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1 Introduction

Given a graph G = (V, E), aset R C V, and a length function on the edges,
a Steiner tree is a connected subgraph of G that spans all vertices in R. (It
might use vertices in V' \ R as well.) The Steiner tree problem in graphs is
to find a shortest Steiner tree, i.e., a Steiner tree whose total edge length is
minimum. This problem is well known to be NP-hard [19] and therefore we
cannot expect to find polynomial time algorithms for solving it exactly. This
motivates the search for good approximation algorithms for the Steiner tree
problem in graphs, i.e., algorithms that have polynomial running time and
return solutions that are not far from an optimum solution.

In this paper we give a survey of the known approximation algorithms
for the Steiner tree problem in graphs. After introducing the necessary
notation in the next subsection, we will explain the minimum spanning tree
heuristic. This algorithm was already known in 1968 (see page 24 in [14])
and finds a Steiner tree that is at most twice as long as an optimum solution.
For more than twenty years, no better approximation algorithm had been
found. In 1990 Zelikovsky proposed a simple greedy algorithm, using the
idea of so called 3-Steiner trees. His approach was extended by Berman and
Ramaiyer using k-Steiner trees. Since then, all approximation algorithms
for the Steiner tree problem have used Zelikovsky’s idea. This way, the
approximation quality has been improved substantially over the last years.
Table 1 summarizes the development.

Except for the randomized algorithm of Promel and Steger [26], all these
algorithms are based on simple greedy strategies. Analysing their perfor-
mance ratio is a highly nontrivial task, however. In this survey we present
several of these approximation algorithms along with an analysis of their
performance ratio. They illustrate the fundamental concepts very nicely.
Some general design principles and analysis tools that are common to these
algorithms are presented prior to the algorithms.
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Authors ratio
Moore 1968 | 2.0

Zelikovsky 1990 | 1.834
Berman, Ramaiyer 1991 | 1.734
Zelikovsky 1995 | 1.694
Promel, Steger 1996 | 1.667
Karpinski, Zelikovsky 1996 | 1.644
Hougardy, Prémel 1999 | 1.598
Robins, Zelikovsky 2000 | 1.550

Table 1: Performance ratios for known approximation algorithms for the
Steiner tree problem in graphs.

Berman and Ramaiyer [4] designed a family of algorithms Aj; which
achieves a performance ratio of 1.734 for large k. The first algorithm we
present is the algorithm Ag, which has a performance ratio of 1.834. Based
on the analysis of A3, we show that Zelikovsky’s algorithm from 1990 has
the same performance ratio.

The next algorithm we are going to describe is the relative greedy algo-
rithm of Zelikovsky [34] which achieves a performance ratio of 1.694. Al-
though the relative greedy algorithm is quite similar to algorithm As, a
completely new kind of analysis is required. We will present this analysis in
Section 3.

A powerful idea used by recent Steiner tree approximation algorithms is
the concept of the so called loss of a Steiner tree, which was introduced by
Karpinski and Zelikovsky in 1997 [20]. They obtained a performance ratio
of 1.644 with an algorithm that minimizes the weighted sum of the length
and the loss of a Steiner tree. Their idea was generalized by Hougardy
and Promel [18], resulting in an approximation algorithm that is at most
a factor of 1.598 away from an optimum solution. Very recently, Robins
and Zelikovsky [28] incorporated the loss of a Steiner tree into the relative
greedy algorithm and were able to show that the resulting algorithm has
a performance ratio of 1.550. At the time of writing this survey no better
approximation algorithm for the Steiner tree problem in graphs is known.
We will describe their algorithm and its analysis in Section 4.

A natural question about approximation algorithms is how small their
performance ratio can get. Unless P = NP, the performance ratio of a
polynomial time approximation algorithm for the Steiner tree problem in
graphs cannot get arbitrarily close to 1. This is a consequence of the PCP-
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Theorem [1] together with a reduction due to Bern and Plassmann [5]. The
largest lower bound on the performance ratio, that can be achieved by an
algorithm in polynomial time, is called the approzimation threshold. In some
effort over the last years it has been enlarged up to the currently best known
value of 1.0074 [30]. We will describe these results in Section 6.

This lower bound is still fairly small compared to the best known per-
formance ratio of 1.550. It is commonly believed that further improvement
should be possible on both sides. The lower bound proofs are based on reduc-
tions which produce instances that are hard to solve by any polynomial time
algorithm. However, the instances resulting from current reductions have a
very special structure. There are several algorithms known which make use
of this fact and obtain much better performance ratios than in the general
case. A better understanding of such algorithms can on the one hand lead
to better algorithms for the general case. On the other hand, the insight
obtained from their analysis can help to extract the features of really hard
instances and thus lead to better constructions for lower bound proofs in the
future. We will present three analyses of algorithms for special instances in
Section 5. None of the greedy algorithms in Table 1 is known to have a tight
analysis in the general case, and therefore the actual performance might be
much better than what has been proved so far. For two of the specialized al-
gorithms we will present a worst-case instance which shows that the analysis
is tight.

1.1 Basics

Given a graph G = (V, E), a set R C V of terminals and a length function
||: E — Ry, a Steiner tree is a connected subgraph of G that spans all termi-
nals. The Steiner tree problem in graphs asks for a shortest such subgraph,
i.e., a tree that spans all vertices in R and whose total edge length is mini-
mum. It is called a Steiner minimum tree and denoted as SMT. We denote
the length of SMT by smt. We extend the definition of the length function
|-| from single edges to arbitrary sets of edges by defining |X|:= > _y ||
for X C E. Similarly we define |G| for a graph G = (V, E) as the total
length of all its edges, i.e., |E|. This way we can write smt = |SMT|.

The Steiner tree problem in graphs is among the 21 problems for which
Karp has shown NP-hardness in his seminal paper [19].

Theorem 1.1 (Karp [19]) The Steiner tree problem in graphs is NP-hard,
even for unweighted graphs.
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The NP-hardness of the Steiner tree problem in graphs tells us that we
cannot expect to find a polynomial time algorithm to solve it exactly. This
motivates the search for good approximation algorithms for the Steiner tree
problem in graphs, i.e., algorithms that have polynomial running time and
return solutions that are not far from an optimum solution. The quality
of an approximation algorithm A is usually measured by its performance
ratio R 4. This is the maximum ratio between the optimum and the solution
returned by A. For a minimization problem like the Steiner tree problem in
graphs the performance ratio is defined as

A(I)

R4 :=sup {7OPT(I)

all instances [ } .

Thus, the performance ratio of an algorithm is at least 1, and if it is exactly 1,
then the algorithm can solve the problem optimally for all instances. The aim
in designing approximation algorithms is to find polynomial time algorithms
that have a performance ratio close to 1.

1.2 The Minimum Spanning Tree Heuristic

The history of Steiner tree approximation algorithms starts with a folklore
result, which was rediscoverd by many researchers, but apparently first men-
tioned on p. 25 in [14], where it is attributed to Moore. This algorithm is
called the minimum spanning tree heuristic and achieves a performance ratio
of 2. The idea is simply to compute a minimum spanning tree instead of a
Steiner minimum tree. A minimum spanning tree of a graph is a tree which is
contained in the graph, connects all of its vertices and has minimum length
among all such trees. We will denote a minimum spanning tree by MST
and its length by mst. Observe that a minimum spanning tree is a Steiner
minimum tree if the set of terminals equals the set of all vertices. Whereas
computing Steiner minimum trees is NP-hard, a minimum spanning tree can
be found in polynomial time. The most famous algorithms for doing so are
the algorithms of Kruskal [22] and Prim [25]. The latter algorithm can com-
pute a minimum spanning tree for a graph with n vertices and m edges in
time O(m + nlogn) if appropriate data structures are used (see eg. [10]).
The minimum spanning tree heuristic computes a Steiner tree in three
steps: First it computes the so called terminal distance graph. This is a
complete graph on the set R of terminals. The edges are weighted by the
length of a shortest path in G between the two endpoints of the edge. In
the second step a minimum spanning tree for the terminal distance graph
is computed. This minimum spanning tree is translated in the final step to
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Figure 1: A worst-case instance for the MST heuristic.

a subgraph of G by replacing its edges with the shortest paths which they
represent. If the resulting subgraph of G contains cycles or non-terminal
vertices of degree one, they are removed iteratively to get a Steiner tree
for G.

Lemma 1.2 (Moore [14, p. 25]) The performance ratio of the minimum
spanning tree heuristic is 2, 4. e., for all graphs mst < 2 smt holds.

An example where the upper bound is asymptotically attained is shown
in Figure 1. The square boxes are terminals. The MST heuristic will find
a path around the border of the wheel, whereas the SMT uses the Steiner
vertex in the middle. For a wheel with k spokes, we obtain a lower bound of
(2 —¢)(k —1)/k on the performance ratio, which converges to 2 as k — oo
and € — 0.

Slightly different versions of the minimum spanning tree heuristic have
been rediscovered several times [9, 21, 29]. The fastest known implementa-
tion for the minimum spanning tree heuristic is due to Mehlhorn [23, 13]. It
has a running time of O(m + nlogn).

1.3 k-Steiner Trees

For more than twenty years the performance ratio of the minimum spanning
tree heuristic was not beaten by any other algorithm. The main reason for
this was that for seemingly better algorithms it turned out to be difficult
to analyze their perfomance ratio. The situation changed when in 1990
Zelikovsky suggested to use k-Steiner trees for the analysis of approximation
algorithms. All currently known approximation algorithms for the Steiner
tree problem make use of the idea of k-Steiner trees in an essential way.

A Steiner tree in which all terminals are leaves of the tree is called a
full Steiner tree. Steiner trees that are not full can be decomposed into so
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Figure 2: The full components of a Steiner tree

called full components by splitting terminals that are interior vertices of the
Steiner tree. See Figure 2 for an illustration of the decomposition of a Steiner
tree into full components. A k-Steiner tree is a Steiner tree all of whose full
components contain at most k terminals. There is a slight difficulty with
this definition since a k-Steiner tree in this strict sense does not necessarily
exist; consider e.g. a star with more than £ rays. Therefore we admit that
a k-Steiner tree can use the edges and Steiner vertices of the graph in more
than one full component. In this sense, a k-Steiner tree is a collection of full
components with at most k terminals that is connected and together spans
the whole terminal set. An optimum k-Steiner tree is denoted by SMT}
and its length by smtj. Obviously, every Steiner tree is a k-Steiner tree
for sufficiently large k, say k& = |R|. In general the length of an optimum
k-Steiner tree can be greater than that of a Steiner minimum tree. Figure 2
shows an optimum Steiner tree on the left and an optimum 3-Steiner tree on
the right. The euclidean length is about 1% longer in the latter case.
Intuitively it seems reasonable that an optimum k-Steiner tree gives a
good approximation for a Steiner minimum tree, if k is sufficiently large.
To make this intuition more precise consider the Steiner ratio py, which is

defined as
smty(Q)

R @)
It follows from Lemma 1.2 that po = 2. An upper bound for the value of

p3 was first obtained by Zelikovsky [32] and his result was generalized by
Borchers and Du who proved the following explicit formula for py.
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Theorem 1.3 (Borchers, Du [6]) Fork =2"+s with0 < s < 2" we have

(r+1)-2"+s
 re2r4s

Note that this result implies that pr — 1 for & — oo. This shows that
optimum k-Steiner trees are good approximations for Steiner minimum trees
if k is sufficiently large. However the rate of convergence is not very fast.
Some values of p; are shown in Table 2.

k2 3 4 6 7 8 10 16 32 64 210
5 3 13 7 15 4 33 17 5 6 7
Pk |2 35 3 % 5 m 3 » 1 1 5 s L0

Table 2: Some values of the Steiner ratio py.

Based on Theorem 1.3 a natural idea is to compute an optimum k-Steiner
tree instead of an optimum Steiner tree. However, it turns out that this
problem is itself NP-hard. This follows by a simple reduction from the NP-
completeness of the vertex cover problem in graphs of maximum degree 3.

Lemma 1.4 Finding optimum k-Steiner trees is NP-hard for k > 4.

The situation is different for k¥ = 3. Promel and Steger [26] have shown
that SMT's can be approximated with an error of only 1+ ¢ by a polynomial
time randomized algorithm. Actually, they obtain their result as a corollary
of a randomized algorithm for the minimum spanning tree problem in 3-uni-
form hypergraphs.

Theorem 1.5 (Promel, Steger [26]) For every ¢ > 0 there exists a rand-
omized polynomial time 1 + € approzimation algorithm for SMT'3 in weighted
graphs.

The proof technique of [26] does not extend to Steiner trees composed of
larger full components. This is not surprising, since the results of Section 6
imply that for k£ > 4 there exists a constant ¢ > 1 such that no algorithm can
approximate SMT';, with a performance ratio better than ¢, under reasonable
complexity theoretical assumptions.

1.4 A General Framework for Greedy Algorithms

Most approximation algorithms for the Steiner tree problem that achieve a
performance ratio less than 2 are simple greedy approaches. They fit into
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Let K be the set of full components of up to k terminals.

1 — 0.

While an improving full component exists do:
Choose t;+1 € K that minimizes the selection function f;.
1 — 1+ 1.

Tmax < ©-

Qutput a Steiner tree using t1,...,¢

tmax *

Figure 3: A general framework for greedy algorithms.

the general framework shown in Figure 3. Let k£ € N be fixed. Consider
the subsets K’ of R with at most k terminals and let K be the collection of
those t € K’ for which SMT(t) is a full Steiner tree. Note that #K < #V*
and SMT(t) for all t € K can be computed in polynomial time, since k is
fixed [11]. The algorithms start with a Steiner tree that is obtained by taking
a minimum spanning tree in the distance graph. By Lemma 1.2 the total
length of this solution is at most twice the length of a Steiner minimum
tree. In each step the algorithms try to improve the current solution by
using a Steiner minimum tree for an element of K. If there is more than one
t € K that would improve the current solution, the algorithms use a selection
function f: K — R, to decide which ¢ is to be chosen next. Therefore, to
specify an algorithm fitting into this general framework it suffices to specify
the function f, and how to improve the current solution using t € K.

Let A be an algorithm that fits into the framework and let A(G) be its
output on instance G. The performance ratio of A is

A _  (smialG) A 1A©)
Slépsmt(G) G <smt(G) smtk(G)> = Gpsmtk(G)' (1)

If we can show that the ratio |A(G)|/smty(G) is bounded from above by
a constant ¢, then we immediately have a polynomial time approximation
algorithm for the Steiner tree problem with performace ratio pici. If, more-
over, ¢ = ¢ is independent on k, then this gives a sequence of algorithms,
whose performance ratio tends to ¢, as the Steiner ratio p; converges to 1.
Algorithms that are specified via the framework and analyzed in this way
are Zelikovsky’s 11/6-approximation algorithm (Section 2.3), Zelikovsky’s
Relative Greedy Algorithm (Section 3), and the Loss Contraction Algorithm
(Section 4).
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Note, however, that for large k£ the running time of such an algorithm
may soon become impractical. Recent theoretical research has concentrated
on improving the performance ratio instead of the running time, because it
is commonly believed that the currently known approximation algorithms
(or at least their analyses) are still far from optimal.

1.5 Contraction Lemma

The Contraction Lemma is one of the concepts that occur repeatedly in the
context of algorithms that find minimum connecting structures incremen-
tally. First we introduce some notation.

Let us denote by MST(R) the minimum spanning tree in the terminal
distance graph for a set of required vertices R. Now assume that we add a
new edge e between a pair of terminals. Parallel edges are allowed. Define

MST(R/e) := a minimum spanning tree for R in G + e.

If le| = 0, then MST(R/e) can be viewed as a minimum spanning tree for
R after contracting e. In general the difference mst(R) — mst(R/e) is what
one can gain by adding e. We want to know how the gain of another new
edge f changes if e is added.

A typical application of the Contraction Lemma to the general framework
for greedy algorithms is as follows. Assume that we can model the ‘effect’
of inserting a certain full component by adding a set E; of new edges to
the terminal distance graph. Moreover, let Fy denote the set of edges which
have already been added for earlier full components. The length of the
current intermediate solution is denoted by mst(R/Ey). Given yet another
full component F», the question is: How does the improvement which can
be achieved by FE5 depend on whether the algorithm will decide to include
FE; or not? The answer is: It will never increase.

Contraction Lemma (Zelikovsky [32], Berman, Ramaiyer [4])
Let Ey, E1, Es be sets of (new) edges between terminals. Then

mst(R/Eo) - HlSt(R/EoEQ) > IHSt(R/E()El) - IHSt(R/EQElEQ) .

The proof of this Contraction Lemma needs some prerequisites. First let
us see what happens if we just add a single new edge.

Lemma 1.6 Let e be a new edge between terminals. Then
MST(R/e) = MST(R) +e¢— ¢,
where €' is the longest edge in the (unique) cycle in MST(R) + e.

10



This paper appeared in: Steiner Trees in Industry, X. Cheng and D.-Z. Du (Eds.), 235-279, Kluwer Academic Publishers, 2001

Proof. This is a consequence of the fact that Kruskal’s algorithm for the
minimum spanning tree problem is optimal. O

Using the notation of Lemma 1.6, the gain of e is mst(R) — mst(R/e) =
le/| — |e|]. Next we show that the gain of an edge never increases if we add
another edge.

Lemma 1.7 Let e; and eq be edges between terminals. Then
mst(R) — mst(R/e3) > mst(R/e;) — mst(R/ejes).

Proof. Let E<, denote the set of edges of length at most «, and denote
by T<, the intermediate solution of Kruskal’s algorithm when all edges of
length up to o have been considered. Then the components of E<, and T<,
are identical for all «, because an edge is included if and only if it joins two
components. Obviously, T<,, is not affected by the new edge e, if a < |ea.
In that case both sides of the inequality are equal to 0. Otherwise, let €/, be
the edge that is replaced with es. It is only a moment’s thought to see that

mst(R) — mst(R/e3) = |e5| — |ea|
= min{a > 0| ey closes a cycle in T<, } — |ea]

= min{a > 0| ez closes a cycle in E<, } — |eg]
Now since E<, C (E + e1)<q for all «, the lemma follows. O
Proof of the Contraction Lemma. The special case Ey = 0, E1 = {e1},
Ey = {es} was proved in Lemma 1.7. Considering the graph with edge set EU
Ey we may assume w.l.o0.g.that Fy = (). The case where E; = {el,e2,...}
and Ey = {es} follows easily by repeated application of Lemma 1.7. Finally,
let By = {el, e3,...}. We claim that
mst(R) — mst(R/Ey) = Z mst(R/ed...es ) — mst(R/e} ... eb)
i
> Z mst(R/Fye)...es') — mst(R/Eje} ... eh)
i
= mst(R/El) — mst(R/ElEg) .

To see that the inequality holds, take Ej := {e3, ... ,el;l}, E{ := Eq, and
EY :={e4}, and apply induction on |Es|. 0

11
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2 Improving the Factor of 2

In this section we present two algorithms which have a performance ratio
of 11/6. The first appeared in 1990 and is due to Zelikovsky [32]. It uses
full components with just three terminals in order to improve the solution
of the minimum spanning tree heuristic. The algorithm fits into the general
framework as we will see in Section 2.3.

The idea turned out to be very fruitful and marked the starting point
of a series of algorithms by Zelikovsky and other authors with continuously
improving performance ratios.

Unfortunately, the original analysis of Zelikovsky’s algorithm [32] remains
somewhat vague at a crucial point. The proof seems to be incomplete, and
apparently it is not easy to fix it. Berman and Ramaiyer [4] described a
family of algorithms Aj working with full components of up to k terminals
which achieved a performance ratio of 1.734 for large k. Here we shall present
their analysis of algorithm Ag which attains the ratio of 11/6.

Based on the analysis of Berman and Ramaiyer it is possible to prove the
performance ratio of Zelikovsky’s algorithm rigorously. For completeness, we
describe this argument in detail in Section 2.3. The main ingredients for this
proof are taken from Zelikovsky [35], see also [8, 7]. Both algorithms allow
fast implementations [33].

2.1 Algorithm Aj

The algorithm Ajs of Berman and Ramaiyer has two essential phases, an
evaluation and a construction phase. These are embedded in other phases.
The initial solution is a spanning tree of the terminal distance graph as
output by the MST heuristic, which is already a 2 approximation.

Initial phase. =~ Compute the terminal distance graph (R, Fy) and let
My C Ey be a minimum spanning tree.

1+ 0.

The algorithm uses full components with three terminals to improve the
current intermediate solution. Steiner trees for triples of terminals can be
computed very fast. Potential triples are evaluated in terms of their gain.
The gain is the saving of total length in the current intermediate solution
if the triple was used. The precise definiton of gain will be given below.
During the evaluation phase, triples are selected one by one. However, an
important feature of algorithm As is that not each of the selected triples
needs to be used eventually. The decision is deferred to the construction

12
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Figure 4: The gain of a triple.

phase. Meanwhile the triples are stacked using a special data structure. The
algorithm builds multisets of artificial edges F; on the terminal set R. Each
triple is represented by a pair of artificial edges. The edges of Ey are also
considered artificial.

In the i-th iteration, with every triple ¢ = {z,y,2z} C R a quantity
gain;(t) and two edges €’ and f’ from FE; are associated in the following way
(cf. Figure 4): Consider the tree M; C F;. There is a ‘branching’ terminal
¢ € R such that the paths p, from x to ¢, p, from y to ¢, and p, from z to c are
edge disjoint. One of these paths might be empty. Consider the longest edge
on each of these paths (say its length is 0, if the path is empty) and assume
w.l.0.g. that the longest among these edges, say ¢’ is on p, and the second
longest, say f’ is on p,. Let Cut;(t) := {€/, f'} and cut;(t) = |¢/| + |f']-
Then the gain of the triple ¢ is defined as

gain;(t) := cut;(t) — smt(t).

Assume that there is a triple ¢;4; such that gain;(¢;y;) > 0 and let
Cut;(tiy1) = {€j;1, fi;1}- Using the notation above, let e;11 := {z,y} and
firr = {x, 2}, where |ej1| == |ef | — gain;(tiy1) and [fiza] := [fl] -
gain;(t;y1). Observe that

leit1] = ‘e§+1| - ‘fz/+1‘ - |e;+1‘ + smt(tir1) = smt (tip1) — ‘fz/+1‘ >0

and similarly, |f;4+1| > 0. With these definitions the evaluation phase of the
algorithm can be stated as follows:

Evaluation. While 3t;41 : gain;(t;+1) > 0 do:
Eiv1 — Ei +eit1 + fir1-
M1 — M +eip1 + firr — e — fivg-
1 — 1+ 1.

13
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Note that M;;1 is a minimum spanning tree in (R, E;+1). Once the gain
of every potential triple has dropped to a non-positive value, the algorithm
has chosen all triples to be considered for improvement of the terminal dis-
tance minimum spanning tree and the evaluation phase ends. The last of
the M; is copied for the construction phase:

Intermediary  tpmax < .

phase. N;

max tmax *

In the construction phase the artificial edges are removed from N; in
reverse order. Let T; := SMT(t;). Only if both artificial edges that were
introduced for the triple ¢; are still present in NV;, then T; is included into
the eventual solution:

Construction. While ¢ > 0 do:

N! — N; —e; — fi.
N/ if N/ has only one component,
N/ +e if N/ has two components and

N;_q1 e € FE;_; is a shortest edge
between them,

N!+T; if N/ has three components.

1 —1— 1.

At the end of the construction phase all of the remaining artificial edges
in Ny belong to Ey. These can easily be replaced by edges of the input graph:

Final phase. Replace any remaining eg € Ny N Ey with a shortest
path in F.

Output the result, i.e., Ny.

2.2 Analysis

Theorem 2.1 (Berman, Ramaiyer [4]) Algorithm As computes an 11/6
approzimation for SMT.

Proof. We first observe that the output of the algorithm is a feasible so-
lution: As already observed above, M; is a minimum spanning tree for R
in E;. Therefore N; ., = M, .. connects R. By the construction step, N; is
connected if N;;1 is. Therefore Ny, and thus the output, connects R.

max

14
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Let gain := ), gain;(t;+1). The analysis of the performance ratio is
based on the following (in)equalities:

[No| < |Nipa| + gain (2)
| M| /2 = [Mol/2 — gain (3)
| M| < smt3(R) (4)

Before we verify them, let us first see how (2) — (4) together imply the claimed
performance ratio. The length of the output is |Ny|. Using N; .. = M;
one half of |N; . | in (2) can be replaced via (3). The gain cancels out, and
we obtain

max !

max

max| [ Mol
2 * 2
By Lemma 1.2, |My| < po - smt(R), and by (4), |M;
Therefore the performance ratio is at most

ps pp 5/3 . 2 11

M.
| < 1M

| < p3 - smt(R).

max

2 2 2 2 6
It remains to show the validity of (2)—(4). Equation (3) is the easiest.
It follows by induction from the fact that
|Mig1] = M| + leir1| + [ fira] = [eia] = [fiya] = [Mi| — 2gaing(tia).
Equation (2) is proved by a similar inductive argument, using
[Nie1| < [Ni| + gain; (L) .- (5)

To show (5) we distinguish the three cases of the contruction phase. The
case that N/ has only one component is trivial. In the case where it has
three components, (5) follows from
[Nica| = [Ni| —lei| = [fil + |Ti

= |Ni — [ef] + gain;_ (t:) — | fi] + gain;_ (t:) + |T;|

= |Ni| + gain;_, (t;).
The remaining case is when NN, has two components. Assume w.l.0.g. that
the two components result from removing the edge e;. The edge ¢} is the
longest edge on the path in M;_; connecting the endpoints of e;. Since the
path crosses the cut between the two components at least once, we have
le| < |e}|, where e is the edge chosen by the algorithm. Thus,

[Nica| = |Ni| = el = [fil + e[ < [Ni] = les] + |e]
< Ni| = lei + |ei| = INi| + gain;_ (t:)
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and the induction step for (2) is complete.

To show (4) we compare M; . with a minimum 3-Steiner tree. By con-
struction we have M; . = MST; . (R), where the subscript imax indicates
that the underlying graph includes all the artificial edges which were added
during the evaluation phase. On the other hand, let sq,...,s; .. be ter-
minal sets of the full components of SMT3. Each s; is a pair or a triple,
and for pairs we have smt(s;) = |s;|. Using the convention that contract-
ing a set of vertices means connecting them by zero length edges, we have
mst;. (R/s1...8j,..) =0, since SMT'3 is already connected. Writing a
telescoping sum, we can apply the Contraction Lemma in the following way.

’MZ = mst (R) - mStimax (R/sl e Sjmax)

max ’ Tmax
Jmax

= Z mst;,. (R/s1...5j-1) —mst;, . (R/s1...5;)
j=1

Jmax

S Z mStimax (R) - mStimax (R/Sj)
j=1

If s; is a pair, then the j-th summand is clearly bounded by |s;|. If s; is a
triple, then mst; , (R)—mst, . (R/s;) = gain; _(s;)+smt(s;) < smt(s;),

tmax

because at the end of the evaluation phase there are no more improving
triples. Hence |M;,,, | < >, smt(s;) = smt3(R), and (4) is verified. O

tmax
max

2.3 Zelikovsky’s Algorithm

Zelikovsky’s algorithm [32] fits into the general framework (Figure 3) where
k = 3 and in each step gain; is maximized. But it can also be viewed as
a modification of Berman and Ramaiyer’s Algorithm As. Building on their
analysis, one can prove a bound on the performance ratio of Zelikovsky’s
algorithm.

Theorem 2.2 Zelikovsky’s algorithm computes an 11/6 approzimation for
SMT.

Note that gain, is not necessarily maximized by ¢;+1 in the evaluation
phase of Algorithm Ags, since the proof of the performance ratio requires only
that the gain is positive. It turns out, however, that the construction phase
can be simplified if the triples are chosen greedily. Assume that some triple
chosen in the evaluation phase is not used in the contruction phase. This
can happen only if one of the edges introduced for the first triple is removed
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by a second triple later on. Intuition advocates that, at the time when the
first triple was chosen, the gain of the second triple should have been larger
than that of the first triple, contradicting the greedy selection. We are going
to prove the following lemma.

Lemma 2.3 Assume that in each step i of the evaluation phase of Berman
and Ramaiyer’s algorithm As the triple t; 11 is chosen to maximize gain;.
Then Cut;(ti+1) C Eo, i. e., the removed edges belong to the initial terminal-
distance graph.

What does this mean for the ‘greedy-As’ algorithm? The artificial edges
€i+1, fi+1 introduced during the evaluation phase are assigned non-negative
lengths but never removed again. Therefore the result of the algorithm does
not change if we assign them any shorter length, for instance the length 0.
This is equivalent to contracting the triple ¢;1. Further, the construction
phase can be merged into the evaluation phase, since we know that N/ will
always have three components.

In this way, we obtain Zelikovsky’s algorithm: In each step, the terminals
of the chosen triple are contracted. After the evaluation phase we replace the
remaining edges from Fy with shortest paths in £ and connect the contracted
triples by their corresponding Steiner trees.

2.4 Analysis

In this section we prove Lemma 2.3. As we have just seen, this lemma will
imply Theorem 2.2.

First we introduce some additional notation. Let M be a set of edges
without cycles that connects two terminals x and z. Then we denote by
Cutp{z,z} the longest edge on a path in M connecting x and z, where ties
are broken in an arbitrary way, and let cutys = |Cutys|. We write M : zz |y
to indicate that the terminals « and z are in the same connected component
of M, but y is in another one.

If M is a tree and t = {x,y, 2z} is a triple of its vertices, we denote by
M]t] the least part of M that connects ¢. Recall that this is the situation
of Figure 4. We add the following to the notation defined in Sections 2.1
and 2.2: For ¢/ € M|[t], we define the relative cut Cutps(t,e’) :== Cutp{x, 2},
where M — ¢’ : xz | y. Let cutp(t,e’) := |Cutps(t,e’)| and observe that
cutpr(t,e') + |e’| < cutpr(t). We also define the relative gain

gainy(t,€') = cutp(t,e') + |e’'| — smt(t). (6)
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Observe that gain,(t,e’) < gain,;(t). If in particular ¢’ € Cuty(¢), then
Cutps(t,€') = Cutps(t) — €' and gain,, (t,€’) = gain,(t).

In the rest of this section we suppose that in each step ¢ of Algorithm As
the triple ¢;11 is chosen to maximize gain,. We subdivide step ¢ into half-
steps as follows: In the first half-step, e;, , is replaced with e;;1, and in the
second ome, f;,; with fi11. We have |ej, ;| > |f/ ], and €] ; is replaced
first. So let M := M; — e;41 + €. For the half-steps, we use the notation
Cut; := Cutyy,, Cut; := Cutyy, etc. Observe that

cut;{u,v} > cut{u,v} > cut;i1{u,v} (7)

holds for all u,v and ¢ by the Contraction Lemma.
The next lemma implies Lemma 2.3 by a simple inductive argument.

Lemma 2.4 Let i > 1 and a € M;. If there erists a triple t such that
a € M;[t] and gain;(t,a) > 0, then there also exists a triple t' € {t,t;} such
that a € M;_1[t'] and gain;_,(t',a) > gain,(t, a).

Proof of Lemma 2.3. Let a € Cut;(ti+1). Then we have a € M;[t;11]
and gain,(t;11,a) = gain;(t;+1) > 0. By repeated application of Lemma 2.4,
there is a triple ¢’ such that a € My[t'] C Ej. O

In the proof of Lemma 2.4 we may assume that a ¢ {e;, f;} due to the
following Proposition.

Proposition 2.5 Ifa € {e;, f; }NM;[t] for some triple t, then gain,(t,a) < 0.

Proof. If a = e; then let a’ = €], otherwise let a’ = f/. Let {z,y,z} be the
vertices of ¢, and assume w.l.o.g. that M;[t] — a : zy | z, and hence also
M;_1[t] —a’ : 2y | z. Then

gain, (t) > gain, ,(t,a’) = cut;_1(t,a’) + |a'| — smt(t),
and by (7),
cut;_1(t,a’) = cut;_1{x,y} > cut{z,y} = cut;(t,a).
Using |a| = |a’| — gain;_,(t;) we obtain the inequality

0 gain; 4 (t) — gain; 4 (t;)

cut;(t,a) + |a| — smt(t)
= gain,(t,a). O

>
>
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We distinguish several cases to prove Lemma 2.4, using Lemma 2.6 and
Lemma 2.7.

Lemma 2.6 Let M be a terminal-spanning tree and t = {x,y, z} be a triple.
Let {¢, f'} := Cutp(t) and e, f be the corresponding artificial edges as
shown in Figure 4, and assume a # e is an edge from the cycle in M + e.
Then we have

gainy (t,a) > gainy(t) — |€/| + |a] .

Proof. Let ¢ be the branching vertex of M[t]. If a is on the path p, from
¢ to z in M][t], then cut s (t,a) = max{|¢/|,|f'|} > |f'|. If a is on p,, then
cutpr(t,a) = |f’|. In both cases, we have

gainy,(t,a) = cutpy(t,a) + |a| — smt(t)
(If'[+ €] — smt(t)) — €' + |al
= gainy(t) — |¢| + |al

Y

as claimed. O

Lemma 2.7 Let M > e¢ and M’ > €' be terminal-spanning trees such that
M=MnNM +e, M' =M N M +¢, and assume that €' is the longest edge
on the cycle in M U M’'. Moreover, let a € M N M’ and t be a triple such
that a € M|t] and gainy,(t,a) > 0. Then at least one of the following holds.

(o) a € M'[t] and gain . (t,a) > gainy;(t,a) > 0.

(B) € € M'[t], gainyy(t,e') — |e/| + |a] > gainy,(t,a), and a lies on the
cycle in M U M'.

Proof. Let us denote the three connected components of M N M'—a by A, B,
and C'. We can assume w. . 0. g. that a connects A and B and that e connects
B and C. Let t = {u,v,w} and assume w.l.0.g. that M[t] — a : wv | w and
hence, M — a : wv | w.

Case 1: M’ —a : uwv | w. Then we have cutys(t,a) = cutp{u,v} and
cutpp (t,a) = cutyp{u,v}. By (7) we have 0 < cutyp{u,v} — cut pr{u,v} =
gain,p (t,a) — gain(t,a), proving ().

Case 2: C Nt # () and ¢ connects A and C, since otherwise Case 1
holds. This further implies that ANt # 0, ¢ € M'[t], and a lies on the
cycle in M U M’. Observe that () holds, if we can show that cut ;. (t,€’) >
cutpr(t,a).

19



This paper appeared in: Steiner Trees in Industry, X. Cheng and D.-Z. Du (Eds.), 235-279, Kluwer Academic Publishers, 2001

A B C
— — —
w u v

u v
a e
-
e/

Figure 5: Case 2.2 in the proof of Lemma 2.6.

Case 2.1: If uw and v are both in the same component of M N M’, then
Cutpp(t,e') = Cutpyr{u,v} = Cutp{u,v} = Cutp(t,a). (The path re-
mains the same.) So () holds.

Case 2.2: Otherwise C' N {u,v} # 0 and w ¢ C, since M —a : wv | w.
Assume w.l.o.g. that v € C. Then M — a : wv | w implies that w € A
and u € B. Consider the path in M connecting u to v. Let u’ be the
vertex where it enters and v’ be the vertex where it leaves the cycle in
M U M’. Again we distinguish cases, depending on the position of the edge
b:= Cutyp(t,a) = Cutpr{u,v}. See Figure 5.

Case 2.2.1: If b lies between u and v/, then cut (¢, €’) = cut ppr{u, w} >
|b| and we have (). (Actually, this is the only case where the inequality
in () can be strict.)

Case 2.2.2: If b lies between v and v/, then cutyy (¢, a) = cutpp{v,w} >
|b]. We get («).

Case 2.2.3: Finally, if b lies between «' and ¢, then we know that |b| <
l€/| < cutpy(t,a) as € is the longest edge on the cycle in M U M’, and ()
follows. g

Proof of Lemma 2.j. We can apply Lemma 2.7 with M = M;, M’ =
M! |, =M;— fi+ fl,e= fi, and € = f/, so one of the following must hold:

(o) a € M/ [t] and gain}_,(t,a) > gain;(t,a) > 0.

(8) fi € M{_y[t], gainj_,(t, f{) — |f{| + |a| > gain;(t,a), and a lies on the
cycle in M; + f/.
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Case () can be settled fairly easily. We will show that ¢’ =¢; works.
We have gain}_,(t, f!) < gain)_,(t), and the Contraction Lemma implies
that gain}_,(t) < gain,;_,(t). By the greedy criterion, we have gain,_;(t) <
gain;_;(t;). It remains to show that gain; (t;) + |a| — | f]| < gain;_;(t;, a).
This is just Lemma 2.6 if we set M = M;_1, t =t;, e= f;, ¢ = f!, f = e,
and f' =e].

In case (o) we invoke Lemma 2.7 once more, this time with M = M/,
M' =M, 1, e=¢;, and ¢ =e,. We find ourselves in one of the following
situations.

(aq) a € M;_4]t] and gain;_,(t,a) > gain}_,(t,a) > 0.

(aB) e € M;_1]t], gain;_(t,e;) — |e}| + |a| > gain}_,(t,a), and a lies on the
cycle in M;_1 + e;.

In case () we are done with ¢ = t. — In case (o) we will show that
t' = t; is a good choice. From the case distinctions, we already know that

gain(t,a) < gainj_|(t,a) < gain; |(t,e;) — |ej| + |al.

We have gain;_(t,e;) < gain;_,(t), and by the greedy criterion, gain;_;(t) <
gain;_,(t;). The remaining inequality gain; (t;) — |e}| + |a| < gain;_;(t;, a)
follows from Lemma 2.6 if we set M = M;_1, t =t;, e =¢;, ¢ =€}, f = fi,
and f' = f/. 0

3 Relative Greedy Algorithm

The relative greedy algorithm due to Zelikovsky [34] is another example of
an algorithm that fits into the general framework. It has a performance
ratio of 1.694. The main idea of the relative greedy algorithm (and the
loss contracting algorithm, which we will consider in the next section) is to
use a ‘relative’ difference in the selection function instead of the absolute
difference, as was the case in the algorithms of Berman and Ramaiyer and
Zelikovsky.

3.1 Relative Greedy Algorithm

The relative greedy algorithm uses a minimum terminal spanning tree (i.e.,
a minimum spanning tree in the terminal distance graph) as its initial solu-
tion. When a full component T' € K is chosen, its terminals are connected
by a set of zero length edges. A spanning tree for R, where this set of edges
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is added, is denoted by MST(R/T'). Choosing T in the i-th step reduces the
length of the terminal spanning tree by mst(R/T} ... T;)—mst(R/T: ... T;T).
In order to relate the length |7’ of the full component T to its benefit, the
relative greedy algorithm uses the following selection function.

T

filT) = mst(R/Ty ... T;) — mst(R/Ty ... T;T)

The Contraction Lemma implies that f;_1(7") < f;(T) for all T. Once
fi(T) > 1 for all T € K, no further improving full components can be
selected and the algorithm stops. At this point, it has found a solution of
size

IT1 |+ -+ |T;| + mst(R/T) ... T;).

The edges of MST(R/Ty ...T;) can be considered as full components with
just two terminals. To simplify the notation for the analysis, we include
these edges into the final solution set. Note that f;—1(7;) < 1 holds for all
chosen full components.

3.2 Analysis

By our remarks on the Steiner ratio and the general framework (Section 1.4),
the following theorem implies that the relative greedy algorithm computes
an approximation of SMT whose error is bounded by 1 +1In2 +¢ < 1.694
for large enough k = k(¢).

Theorem 3.1 (Zelikovsky [34]) The relative greedy algorithm computes a
1+ In2 approzimation for SMT.

Proof. Let Ty,..., T, be the Steiner tree found by the relative greedy
algorithm. We have to show that > ;™% |T;| < smty(1 +In2). As remarked
above

fi(Tis) <1, (8)

holds for all < tyax. Let 17, ... ’Tj*max be a k-Steiner minimum tree. Since

the algorithm chooses the full component 7}, such that f; is minimized, we
have

fi(Tis1) < mjiﬂ fi(T}). ©)

We will use the following inequality, valid for a; > 0 and b; > 0.
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With a; = |T}| and b; = mst(R/Ty...T;) — mst(R/Ty ... T;T}) using (9)
and (10) we get
225 |75
(T) < g J ) 11
fillin) < >, mst(R/Ty ... T;) — mst(R/Ty ... TiT}) (11)

By the Contraction Lemma the denominator of (11) can be replaced with

> mst(R/Ty ... TTY ... T ) — mst(R/Ty... T,Ty ... Ty). (12)
J

This is a telescoping sum in which all but the first and the last term cancel.
Since T7,...,T; is an SMT}, the last term is mst(R/Ty ... Ty ... T; )

Jma; . jmax
<mst(R/T7...T; ) =0and ), [T}| = smtg. So
smt
filTin) < : (13)

mst(R/Ty ... T;)

Now the desired bound on the approximation ratio follows from elemen-
tary calculus. Define M; := mst(R/T} ...T;). Using the definition of f; and
applying the inequalities (8) and (13) we find that

Tmax Tmax

ST = > fia(T) - (Mioy — M)
=1 =1

'imax
. smby
< Y min (1, s ) (Mi—1 — M;).

The sequence My, My,...,M; .. is monotone decreasing with My = mst
and M;

= 0. Therefore we can estimate the sum by an integral as follows.

max

Tmax M,

¢ 0 t
Y min (1, o k) (Mi_q — M;) < / min (1, — ’“) da
i—1 Mi—l X

Milnax
smty mst 1
:/ 1d:L"—|—smtk/ —dzr
0 smty, L
mst
= smty 4+ smty, - In
mb
Using mst < 2smt we obtain
imax
> ITi| < smty (14+12),
i=1
the desired bound for the length of the solution. O
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It is not known wether the above analysis of the relative greedy algorithm
is tight, i.e., whether its performance ratio is 1 +1In 2. The best lower bound
on the performance ratio of the relative greedy algorithm was obtained in [16]
and has a value of 1.330.

4 Loss Contracting Algorithm

The loss of a Steiner tree was introduced by Karpinski and Zelikovsky in [20].
It measures how much length is needed to connect the Steiner points of a full
component to its terminals. The idea behind this concept is that we would
like to choose only Steiner points that are also contained in an optimum
solution. Of course, this is not possible for an approximation algorithm. By
penalizing the choice of Steiner points that require long edges to connect
them to a terminal, one tries to avoid at least bad choices.

Karpinski and Zelikovsky [20] use the general framework with a selection
function that minimizes the weighted sum of the length and the loss of a
Steiner tree. In a second step they take the output of this algorithm as
input for the relative greedy algorithm and are able to prove a performance
ratio of 1.644 for this algorithm.

The idea of Karpinski and Zelikovsky was generalized by Hougardy and
Promel [18]. They designed a seqgence of algorithms each of which gets the
output of its predecessor as its input. All algorithms in the sequence use the
weighted sum of the length and the loss of a Steiner tree for greedy selection,
but with different weights in each round. Hougardy and Promel prove that by
choosing the weights appropriately one obtains an approximation algorithm
with performance ratio 1.598.

Very recently, Robins and Zelikovsky [28] incorporated the loss of a
Steiner tree into a new selection function for the relative greedy algorithm
and were able to show that the resulting algorithm has a performance ratio
of 1.550. We are going to describe their algorithm in this section.

4.1 The Loss of a Steiner Tree

The loss of a set of Steiner vertices A C S is a minimum length forest
Loss(A) C E in which every Steiner vertex v € S is connected to a terminal
r € R. The loss of a Steiner tree or a collection of full components is defined
with respect to the corresponding tree edges. Contracting the loss of a full
component means that for every edge between the loss components, a new
edge with the same weight is inserted between the corresponding terminals.
This is shown in Figure 6. We write loss := |Loss|.
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S~ cae=—"
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Figure 6: Contracting the loss of a Steiner tree. Terminal vertices are shown
as square boxes and Steiner vertices as dots. Dark edges belong to the loss.
For every thin edge between loss components, a dashed new edge with the
same weight is inserted between the corresponding terminals.

We want to apply the Contraction Lemma in this setting as well. There-
fore we have to make sure that the lengths of the newly inserted edges do not
depend on previous loss contractions involving the same Steiner vertices. By
a simple preprocessing (duplicating Steiner vertices), we can achieve that no
two full components of the graph share a Steiner vertex. While the length
of SMT}. does not change, the instance grows by a factor which is at most
a polynomial in the input size. The set K from the general framework will
refer to the preprocessed instance.

Lemma 4.1 (Karpinski, Zelikovsky [20]) The length of the loss of a
Steiner tree is at most half of its total length.

Proof. Tt suffices to prove the inequality loss < smt/2 for full components.
It is easily seen that any full component can be transformed into a complete
binary tree where the leaves of the tree are exactly the terminals. This
can be achieved by adding new terminals and edges of length 0. Now for
each internal vertex choose from the two edges leading to its children the
cheapest one. This way one gets a subgraph that includes the loss of the full
component with length at most half of the total length. O

There are examples for which Lemma 4.1 is essentially best possible.
Consider an unweighted binary tree with 2¥ terminals with an extra terminal
attached to the root, as shown in Figure 7. Then loss = 2¥ — 1 as we need

loss

one edge for every Steiner vertex and smt = 281 —1, so ot % as k — oo.

25



This paper appeared in: Steiner Trees in Industry, X. Cheng and D.-Z. Du (Eds.), 235-279, Kluwer Academic Publishers, 2001

Figure 7: An example from a family of graphs with mst ~ 2smt ~ 4loss.
Loss edges are dark. Dotted lines indicate edges used by MST.

4.2 Loss Contracting Algorithm

We are now prepared to describe the loss contracting algorithm of Robins
and Zelikovsky [28]. It fits into the general framework for greedy algorithms.
Unlike the relative greedy algorithm it does not contract the selected full
component entirely, but only their loss.
Throughout the algorithm a terminal spanning tree is maintained. We
denote its length by
m(-) = mst(R/Loss(-)).

m is the length of a minimum spanning tree after the loss of certain full
components has been contracted. Due to the preprocessing, we can model
the effect of a loss contraction by adding new edges between terminals. The
analysis does not rely on details the implementation of loss contractions.
Therefore the use of the Contraction Lemma is justified.

Assume that the algorithm has already chosen some full components
T1,...,T;. Then the length of the corresponding Steiner tree is

cost(Ty,...,T;) = m(T,...,T;) + loss(Ty,...,T;) (14)
by the preprocessing step and the definition of m. The selection function

loss(T)

JAT) =

is applied to compare the loss of a new full component 1" with its reduction
of m. Thus the loss contracting algorithm fits into the general framework.
We will see that f;(7;4+1) <1 for all i.

Theorem 4.2 (Robins, Zelikovsky [28]) The loss contracting algorithm

computes a 1 + IHTB’ approzimation for SMT}.
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We need some more notation for the proof. Equation (14) can be written
shortly as cost; = m; + loss;. Let 17, ... ,ny“max be the full components of a
Steiner minimum tree. Then smt; = m*+loss™, where m* := m(Ty ... T )

* 7 Jmax

and loss™ := loss(T7" ... T} ). The following lemma is the heart of the proof.

Lemma 4.3 The Steiner tree with full components 11, ...,T; . returned by
the loss contracting algorithm satisfies
, mst — smty,
cost (Ty,...,T;...) < smtp+loss™-In |1+ o)
0ss

Proof. A full component T reduces the length of the current intermediate
solution if and only if f;(T) < 1, because

cost(Ty ... T;) — cost(Ty ... T;T)
= m(Ty...T;) +loss(Ty ... T;) —m(Th ... T;T) — loss(Ty ... T;T)
= m(Ty...T;) —m(Th ... T;T) — loss(T) . (15)
Following the lines of the proof for the relative greedy algorithm (Theo-
rem 3.1), the next step is to bound the value of f;(7;+1) from above. Let

17, ... ,Z}*max be the full components of an optimal Steiner tree. Again, the
greedy choice of the algorithm implies that

filTin1) < minfi(T7).

Using (10) we get

> loss(T})
fi(Tiv1) < > m(T ... ]TZ-) -m(Ty... T;T})

Due to the Contraction Lemma the denominator is bounded from below by

S om(Ty. TTF .. Tf ) —m(Ty.. T ... Ty T5), (16)
J
a telescoping sum equal to m(7y...T;) —m(Ty ... Ty ... T} ). By mono-
tonicity

m(Ty ... TTy .. 17 ) <m(Ty ... T} ), (17)

and we obtain the inequality

loss(Ty ... TF ) loss*
fi(Tiyr) < e = - (18)
m(Ty...T;) —m(Ty ... T} ) m; —m
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Using fi(T;4+1) < 1 and (18) we can now estimate

loss(Ty...T;,,.) = Zloss(Ti) = Zfz‘—l(Tz‘)(mi_1—mi)

;min <1’ 10*1) (mi—1 —my). (19)

IN

mi;—1—m

Clearly mo = mst > smty, and we will show that smt; > m; . in Lemma 4.4
below. Therefore (19) is bounded by

mst Joss™* mst—m™ Joss™*
/ min (1, oi*> dr = / min (1, i > dx
xr—m X

. . —m*
Mimax Mimax —

loss™ mst—m* d

i

:/ ldz + loss*-/ —
m m* loss™ x

tmax

mst —m*

loss™ >
mst — smtk)

= loss* —m;,, +m" +loss™ -In (

= smty, — m;_.. + loss™ - In (1 + -
loss

and the lemma follows. O

Proof of Theorem 4.2. Since smty, > mst /2, we have mst —smty < smty.
It follows that

loss™ t
cost(Ty...T;,,.) < smty |1+ A (1 4 Bk l:) )
smt, loss

Now we apply the inequality loss® < smty/2. Elementary calculus shows
that max {x -In (1 + %) ‘ 0<x< % } is attained for x = % Therefore

In3
cost(Ty...T;,..) < smty 1—1—7 ,

which concludes the proof of the theorem.
O

It remains to show that m,; ., < smty, which is a consequence of the
following Lemma 4.4. The proof resembles somewhat the argumentation
for equation (4) in the analysis of Algorithm As of Berman and Ramaiyer.
Lemma 4.4 will also be useful in Section 5, which is the reason why we prove
a more general statement.
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Lemma 4.4 If T1,...,T; are full components such that adding another full
component with at most k terminals yields no further improvement, then
Mipax < Smtg. In this case, loss(Th,...,T;) < Acost(1y,...,T;) implies
cost(Ty,...,T;) < T2;smty.

Proof. Let T7,..., T}  be a minimum k-Steiner tree. By (15) we have

m(Ty,...., T ..) —m(Ty, ..., ... T]’»k) < loss(T7)
forall j =1,..., jmax- Using the Contraction Lemma in the second inequal-
ity, we find that
mimax - m* = m(T17 ce 7Emax) - m(T1*7 tee ’Tjtnax)
imax7T1*7 ttt 7T]*)

< Ty, T T Ty = (T, T
J

S Zm(Tla s 7Emax) - m(Tla s 7jjimaxajﬁ;)

j
< ZIOSS(T;‘) = loss™,
J

that is, m;, .. < smty. Therefore

cost = my,,, +1oss; .. < smty+loss;,, < smty+ Acost

Tmax Tmax )

and the lemma follows. O

As for the relative greedy algorithm, it is not known wether the analysis
of Robin’s and Zelikovsky’s algorithm is tight. In [16] it is shown that 1.2 is
a lower bound on the performance ratio of the loss contracting algorithm.

5 Special Instances of the Steiner Tree Problem

An instance of the Steiner tree problem is called quasi-bipartite, if the set
V' \ R of (possible) Steiner vertices is stable, i.e., contains no edges. Quasi-
bipartite instances appear in all known lower bound proofs for the approx-
imation threshold of Steiner tree approximation algorithms (see Section 6).
For such proofs one needs to construct instances to the Steiner tree problem
that are in some sense the most difficult ones to solve. As we will see in
this section, for quasi-bipartite instances there exist algorithms with better
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performance ratio as in the general case. This may have two reasons: Ei-
ther quasi-bipartite instances are easier to solve than general instances of
the Steiner tree problem. Then one should try to find better lower bound
proofs based on other constructions. On the other hand, if quasi-bipartite
instances are as hard to solve as general instances, then algorithms for these
special instances should be useful as a basis to design better approximation
algorithms in the general case.

In a quasi-bipartite instance all full components are stars, i. e., they have
a single Steiner point and the loss is just one of its shortest edges. Since
Steiner vertices of degree two can always be eliminated using the triangle
inequality, we will also require w.l.0.g. that every full component has at
least three edges. Thus, we have the following

Proposition 5.1 In quasi-bipartite instances, the length of the loss of a
Steiner tree is at most one third of its total length.

Rajagopalan and Vazirani [27] gave a % + ¢ approximation algorithm
for quasi-bipartite graphs based on the primal-dual method. The primal-
dual method has been applied successfully to many network design problems
(see e.g. [15]). Nevertheless, their result was surprising because in general it
is considered difficult to obtain performance ratios better than 2 for Steiner
tree like problems using this method. However, their algorithm is outper-
formed by a simple combinatorial algorithm, which we describe next.

5.1 Iterated 1-Steiner Heuristic

The iterated 1-Steiner heuristic is a simple local search heuristic. Recall that
the Steiner minimum tree for a set of required vertices R can be reconstructed
if we know the set I of its Steiner vertices since SMT(R) = MST(R U I).
Here the argument of SMT'(-) and MST(-) denotes the set of vertices which
has to be connected. Therefore the main problem is to find a good collection
of Steiner vertices.

The heuristic starts from a spanning tree for the terminal set, i.e. I = ().
In each step, we check whether the current solution can be improved by
adding a single Steiner vertex v in the following way: compute a minimum
spanning tree on RU I U {v}, and remove all Steiner vertices of degree one
and two. These are dispensable because of the triangle inequality. If the
resulting Steiner tree is shorter, then let I be the new set of its Steiner
vertices, otherwise I remains the same. The algorithm stops when no single
Steiner vertex leads to an improvement in this way. See Figure 8.
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Iterated 1-Steiner Heuristic
I 0.
Repeat

For every v € V' \ (RU I) do:
I' — TU{v}.
Remove vertices from I’ having degree 1 or 2 in MST(RUI").
If mst(RUI'") < mst(RUI) then I — I'.

until no improvement found during last loop

Output MST(R U I).

Figure 8: ITterated 1-Steiner Heuristic

Theorem 5.2 (Robins, Zelikovsky [28]) The iterated 1-Steiner heuris-
tic achieves an approrimation ratio of % on quasi-bipartite instances.

Proof. Due to Proposition 5.1 we can apply Lemma 4.4 with A = % O

A family of instances for which this upper bound on the performance ratio
is asymptotically tight is shown in Figure 9. Here SMT(R) = MST (R + s),
so smt = (2k + 1)(1 + ¢). Assume that the iterated 1-Steiner heuristic has
selected all Steiner vertices except s so far. The edges incident to these ver-
tices have length 1 and each of them was chosen as it reduced the mst value
by one. Since s has degree 1 in MST(V), the iterated 1-Steiner heuristic
does not include s into its current solution and stops with a Steiner tree of
length 3k. The resulting lower bound is m ~ %

Note that it is natural to do the choice of the next Steiner vertex in a
greedy way. The lower bound example of Figure 9 does not apply to this
greedy version of the iterated 1-Steiner heuristic, because s would be chosen
in the first step. Minoux [24] showed how to speed up the greedy version of
the iterated 1-Steiner heuristic for quasi-bipartite instances.

5.2 The Loss Contracting Algorithm in Special Graphs

The loss contracting algorithm has a performance ratio < 1.279 for two
interesting classes of special instances [28]. Note that this is much better
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k Steiner vertices,
edge length =1

edge length = 1+¢

Figure 9: A worst-case example for the iterated 1-Steiner heuristic with
vertex removal.

than the performance ratio of 1.550 that holds for the general case. The
proof is based on an inequality which holds for these special instances. We
use the notation of Section 4.

Proposition 5.3 (Robins, Zelikovsky [28]) In quasi-bipartite instances,
the inequality mst < 2(smt — loss™) holds.

Proof. 1t suffices to prove the inequality for full components. Let r1,79,...
be the required vertices and v the Steiner vertex and assume w.l.0.g. that
Loss = {ryv}. For i > 2, a shortest path between r; and r; has length at
most |rv| + [riv] < 2|rv|. 0

In their proof that there exists a constant € > 0 such that the Steiner tree
problem in graphs cannot be approximated up to a factor 1 + ¢, Bern and
Plassmann used a reduction from vertex cover [5]. The resulting instances are
quasi-bipartite and have the property that the shortest distance between any
two vertices is either 1 or 2. This makes the following special case interesting.

Proposition 5.4 If the instance is a complete graph and all edge lengths are
either 1 or 2, then the inequality mst < 2(smt — loss™) holds.

Proof. Denote by r (resp. s) the number of required (resp. Steiner) vertices
in SMTY},. Clearly mst < 2(r — 1) since all edge lengths are at most 2, and
smty, > 7+ s — 1 since SMT; contains r + s vertices. We can assume that
all loss edges have length 1, which implies loss* = s. Therefore,

mst < 2(r—1) = 2((r+s—1)—s) < 2(smty — loss™)

as claimed. O
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Theorem 5.5 (Robins, Zelikovsky [28]) If the instance is quasi-bipar-
tite, or the shortest distance between any two vertices is either 1 or 2, then
the loss contracting algorithm computes a 1.279 approximation for SMT,.

Proof. In either case, we have mst < 2(smty — loss*) by Propositions 5.3
and 5.4, and this leads to a better estimate for the right hand side of

: mst—smty smty
Lemma 4.3. Since 1 + ==+ < 75k — 1, we get

t
) < smty + loss™ - In <sm I: — 1> .
loss

cost (Th, ..., Tj s
Now we use the inequality loss® < smty/2. Numerically one can show that
max {z(In (£ —1)) [0 < 2 < 3} = 0.278465. (This value is attained for
x =0.217812 < 1/3.) The theorem follows. O

In quasi-bipartite graphs a full component that minimizes the function
fi can be found in polynomial time even without the usual restriction on
the terminal number, see [28| for details. Therefore, we can replace smty,
with smt in Theorem 5.5 for quasi-bipartite graphs. The total running time
is O(s?r), where r is the number of terminals and s is the number of non-
terminals.

The performance ratio of the loss contracting algorithm in quasi-bipar-
tite graphs is at least (5 — 1/2)/3 > 1.195. This follows from the instance
shown in Figure 10. The Steiner minimum tree consists of T, and T},
whereas the algorithm chooses T, and T,. After that, T\, and T, are not
improving anymore, so the algorithm stops. The resulting lower bound is
(17w +1T%)) / (ITw] + |T5]) = (10 —2v/2)/6 = 1.195. The instance shown
in Figure 11 implies a lower bound of 1.2 for the performance ratio of the
loss contracting algorithm in general graphs. One can check that the Steiner
minimum tree consists of the ‘row trees’, but the algorithm will choose the
Steiner vertices s and ¢. Detailed calculations can be found in [16].

5.3 Quasi-Bipartite Graphs with Uniform Edge Lengths

We call an instance of the Steiner tree problem uniformly quasi-bipartite if
it is quasi-bipartite and edges incident to the same Steiner vertex have the
same length. This class of instances contains in particular the unweighted
instances and, more interestingly, the instances produced by all known re-
ductions [5, 30] that prove lower bounds for the approximation threshold of
the Steiner tree problem.

We present in this section an algorithm for such special instances which
has a performance ratio of 1.217 for uniformly quasi-bipartite instances. This
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3—v2 1 V2

3—v2 1 V2
1 X (1]

1 1

Figure 10: (left) A quasi-bipartite 1.195 lower bound example for the loss
contracting algorithm.

Figure 11: (right) A non-quasi-bipartite 1.2 lower bound instance for the loss
contracting algorithm. All edges of the row trees have length 5. The edges
incident to s and ¢ have weights 9 and 6, respectively.

algorithm uses the idea that the Steiner tree problem is similar to the set
cover problem in some respect. Moreover, we can show that the analysis of
the algorithm is tight.

For an instance of the Steiner tree problem and a constant k£, we consider
the following hypergraph on the set of terminals. A set of at most k terminals
is a hyperedge if the Steiner minimum tree for it is full. The length of this hy-
peredge is given by the length of the Steiner minimum tree. This hypergraph
can be constructed in polynomial time. Finding a shortest k-Steiner tree is
equivalent to finding a minimum spanning subgraph in this hypergraph. In
general hypergraphs this problem is known as the minimum spanning subset
problem (MSS). 1t is a generalization of the set cover problem. If the hyper-
edges have size at most k, the greedy algorithm for this problem (Greedy-
MSS) has a performance ratio of Hy, where Hy = Zle 1/i = Ink + O(1)
[31, 2]. This is best possible [12]. A simple combination of this algorithm
with the Steiner ratio analysis yields a performance ratio of py - Hp_1 > 2.

In case of the instances induced by the k-Steiner tree problem, we shall
use the following property: If ¢’ is a subset of a set t of terminals, then the
‘cost’ to connect t' tends to be smaller than the cost to connect ¢. While
this property is far from being valid in the general MSS problem, in uni-
formly quasi-bipartite instances the cost is even proportional to the number
of terminals. This implies in particular that the solution contains no cycles.
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Algorithm Greedy-MSS as described in [2] applied to uniformly quasi-
bipartite instances fits into the general framework. Assume that the hy-
peredges t1,...,t;—1 have already been selected and denote by c¢;_1(t) the
decrease in the number of components if the hyperedge ¢ is added. Then the
selection function is the ‘cost per connection’ ratio

2]
i—1(t) == .
fl 1( ) Cl',l(t)
Theorem 5.6 (Gropl, Hougardy, Nierhoff, Promel [16]) The general
framework with the function f;_1(t) := Ci_'i‘(t) gives a 1.217 approzimation

for the Steiner tree problem in uniformly quasi-bipartite graphs.

Proof. Let t* be a hyperedge of the optimal solution. We know that when the
algorithm decided to select ¢;, there was a competing minimal subhyperedge
t* C t* with ¢;_1(t*) = ¢;—1(t*). Ast* corresponds to a star with ¢;_1(t*)+1
edges, we know that
Ci—1 (t*) +1
cot)+1
So the length of a subhyperedge is roughly proportional to the number of
connections it yields (especially for large stars) and we get the following

7] = ] (20)

inequality.
ci—1(t*)+1 | %
ti ] _ e ! o
Cz‘fl(ti) Cl',l(t ) Cz;l(t ) Cz;l(t ) Co(t )+ 1

Let ALG := {t1,...,ti,..} and OPT be the hyperedges of an optimal
solution. In order to estimate the length of ALG in terms of the length
of OPT, we introduce artificial edge sets A resp. A* for the algorithmic
and for the optimal solution to mimic the connections accomplished by the
hyperedges of both solutions. Then we distribute the length of the edges in
A among those in A* using a matroid-style exchange argument.

Let ALG; := {t1,...,t;}. We define ¢; € N and ay,...,ay, € (12%) such
that A; := {a1,...,a,} has the same connected components as ALG;. We
start with E(] = 0 and AO = ALGO = @ and set fl = fz‘fl + Cifl(ti) =
li—1+co(t;). The new edges as, ,+1,...,as C t; form an arbitrary spanning
tree for the vertices of ¢;. The length of ¢; is distributed uniformly among
the new edges, i.e., their lengths are |as, ,11|,...,|ag| = [til/(li — i—1).
Let A:= Ay, . (Clearly, £;,,, is the number of terminals minus one.)

Let Aj := 0 and T := OPT. We successively define trees Aj C (I;)

and hypertrees Tj, j > 0. To define A7 we insert the edges of A one after
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another. For each j = 1,...,¢; . there are two possibilities. If a; € Tj_1
then we let a7 := a; and Tj := T;_,. Otherwise, Tj_1 + a; contains a cycle.
As A is a tree, this cycle must contain a hyperedge t* € T;_;1 \ A. We let
Tj,l :=T;_1 —t* and choose an edge a; t* which connects precisely those
two components of Tj{_1 which contain the endpoints of a;. We remove one of
the endpoints of a} from ¢* to obtain ¢*. Finally, we let T} := T} _; +t" +ay,
which is again a spanning subhypergraph without cycles. In this way, we
have replaced one of the connections in OPT with one from ALG, or, more
precisely, A. In both cases we set A7 := A7, +aj. Let A" := A; . The

‘max

replacement process defines a bijection ¢: A < A* by p(a;) == aj.

Note that for every edge a* € A* there is a unique hyperedge t* € OPT
with a* C t*, because OPT contains no cycle. For every hyperedge t* €
OPT, the set of connections which have not yet been removed from it during
the replacement steps j = 1,...,£;is U;(t*) := {a" € A"\ A} |a* Ct*}. Let
u;(t*) := #U;(t*). Then the number of connections removed from ¢* during
the replacement steps j = ;1 +1,...,0; is w1 (t*) — u; (t¥).

The above definitions imply that

imax
ALG| = Y ftil = Y lal = Y l¢7' (@)
i=1 acA a*€A*

= 2 Dl

t*cOPT a*Ct*

a*cA*
imax
= > > X et
t*cOPT i=1 a*Ct*
a*eA;\A;
t*cOPT i=1 i—1b

We can estimate the inner sum using (21) in the following way.
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Tmax U; 1 _u(t)
) = (¢ + 3 ML

*
=11 co(t*) + 1 (23)
In the numerator we have ug(t*) = ¢o(t*) and w;,, (t*) = 0. The inequality
ci—1(t*) > wi—1(t*) is valid for all 4, since U;_1(t*) C A* contains no cycles
and its edges are contained in t*, but, by definition, adding the whole t* to
ALG;_, would yield ¢;_1(t*) new connections. As ug(t*),...,u;,, (t*) is a
non-increasing sequence of natural numbers,

TR w1 () —ui(t*) | SR u — i (t*
> S Z P
< H(uo(t")) = H (Ui (t7)) = H(co(t)) .
We have
co(t*) + H(co(t)) _ v+ H(z) 4A+H4) 73

max = = —,
co(t*) +1 T zeN  x+1 441 60

so (23) is bounded by 2|t*|. Putting things together, we obtain

/[:maX
ALG] = Y3 () - ule) L
t*€OPT i=1 i—1%
.73
<y D
t*€OPT
73
_ I opry,
as desired. 0

An interesting feature of the Greedy-MSS algorithm is that we have a
matching lower bound instance, that is, the analysis is tight.

Let p € N. The terminals {;;};j—1,., of our instance are arranged in
form of a p x p grid. We also have a terminal rg. The set of potential Steiner
vertices is U U W, where U = {uq,...,up} and W := {wy,...,w,}. Each
u; is adjacent to 9 and to r;; for all j, and each w; is adjacent to r¢ and
to r; ; for all . The optimal solution uses the Steiner vertices W. All edges
incident to w; € W have length so smt < p. See Figure 12 for the case
p=4.

Let v € UUW and let f;(v) := min; f;(t), where ¢ ranges over all subsets
of the neighborhood of v. Note that the minimum is attained for all maximal

=t
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t that intersect with each component of (R, {t1,...,¢;}) at most once. As all
these ¢t connect the same components, their effect is the same. Therefore, in
uniformly quasi-bipartite instances the algorithm effectively chooses Steiner
vertices v; minimizing f;_1(v;).

We will force Greedy-MSS to choose the Steiner vertices ug,...,u, in
this order by defining the lengths of the edges incident to the Steiner vertices
u; € U in such a way that f;_i(u;) < fi—i(w;) for all ¢ and j. Note that
adding an € > 0 to the length of the optimal edges would break the tie in
our favor. By symmetry, f;_ (w]) is independent of j in each step. Clearly
the edge lengths for u; must be +1’ the same as for wy, ..., w,. Given that
the algorithm has already plcked u1,...,u;, we calculate the edge lengths for
u;y1 as follows. For all j, the terminals ry j,...,7; ; are already connected to
70, 50 we have fi(w;) = —2H " 5 On the other hand, u;11 will still connect

(p+1)(p—i
p terminals to 79. To be competitive with wj, its edge lengths can add up

top- fi(w;) = %. Therefore we let the length of the edges incident

p(p+1-i)
(p+1)2(p—i)”
The ratio between the lengths of the algorithmic and the optimal solution

p—1
plp+1—1i) p—i)+1  p+H(p)
(Z(p+1 )/ Zp+1 —i) p+1

This fraction is maximized for p = 4 where it matches the guaranteed per-
formance ratio of 73/60 proved above. The worst-case instance is shown in
Figure 12.

An unweighted worst-case instance has been presented in [16].

to u; be

is

6 Nonapproximability Results

A natural question about approximation algorithms for the Steiner tree prob-
lem is how small their performance ratio can get. In this section we survey
some results that deal with this question.

As already mentioned in the introduction, it is known that the perfor-
mance ratio of a polynomial time approximation algorithm for the Steiner
tree problem in graphs can not get arbitrarily close to 1, unless P = NP.
This is a consequence of the famous PCP-Theorem due to Arora, Lund,
Motwani, Sudan and Szegedy [1]| together with a reduction due to Bern and
Plassmann [5].

Theorem 6.1 (Arora et al. [1], Bern, Plassmann [5]) There exists
some constant ¢ > 1 such that no polynomial time approximation algorithm
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Figure 12: A worst-case instance for the algorithm for uniformly quasi-bipar-
tite graphs.

for the Steiner tree problem in graphs can have a performance ratio smaller
than c, unless P = NP.

The constant ¢ in the above theorem could in principle be extracted from
the proofs, however it would turn out to be extremely close to 1. The reason
for this is mainly that the constants involved in the first version of the PCP-
Theorem are very large. Additionally, the reduction of Bern and Plassmann
which reduces the problem Node-Cover-B to the Steiner tree problem in
graphs, also loses in the non-approximability constant. Nevertheless, their
reduction is still the tightest reduction known between these two problems
and improved non-approximability results for the Node-Cover-B problem
also improve the non-approximability results for the Steiner tree problem in
graphs. Therefore we explain their reduction in more detail below.

The Node-Cover problem asks for a minimum set of nodes in a graph,
such that every edge in the graph is incident to at least one node from
this set. Node-Cover-B is the same problem, but restricted to graphs where
the maximum degree of every node is bounded by a constant B. Bern and
Plassmann have shown that good approximation algorithms for the Steiner
tree problem in graphs also imply good approximation algorithms for Node-
Cover-B.

Lemma 6.2 (Bern, Plassmann [5]) If there exists a polynomial time ap-
proximation algorithm for the Steiner tree problem in graphs with perfor-
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Figure 13: A reduction from Node-Cover-B to the Steiner tree problem in
graphs

mance ratio 1 + €, then there exists a polynomial time approximation algo-
rithm for Node-Cover-B with performance ratio 1 + (B + 1)e.

Proof. Let G = (V, E) be an instance to the Node-Cover-B problem. We will
show how an (1 4 ¢)-approximation algorithm for the Steiner tree problem
in graphs can be used to get a (1 + (B + 1)e)-approximation algorithm for
Node-Cover-B.

We first transform the Graph G into a graph H that is an instance to
the Steiner tree problem in graphs as follows: On each edge e of G place a
terminal t.. Furthermore add a terminal ¢ that is connected to all vertices
in G. See Figure 13 for an example of this reduction.

We denote the length of a Steiner minimum tree in H by smt and the
size of a minimum node-cover in G by nc. First we show that smt and nc
differ exactly by the number m of edges in G:

smt = nc+m (24)

To see this note first that any node cover in G can be transformed into a
Steiner tree for H as follows. Connect terminal ¢ to the vertices from the
node cover. Now each of the remaining m terminals has a neighbor in the
node cover. Thus, a Steiner tree is found of length nc + m.

Next we show how to get a node cover of size smt —m from a Steiner tree
SMT of length smt. First we normalize the Steiner tree SMT as follows.
If there exists a terminal ¢, that has degree 2, then at least one of its two
neighbors is not connected to ¢. Add this edge and destroy the resulting cycle
by removing an edge that is not incident to t. This decreases the number
of terminals different from ¢ that have degree 2 by one without increasing
the length of the Steiner tree. By iterating this process we may assume that
SMT contains no terminals ¢, of degree 2. Now it is easily seen that the
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Steiner vertices in SMT constitute a node cover in G of size smt — m. This
proves Equation (24).

Suppose we have an approximation algorithm for the Steiner tree problem
in graphs that returns a solution SMT’ of length smt’ < (1 + ¢) - smt for
the graph H. From this we can construct a node cover for G of size nc’ =
smt’ — m as described in the proof of Equation (24). Therefore we get:

nc’ =smt’' —m < (1+¢)-smt—m
= (1+4+¢)-(nc+m)—m
= (14¢)-nc+e-m

Since G is a graph with maximum degree B, any node cover in G must
have size at least m/B, i.e., we have m < nc - B. Thus we get

nc'’ <(1+4+¢)-nc+e-nc-B=nc-(1+(B+1)-¢),
proving the lemma. O

Lemma 6.2 immediately gives non-approximability results for the Steiner
tree problem in graphs, as soon as one knows non-approximability results for
node-cover-B. Currently, the strongest non-approximability result for node-
cover-B is due to Berman and Karpinski:

Theorem 6.3 (Berman, Karpinski [3]) No polynomial time approxima-
tion algorithm for Node-Cover-4 can have a performance ratio below 1.0128,

unless NP=coRP.
From this result and Lemma 6.2 one immediately gets

Lemma 6.4 No polynomial time approzimation algorithm for the Steiner
tree problem in graphs can have a performance ratio below 1.0025, unless
NP=coRP.

This lower bound has been improved recently by Thimm [30] who used
a non-approximability result of Hastad [17] for Max-E3-Lin-2 to obtain the
following bound.

Lemma 6.5 (Thimm [30]) No polynomial time approzimation algorithm

for the Steiner tree problem in graphs can have a performance ratio below
1.0074, unless NP=coRP.
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To conclude, it remains a big gap between the currently known lower
bound 1.0074 and the upper bound 1.550 on the approximation threshold
for the Steiner tree problems in graphs. As the reduction by Thimm produces
uniformly quasi-bipartite instances, we get that the approximation threshold
in this case is between 1.0074 and 1.217.
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