This paper appeared in: Proceedings of the 18th Asia and South Pacific Design Automation Conference (ASPDAC) 2013, 453-460

BonnCell: Automatic Layout of Leaf Cells

Stefan Hougardy, Tim Nieberg, Jan Schneider

Research Institute for Discrete Mathematics

University of Bonn
Lennéstr. 2, 53113 Bonn
Email: {hougardy, nieberg, schneid} @or.uni-bonn.de

Abstract— In this paper we present BonnCell, our solution to

compute leaf cell layouts in VLSI design. Our placement algo-
rithm allows to find very compact solutions and uses an accurate
target function to guarantee routability. The routing algorithm
handles all nets simultaneously using a constraint generation MIP
based approach. Finally, yield and electromigration properties
are improved in a post-processing phase. Our approach consid-
ers design rules already during placement and routing, is able to
treat gridless technologies, and easily adapts to new design rules
and future technologies as for example double patterning in 14nm
and beyond.
The experimental results on current 22nm designs of our industry
partner show significant improvements both in terms of design
quality and turnaround time compared to manual designs done
by experienced designers.

1. INTRODUCTION

In a hierarchical design of a complex chip the leaf cells are
the functional units at the lowest level of the hierarchy. A leaf
cell (which is also called cell or circuit) realizes simple logical
functionality and is built from a small number of transistors,
usually not more than 30.

Most of the leaf cells used for the design of a chip are taken
from a leaf cell library that is created in advance. However, at
several points in the design process of a chip it may turn out
that highly optimized special purpose cells are needed which
are not contained in the library. In these cases a new leaf cell
has to be created or an existing leaf cell has to be redesigned.

So far an experienced designer is able to craft leaf cell lay-
outs of higher quality than automatically generated layouts.
However, with each new technology the need for high quality
automatic leaf cell layout generators increases. This is due to
the fact that design rules (DRC) become more and more com-
plex and the number of different leaf cells used in modern de-
signs is growing steadily. Moreover, the manual layout of a
complex leaf cell can take several days, making this process a
severe bottleneck in turn around time.

In this paper, we present our solution BonnCell for the au-
tomatic generation of leaf cell layouts, both for placement and
routing. Our tool provides solutions that are optimal in terms of
area consumption and reduces the need for manual interaction
significantly in practice. While many existing leaf cell layout
tools require gridded technology, our tool also allows to han-
dle non-gridded instances. Moreover, we consider many com-

plex design rules as for example line end spacing and specific
via requirements already during the placement and the routing
phases. This is a crucial requirement for the current 22nm tech-
nology and beyond as design rule cleanness can no longer be
achieved by simple local postprocessing operations.

A leaf cell consists of several field effect transistors (FETs).
Each FET connects three nets—source, drain, and gate—which
are on top of the diffusion area. Figure 1 shows a FET in cross
section. A FET can have more than one gate, and we refer to
the number of gates as the number of fingers of the transistor.

The leaf cell layout problem can be described as follows.
As input an image of the cell is given, i.e. an area with prede-
fined vertical power tracks, where a given set of FETs has to be
placed. The electrical connectivity of the FETs is described in
a netlist. The task is to decide how many fingers a FET should
use and to assign to each FET a location within the image sub-
ject to the design rules of a given technology. Here, the height
of the image is the most important optimization criterion as this
determines the area of the cell on the chip. Given a placement
of the FETs, the goal is then to find an embedding of rectilin-
ear Steiner trees which realizes the given netlist. This has to be
done meeting the DRC constraints, as well. As overall goal in
routing, we minimize the weighted netlength, especially mak-
ing the topmost available layer M2 more expensive in line with
the designers needs.

A crucial point to obtain high quality leaf cell layouts is that
the placement algorithm has a very good estimate how much
free area is needed in the routing step. If the placement is
too pessimistic this will result in a waste of space. We have
designed a target function for the placement step that very ac-
curately estimates the quality of a placement with respect to

M2 M2 M2
V1 V1 V1

-&-

CA CA

Fig. 1. Cross section of a field effect transistor (FET) and leaf cell: the
diffusion area is denoted by RX, PC gives the layer of the gates, CA (together
with wires on M1) form the source and drain contacts, and M1/M2 are the
metal layers of the leaf cell. CA and V1 denote via layers.

This paper appeared in: Proceedings of the 18th Asia and South Pacific Design Automation Conference (ASPDAC) 2013, 453-460

(a) Placement

(b) Routing

(c) Post-processing

Fig. 2. Example of BonnCell outputs. The orange areas to the left and right represent the power structures of a circuit column, the green rectangles represent
external connections of the cell. Metal on PC is depicted in blue, M1 wires are gray. (Note that the leaf cells of our industry partner are rotated by 90 degree

compared to the leaf cells of most other manufactures.)

later routablity (see Section A). Our placements turned out to
be routable in more than 95% of all considered instances. In
many cases we can even prove that our placement solution is
optimal with respect to our target function.

A drawback of our very compact placements is that routing
becomes much more difficult. Thus a standard sequential rip
up and reroute approach turned out to fail for most of our in-
stances. Instead we use an approach that allows to route all nets
simultaneously and consider many design rules already while
building up the nets. The latter is required because only few
design rule violations can be fixed afterwards due to the lim-
ited routing space in our compact placements.

In the remainder of this paper, we present and discuss our
approaches to place and route a leaf cell (see also Figure 2).
In Section II, we discuss the placement algorithm, followed by
the routing solution in Section III and postprocessing in Sec-
tion IV. Section V reports the results of our implementation
with current leaf cell designs at the 22nm technology node from
our industrial partners at IBM.

A. Related Work

Most previous work on leaf cell layout focuses on restricted
versions of the placement problem only (e.g. [1, 2, 3, 4, 5, 6]),
and the goal considered is area minimization. There are only
few works applying existing routing strategies to a placed leaf
cell given in [7, 8, 9].

In [2], a MIP based placement engine is presented and the
FETs are placed such that their gates can be connected by direct
wires. Focusing on diffusion region sharing, [1] presents an
algorithm to stack transistors. The choice of folding fingers is
not considered explicitly, but left as input to be done by the
designer prior to the given algorithm. An enumeration with
integrated partitioning of the cell is used for placement in [3],
and [7, 5] apply several heuristics to enumerate Eulerian paths
that connect nearby gates and contacts.

After an exhaustive search based placement, the routing part
in [9] uses a greedy channel routing algorithm to connect gates.
If the routing step fails, additional space is added at the ends
of the cell. The authors also state that the results from this
approach in terms of quality is unacceptable and introduce sev-
eral pre- and post-processing steps to control the quality of their
routing better.

Poirier [8] uses a sequential shortest path approach to route
a placed leaf cell, combined with cost-based ripup and reroute.

In case the routing step does not succeed, empty space is added
to the cell to mitigate congestion and also different orders of
the nets are tried.

In [10] the routing problem is formulated as a SAT problem
by considering a set of possible connections for each pair of
terminals of a net. Pairs being in conflict or redundant pairs
are pruned to reduce the size of the SAT instance which is then
solved using a standard SAT solver.

Note that all of these works consider so-called gridded tech-
nologies. Especially with respect to DRC constraints for wiring
on a leaf cell, using a coarse wiring grid requires (almost) no
consideration of these rules. In newer technologies, wires may
be placed arbitrarily and the number and complexity of DRC
constraints has increased. Moreover, they now have to be taken
into account both during placement and routing, making the
problems significantly more complicated to solve in practice.

II. PLACEMENT

The input of the leaf cell placement problem is a set F
of FETs, a set A/ of nets and a large number of technology-
specific constraints. A FET is characterized by a tuple
(w,I,ng,ns,nq,v,6), where w € N is the total width of the
FET (which is roughly proportional to the amount of current
that can flow through the device), I = [fmin, fmax] is the inter-
val of allowed finger widths, {ng, ns, ng} C N denote the nets
attached to the ground, source, and drain contacts, v € V is a
VT level and 6 € {N, P} is the type.

FETs can be realized in several different ways, so solving
the placement problem does not only include the assignment
of locations to each transistor. The total width w of a FET
F can be distributed to an arbitrary number of fingers. Using
only 1 finger, the physical width of the FET’s underlying RX
area will be equal to its total width while spending 3 fingers
results in a FET that uses two more tracks in the vertical direc-
tion but requires only a third of the width. In general, if F' is
realized with ¢ fingers it uses ¢ + 1 tracks and requires a fin-
ger width of % The only restriction on the number of fingers
is that fin, < % < fmax must hold. A FET with several fin-
gers connects source and drain alternately between the fingers.
The placement algorithm is also allowed to swap FETs. In this
case, the source and drain contacts of F' exchange their places.
Figure 3 shows the same FET realized in different ways.

The output of the placement algorithm consists of locations

This paper appeared in: Proceedings of the 18th Asia and South Pacific Design Automation Conference (ASPDAC) 2013, 453-460

(z,y) : F — R?, finger numbers ¢ : F — Ny and swaps
s : F — {yes,no}. This information is then passed on to the
routing algorithm (see Section III).

Although the 22nm design rules give much freedom in the
placement of FETs, a large fraction of the real-world layouts
employ a specific structure. In these cells the transistors are ar-
ranged in two stacks in the space between two power rails. The
one stack is built from the cell’s N-FET's and is connected to the
first power rail, while the other stack contains the P-FETs and
is connected to the other power rail. While BonnCell makes no
assumption on the number and location of the power rails, it is
designed to generate 2-stack cells having this commonly used
structure.

While many design rules become irrelevant when restricting
BonnCell to 2-stack placements, there are still some important
constraints the placement tool has to obey. The most important
ones are:

o A function d specifies the minimum size of gaps between
FETs in the following way: If F, is the upper neigh-
bor of I} on one of the stacks, then there must be at
least d := d(F1, ¢(F1), s(F1), Fa, ¢(Fs), s(F»)) unused
tracks between them. If d = 0, then the FETs can abut
and if d = —1, then the topmost contact of F} may over-
lap the bottommost contact of F5. In the latter case the
diffusion regions overlap as well and the contact is used
simultaneously by both FETs.

e The horizontal distance between the two stacks must be
large enough to guarantee the local routability. This dis-
tance is not a constant but depends on the nets which ac-
cess the FETs on a given coordinate and might vary from
track to track.

e While the main algorithm of BonnCell computes the track
number for each FET (i.e. the y-coordinate), the horizon-
tal placement cannot be ignored altogether. Specific se-
quences of finger widths on subsequent tracks are forbid-
den, as they would result in a placement for which no fea-
sible x-coordinates exist.

A. Target Function

BonnCell aims to find placements which are small but as
“routable” as possible. To do so, we use an efficiently com-
putable model to measure the routability of a placement P =
(z,y, ¢, s) involving the following three values:

e Let h(P) be the height of the placement, i.e. the number
of non-empty tracks.

e The gate-gate netlength is defined as ggnl(P) :=
> nen genl(n), where ggnl(n) is the height of the bound-
ing box of all gate contacts in n.

e The weighted netlength is defined as wnl(P) :=
> nen Wn -nl(n), where nl(n) is the height of the bound-
ing box of all contacts in n (gate, source, and drain) and
w,, are user-defined net weights.

We can now define a partial ordering <p on all
placements as the lexicographic ordering of the triple

Fig. 3. The same FET realized with 1 and 2 fingers

(h(-), ggnl(-),wnl(:)). A very similar target function was al-
ready used in [6].

This method to evaluate the quality of placements turns out
to be a very good indicator for the routability of real-world
22nm cells. The first-order criterion is the cell height because
this is what the user usually tries to minimize and that deter-
mines the footprint of the cell on the chip area. The second-
order criterion, the gate-gate netlength, comes from the fact
that the layer on which gates are accessed has a very high re-
sistance and connections on this layer should be as short as
possible. Additionally, on this scale, netlength in general is a
good measure of the routability and our experiments show that
a cell which is optimal within this quality measure is legally
routable in almost all cases (see Section V).

B. Placement Algorithm

BonnCell’s placement algorithm, as outlined in Algorithm 1,
implements a recursive enumeration of all possible placements
that backtracks as soon as the current (partial) solution cannot
be part of a placement that is better than the best placement
that was found so far. This branch & bound method runs in
two phases: The first one is faster but finds only solutions with
a specific structure. The second one is not restricted but is more
likely to fail on complex instances. If that happens, BonnCell
returns the result from phase 1.

In the first phase, BonnCell introduces a vertical line that
separates both FET stacks. It then requires that every FET is
placed completely on one side of this line. From the possible
x-coordinates it chooses the one that leads to two stacks which
are as balanced as possible. It then computes height-optimal
placements for both sides independently in order to find the
number of tracks used by an optimal solution, say hop. This
is done using a single-stack subroutine which is explained in
Section C.

After hop is known, BonnCell starts to look for an optimal
placement in terms of the previously defined target function.
We use the single-stack placer to enumerate all legal arrange-
ments of the N-FET stack with height hg, and for each of these
placements we use a modified version of the single-stack placer
to find the best placement of the second stack. The secondary
and ternary optimization targets are used in this modified placer
to prune branches of the search tree: Both single-stack placers
maintain intervals for each net that represent the already placed
contacts of the nets. The size of these intervals form lower
bounds for the final net length. BonnCell can bound when their
sum exceeds the best known netlength. We also incorporate the
still unplaced contacts of nets in this computation, as each un-
placed contact induces, under certain circumstances, a further
increase of the length of that net.

This paper appeared in: Proceedings of the 18th Asia and South Pacific Design Automation Conference (ASPDAC) 2013, 453-460

Algorithm 1 TWOSTACKPLACEMENT
1: Phase 1: Determine vertical line separating N and P stack
2: Compute minimum heights h x, hp of restricted stacks
3: for every placement of stack N with height max {hy, hp}
do
4: Enumerate all possible placements of P stack with
height max {hy,hp} and save the best 2-stack place-
ment
5: end for
6: Phase 2: Remove vertical line and FET width restrictions
7: tp < type of the bigger stack, h; <— min. height of ¢,
8
9

: ts < type of the smaller stack
: for h = hy,hpy+1,...do
10: for every placement of stack ¢, with height < h do
11: Enumerate all possible placements of ¢5 which are not
higher than ¢; and save the best 2-stack placement
12: end for
13: Exit loop if legal placement of height / exists or timeout
14: end for
15: Return best placement

The outcome of phase 1 is an optimal placement with the
restriction imposed by the vertical line. Phase 2 drops this re-
striction and finds a global optimum. The main problem here
is that we do not know in advance how many tracks a small-
est legal placement of the cell needs because both stacks com-
pete for the same placement space. A very compact first stack
which uses a minimum number of tracks will most likely not
leave enough free area for the second stack to be placed. Since
the minimum height of the larger stack is a lower bound for the
height of the finished cell, this height is used for the first try. If
this does not suffice, the cell height is increased by 1 track and
BonnCell repeats the process until a placement is found.

The complexity of phase 2 is much higher because the flex-
ibility in the number of fingers each FET may have is signifi-
cantly higher. However, there are also new ways to bound:

e When placing the second stack, we bound if two FETs
overlap or if the space between horizontally neighboring
FETs does not suffice for local routability.

e Each time the first stack is fully placed, BonnCell analyzes
the free space per track and compares it to the FETs that
need to be placed in the second stack. In many cases this
is enough to see that the FETSs in the smaller stack do not
fit in the remaining placement space.

C. Placing a Single Stack

An important subroutine of the BonnCell placement method
is ENUMERATESTACK. Its input is a set F of unplaced FETs,
usually of the same type (N or P), and its output is a list of all
possible 1-stack placements of minimum height.

The outer loop of the method (Algorithm 2) distributes fin-
gers to the FETs. In a first step, it uses for all FETs their respec-
tive minimum number of fingers, then all possibilities to add 1
finger to the set of FETs are enumerated, then 2 fingers and so
on. We can exit the loop as soon as the total number of fingers

Algorithm 2 ENUMERATESTACK(F)

1: fork =0,..., Kmax do

2: for all possibilities to add & fingers to F do

3: Compute upper bound hyy, for final stack height
4 SINGLESTACKRECURSION((), F)

5: end for

6: end for

exceeds the number of tracks used by the best solution that was
found so far. Before we run the inner loop, we compute an
upper bound Ay, for the minimum height of a placement using
FETs of the current finger numbers. To do so, a very fast and
resonably good heuristic approach is applied.

The inner loop (Algorithm 3) recursively generates the stack
from bottom to top. Given a partial solution, it takes every yet
unplaced FET and places it at the smallest legal y-coordinate on
top of the partial solution — once unswapped and once swapped.
In each step, a lower bound for the best height of a complete
stack which extends the current partial placement is computed
as follows:

hyp = h(}—p) + EFG]:u ¢(F) + maX{O, Nodd — 1}7

Here F,, and F, denote the set of placed respective unplaced
FETs, h(F,) is the height of the stack formed by F,,, and 1444
is the number of nets that connect a bottommost or topmost
contact of a FET in F,, for an odd number of times.

The second summand reflects the fact that every unplaced
finger enlarges the current placement by at least one track. The
third summand exploits the fact that FETs can only overlap
(i.e. d = —1) if the topmost contact of the bottom FET con-
nects the same net as the bottommost contact of the upper FET,
otherwise d > 0 must hold. Consequently, if a net occurs an
odd number of times as bottommost or topmost contact of an
unplaced FET, this net will account for at least one additional
track in the finished placement. For this consideration it is irrel-
evant if unplaced FETs will be placed swapped or unswapped,
as swapping a FET changes the number a net occurs in this sum
by an even number One has to subtract 1 because one such net
can be compensated by placing it at the top of the stack.

If hyp is larger than the best solution the algorithm has found
up to that point, or the upper bound which was determined
to initialize the inner loop, we do not have to investigate this
branch further. In the end, the algorithm reports a placement of
minimal height.

If only a single height-minimal placement is required, as e.g.
in line 2 of Algorithm 1, a faster version of ENUMERATES-
TACK is used that branches only when Ay, < min {Apes, fup
and the partial solution has a specific block structure.

D. Additional Features

The behavior of the 2-stack placer can be manipulated with
several parameters. A layout of minimum height can be hard to
route, so the additional tracks feature allows the user to specify
a number of tracks that can be used “for free” thereby increas-
ing the routability.

Larger leaf cells are typically not forced between two power
rails but are allowed to occupy several neighboring circuit

This paper appeared in: Proceedings of the 18th Asia and South Pacific Design Automation Conference (ASPDAC) 2013, 453-460

Algorithm 3 SINGLESTACKRECURSION(F,, F,)

1. if F,, # () then

2. forall F € F, do

3: Place F' on the bottommost possible track

4: Compute lower bound Ay, for final stack height
5: if hlb < min {hbesta hlb} then

6: SINGLESTACKRECURSION(F, U{F'}, F,\ {F})
7 end if

8: Unplace F

9: Swap F' and repeat the previous steps
10: end for
11: else

12: Save placement, hpey <— height of current placement
13: end if

rows. Such “multi-bit cells” can also be placed with Bonn-
Cell, although we do not guarantee any kind of optimality in
this case. To place a cell with 2k stacks, we first compute as-
signments of FETs to the stacks, evaluate these assignments
and solve the most promising assignments with k copies of a
variant of TWOSTACKPLACEMENT.

III. ROUTING

In order to solve the routing problem on a placed leaf cell,
we use a mixed integer programming (MIP) approach. The
formulation is based on a model for packing Steiner trees in
graphs and is extended to produce a problem specific formula-
tion. Note that we do not create a (huge) model and leave the
rest to a commercial MIP solver, but have a more sophisticated
approach (Section C).

Next to the input already given for the placement problem
(Section II), the leaf cell routing problem expects the locations
of each FET from the placement. Furthermore, external con-
nections may be present for a net, together with a desired loca-
tion for this external input and output.

A. Mixed Integer Programming Formulation

The leaf cell area for routing is represented by a three-
dimensional grid structure, where the pitch on a layer is pre-
determined by the coordinates of the gates and the free area
between the two stacks is divided according to fractions of the
minimum wiring pitch. Note that we are working in so-called
gridless technologies, where wires need not be placed in a regu-
lar grid where the distance between parallel lines is equal to the
minimum wire width plus the minimum spacing. With respect
to these notions, we use a half-grid on each plane.

The resulting grid defines the grid graph G = (V, E') with
vertices at the crossing of lines and edges between two vertices
connected horizontally or vertically. Two vertices on different
planes are connected if a via can connect these, creating a 3-D
structure. On this graph, we are seeking a Steiner tree packing
with a tree connecting the gates, contacts, and external pins of
each net subject to additional constraints.

The placed FETs are then converted to terminals in the grid
graph G. The contacts and external pins of a net become termi-
nals of Steiner trees: Vertices representing gates (on PC) are di-

rectly given by the placement and vertices representing source
and drain contacts follow certain rules with respect to the num-
ber of vias needed to connect RX to M1. Considering the RX
area, there is some freedom in one direction on where to place a
corresponding number of vias, and thus where to place a metal
rectangle which then represents the terminal. In the following,
we use the word terminal for all these contacts.

A decision variable xfj is introduced for each net k € N
possibly using an edge {ij} € F of the graph G. Terminals
of each net are combined to give terminals of a Steiner tree
T}.. For ease of notation, we combine the usage of each edge
also to a single variable x;;. With these decision variables, we
can formulate a core MIP for the Steiner tree packing prob-
lem in this graph based on a 2-D formulation in [11] as follows:

min Z CijTij
{ij}eE .,
s.t. zij— Y af, =0 V{ijleE
k=1
rij < 1V {Zj} ek
afy, 21 YW CV,WNT, #0
{ij}EBlieW,j¢gW (VAW)NTy # 0,Vk
zf; €{0,1} V{ij} € E,Vk

Here, the first set of constraints links the usage of an edge
{ij} € Ebyanetk € N to the general variable z;;, and the
second set of constraints ensures that at most one net actually
uses the respective edge. The third set of constraints ensures
connectivity of each Steiner tree Ty, k € N, by introducing
Steiner cut constraints. A Steiner cut is given by the edges of
a partition W C V of the vertices such that both sets W and
V' \ W contain at least one terminal.

Instead of using such an exponential number of Steiner cut
constraints to ensure connectivity, we extend the formulation
for some nets by an alternative set of constraints based on net-
work flow formulations as follows. Looking only at a single
Steiner tree T}, k € N, there are several MIP formulations to
solve the Steiner tree problem [12]. For such a net, we combine
our Steiner tree packing formulation with these single Steiner
tree formulations.

A classical formulation is given in [13] that identifies one
terminal as a source and the remaining ones as sinks. Then, for
each source-sink-pair, a desired flow of one unit is sent from
the source to the sink given by the flow variables f!. This is
done maintaining flow conservation amidst intermediate ver-
tices of the now directed graph G = (V, A). Figure 4 gives
this formulation together with the additional constraints link-
ing the flow ffj to our edge based decision variables xfj at
each edge {ij} € E, where we combine the two directed arcs
of the directed formulation. This formulation, for each termi-
nal, introduces only a constant number of constraints per edge
and vertex of the grid graph.

In this basic formulation, no additional constraints, espe-
cially with respect to distances between wires resulting from
the Steiner tree, are taken into consideration. Furthermore,
two nets may actually share the same vertex, but not the same
edge. Ensuring correctness in this sense, and also for the addi-
tional DRC constraints, further constraints presented next are
enforced.

This paper appeared in: Proceedings of the 18th Asia and South Pacific Design Automation Conference (ASPDAC) 2013, 453-460

1 fori=r
—1 fori=t
0 else
VieV,Vte T\ {r}

ok V{ij} e ENVt e Ty \ {r}

<
1] — 1]
> 0 VeeAVteTi\{r}

FHOT (@) = f1(67 () =

t

Fig. 4. Flow-based formulation for single Steiner tree k € N',r € T}, [13].

B. Mapping DRC Constraints

For the wiring within a leaf cell, the design rules fall into
two basic categories: diff-net rules require a certain minimum
distance between wires that belong to different nets, and same-
net rules are in place to avoid geometric configurations with
features below the lithographic capabilities and resolution, and
to reserve space for optical proximity correction (OPC). While
diff-net rules are most important, same-net rules have become
more and more important with each new technology. Espe-
cially in routing, it is particularly important to obey all these
rules within the algorithm because of the limited space avail-
able for fixing errors that require additional space by post-
processing.

The given placement already induces forbidden edges in the
grid graph which are immediately mapped to the respective
variables. The basic distance rules are mapped as follows. Sup-
pose that if an edge e € F is taken by the wiring of net k € N,
then a neighboring edge ¢’ € F cannot be used by another net.
The inequality

e+ Lienpry Tor <1

prohibits this situation. All basic diff-net distance rules can be
modeled this way, including via distances and the interlayer via
rules that prescribe minimum distances between vias in adja-
cent via layers. We also add some of these distance constraints
for segments of the same net, as there are also same-net rules
for spacing between non-adjacent segments of the same net.

Increased spacing may be required in specific situations, for
example at a so-called line-end which is a polygonal edge be-
tween two convex corners of a metal polygon closer than some
threshold to one another. In our application, such line-ends
prominently occur at the end of a wire when we leave the re-
spective plane with a via or at terminals (see Figure 5).

Looking at a vertex, let z., z,, Z,, Zs denote the usage of
the respective four planar edges leaving it for some net k. If
the edge leaving the vertex to the west is solely used (z,, = 1),
e.g. by having a via at the vertex, a line-end would occur and
some additional spacing is required. Let ¢’ denote an edge that
no longer can be used, then

Ty — (Tn + Te +x5) + 28, <1

models this situation for each net i € N. It is easy to check
that the constraint is non-binding if more than one or none of
the edges z., x,,, Xy, zs are used. If x,, = 1 and z,, = 2, =
zs = 0, then xi, = 1 results in a violated constraint for any net

ieN.

Every connected metalized polygon on a layer must have a
certain minimum area, independent of its actual shape. Since
each such polygon starts and ends in either a terminal or a via,
we can force enough segments to be metalized in the area round
these structures.

C. Constraint Generation Algorithm

The flow of the routing part is given in Algorithm 4. Due
to the large number of constraints, we do not construct a MIP
with all constraints from the beginning, but use a constraint
generation technique that works as follows.

Generally speaking, the idea here is to start the algorithm
by constructing a MIP that only contains a subset of the con-
straints. This reduced MIP is set up with constraints to intro-
duce the terminals and constraints that block edges violating
distances to existing shapes, e.g. power rails and RX areas. It
also includes basic distance constraints such that along parallel
edges the required distances are kept. We thus specifically al-
low nets to cross at a vertex, but not to overlap along any edge.

Once this reduced MIP is solved, all constraints are checked
for feasibility, including connectivity and DRC. If there are
specific constraints violated, these are added to the MIP, and
we resolve based on the current solution again. Note that in
this context the connectivity check does not involve verifying
all exponentially many Steiner cut constraints, but a simple
DEFS algorithm suffices. Moreover, the result of such a reach-
ability algorithm immediately gives violated Steiner cut con-
straints that can be added. Net connectivity can be achieved
by either these additional Steiner cuts, or by the introduction
of flow formulations for the net. In case the net is almost con-
nected, i.e. there is only a short distance to close it, we add
respective Steiner cuts to close the connection. Otherwise, a
flow formulation is added.

D. A Sweep Line Based Improvement

Especially in large leaf cells, taking all nets into considera-
tion at the same time