)| is minimized, and
set ri+1(v) := rx(v) for all v ∈ Vs.
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After doing this for each s ∈ Si, we increment i. This ends the description of the
procedure that ultimately defines q. See Figure 2 for an illustration.

To see that this procedure terminates, we prove that

|Vs| ≤ max
{

1, γi−dn
}

(1)

for any s ∈ Si and any iteration i.
This is trivial for i ≤ d. We proceed by induction. Let i > d and s ∈ Si. For 1 ≤ h < i

let sh denote the prefix of s of length h, i.e., the vector resulting from s by omitting the
last i− h components.

Case 1: Vs 6= Vsi−d . Then the set Vs resulted from splitting during at least one of the
iterations i − d, . . . , i − 1. Then |Vs| ≤ γd|Vsi−d |. Since si−d ∈ Si−d, we are done by
induction.
Case 2: Vs = Vsi−d . Then the set Vs was not split during any of the iterations h ∈
{i − d, . . . , i − 1}. This implies bsh + 1 − ash = |Xsh | ≤ 1

2
d
√
γhn/2 ≤ 1

2
d
√
γi−dn/2 for

h = i− d, . . . , i− 1.
Moreover, by the choice of ash and bsh , we have |{v ∈ Vs : pjh(v) < ash}| < (1−γd)|Vs|

and |{v ∈ Vs : pjh(v) > bsh + 1}| < (1− γd)|Vs|.
Combining this for h = i− d, . . . , i− 1 yields

|Vs| ≤ |{v ∈ Vs : ash ≤ pjh(v) ≤ bsh + 1 for h = i− d, . . . , i− 1}|+
i−1∑

h=i−d
(|{v ∈ Vs : pjh(v) > bsh + 1}|+ |{v ∈ Vs : pjh(v) < ash}|)

< 2d(1− γd)|Vs|+ |{v ∈ Vs : ash ≤ pjh(v) ≤ bsh + 1 for h = i− d, . . . , i− 1}|

≤ 1

2
|Vs|+

i−1∏
h=i−d

(bsh + 2− ash),

and hence

|Vs| < 2
i−1∏

h=i−d
(bsh + 2− ash).

If 1
2

d
√
γi−dn/2 < 1, we have bsh +1 = ash for h = i−d, . . . , i−1, and conclude |Vs| < 2.

If 1
2

d
√
γi−dn/2 ≥ 1, we have

i−1∏
h=i−d

(bsh + 2− ash) ≤
(

1 +
1

2
d

√
γi−dn/2

)d
≤
(

d

√
γi−dn/2

)d
= γi−dn/2,

and conclude |Vs| < γi−dn.
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In both cases (1) is proved. Let t denote the index i of the last iteration; then |Vs| = 1
for all s ∈ St+1. From (1) we immediately get t ≤ log1/γ(γ−dn) = d+log1/γ n ≤ d+4d2 lnn.

Next, we compute an upper bound on the number of edges separated in one partitioning
step, in iteration i for s ∈ Si with |Xs| > 1

2
d
√
γin/2:∑

{v,w}∈E(G[Vs])

|ri+1(v)− ri+1(w)|

≤ 1

|Xs|
∑
x∈Xs

∑
{v,w}∈E(G[Vs])

|rx(v)− rx(w)|

=
1

|Xs|
∑

{v,w}∈E(G[Vs])

|{x ∈ Xs : pji(v) ≤ x < pji(w) or pji(w) ≤ x < pji(v)}|

≤ 1

|Xs|
∑

{v,w}∈E(G[Vs])

|pji(v)− pji(w)|

<
2

d
√
γin/2

∑
{v,w}∈E(G[Vs])

|pji(v)− pji(w)|. (2)

For an edge e = {v, w} let ie be the smallest i such that ri+1(v) 6= ri+1(w) differ (i.e.,
ie is the index of the iteration in which e is separated). Then, both endpoints of e are
in V(r1(v),...,rie (v)), and these vertices are placed consecutively in q (see Figure 3 for an
illustration). Hence, using (1),

∑
{v,w}∈E(G)

d
√
|q(v)− q(w)| ≤

∑
e={v,w}∈E(G)

d

√
|V(r1(v),...,rie (v))| − 1

<
∑

e={v,w}∈E(G)

d
√
γie−dn

=
1

γ

t∑
i=1

d
√
γin |{e ∈ E(G) : ie = i}|

=
1

γ

t∑
i=1

d
√
γin

∑
s∈Si

∑
{v,w}∈E(G[Vs])

|ri+1(v)− ri+1(w)|

<
2 d
√

2

γ

t∑
i=1

∑
s∈Si

∑
{v,w}∈E(G[Vs])

|pji(v)− pji(w)|

≤ 2 d
√

2

γ

t∑
i=1

∑
{v,w}∈E(G)

|pji(v)− pji(w)|
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Figure 3: Visualization of the hierarchical decomposition ({Vs : s ∈ Si})i=1,...,t constructed in the
proof of Theorem 3 on the instance of Figure 2. The resulting linear order q is the left-to-right
order indicated at the bottom of the figure.

≤ 2 d
√

2

γ

⌈
t

d

⌉ ∑
{v,w}∈E(G)

||p(v)− p(w)||1

<
8d2 d
√

2

4d2 − 1
d1 + 4d lnne

∑
{v,w}∈E(G)

||p(v)− p(w)||1

≤ 32d lnn
∑

{v,w}∈E(G)

||p(v)− p(w)||1.

2

Charikar, Makarychev and Makarychev [2007] called a sequence P0, P1, . . . , Pt of par-
titions of V (G) a hierarchical decomposition if P0 = {V (G)}, Pt = {{v} : v ∈ V (G)}, and
Pi+1 is a refinement of Pi for each i = 1, . . . , t − 1. For a constant 0 < b < 1, a hierar-
chical decomposition is called b-balanced if |C| ≤ bin for each C ∈ Pi. We remark that
the sequence ({Vs : s ∈ Si})i=1,d+1,d+2,...,t defined in the proof of Lemma 3 is a γ-balanced
hierarchical decomposition (see Figure 3).

8



3 Lower Bound

We will now show that the bound is tight up to a factor that only depends on d. The graphs
that we will consider are d-dimensional grids themselves: let Gdk be given by V (Gdk) =
{1, . . . , k}d and E(Gdk) = {{x, y} : x, y ∈ V (Gdk), ||x − y||1 = 1}. Note that the identity
function p embeds V (Gdk) in itself with

∑
{v,w}∈E(Gd

k)
||p(v)− p(w)||1 = |E(Gdk)| = d(kd −

kd−1) < dn. Therefore, the following lemma shows the lower bound, and hence, with
Lemma 3, implies Theorem 2.

Lemma 4 Let d ≥ 2. If q : V (Gdk)→ {1, . . . , n} is any bijection, then∑
{v,w}∈E(Gd

k)

d
√
|q(v)− q(w)| > 3

16

(
1−

(
3
4

) d−1
d

)(
1−

(
3
4

)1/d)
dn log2 n− 3dn

64 .

Proof: LetG = Gdk, and let q : V (G)→ {1, . . . , n} be any bijection. Apply the procedure
in the proof of Lemma 3 to q (in the role of p, for dimension d = 1) to compute vectors
(r1(v), . . . , rt+1(v)) for v ∈ V (G) with∑

{v,w}∈E(G[Vs])

|ri+1(v)− ri+1(w)| < 4

(34)in

∑
{v,w}∈E(G[Vs])

|q(v)− q(w)|

for i = 1, . . . , t and s ∈ Si (cf. inequality (2); note that γ = 3
4). Hence,

∑
e∈E(G)

d

√(
3
4

)ie n =
t∑
i=1

d

√(
3
4

)i
n |{e ∈ E(G) : ie = i}|

=
t∑
i=1

d

√(
3
4

)i
n
∑
s∈Si

∑
{v,w}∈E(G[Vs])

|ri+1(v)− ri+1(w)|

<

t∑
i=1

d

√(
3
4

)i
n
∑
s∈Si

4(
3
4

)i
n

∑
{v,w}∈E(G[Vs])

|q(v)− q(w)|

= 4
∑

{v,w}∈E(G)

|q(v)− q(w)|
((

3
4

)ie n) 1−d
d

ie∑
i=1

((
3
4

) 1−d
d

)i−ie

<
4
(
3
4

) 1−d
d

1−
(
3
4

) d−1
d

∑
{v,w}∈E(G)

d
√
|q(v)− q(w)|. (3)
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The last inequality holds because for e = {v, w} ∈ E(G) there is an s ∈ Sie with

v, w ∈ Vs and |q(v) − q(w)| < |Vs| ≤
(
3
4

)ie−1 n (cf. inequality (1), implying
(
3
4

)ie n >
3
4 |q(v)− q(w)|.

A subgraph of G with c vertices has at most d(c − c1−1/d) edges, and this is tight if
the subgraph is induced by a product of d intervals of length c1/d. There are at most 2i−1

subgraphs G[Vs], s ∈ Si, each with at most
(
3
4

)i−1
n vertices.

Therefore,

|{e ∈ E(G) : ie ≤ i}| = |E(G)| −
∑
s∈Si

|E(G[Vs])|

≥ d(n− kd−1)−
∑
s∈Si

d
(
|V (G[Vs])| − |V (G[Vs])|1−1/d

)
=

∑
s∈Si

d|V (G[Vs])|1−1/d − dkd−1

≥ n(
3
4

)i−1
n
d
((

3
4

)i−1
n
)1−1/d

− dkd−1

=
((

3
4

)(1−i)/d − 1
)
dkd−1,

and hence,

∑
e∈E(G)

d

√(
3
4

)ie n ≥
t∑
i=1

(
d

√(
3
4

)i
n− d

√(
3
4

)i+1
n

)
|{e ∈ E(G) : ie ≤ i}|

≥
t∑
i=1

(
d

√(
3
4

)i
n− d

√(
3
4

)i+1
n

) ((
3
4

)(1−i)/d − 1
)
dkd−1

=
(

1−
(
3
4

)1/d) (3
4

)1/d t−1∑
i=0

(
1−

(
3
4

)i/d)
dn

≥
(

1−
(
3
4

)1/d) (3
4

)1/d(
t− 1

1−
(
3
4

)1/d
)
dn

≥
((

1−
(
3
4

)1/d)
log2 n− 1

) (
3
4

)1/d
dn. (4)

10



The inequalities (3) and (4) imply∑
{v,w}∈E(G)

d
√
|q(v)− q(w)|

>

(
3
4

)1/d
4
(
3
4

) 1−d
d

dn

((
1−

(
3
4

) d−1
d

)(
1−

(
3
4

)1/d)
log2 n−

(
1−

(
3
4

) d−1
d

))

>
3

16
dn

((
1−

(
3
4

) d−1
d

)(
1−

(
3
4

)1/d)
log2 n− 1

4

)
.

2

4 Approximation Algorithms

After showing him the above proofs, Guy Even [personal communication, 2011] sent us
a sketch of a revised proof of the performance ratio of the d-dimensional arrangement
algorithm of Even et al. [2000]. This algorithm begins by solving the following linear
program (cf. [Even et al. [2000], page 606]):

min
∑

{v,w}∈E(G)

l(v, w) (5)

s.t.
∑
u∈U

l(u, v) ≥ (|U | − 1)1+1/d

4
∀U ⊆ V (G), ∀ v ∈ U (6)

l(u, v) + l(v, w) ≥ l(u,w) ∀u, v, w ∈ V (G) (7)

l(v, w) ≥ 0 ∀ v, w ∈ V (G) (8)

An optimum solution l : V (G)× V (G) → R≥0 of this LP can be found in polynomial
time [Even et al. [2000], Section 6.1]. The following lemma strengthens [Even et al. [2000],
Lemma 14] by showing that the LP (5)–(8) constitutes a lower bound for the cost of any
d-dimensional arrangement, up to a constant factor.

Lemma 5 (Guy Even, personal communication 2011) Let q∗ be an optimum solu-
tion to d-dimAP. Then l(v, w) := 4d(d + 1)(d − 1)! · ||q∗(v) − q∗(w)||1 for v, w ∈ V (G)
defines a feasible solution to the LP (5)–(8).

Proof: Since (7) and (8) hold evidently, we prove (6). Let ∅ 6= U ⊆ V (G) and v ∈ U ,
w.l.o.g. q∗(v) = 0. If |U | ≤ 6d, then,∑

u∈U
||q∗(u)||1 ≥ |U | − 1 >

1

6
(|U | − 1)1+1/d ≥ 1

4d+1(d+ 1)(d− 1)!
(|U | − 1)1+1/d.
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If |U | > 6d, then let R := b d
√
|U |/2c − 1 ≥ 1

4
d
√
|U | − 1 and S(d, r) := {x ∈ Zd : ||x||1 = r}

for r ∈ N.
Observe that |{x ∈ S(d, r) : x ≥ 0}| =

(
r+d−1
d−1

)
, and thus,

(r + 1)d−1

(d− 1)!
≤
(
r + d− 1

d− 1

)
≤ |S(d, r)| ≤ 2d

(
r + d− 1

d− 1

)
≤ 2d(r + 1)d−1.

Since
R∑
r=1

|S(d, r)| ≤
R∑
r=1

2d(r + 1)d−1 ≤ 2dR(R+ 1)d−1 ≤ |U | − 1,

we have ∑
u∈U
||q∗(u)||1 ≥

R∑
r=1

∑
u∈S(d,r)

||u||1

=

R∑
r=1

r|S(d, r)|

≥
R∑
r=1

rd

(d− 1)!

≥
∫ R

0

xd

(d− 1)!
dx

≥ Rd+1

(d+ 1)(d− 1)!

≥ 1

4d+1(d+ 1)(d− 1)!
(|U | − 1)1+1/d

2

The algorithm of Even et al. [2000] computes a solution within an O(log n log log n)
factor of the cost of an optimum solution to LP (5)–(8) and hence, of the cost of q∗

(Lemma 5). Therefore, the result in that paper (though not its original proof) is correct.

Now we show that we can even get an O(log n)-approximation algorithm. To this end,
we use a result of Fakcharoenphol, Rao and Talwar [2004], who showed how to approximate
an arbitrary metric by a special kind of tree metric:

We call a tree T together with a vertex r ∈ V (T ) and a weight function c : E(T )→ R≥0
2-hierarchically well separated if there exists a constant γ > 0 such that c(e) = γ · 2−h,
where h is the number of edges in the unique path starting in r and ending with e. This
induces a metric l′ : V (T ) → R≥0, where l′(v, w) is the weight of the v-w-path in (T, c).
See Figure 4.
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w

x v yTu

4 4

2 2 2 2 2

1 1 1 1 1 1 1 1 1

Figure 4: Illustration of a tree metric defined by a 2-hierarchically well separated tree (T, r, c).
Here, γ = 8, l′(v, w) = 5 and l′(x, y) = 6. The function q defined in the proof of Theorem 7 orders
the leaves from left to right.

Lemma 6 (Fakcharoenphol, Rao and Talwar [2004]) Let G be a graph with n ≥ 2
vertices and l : V (G)× V (G)→ R≥0 a metric. Then one can compute in polynomial time
a 2-hierarchically well separated tree (T, r, c) such that V (G) is the set of leaves of T and
the induced tree metric l′ satisfies the following properties:

(a) l′(v, w) ≥ l(v, w) for all v, w ∈ V (G); and

(b)
∑
{v,w}∈E(G) l

′(v, w) ≤ O(log n)
∑
{v,w}∈E(G) l(v, w).

We conclude:

Theorem 7 There is an O(log n)-approximation algorithm for d-dimAP.

Proof: Let l be an optimum solution to the LP (5)–(8). Let (T, r, c) and l′ be as defined
in Lemma 6. For u ∈ V (T ) let Tu denote the set of leaves v ∈ V (G) such that the r-v-path
in T contains u. Define a bijection q : V (G) → {1, . . . , n} such that for all u ∈ V (T )
the elements of Tu are numbered consecutively. Let {v, w} ∈ E(G) and u be the unique
vertex with v, w ∈ Tu and |Tu| maximal (see Figure 4 for an illustration). Due to the
spreading constraints (6), there are x, y ∈ Tu such that l(x, y) ≥ 1

4
d
√
|Tu| − 1. Note that

l′(x, y) ≤ 2 · l′(v, w) since (T, r, c) is 2-hierarchically well separated. Therefore,

d
√
|q(v)− q(w)| ≤ d

√
|Tu| − 1 ≤ 4 l(x, y) ≤ 4 l′(x, y) ≤ 8 l′(v, w),
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and hence,∑
{v,w}∈E(G)

d
√
|q(v)− q(w)| ≤ 8

∑
{v,w}∈E(G)

l′(v, w) ≤ O(log n)
∑

{v,w}∈E(G)

l(v, w).

The result now follows from Lemma 1 and 5.
2

We considered the unweighted version of d-dimAP in this paper, but only to simplify
the exposition. It is straightforward that all results also hold for the weighted version
(where nonnegative edge weights are given and the weighted sum is minimized).
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