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Perfect graphs with unique P4-structure
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Humboldt-Universitdt zu Berlin, Germany

October 1995, revised June 1996

Abstract.  We will extend Reed’s Semi-Strong Perfect Graph Theorem by prov-
ing that unbreakable C5-free graphs different from a Cs and its complement have
unique Py-structure.

Introduction

A graph is called perfect if for all of its induced subgraphs the chromatic number and
the clique-number are the same. The notion of perfect graphs was introduced by Berge
in 1960 [1] who also proposed two characterizations of perfect graphs. The first one is
the famous Strong Perfect Graph Conjecture which states that a graph is perfect if and
only if it contains no cycle of length at least five or a complement of such a cycle as
an induced subgraph. This conjecture is open up to today. A second characterization
conjectured by Berge was proved by Lovasz [8] in 1972 and states that a graph is
perfect if and only if its complement is perfect. This result is known as the Perfect

Graph Theorem.

One of the most outstanding open problems in algorithmic graph theory is to de-
termine the complexity of recognizing perfect graphs. Results of Lovasz [8], Padberg
[10] and Bland et al. [2] imply, as it was first observed by Cameron [3] in 1982, that

the problem of recognizing perfect graphs is in co-AP. So far it is not known whether
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this problem also belongs to NP, i.e., we do not know of any reasonable way to certify

the perfection of an arbitrary graph.

One weak form of such a certificate is obtained via the Perfect Graph Theorem: to
prove the perfection of a graph it is enough to show that its complement is perfect.
In attempting to generalize this kind of certificate, Chvatal [4] invented in 1984 the
notion of P4-structure. For a given graph, its Py-structure is defined as the 4-uniform
hypergraph on the same vertex set as the original graph whose edges are all the 4-
element sets that induce a Py (i.e., a path on four vertices) in the original graph. We
say that a graph G has unique Py-structure if any other graph that has isomorphic (as a
hypergraph) Ps-structure to G is isomorphic to G or to the complement of G. A graph
G has strongly unique Py-structure if any other graph that has the same Py-structure
as GG is equal to G or G. The Cj5 is an example of a graph that has unique but not

strongly unique Py-structure.

Chvatal [4] conjectured that the perfection of a graph depends solely on its Py-
structure. He was led to this conjecture by observing that odd cycles and their com-
plements have unique Py-structure. Therefore the truth of the Strong Perfect Graph
Conjecture would imply his conjecture. Moreover, as the Py is a self-complementary
graph, the Py-structure of a graph and its complement are isomorphic. This shows that
Chvatal’s conjecture implies the Perfect Graph Theorem. Chvatal therefore suggested
his conjecture be called the Semi Strong Perfect Graph Conjecture. In 1987, Reed
[12] proved the conjecture and so it is now known as the Semi Strong Perfect Graph

Theorem.

Chvatal has shown that to prove the Strong Perfect Graph Conjecture it is enough
to have it proved for the class of so called unbreakable graphs. We will prove as a
main result in Section 4 that C5-free unbreakable graphs different from Cjg and its
complement have unique Pj-structure. This result shows that the Semi Strong Perfect
Graph Theorem and the Perfect Graph Theorem are equivalent for the class of Cs-free
unbreakable graphs.
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1 Notations

If 2 and y are adjacent vertices in a graph, we say that z sees y. Otherwise we say that
x misses y. For a set S of vertices we say that z disagrees on S if it sees neither all
nor none of the vertices of 5. Otherwise we say that z is homogeneous on S. We use
the notation zy as a short form for the edge {z,y}. The vertices  and y are called the
endpoints of the edge zy. We denote the complement of a graph G by G. All subgraphs

in this paper are induced subgraphs.

A graph is called perfect if for all of its induced subgraphs the chromatic number
and the clique number are the same. If a graph is not perfect then it is called imperfect.
An imperfect graph that has the property that all its proper induced subgraphs are

perfect is called minimal imperfect.

The neighborhood of a vertex z is denoted by N(z). Sometimes we will also write

Ng(z) to make clear that z is a vertex of the graph G.

A path or cycle on k vertices is denoted by Py respectively C. For simplicity of
notation we will often denote a path or cycle by just listing its vertices, e.g., abed may
stand for the path on four vertices {a, b, ¢,d} and edges ab, be, e¢d. For a path 2124 ... 2p
the vertices #1 and xy are called the endpoints of the path. We also say that 1 and xy
are connected by the path x1x,...xp. All other vertices are called the interior of the
path. For a P, the interior vertices are called the midpoints. A path or cycle is called
odd or even if its length is odd or even. An (odd) hole is an (odd) induced cycle of
length at least five. An (odd) antihole is the complement of an (odd) hole. A graph is
called Berge if it contains neither an odd hole nor an odd antihole. A graph is called

disc if it is a hole or an antihole.

A hypergraph H is a pair (V, F) where V is a finite set and F' is a subset of the
power set of V. The elements of V are called vertices and the elements of F are called
hyper-edges. A hypergraph is called k-uniform, if all its hyper-edges have cardinality
k. Two hypergraphs are isomorphic if there exists a bijection between their vertex sets

that preserves all the hyper-edges.

A domino is the graph on vertices a,b,c,d, e, f with edges ab, bec, cd,de,ef, fa,be.

The graph F is the complement of a domino, i.e., the graph on vertices a,b,c,d,e, f
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domino F

Figure 1: Some special graphs.

and edges ab, be, cd, da, ea, ed, fb, fc.

We denote the end of a proof by O and the end of a proof of a claim within a proof

by <.

2 Known results on perfect graphs

One of the most important results we will make use of in this paper is the Perfect
Graph Theorem due to Lovész [9]. It states that

a graph is perfect if and only if its complement is perfect.

A star-cutset C' in a graph G is a set of vertices such that G — C' is disconnected and
there exists some vertex v in C' that is adjacent to all other vertices in C'. The vertex v
is called a center of the star-cutset. A graph is called unbreakable if neither the graph

nor its complement contains a star-cutset. Chvétal [5] proved that
minimal imperfect graphs are unbreakable.

Let S be a proper subset of the vertex set of a graph G. Then the vertices in G — 5 can
be partitioned into three classes: vertices that have no neighbor in S are called S-null;
vertices that are adjacent to every vertex in S are called S-untversal; all other vertices
are called S-partial. Using this terminology a proper subset H of a graph G is called
a homogeneous set if |H| > 2 and no vertex in G — H is H-partial. Lovdsz [9] proved
that

no minimal imperfect graph contains a homogeneous set.

A graph is called weakly triangulated if neither the graph nor its complement contains

an induced cycle of length greater than four. Hayward [7] proved that

weakly triangulated graphs are perfect.
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An endomorphism of a graph G = (V, F) is a mapping f : V — V such that for any
edge zy in G the image f(z)f(y) is an edge in G. The endomorphism is proper if f(V)
is a proper subset of V. It was shown by Reed [11] that

no minimal imperfect graph admits a proper endomorphism.

3 Reed’s Semi Strong Perfect Graph Theorem

To prove the Semi Strong Perfect Graph Theorem Reed actually proved the following

theorem.

Theorem 1 (Reed [12]) Let G and H be Py-isomorphic graphs such that G is neither
H nor H. Then at least one of the following holds:

(i) H contains a proper induced subgraph isomorphic to C'.
(ii) H or H has a star-cutsel.
(iii) H or H has a proper endomorphism.
The Semi Strong Perfect Graph Theorem now follows immediately from this re-

sult, as no minimal imperfect graph satisfies any of these conditions. Reed’s proof of

Theorem 1 relied on yet two other theorems and one lemma which we will state next.

Theorem 2 (Reed [12]) If G and H are Py-isomorphic graphs which are invariant on

some disc of size at least six then either

(i) G=H, or

(ii) H or H has a slar-culsel, or
(iii) H contains a Cs5 as a proper subgraph. O
Theorem 3 (Reed [12]) Consider an unbreakable graph H, containing no Cs, that is

Py-isomorphic to a graph G. If some set D induces a Cg in H and an F (see Figure
1) in G then H has a proper endomorphism. a
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Lemma 1 (Chvatal[4], Hayward [6]) Discs have unique Py-structure. The only excep-

tion are discs of size siz that have the same Py-structure as the graph F respectively F

(see Figure 2). Discs of size > 7 have strongly unique Py-structure. a
1 2
6 1
6 3
2 5
5 4 4 3
Cs F

Figure 2: Two graphs with the same Py-structure.

Using Theorems 2 and 3 Reed proved Theorem 1 as follows: Let G and H be Py-
isomorphic graphs such that G is neither H nor H. We only have to show that H
fulfills at least one of the three conditions in Theorem 1. Hayward [7] proved that no
weakly triangulated graph on at least 3 vertices is unbreakable. Thus if H is weakly
triangulated or contains a C5 then condition (i¢) or (¢) is satisfied. Hence we may
assume that H contains a disc of size at least six. Let D be the set of vertices of this
disc inducing the subgraphs Dg and Dy of G and H, respectively. If Dy = D¢ then
(7) or (it) holds by Theorem 2. If Dy = D then (¢) or (4i) holds by Theorem 2 with
G in place of G. Thus we can assume Dy # D¢ and Dy # Dg. Now from Lemma 1
we know that Dg or Dz must be the graph F. If Dg = F then (i), (i7) or (i) holds
by Theorem 3; if Dz = F then (i), (é¢) or (i) holds by Theorem 3 with G in place of
G.

4 Graphs with unique P;-structure

Theorem 1 of Reed says that if a C5-free unbreakable graph has the property that
neither the graph nor the complement has a proper endomorphism then the graph has

unique Py-structure. In this section we will prove a generalization of this result.

Reed himself suggested [12] that the condition that the graph is Cs-free might
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be dropped from Theorem 1. However, in Theorem 2 the condition that H is Cs-free
cannot be removed. Figure 3 shows two unbreakable graphs with the same Py-structure

that are invariant on a disc of size six but are not isomorphic.

2 2

Figure 3: Two unbreakable graphs with the same Pj-structure

We will now prove that the condition on the proper endomorphism can be dropped

from Theorem 1. The only exceptions are Cg and its complement.

Theorem 4 Let G and H be Py-isomorphic graphs such that G is neither H nor H.
Then at least one of the following holds:

(i) H contains a proper induced subgraph isomorphic to C's.
(ii) H or H has a slar-culsel.

(iii) H or H is a Cs.
A more compact equivalent formulation is given by the next theorem:

Theorem 5 Cs-free unbreakable graphs different from Cg and Cg¢ have unique Py-

structure. a

Note that this result implies that the Semi Strong Perfect Graph Theorem and the

Perfect Graph Theorem are equivalent for the class of C's-free unbreakable graphs.

The proof of the Semi Strong Perfect Graph Theorem that we sketched in Section
3 shows, that it is enough for a proof of Theorem 4 to demonstrate the truth of the

following theorem which is an analogue of Theorem 3 of Reed.
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Theorem 6 Consider an unbreakable graph H, containing no C's, that is Py-isomorphic
to a graph G. If some set D induces a Cg in G and an F in H then G is a Cs.

Proof. Let GG be an unbreakable graph different from a Cg that contains no C’5 and let
H be a graph that is Ps-isomorphic to G. We may assume that G and H are defined
on the same set of vertices such that four vertices induce a P4 in G if and only if they
induce a Py in H. Let D be a set of vertices that induces a Cg in GG and the graph
F in H. We have to show that this leads to a contradiction. As G cannot contain a
homogeneous set (otherwise G or G contains a star-cutset), there must exist a vertex
a that is D-partial in G. A simple case analysis, using the fact that G is Cs-free and
that D induces the graph F in H, shows that up to symmetry the graph induced in G
by D U {a} is of one of six types. Figures 4 and 5 show these six possibilities together
with the corresponding graphs that are induced by D U {a} in H. The dashed lines

indicate edges where we do not care whether they exist or not.

12 3 2
4

5 6

5 4 a
1 2 3 2

4

63 1 :
/) Sl

5 4 a

Figure 4: Possible types of partial vertices of the Cg: twins

For the following we assume that the vertices of D are labeled 1,...,6 in the cyclic

order they appear around the Cg in GG so that vertices 1 and 4 have degree 2 in F.

Thus, V — D can be partitioned into sets

T1, T2, T3, Ta, T5, Tey S{1ys Sqays S(1,3,51 941,3,4,50 942,4,61> 9{1,2,4,6}» 9{2,3,5,61 Ay N

where:
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5 5 6
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3 2
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63 17T a 4

Figure 5: Possible types of partial vertices of the Cg: non-twins
(i) Foreach i € {1,...,6},T; = {v|Ng(v)N D —i = Ng(i)N D — i} = {v|Ng(v)N
D—i=Ng(i)nD — i}

(H) For each U € {{1}7 {4}7 {17375}7 {1737475}7 {2747 6}7 {1727476}7 {2737576}}7 Su =
{v|Ng(v) N D = U}. Note that for each U and for each v in Sy, Ng(v)N D is

determined as shown in Figure 5.

(iii) A is the set of vertices adjacent in G to all of D, N is the set of vertices adjacent

in G to none of D.

Clairnl T2:T3:T5:T6:®.
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Note that the same partitioning as stated above for V' — D exists for any other set
D’ which induces a Cg in G and an F in H. In particular, for each v in some T}, such a
partition exists for D, = D — i+ v. It follows that no vertex w outside T + 2 disagrees
on two vertices of T3 + 2 as otherwise w has an unallowable neighborhood either on D
or on D, for some v in T5. Thus, Ty is empty as otherwise Ty + 2 is a homogeneous

set. Similarly, T3,T5 and Ty are also empty. <&

At this point, we decompose V — D into X4 = T4 U Sy135 U (1345}, X1 =
T1U S2,46YUS(1,246} 91,51, 52356, A, N. Note that for each vertex v in Xy, we have:
Ng(v)Nn{2,3,5,6} = {2,6}, and Ng(v) N {2,3,5,6} = {3,5}, whilst for each vertex v
of X4 we have: Ny(v)N{2,3,5,6} = {2,6}, and Ng(v)N{2,3,5,6} = {3,5}.

Claim 2 If Sl 75 @ then 5135 U 51345 = @

Let w be a vertex in S7 and v be a vertex in S735U S1345. Assume that v and w are
not adjacent in G. Then wlwv3 induces a P in G but not in H. Similarly if vw is an
edge in G then it must also be an edge in H as otherwise wv56 is a Py in G but not in
H. But now either wv54 is a P4 in G but not in H or wv64 is a P, in H but not in G.

<

Claim 3 Sl = 54 = @

Assume 57 # (). Let P be a minimal path of G — N(2) 4 3 from 5 to 54U Xy U
{3,4,5,6}. Then, one endpoint w of P is in S7 and all its interior vertices are in N, so
the other endpoint » of P must be in X4 U S4. If v isin 54 then P+ 1+ 2+ 3+ 4 is
a hole C' (we can ofcourse assume G contains no hole of length seven or greater) so vw

is an edge. But now C induces a Cg in both H and G and again we are done.

Similarly v is not in T4, as otherwise P 4+ 1+ 24 3 is a hole of length at least seven
or induces a Cg in both G and H or it is a C5 in G contradicting the fact that G is
C'5-free.

10
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Finally v is not in S35 U S1345 by Claim 2. Thus P does not exist and so G is not

unbreakable, a contradiction. By symmetry, 54 is also empty. &

Claim 4 N = (.

First note that there are no edges from a vertex n € N to a vertex v € S135 U S1345
as otherwise nv12 induces a Py in GG but not in H. Similarly there are no edges from
N to S946 U S1246. Now there are no edges from a vertex n € N to a vertex v € T} as
otherwise |[Ng(n) N D,| = 1 contradicting Claim 3. Similarly, there are no edges from

N to S4. But now, 2+ N(2) is a cutset separating N from 4, a contradiction. <&

At this point, we have a partition of V into Xy, X4, A, 5 = S2356, and D.

Claim 5 There is no edge between S and X1 U Xy; there are all edges between A and
XU Xy.

Let s € 5. If s sees a vertex « € Ty then 12sz is a P4 in G but not in H. If s sees a
vertex T € Sy 35) U S(1345) then zs must be an edge in H as otherwise 1z2s is a P4
in H but not in G. If z is in Sy 35) then 3sz4 induces a Py in H but not in G. If z is
in 51 345 then 2sz4 is a Py in GG but not in H.

Let a € A. If @ misses a vertex v € T4 then 6a3z induces a Py in G therefore a
must be D-universal in H and misses z. But then 1la2xz is a Py in H but not in G. If
a misses a vertex T € 5y 35} U 5(1 345} then the Py 2a5z in G shows that a must also
be D-universal in H and misses z in H. But now the set {1,a,4,z} induces a Py in
exactly one of G and H. <&

Claim 6 A =0

If A is non-empty then § is also non-empty as otherwise G is disconnected. If there

is no edge between A and S then for any vertex @ € A we have that a U N(a) — 4

11
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separates S from vertex 4. Thus there must exist a vertex s that has a neighbor a € A.

But then N(s) separates a from {2,3,5,6} in G. This contradicts the fact that G is
unbreakable. So A is empty. &

Claim 7 S=10

If |S| > 2 then S is a homogeneous set. If S is just one vertex s, then since G
contains no Cj, there are no edges from Xy + 1 to X4+ 4 (or else a vertex from X + 1
and one from X4 + 4 together with {2,s,5} induce a C in G. But now, s + N(s) is a

star cutset separating 1 from 4. So, § must be empty. &

Now, if both X7 and X4 are empty then G is a Cg. So by symmetry, we can assume
that Xy is non-empty. If there are no two vertices z and y in X7+ 1 with incomparable
neighborhoods then let z be a vertex in X; 4+ 1 with maximal neighborhood. Clearly
z+4+ (N(z) — X7 — 1) is a cutset separating X; + 1 — z from 3. So, we can assume
there are two vertices z and y in Xy + 1 and two vertices w and z in X4 + 4 such that
cz,yw € E(G) and 2w,yz ¢ E(G). Because G has no Cs we see that either both or
neither of zy,wz are edges of G. Note that zz and yw are also edges in H while 2w
and yz are not edges in H. Moreover 2y and zw are edges in G if and only if they are
non-edges in H. In either case, the sets {2,z,y,z,w,5} and {6,z,y,z,w,3} induce a
Cg in one of G or H and an F in the other with the vertices of degree 2 in these F in
D. It follows from our previous remarks that a vertex v in X1 + 1 —x — y satisfies either
N@)n{z,y,z,w} = {z,y}, or N(v)Nn{z,y,z,w} = {2z, w}. In either case, we easily
arrive at a contradiction by considering the graph induced by v, z,y, z,w,2,3,5,6 as the
set {v,z,y,z}or {v,z,w,z}induces a Py in exactly one of G and H. So, X;+1 = {z,y}.
By symmetry, X4+ 4 = {w, z}.

Thus G is either the cube or the graph ) as depicted in Figure 6 and H is easily

seen to be isomorphic to G or G. a

The proof of Theorem 4 shows that except for the two graphs depicted in Figure 6,

(C's-free unbreakable graphs even have strongly unique Py-structure. Thus we have
Corollary 1 Cjs-free unbreakable graphs different from Cg, @, cube and their comple-

12
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Figure 6: Two exceptional graphs: the cube and the graph Q.

ments have strongly unique Py-structure. m|
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