
Wirelength Optimal Rectangle Packings

Julia Funke, Stefan Hougardy, Jan Schneider

Research Institute for Discrete Mathematics, University of Bonn
Lennéstr. 2, 53113 Bonn, Germany

Abstract. Finding wirelength optimal packings of rectangles is a well
known problem in VLSI design. We propose a branch and bound algo-
rithm for this problem that is based on the rectangle packing algorithm
of Moffitt and Pollack. It makes use of a very efficient implementation
of an incremental network simplex algorithm. Our algorithm allows for
the first time to find optimum solutions of three instances of the well
known MCNC block packing benchmark and optimally solves real-world
instances with up to 15 rectangles in 1 hour. The largest instance so far
for which an optimum solution has been computed contained 6 blocks.

1 Introduction

In this paper we consider the fixed-outline block packing problem of hard blocks
where the objective is to minimize the total wirelength. This problem is relevant
in nowadays industrial VLSI design [4] when hierarchical designs with fixed block
dimensions are considered.

Our algorithm optimally solves real-world instances with 15 rectangles within
1 hour. The largest instance we can solve optimally is a real-world example with
27 rectangles, 6 of which are fixed. The largest instance that has been solved
optimally so far had only 6 rectangles [7].

We will present for the first time wirelength optimum solutions to three well
known block packing instances published in 1990 by the Microelectronics Center
of North Carolina (MCNC) [5]. We are not only able to solve the fixed die
size problems, i.e. instances with fixed width and height, but also will present
optimum solutions for the much more difficult problem with variable die size
where it is allowed to change the size of the placement area.

Our optimum results show that many recent algorithms behave quite poorly
as they may return solutions with wirelengths more than a factor of 2 larger than
the optimum. A heuristic extension of our algorithm can be used to find (not
necessarily optimum) solutions for block packing instances with several hundred
blocks.

2 Wirelength Optimal Fixed-Outline Block Packings

We start with a formal description of the wirelength optimization problem in
fixed-outline block packing. We are given n blocks b1, . . . , bn of width wi and

This paper appeared in: Proceedings of the fourth International Workshop on Bin Packing and Placement Constraints (BPPC'12)

height hi for i = 1, . . . , n and a rectangle R of width W and height H . A block
packing assigns positions to the n blocks such that no two of them overlap and
all lie within the rectangle R. More formally, if the rectangle R has as its lower
left corner the point (0, 0) (which we may assume without loss of generality)
then we have to assign for i = 1, . . . , n a lower left corner (xi, yi) to block bi such
that the following conditions hold:

xi ≥ 0

xi + wi ≤ W

yi ≥ 0

yi + hi ≤ H

for 1 ≤ i ≤ n and

xi + wi ≤ xj

or xj + wj ≤ xi

or yi + hi ≤ yj

or yj + hj ≤ yi

for 1 ≤ i < j ≤ n

The first set of inequalities guarantees that b1, . . . , bn lie within the rectangle
R while the second set of inequalities makes sure that no two blocks overlap.

The blocks are connected by nets which connect a given subset of pins. Each
pin is assigned to some block or to the rectangle R. In the latter case the pin is
called IO-pad. The set of all pins is denoted by P . To each pin a point (x, y) is
assigned which defines the position of the pin relative to the lower left corner of
the block (or of the rectangle R) it is assigned to.

The set N of all nets is called the netlist. For a net N ∈ N its bounding

box wirelength is defined as one half of the perimeter of a smallest axis-parallel
rectangle that contains all pins of the netN . The bounding box wirelength is also
called half perimeter wire length (HPWL). Note that our problem formulation
assumes that all pin shapes are points. This assumption avoids ambiguities in
the definition of the wirelength.

Given a block packing its wirelength is defined as the sum of the bounding
box wire lengths of all nets contained in N . A wirelength optimal block packing

is a block packing that minimizes the wirelength. The problem of finding a
wirelength optimal block packing is well known to be NP-hard as it contains as
a special case the NP-complete problem to decide the existence of a packing.

In [7] an exact algorithm for finding a wirelength optimal block packing
has been suggested. It is a branch and bound approach with worst case runtime

larger than O(4(
n

2
)), where n is the number of blocks. The largest instance solved

optimally with this algorithm had 6 blocks.
Our algorithm optimally solves real-world instances with up to 15 blocks

within an hour. The largest real-world instance so far that was optimally solved
using this algorithm had 27 blocks of which 6 had been preplaced [3]. To make
this result possible one had to make use of the special structure of the instance.
Figure 3 shows a wirelength optimal placement of this instance.

3 Our Approach

Moffitt and Pollack suggested a very efficient rectangle packing algorithm [6].
Their algorithm has the advantage that its runtime is independent of the sizes
of the input rectangles which is important in case of the VLSI applications.

This paper appeared in: Proceedings of the fourth International Workshop on Bin Packing and Placement Constraints (BPPC'12)

The algorithm of Moffitt and Pollack can easily be modified so that it does
not only find one solution but enumerates all possibilities to pack the given
rectangles into the larger rectangle. To do so one simply has to omit the clique-
constraint and run the recursion until all possible relative rectangle orderings
have been considered. All other pruning techniques like semantic branching and
the removal of subsumed variables can still be used in our context.

The wirelength of such a relative rectangle ordering can easily be computed
using the following well-known LP-formulation [1]:

min
∑

N∈N

x+
N − x−

N + y+N − y−N

s.t. x−
N ≤ xb(p) + xoffset(p)

x+
N ≥ xb(p) + xoffset(p)

y−N ≤ yb(p) + yoffset(p)

y+N ≥ yb(p) + yoffset(p)

for N ∈ N and p ∈ N

xi ≥ 0

xi + wi ≤ W

yi ≥ 0

yi + hi ≤ H

for 1 ≤ i ≤ n

bi is {left|right|above|below} bj for 1 ≤ i < j ≤ n,

where x−
N , x+

N , y−N , y+N are variables modeling the bounding box of a net N ,
b(p) ∈ {R, 1, . . . , n} denotes the block to which pin p is assigned, and xoffset(p)
resp. yoffset(p) are the offsets of p relative to the lower left corner of b(p).

The dual of this LP is an uncapacitated minimum cost flow problem which
can be solved in O(n logn(m+ n logn)). However, the runtime of this approach
is much too high to solve instances with more than 8 blocks. A significant speed
up can be obtained by integrating the wirelength computation as a bounding
step into the rectangle packing algorithm. Whenever the rectangle packing al-
gorithm fixes a relation between two rectangles we solve the LP and can stop as
soon as the wirelength of this solution is larger than the currently best known
wirelength. This approach reduces the number of rectangle packings that have
to be considered dramatically.

The LP for computing the wirelength changes only slightly between two steps
of the rectangle packing algorithm. Therefore another significant speed up can
be obtained by using an incremental minimum cost flow algorithm. We use the
network simplex algorithm which requires exponential runtime in the worst case
but turns out to be very efficient for many practical applications.

4 Experimental Results

We applied our algorithm to the three smallest instances of the well known
MCNC block packing benchmark. This benchmark contains five block packing
instances. The details of these instances are given in Table 1

This paper appeared in: Proceedings of the fourth International Workshop on Bin Packing and Placement Constraints (BPPC'12)

instance number of die area block area whitespace

name blocks IO-pads pins nets

apte 9 73 214 97 10,500 × 10,500 46,561,628 57.77%

xerox 10 2 696 203 5,831 × 6,412 19,350,296 48.25%

hp 11 45 264 83 4,928 × 4,200 8,830,584 57.34%

ami33 33 42 480 123 2,058 × 1,463 1,156,449 61.59%

ami49 49 22 931 408 7,672 × 7,840 35,445,424 41.07%

Table 1. Characteristics of the MCNC benchmark instances. Areas are in µm
2.

instance original size wirelength runtime optimal size wirelength runtime

apte 10,500 × 10,500 513,061 13 s 6,372 × 7,608 404,510 2 s

xerox 5,831 × 6,412 370,993 48 s 3,808 × 6,139 370,930 2 s

hp 4,928 × 4,200 153,328 102 s 4,263 × 3,108 143,302 100 s

Table 2. Optimal wirelengths for apte, xerox, and hp for the original die size and
when rescaling of the die is allowed. Runtimes were measured on an Intel X5680 CPU
at 3.33GHz and refer to the instances with the given die sizes.

Figure 1 shows wirelength optimal packings of the three smallest instances
apte, xerox, and hp, optimal wirelengths and runtimes are given in Table 2. Note
that rotation or flipping of blocks is not allowed in these instances. Our results
show that in [8] a wirelength for xerox is reported that is more than twice as
large as the optimum wirelength. Many other, often erroneous, results for these
instances have been published before.

We also studied a variation of the MCNC instances where rescaling of the
die size is allowed. In this case one has to rescale the positions of the IO-pads
according to the resizing of the die area (see for example [2]). Let us assume that
the original die area has dimensions w× h and the new die area has dimensions
w′ × h′. Then an IO-pad with offset (x, y) to the lower left corner of the original
die area is rescaled to an IO-pad with offset (x′, y′) to the lower left corner of
the new die area, where

x′ = x ·
w′

w
and y′ = y ·

h′

h
. (1)

The result is rounded to the nearest integer.
Now a straightforward approach to compute the die size that allows a wire-

length optimum placement is to simply try all possible die sizes. As the width
and the height of the dies is several thousand this would result in several hun-
dred million instances that have to be solved. We therefore used an approach
that makes use of the following lemma:

Lemma 1. If l is the optimum wirelength achievable for the die size w × h for

an instance with k IO-pins then the optimal wirelength for the die size w′ × h′

with w′ ≤ w and h′ ≤ h is at least l + k(w − w′ + h− h′).

This paper appeared in: Proceedings of the fourth International Workshop on Bin Packing and Placement Constraints (BPPC'12)

cc_11 cc_12

cc_13

cc_14

cc_21

cc_22

cc_23

cc_24
clk

BLKB BLKD

BLKLL BLKLR

BLKP

BLKRC

BLKRS

BLKT

BLKUL BLKUR

clkc

clkd

cmp1
cmp2

cmp3

cntd

cntu

npd

nps

ppd

pps

apte xerox hp

Fig. 1. Wirelength optimal block packings of apte, xerox, and hp with placement area,
pin locations (green dots), and IO-pad locations (red dots) as defined in the original
yal files. Rotation or flipping of blocks is not allowed.

cc_11

cc_12

cc_13 cc_14

cc_21

cc_22

cc_23
cc_24

clk

BLKBBLKD

BLKLL BLKLR
BLKP

BLKRC

BLKRS

BLKT

BLKUL BLKUR

clkc

clkd

cmp1
cmp2

cmp3

cntd

cntu

npd

nps

ppd

pps

apte xerox hp

Fig. 2. Wirelength optimal block packings of apte, xerox, and hp when rescaling of
the die area is allowed. IO-pad locations (red dots) are defined as described above.
Rotation or flipping of blocks is not allowed.

The idea of this lemma is that if optimal wirelengths for a coarse grid of die
sizes are known, e.g. when width and height are multiples of 1000, only a few
cells of this grid are close enough to the best known netlength that they have
to be refined by evaluating more die sizes within that cell. Using a multi-level
approach based on this lemma it sufficed to compute the optimum wirelengths
for only a few thousand die sizes to obtain the global optimum for each of the
three instances. The optimum placements are shown in Figure 2, the die sizes
and wirelengths in Table 2.

The best wirelengths that have been reported for these three instances with
variable die sizes are due to Sham, Young, and Zhou (2008) [9]. They found
placements with a wirelength of 483,330 for apte, 466,038 for xerox, and 186,234
for hp. This is 19% to 30% above the optimum.

This paper appeared in: Proceedings of the fourth International Workshop on Bin Packing and Placement Constraints (BPPC'12)

Fig. 3. An optimal placement for an instance with
27 rectangles, 6 of which are fixed (dark gray). The
instance is a core macro of an actual VLSI instance
provided by our industry partners at IBM. It con-
tains 8837 pins and 3661 nets. To find an optimal
solution on this instance, we had to use additional
information on its structure by enumerating as-
signments of movable blocks to the five bins be-
tween the fixed parts.

5 Conclusion

We have presented wirelength optimal results for the three smallest instances of
the well known MCNC block packing benchmark. Such results have not been
known before. Our results show that recent block packing algorithms may pro-
duce packings with wirelengths more than twice as large as optimum solutions.
The two largest MCNC block packing instances contain 33 respectively 49 blocks.
Currently, computing wirelength optimal packings for these two instances is far
beyond the realms of possibility.

6 Acknowledgments

We thank the anonymous referees for their useful comments.

References

1. A. V. Cabot, R. L. Francis, and M. A. Stary. A network flow solution to a rectilinear
distance facility location problem. AIIE Transactions, 2(2):132–141, 1970.

2. S. Chen, Z. Xu, and T. Yoshimura. A generalized V-shaped multilevel method for
large scale floorplanning. In Quality of Electronic Design (ISQED 2009), 2009.

3. J. Funke, S. Hougardy, and J. Schneider. An exact algorithm for wirelength opti-
mal placements in VLSI design. Technical report, Research Institute for Discrete
Mathematics, 2011.

4. A. B. Kahng. Classical floorplanning harmful? In ISPD, pages 207–213, 2000.
5. K. Koźmiński. Benchmarks for layout synthesis — evolution and current status. In

28th ACM/IEEE Design Automation Conference, pages 265–270, 1991.
6. M. Moffitt and M. Pollack. Optimal rectangle packing: a meta-csp approach. 2006.
7. H. Onodera, Y. Taniguchi, and K. Tamaru. Branch-and-bound placement for build-

ing block layout. In DAC 1991, pages 433–439. ACM, 1991.
8. M. Samaranayake, H. Ji, and J. Ainscough. Development of a force directed module

placement tool. In PRIME 2009, pages 152–155, 2009.
9. C.-W. Sham, E. F. Y. Young, and H. Zhou. Optimizing wirelength and routability

by searching alternative packings in floorplanning. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 13(1), 2008. Article 21.

This paper appeared in: Proceedings of the fourth International Workshop on Bin Packing and Placement Constraints (BPPC'12)

