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Abstract

A P4 is a set of four vertices of a graph that induces a

chordless path; the P4-structure of a graph is the set of all

P4’s. Vašek Chvátal asked if there is a polynomial time

algorithm to determine whether an arbitrary four-uniform

hypergraph is the P4-structure of some graph. The answer

is yes; we present such an algorithm.

1 Introduction

A P4 in a graph G is an induced path on four vertices.
The P4-structure of a graph G with vertex set V ,
denoted P4(G), is the hypergraph on V whose edges are
those vertex sets which induce a P4 in G. A hypergraph
H is a P4-structure if it is the P4-structure of some graph
G, and any such graph G is called a realization of H.
Graphs with the same P4-structure are P4-equal. Since
four vertices induce a path in a graph if and only if they
induce a path in its complement, a graph is P4-equal to
its complement.

A hypergraph is realizable if it is a P4-structure. A
realizable hypergraph is uniquely realizable if for any two
realizations each is isomorphic either to the other or to
the other’s complement, and strongly uniquely realizable
if for any two realizations each is equal either to the
other or to the other’s complement. As the reader
may verify, the P4-structure of the graph in Figure 1
is strongly uniquely realizable, the P4-structure of the
hole with five vertices is uniquely realizable but not
strongly uniquely realizable (since all 12 C5s on a set
of 5 vertices have the same P4-structure), and the P4-
structure of the two P4-equal graphs in Figure 2 is not
uniquely realizable.

The notion of P4-structure, introduced by Chvátal,
was motivated by the study of perfect graphs. A
graph is perfect if for every induced subgraph the
chromatic number equals the clique size. (Throughout
this paper, all subgraphs or subhypergraphs referred
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Figure 1: A realization of a strongly uniquely realizable
hypergraph.

to are induced subgraphs or subhypergraphs.) Around
1960 Berge [1] introduced the notion of perfect graphs
and proposed two perfect graph conjectures (PGC ’s)
which have stimulated much research. An odd hole is
an odd induced cycle with at least five vertices, and an
odd anti-hole is its complement.

Strong PGC. A graph is perfect if and only if it
contains no odd hole or odd antihole.

Weak PGC. A graph is perfect if and only if its
complement is perfect.

Lovász proved the WPGC in 1971 [22], while the SPGC
remains open. Chvátal felt that studying P4-structure
might lead to a resolution of the SPGC , and he made
the following conjecture, later proved by Reed [24].

Semi-Strong PGC. A graph is perfect if and only
if each graph P4-equal to it is perfect.

Chvátal chose the name of his conjecture to reflect the
fact that it is implied by the SPGC (which he showed
by proving that the P4-structure of an odd hole has
a unique realization), and implies the WPGC (since a
graph and its complement are P4-equal).

Chvátal’s motivation for introducing P4-structure
was that he hoped to use it to produce perfection
certificates for perfect graphs, thereby proving that
perfect graph recognition is in NP . He observed that
for some classes of perfect graphs (for example, perfectly
orderable graphs [6] and line graphs of bipartite graphs)
it is known how to provide a certificate for a graph
in the class with which the graph’s perfection can be
verified in polynomial time. He noted that, given the
SSPGC , one can certify the perfection of a graph G by
providing a P4-equal graph H together with a certificate
of the perfection of H. It was Chvátal’s hope that this
technique would be useful in certifying perfection. As
we shall see, it turns out that P4-structure is of no
more use for producing perfection certificates than are
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Figure 2: Two realizations of a not uniquely realizable
hypergraph.

homogeneous sets. However, Chvátal’s introduction of
P4-structure has generated considerable interest in how
P4’s interact in perfect and minimally imperfect graphs,
and motivated much work which is of interest in its own
right (see for example [7, 8, 13, 15, 17, 18, 14, 19, 21]).

In this paper we establish results on P4-structure
which yield a polynomial time algorithm for recognizing
P4-structure. Because of space constraints, all proofs
are omitted. Our results elucidate the relationship
between P4-structures and homogeneous sets. Before
going further, we define homogeneous sets and discuss
their relationship to P4-structure realizations.

A set is big if it has at least two elements. A
graph or hypergraph is big if its vertex set is big. A
homogeneous set of a graph is a big proper vertex subset
such that every vertex not in the subset sees all or none
of the vertices in the subset. For example, the graphs
in Figures 1 to 4 contain no homogeneous set, while
the graph in Figure 6 contains the homogeneous set
{4, 5, 6, 7}. A crucial lemma in Lovász’s proof of the
WPGC is that no minimal imperfect graph contains a
homogeneous set. In 1974, Seinsche [25] proved that
a graph G is a realization of a P4-structure with no
edges precisely if every induced subgraph of G with
more than two vertices contains a homogeneous set.
This led to the development of faster polynomial time
algorithms for the recognition of this class of graphs (see
[9]) and for determining if a graph has a homogeneous
set (see [26]). In fact, more complicated techniques were
eventually developed to quickly partition the vertex set
of any given graph into maximal pieces which contain
no homogeneous sets (see [10] [23]). Many of these
results rely partially on the links between P4-structure
and homogeneous sets (see for example [26] where the
notion of a P4-tree is introduced).

It is not hard to see that the P4-structure of a graph
with a homogeneous set is not strongly uniquely realiz-
able (cf. Observation 1.3 below), and that this compli-
cates the problem of recognizing P4-structure. So that
we may avoid this complication, we introduce a hyper-
graph notion which captures the graph notion of homo-
geneous set. This will allow us to reduce the problem
of recognizing P4-structures to the problem of recogniz-
ing P4-structures of graphs with no homogeneous set.
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Figure 3: Illustrating degeneracy. The graph G induced
by {1, . . . , 6} is degenerate, since it has two unequal but
P4-equal supergraphs F1 and F2 (shown). Notice that
G has many CSC partitions; the CSC partition which
gives rise to F1 and F2 is C1 = {v1, v6}, S = {v2, v5},
C2 = {v3, v4}.

A graph is prime if it has more than two vertices and
no homogeneous set. Our hypergraph notion follows
directly from the following observation.

Observation 1.1. In a graph G with homogeneous
set S, every P4 contains 0, 1, or 4 vertices of S.
Furthermore, if { s,x,y,z } induces a P4 for some s in S
and x,y,z not in S, then { s′,x,y,z } induces a P4 for all
s′ in S. ut

Thus we define an h-set S of a four-uniform hyper-
graph as a proper vertex subset such that every edge of
the hypergraph has 0, 1, or 4 vertices in S, and for ev-
ery two vertices s, s′ in S and three vertices x, y, z not in
S, {s, x, y, z} induces an edge if and only if {s′, x, y, z}
induces an edge. Now the next observation is simply a
restatement of the previous.

Observation 1.2. A homogeneous set of a graph is an
h-set of the graph’s P4-structure. ut

Observation 1.3. A P4-structure with h-set S has a
realization in which S is homogeneous, and so (the P4-
structure) is not strongly uniquely realizable. ut

A four-uniform hypergraph is prime if it has at least
four vertices and no h-set. In light of observation 1.3 it
is natural to conjecture that a realizable hypergraph is
strongly uniquely realizable if and only if it is prime.
This is not the case: as illustrated in Figures 2, 3,
and 4 there are prime realizable hypergraphs which
are not strongly uniquely realizable. However, the
conjecture is not far from the truth; for example, it
holds for all realizable hypergraphs which contain the
P4-structure of the graph shown in Figure 1 or the
P4-structure of an induced cycle with seven or more
vertices. More generally, as Theorem 1.1 below shows,
the conjecture holds as long as the hypergraph has
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Figure 4: Two realizations of another not uniquely
realizable hypergraph. Both graphs are prime. The left
graph is non-degenerate; the right graph is split (and so
degenerate). In the same fashion, for any k, there is a
graph which is P4-equal to Pk, so P4(Pk) is not uniquely
realizable.

some induced subhypergraph with a “non-degenerate”
realization. Before stating this theorem, we discuss the
degenerate special case:

We say that a graph has a CSC-partition if its vertex
set can be partitioned into cliques C1 and C2 and a
stable set S such that there are no edges between C1 and
C2. Complementarily, we say that a graph has an SCS-
partition if its vertex set can be partitioned into stable
sets S1 and S2 and a clique C such that there are all
edges between S1 and S2. We call a graph degenerate if
it has either a CSC partition or a SCS partition. We call
such a graph degenerate because it has different but P4-
equal supergraphs, each obtained by adding one vertex
as illustrated in Figure 3; such supergraphs always exist,
because of the following observation.

Observation 1.4. Let G have a CSC partition and let
F1 and F2 be the two supergraphs of G obtained by
adding a vertex v whose neighbourhoods are respectively
C1 and C2. Then F1 and F2 are P4-equal.

On the other hand, we have:

Theorem 1.1. Let H be a realizable hypergraph with
an induced subhypergraph which has a strongly unique
non-degenerate realization. Then H is strongly uniquely
realizable if and only if H is prime.

One direction of the theorem follows from Observa-
tion 1.3, so we only need prove:

Theorem 1.1
′ If a realizable prime hypergraph H

has an induced subhypergraph with a strongly unique
non-degenerate realization then H has a strongly unique
realization.

As discussed in §5, Theorem 1.1′ can be proved
iteratively by repeatedly extending a realization of an
induced subhypergraph to a realization of a larger
induced subhypergraph: in each step one or two vertices
are added, chosen so that the new realization is always
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Figure 5: A non-extending prime non-degenerate sub-
realization of a realizable hypergraph. The graph G′ on
the left is a subrealization of the P4-structure H of the
graph G on the right. G′ does not extend to any real-
ization of H, because G is strongly uniquely realizable
(since G[{v1, . . . , v5, v9}] is isomorphic to the graph in
Figure 1).

strongly unique. Actually, this approach allows us to
prove a stronger theorem:

Theorem 1.2. If a realizable prime hypergraph H has
an induced subhypergraph with a prime non-degenerate
realization G′ then at most one extension of G′ realizes
H.

To see that Theorem 1.2 implies Theorem 1.1′,
we need only observe that strongly unique realizations
cannot have homogeneous sets, and that any strongly
unique subrealization G′ with vertex set V ′ of a real-
izable hypergraph H has at least one extension which
realizes the hypergraph (since for any realization G of
H, G[V ′] = G′ or G′).

Notice that “at most one” cannot be replaced with
“exactly one” in the preceding theorem, since a prime
non-degenerate subrealization G′ may not extend. This
is illustrated in Figure 5, where G′ is the graph on the
left with V (G′) = {v1, . . . , v8}, G is the graph on the
right with V (G) = V (G′) ∪ {v9}, and H is the P4-
structure of G. The reader can verify that G′ is prime
and non-degenerate (in fact G′ is the shortest path with
these properties) and that G′ and G − v9 are P4-equal
(as noted earlier in Figure 4).

This is the skeleton of our P4-structure recognition
algorithm. We attempt to extend subrealizations which
have CSC or SCS partitions in the same way. However,
unique one or two vertex extensions of such graphs
are not always possible (see Figure 3), so we will
sometimes need to examine all the remaining vertices
together, in order to decide on an appropriate extension
(or set of extensions). We will need to flesh out
our skeleton considerably, developing quite complicated
techniques for dealing with graphs that have CSC or
SCS partitions. Particularly troublesome in this regard
are the split graphs, namely those graphs which have a
partition into a clique and a stable set (and hence both
a CSC and SCS partition).
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Figure 6: A graph with a homogeneous set.

We close this introductory section by remarking
that Hayward [14] has carried out a similar study of
the P3-structure of graphs, and that remarks on the F -
structure of graphs for various F can be found there as
well as in [4], [5] and [11].

2 Dealing with h-sets

Our observations above show that in constructing re-
alizations via one or two vertex extensions, things are
much easier if the hypergraph we are trying to realize
is prime. The following lemmas show that we can re-
strict ourselves to this case, by busting up G into a set of
prime subhypergraphs and combining their realizations.

Lemma 2.1. There is an algorithm which determines
whether an input hypergraph is prime, and returns an
h-set if it is not.

By substituting a graph F for a vertex v in a graph
G, we mean creating the graph G′ with vertex set
V (G) − v ∪ V (F ) whose edges consist of all edges of
G− v, all edges of F , and all edges (wf) such that f is
in F and w is adjacent to v in G.

Lemma 2.2. A four-uniform hypergraph H with vertex
set V and h-set S is realizable if and only if the
hypergraphs induced by V −(S−x) and S are realizable.
Furthermore, substituting any realization of H[S] for
vertex x in any realization of H[V − (S − x)] yields a
realization of H.

In performing our extensions, we will want to know
how a one vertex extension of G can not be prime if G
is prime. The following easy observation is important.

Observation 2.1. Let G = (V,E) be a realization of
a prime hypergraph H which has a non-prime superhy-
pergraph H + v. Then there is a supergraph G+ v of G
realizing H + v in which either (i) v is a twin of some
vertex in V or (ii) v is adjacent to all or no vertices of
V .

The observation follows from the fact that the only
possible h-set of H + v is V or {v, x} for some x in V ,
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Figure 7: Three P4-equal graphs. Only the top is prime.

as any other h-set yields an h-set of H. Observe that an
h-set of a hypergraph need not be a homogeneous set
in every realization of the hypergraph. See for example
Figure 7. This is an important observation to consider
in designing an algorithm to construct all realizations
of a given P4-structure.

Finally, the following result will be important in
analyzing the second possibility discussed in this obser-
vation:

Lemma 2.3. Let H be a realizable hypergraph with ver-
tex set V, let v be a vertex of V in no edge of H, let
F be a realization of H, and let G be the subgraph of F
induced by V−v. If G is prime then either:

(a) in F, v is V−v-universal, or
(b) in F, v is V−v-null, or
(c) in F, v sees a clique C and misses a stable set

S, and so F (and also G) is a split graph.

3 The Key Lemma

As mentioned earlier, the essential step in our iterative
P4-structure recognition algorithm involves extending
a subrealization G′ of a candidate hypergraph H by
one or two vertices chosen so as to ensure that any
such extension is unique. We need to insist that
all these subrealizations are prime so that we can
apply Lemma 2.3 as well as some more powerful tools
developed in this section. In §2 we took our first step
in this direction when we showed that we can insist
that H is prime. In §2 we also discussed under what
conditions we can extend a realization and maintain
primality. In this section we determine under what
circumstances we can extend a subrealization by one
vertex and still maintain primality and uniqueness. As
we shall see we need to deal with the exceptional cases
pointed out in the previous section (homogeneous sets of
size 2 and vertices in no hyperedges) and those pointed
out in the first section (CSC and SCS partitions). In the
next section we consider the corresponding two vertex
extensions.

For a realizable hypergraph H with a realization G′

of H[V ′], we call a vertex x of V − V ′

• an obstructor if no extension of G′ realizes H[V ′+x]
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• a unique extender if exactly one extension of G′

realizes H[V ′ + x]

• an extremist if x is in no edge of H[V ′ + x]

• a clone of some x′ in V ′ (and x′ is a mate of x) if
{x, x′} is an h-set of H[V ′ + x]

• a CSC-swapper if G′ has a CSC partition such that
for j = 1, 2 the extensions Gj in which N(x) = Cj
realize H[V ′ + x]

• an SCS-swapper if G′ has an SCS partition such
that for j = 1, 2 the extensions Gj in which N(x) =
C ∪ Sj realize H[V ′ + x].

We say that x is a swapper if it is a CSC swapper or
an SCS swapper. This term is of course motivated by
Observation 1.4: in extending G′, the neighbourhood of
x can ‘swap’ between C1 and C2 (in the case of a CSC
partition) or C ∪ S1 and C ∪ S2 (in the case of an SCS
partition).

We can now describe all possible one vertex exten-
sions of a realizable hypergraph.

Lemma 3.1. (Key Lemma) Let G′ = (V ′, E′) be a
prime subrealization of a four-uniform hypergraph H =
(V,Q) with V = V ′ + x. Then exactly one of the
following holds:

(a). x is an obstructor

(b). x is a unique extender

(c). x is a extremist and G′ has the two extensions
in which x is V ′-extreme and has at least three
extensions only if G′ is split (by Lemma 2.3)

(d). x is a clone and not a swapper in which case x is a
clone of exactly one vertex, say x′, and G′ has only
the two extensions in which x and x′ are twins

(e). x is a CSC swapper and not an extremist, in which
case G′ has 2,3,or 4 extensions,

(f). x is a SCS swapper and not an extremist, in which
case G′ has 2,3,or 4 extensions,

Remark: if G′ has no CSC partition or SCS partition
then exactly one of (a) through (d) occurs, since, by
Lemma 2.3, (c) and (d) cannot both occur (as this would
imply that G′ is split and so has a CSC partition). Also,
if G′ has a CSC or SCS partition but is not split, then
the statement of the lemma can be simplified somewhat.
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Figure 8: Graphs with strongly unique non-degenerate
P4-structures.

4 Two-vertex Extensions

Clearly, Theorem 1.2 can easily be proved by recursively
applying the following result, since every extension of a
non-degenerate realization is non-degenerate.

Theorem 4.1. If a realizable prime hypergraph H with
vertex set V has an induced subhypergraph H[V ′] with a
prime non-degenerate realization G′ then there is a set R
of at most two vertices of V −V ′ such that H[V ′+R] has
at most one realization extending G′ and furthermore
any such realization is prime.

For example, each graph in Figure 8 is a strongly
unique non-degenerate realization of its P4-structure,
so Theorem 1.1 implies that any prime graph with one
of these graphs as an induced subgraph is a strongly
unique realization of its P4-structure.

We actually provide an algorithmic proof of this
theorem which allows us to determine for any prime
non-degenerate subrealization G of a prime hypergraph
H whether there is realization of H extending G.
This algorithm relies on a reasonably straightforward
polynomial-time procedure which generates all exten-
sions of G to V (G) + v for any vertex v (the details of
which we omit), and a lemma which guarantees that for
any prime non-degenerate extendible subrealization of a
prime realizable hypergraph, there is always an extend-
ing vertex set of size one or two, such that the extension
is prime and unique.

The key to this lemma is Lemma 3.1 which tells us
that since there are no swappers, we can determine that
either the subrealization G is not extendible ((a) holds
for some x), or for some x there is a unique realization
of G+x ((b) holds), or for every vertex x, x is a clone or
an extremist. We can assume that this last case holds,
as otherwise we can perform a one vertex extension.
Furthermore, since G is not split every extremist sees all
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or none of V (G) in every extension. Thus, there must
exist some clone as otherwise V (G) is a homogeneous
set in every realization of H and hence an h-set of H, a
contradiction.

Now, suppose that x is a clone of some x′ and let
S(x′) be the set of clones of x′. If in every realization,
every vertex of H−S(x′) is adjacent to either all or none
of S(x′) then S(x′) is an h-set of H, a contradiction. So,
we can find a vertex v not in S(x′) and a vertex x∗ in
S′ such that in some realization of H, v is adjacent to
exactly one of x and x∗. It is straightforward to verify
that v and x∗ are the desired pair of vertices whose
addition yields a larger subhypergraph with a unique
prime realization which is an extension of G (we omit
further details).

5 The Degenerate Case

If we are trying to extend a prime subrealization G
which is degenerate but not split, then we can proceed
as above, provided that there are no swappers for G.
In fact, similar reasoning allows us to show that we can
always find a unique two vertex extension of a prime
non-split subrealization to a new prime subrealization
unless every vertex is a swapper.

Dealing with the case in which every vertex is a
swapper is complicated. It is particularily tricky when
G has both an SCS and CSC partition and hence,
possibly, swappers of both types. The following easy
observation simplifies our analysis of this case:

Observation 5.1. G has both an SCS and a CSC
partition if and only if for some vertex v, G− v is split.

By this observation, provided a degenerate G is
not obtained from a split graph by adding a vertex,
then we can assume (by passing to the complement)
that G admits an CSC partition but no SCS partition.
The techniques developed to treat this case include two
new decompositions and some ad-hoc arguments. We
present one of the decompositions in §7; In the next
section we motivate the decomposition and illustrate
the ad-hoc arguments by discussing the case when G is
a C6.

We consider only briefly the case when G−v is split
for some v. We remark that the authors [unpublished]
and independently Brandstädt and V.B. Le [3] have
obtained a polynomial time algorithm to determine
if G has a split representation. Our techniques for
dealing with nearly split G use techniques developed
to search for split representations. They also use the
fact that if we can find a small (namely constant
size) prime subhypergraph which permits no nearly-
split realizations (for example P4(C6)), then by trying

all of the finitely many possible realizations of this
hypergraph, we bypass the nearly split case.

6 Extending a C6 realization

In this section, we examine how to proceed if G is C6

and every vertex of H−G is a swapper. As we will point
out, we use many ideas which apply to extending any
non nearly-split subrealization G for which every vertex
of G−H is a swapper.

So, let G be a subrealization of some P4-structure H
which induces a C6 with edge set {01, 12, 23, 34, 45, 50}
and such that every vertex of H−G is a swapper. Since
the only CSC partitions of a C6 consist of two edges
and a stable set containing two antipodal vertices, it
follows that V (H) − V (G) can be partitioned into sets
S0, S1, S2 where for any realization of H and vertex x in
Si we have that N(x)∩G is either i, i+ 1 or i+ 3, i+ 4
(where addition is modulo 6).

Note that if x ∈ Si and y ∈ Sj then there are
at most 8 candidate choices for an extension of G to
a realization of the subhypergraph of H induced by
V (G) + x + y, for we need only specify whether xy
is an edge and then specify the choices of N(x) ∩ G,
and N(y) ∩ G. Furthermore, if i 6= j then none of
these candidates are degenerate as the reader may easily
verify. So, in this case, we can use the algorithm of §4 to
compute all the extensions of each of these candidates
to a realization of H and thereby determine if H has
any realization extending G. Thus, we can assume
without loss of generality that S0 and S1 are empty
(In the same way, for general non nearly-split G, our
analysis can often be simplified by noting that for many
choices of 2-vertex extensions we will obtain a non-
degenerate supergraph of G, for which we can easily
test extendability)

Now, for any realization F of H we let S′1(F ) be
the set of vertices of S1 = V (H)−V (G) adjacent to 1, 2
in F and let S∗1 (F ) be the subset of S1 adjacent to 4, 5.
We note that xy is an edge between S′1 and S∗1 precisely
if 1, x, y, 4 is an edge of H. More strongly, xy is an edge
between S′1(F ′) and S∗1 (F ′) for every realization F ′ of
H extending G precisely if 1, x, y, 4 is an edge of H.
Thus, we can determine the set of such cross edges in
polynomial time just by examining H.

If there are no such cross edges, then for each vertex
w of S′(F ), N(w) − S′1(F ) is exactly {1, 2}. So, S′1(F )
must contain only one vertex or it is a homogeneous set.
Similarily S∗1 (F ) consists of only one vertex. Thus H
has exactly two more vertices than G, and as discussed
above there are only 8 candidate extensions of G to a
realization of H, so we can test the extendability of G
easily. Thus, we can assume that there are some cross
edges (indeed for general non nearly-split G, if there
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are no cross edges then we can easily determine if G is
extendible to a realization of H as the existence of many
possible extensions implies that there is a homogeneous
set).

If xy is a cross-edge then there are exactly two
realizations of the hypergraph induced by V (G)∪{x, y}
extending G. In one of these N(x) = {1, 2, y} and
N(y) = {4, 5, x}. The other is obtained from this
labelled graph by swapping label 1 with 5 and label
2 with 4. In the same way, if U is a component of the
(bipartite) graph induced by the cross edges, then there
are either zero or two realizations of H extending G and
if there are two realizations then one is obtained from
the other by swapping label 1 with 5 and label 2 with 4.
Furthermore, we can find the two candidate extensions
of G to the subhypergraph induced by V (G) ∪ U in
polynomial time.

In the same vein, if the cross-edge graph has a fixed
number of components then there are a fixed number of
ways of extending G to a realization of the hypergraph
induced by V (G) together with all the endpoints of the
cross edges, and we can generate all these candidates in
polynomial time. As remarked earlier, the case in which
there are no cross edges is easier so we are not recursing
here but solving a bounded number of easier problems
which we already know can be resolved in polynomial
time.

Our only difficulty then, is when there are many
components in the cross edge graph. In this case, we
have to decompose our problem into subproblems. In
the next section, we consider the case in which every
component of the cross edge graph is a single edge, and
we know that the graph induced by the vertices in this
cross edge matching consists of a clique, a stable set,
and a matching between them which is precisely the set
of cross edges. This may seem like a very special case,
but is in fact one of only two that we have to treat when
considering the cross edges of any non nearly-split G.

7 A New Decomposition

A spiked clique is a graph which consists of a clique C
with k vertices c1, .., ck, a stable set S with k vertices
s1, ..., sk such that the edges between the clique and the
stable set are precisely the matching s1c1, ..., skck.

We remark that a spiked clique is P4-equal to any
graph obtained by swapping the labels on any edge of
the matching or on any set of edges of the matching.
As shown by Hougardy [21], a spiked clique of size at
least three is P4-equal exactly to these graphs and their
complements.

We call the P4-structure of a spiked clique homoge-
neous if the following properties hold:

(i) For each edge e of H intersecting C ∪ S in exactly
one vertex x, e− x+ y is an edge of H for all y in
C ∪ S.

(ii) For each edge e of H intersecting C ∪ S in exactly
two vertices, e ∩ (S ∪ C) is {si, ci} for some i, and
e− si− ci + sj + cj is an edge of H for every j with
1 ≤ j ≤ k.

(iii) For each edge e of H intersecting C ∪S in a set W
of exactly three vertices, W contains ci and si for
some i; furthermore, for any j and for every set T
of three vertices in S ∪ C containing both sj and
cj , e−W + T is an edge of H.

It turns out that if there is a homogeneous spiked
clique P4-structure with at least six vertices and with
partition C,S in H, then in any realization F of H, C is
a homogeneous set of F −S and S is a homogeneous set
of F −C. Furthermore, given any realization, swapping
the label of ci with that of si gives another realization.

These observation allow us to replace the P4-
structure of any homogeneous spiked clique of size at
least eight by a substructure corresponding to a spiked
clique of size six. Having solved this problem we simply
replace the original larger spiked clique in such a way
that S is homogenous in F − C and C is homogeneous
in F − S to obtain a realization of all of H.

8 Conclusions

We have described a polytime algorithm which rec-
ognizes P4-structure, answering an open question of
Chvátal. It follows that for any graph F with at most
four vertices, recognizing F -structure can be solved in
polytime. It would be interesting to know whether this
is also the case for all larger graphs, or whether there
is some graph F ∗ such that recognizing F ∗-structure is
NP-hard.
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[19] C. T. Hoàng, S. Hougardy, F. Maffray On the P4-
structure of perfect graphs V. Overlap graphs, J.
Combin. Theory B 67 (1996), 212–237.
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