
On Packing Squares into a Rectangle

Stefan Hougardy

Research Institute for Discrete Mathematics

University of Bonn

Lennéstr. 2

53113 Bonn, Germany

hougardy@or.uni-bonn.de

February 15, 2011

Abstract. We prove that every set of squares with total area 1 can
be packed into a rectangle of area at most 2867/2048 = 1.399. . . .
This improves on the previous best bound of 1.53. Also, our proof
yields a linear time algorithm for finding such a packing.

1 Introduction

In 1966 Moser [15, 16] posed the following problem:

What is the smallest number A such that every set of squares of
total area 1 can be accommodated in some rectangle of area A?

Here, “accommodated” means that the rectangle and squares must be axis-
parallel and no two squares intersect in their interiors. See Figure 1 for an
example.

Moon and Moser [14] proved that 1.2 ≤ A ≤ 2. Kleitman and Krieger [7]
improved this, showing that A ≤

√
3 < 1.733 and then later that A ≤ 4/

√
6 <

1.633 [8]. The previously best bounds are due to Novotný, who showed that
A ≥ (2+

√
3)/3 > 1.244 [17] — which is easily seen by considering a square with

area 1/2 and three squares each with area 1/6 — and later that A < 1.53 [18].
In this paper we improve on these results by showing that A ≤ 2867/2048 =
1.39990

Theorem 1
Any set of squares with total area 1 can be packed into a rectangle of area
2867/2048.

Table 1 summarizes the progress on upper bounds for Moser’s problem. For
more background, see the paper by Moser [16], and the book by Croft, Falconer,
and Guy [3] or Brass, Moser, and Pach [2].

1

This paper appeared in: Computational Geometry 44 (2011), 456-463

Figure 1: A packing of 12 squares into a rectangle.

authors year upper bound
Moon, Moser [14] 1967 2
Kleitman, Krieger [7] 1970 1.733
Kleitman, Krieger [8] 1975 1.633
Novotný [18] 1996 1.53
Hougardy (this paper) 2010 1.4

Table 1: Progress on the upper bound for the smallest area of a rectangle into
which one can pack every set of squares with total area 1.

2 Outline of our Proof

In this paper we consider the rectangle packing problem. The input is a rectangle
R with width W and height H , and a list of n rectangles r1, r2, . . . , ri each with
a given width wi and height hi. The question is whether the n rectangles can
be packed into R so that no two rectangles intersect in their interiors. We do
not allow rotations of the rectangles, i.e., all edges corresponding to the widths
of the rectangles have to be parallel.

Our main idea is to reduce the proof of Theorem 1 to a finite number of rect-
angle packing problems. Kleitman and Krieger [7, 8] and also Novotný [18] take
a similar approach. However, to simplify their proof they introduce dependen-
cies among the sides of the input rectangles. We do not use such dependencies.
This increases tremendously the number of cases we must consider, but also al-
lows us to generate the cases — and thus a proof of Theorem 1 — by computer.

As we shall explain, it is challenging to write a computer program that strikes
a good balance between the number of cases (several million to prove A < 1.4)
and the running time (several weeks on a single processor).

Our program has over three thousand lines of code. At its core is an algo-

2

This paper appeared in: Computational Geometry 44 (2011), 456-463

rithm that solves the rectangle packing problem efficiently for instances of at
most 14 rectangles.

We will not describe our program that generates the complete case distinc-
tion for the proof of Theorem 1 in full detail. Instead we provide a rough
explanation of it that will suffice to understand the structure of the proof it
generates. In the second part we describe a simple automated method that
checks the generated proof. Thus to verify the correctness of Theorem 1 it suf-
fices to check that our verification method — described in Section 6 — is correct
and that the accompanying C++ program [5] is in turn a valid implementation
of this method. Running the verification program on our proof of Theorem 1
takes only a few seconds [5].

The rest of the paper is organized as follows. In Section 3 we describe
the main result we used in reducing a proof of Theorem 1 to a finite number of
rectangle packing problems. In Section 4 we explain how this reduction works in
theory and what ideas are needed to make it work also in practice. In Section 5
we outline our algorithm for generating the complete case distinction based on
the reduction described in Section 4. As mentioned earlier, this is only a rough
description, but sufficient to understand the structure of the proof. The most
important part will be the description of the verification process that we present
in Section 6. In Section 7 we derive some algorithmic consequences from our
proof of Theorem 1. In Section 8 we describe the computational effort to obtain
our proof. We end our paper with Section 9 where we discuss some potential
improvements of our approach.

3 The result of Meir and Moser

Kleitman and Krieger [8] proved that every set of squares with total area 1 can
be packed into a rectangle of area at most 4/

√
6 < 1.633. More precisely they

proved the following stronger statement.

Theorem 2 (Kleitman, Krieger 1975)
Any set of squares with total area V can be packed into a rectangle of size√

2 · V ×
√

4 · V/3.

As the authors state [8, p. 163], their proof is “rather lengthy and technical.”
Moreover, they present not the whole proof but only “a general discussion of
the methods used and an outline of the major cases”. As Novotný [18] needs
the result of Kleitman and Krieger for his proof that A < 1.53 this makes the
situation a bit unsatisfying.

In order to allow for the complete and independent verification of our proof,
we chose to use neither Kleitman and Krieger’s nor Novotný’s result, even
though our proof could be slightly simpler if we did (see Section 8 for more
comments on this).

The only previous result that we use is the following special case of a theorem
of Meir and Moser [12]:

3

This paper appeared in: Computational Geometry 44 (2011), 456-463

Theorem 3 (Meir, Moser 1968)
Any set of squares of sides x1 ≥ x2 ≥ . . . with total area V can be packed into
any rectangle of size a1×a2 if aj > x1, j = 1, 2 and x2

1 +(a1−x1)(a2−x1) ≥ V .

We use this result as follows. Suppose we want to prove that every set of
squares of sides x1 ≥ x2 ≥ . . . with total area 1 can be packed into a rectangle
of area α.

We fix the sides x1 ≥ x2 . . . ≥ xk+1 for the first k + 1 squares. Then we
use Theorem 3 to obtain a family of rectangles r1, r2, . . . such that the squares
with sides xk+1, xk+2, . . . and total area 1 − ∑k

i=1 x2
i can be packed into each

rj . We now try to find a rectangle R of area at most α into which the squares
with sides x1, x2, . . . , xk and some rj can be packed. If we succeed then we have
shown that every set of squares in which the largest k + 1 squares have sides
x1, x2, . . . , xk, xk+1 can be packed into a rectangle of area at most α.

This argument can be extended to the case where each xi belongs to some
interval, namely with xi ≤ xi ≤ xi for i = 1, . . . , k + 1. We apply Theorem 3

to the squares with sides xk+1, xk+2, . . . and total area at most 1 − ∑k

i=1 x2
i .

Again we will get a family of rectangles r1, r2, . . . such that the squares of sides
xk+1, xk+2, . . . can be packed into each rj for xk+1 ≤ xk+1 ≤ xk+1. We now
try to find a rectangle R of area at most α into which we can pack the squares
of sides x1, x2, . . . , xk together with one rectangle rj . If we succeed in finding
such packing for a rectangle R then we know that for all sets of squares of sides
x1 ≥ x2 ≥ . . . with xi ≤ xi ≤ xi for i = 1, . . . , k + 1 a packing into a rectangle
with area at most α exists.

By using a sufficiently fine discretization and a sufficiently large value for k,
one can hope to reduce the proof of Theorem 1 to a finite number of rectan-
gle packing problems each with a bounded number of rectangles. Notice that
Theorem 2 alone does not suffice for such a result. Even if k is arbitrarily
large and the discretization is arbitrarily small, then if all xi are close to 0 the
value 1 − ∑k

i=1 x2
i is close to 1 and Theorem 2 yields only a value for A that is

arbitrarily close to 1.633.
As it turns out, it is possible to use Theorem 3 so that the described dis-

cretization approach does work: we will prove Theorem 1 by reducing it to a
finite number of finite rectangle packing problems. But finding such a proof by
brute force is computationally intractable: the number of cases needed in the
proof of Theorem 1 would exceed 1024.

In the next section we show how to avoid this combinatorial explosion via a
more subtle approach that significantly reduces the number of cases.

4 Reduction to a Finite Number of Finite Pack-

ing Problems

With the help of Theorem 3 it is possible to reduce our proof of Theorem 1 to
a finite number of finite rectangle packing problems. Unfortunately, even for
moderately large k, e.g. k = 12, the discretization has to be quite fine, namely

4

This paper appeared in: Computational Geometry 44 (2011), 456-463

finer than 1/100. But k = 12 and a discretization of 1/100 would result in
1024 cases which is far beyond what can be tested in a reasonable amount of
time. Smaller values of k need an even finer discretization and thus will not
help. Larger values of k result in a much higher running time, as the problem
of deciding whether a given set of rectangles can be packed into a given larger
rectangle is NP-hard [11]. Already for k = 10 there exist instances of the
rectangle packing problem that cannot be solved within a second by the fastest
known algorithms.

Therefore, we decided to use an approach that adaptively adjusts the dis-
cretization and the value for k. Suppose we want to prove that for some fixed
k and α every set of squares of sides x1 ≥ x2 ≥ . . . and with total area 1 can be
packed into a rectangle of area α whenever xi belongs to an interval xi ≤ xi ≤ xi

for i = 1, . . . , k. We apply Theorem 3 as described above. If this does not yield
the desired packing then we split the problem into two subproblems by refining
the discretization of the interval for the last square, i.e., we consider the two
subproblems xk ≤ xk ≤ (xk + xk)/2 and (xk + xk)/2 ≤ xk ≤ xk separately. We
will recursively refine the discretization for xk until we reach a maximum value
for the discretization that we fix in advance. If this maximum value is reached
we increase the value of k by 1, set the discretization of xk+1 to the whole
interval, i.e., to the interval 0 ≤ xk+1 ≤ xk and continue with this problem.

By using this approach we reduce significantly the number of cases that have
to be considered. For example when α = 1.43 and the maximum discretization is
1/128 we get k = 10 and need to consider 1, 700, 408 cases instead of 270 > 1021.

One point that we still have to discuss is how we apply Theorem 3. Suppose
that we fixed the intervals xi ≤ xi ≤ xi for i = 1, . . . , k. We apply Theorem 3 to

the squares of sides xk, xk+1, . . . which have total area at most 1−∑k−1
i=1 x2

i . For

all values a1, a2 with xk ≤ a2 ≤ a1 and x2
k + (a1 − xk)(a2 − xk) ≥ 1 − ∑k−1

i=1 x2
i

we know that the squares of sides xk, xk+1, . . . can be packed into a rectangle
of size a1 × a2. Of course, for a given value of a1 we are only interested in the
smallest value for a2 such that the above inequalities are satisfied. This value
of a2 can be calculated as follows.

a2 = max
x

k
≤xk≤xk

xk +

(

1 − ∑k−1
i=1 x2

i

)

− x2
k

a1 − xk

(1)

The following lemma tells us how to compute a2.

Lemma 4 For r ≤ w we have

max
l≤x≤r

{

x +
V − x2

w − x

}

=

r + V −r2

w−r
if r ≤ w −

√

w2−V
2

l + V −l2

w−l
if l ≥ w −

√

w2−V
2

3w − 2
√

2w2 − 2V otherwise

5

This paper appeared in: Computational Geometry 44 (2011), 456-463

Proof. We have

(

x +
V − x2

w − x

)′

= 1 − 2x

w − x
+

V − x2

(w − x)2

=
1

(w − x)2
·
(

(w − x)2 − 2x(w − x) + V − x2
)

=
2

(w − x)2
·
(

x2 − 2wx +
w2 + V

2

)

As we have
(

x + V −x2

w−x

)′′

= 2(V −w2)
(w−x)3 we see that the function x + V −x2

w−x

attains its maximum for

x = w −
√

w2 − V

2
.

Thus for l ≤ x ≤ r and r ≤ w the function x + V −x2

w−x
attains its maximum

either at x = w −
√

w2−V
2 or at the left or right border of the interval which

proves the lemma. �

As we may assume that a2 ≤ a1 we can compute the smallest legal value
of a2 for a given value a1 by using equation (1) and Lemma 4. We use again
discretization to consider only a finite number of legal pairs (a1, a2). We only
consider values for a1 which yield an integer when divided by our maximum
discretization factor. Together with the condition xk ≤ a2 ≤ a1 this implies
that we have to try only a finite number of possible values for a1.

5 Generating the Proof

In Section 4 we have described the ideas how to reduce the proof of Theorem 1
to a finite number of finite rectangle packing problems. In this section we now
present an algorithm (see Algorithm 1) that, for a given value α, generates a
proof that shows that every set of squares with total area one can be packed
into a rectangle of area α. As a second parameter our algorithm requires the
maximum allowed discretization δ, where 0 < δ < 1.

The proof is generated by the procedure GenerateProof. It gets as arguments
the index k of the last square currently under consideration and the boundaries
of the interval for the side xk. If one can find a packing of the squares with
sides x1, . . . , xk−1 together with an a1 × a2 rectangle resulting from Theorem 3
within a rectangle of area α then this case is solved. Otherwise if the maximum
discretization is not reached this case is split into two subcases (lines 7 and 8
of the algorithm). Otherwise the k + 1st square will be considered (line 5 of

the algorithm). We have xk+1 ≤ min(r,

√

1 − ∑k

i=1 x2
i) as xk+1 ≤ xk ≤ r and

x2
k+1 +

∑k

i=1 x2
i ≤ 1.

In line 9 of the algorithm a discrete set of pairs (a1, a2) is computed that
satisfies the condition of Theorem 3. The pairs in S are required to be minimal,

6

This paper appeared in: Computational Geometry 44 (2011), 456-463

Algorithm 1: Proof Generating Algorithm

Input: α, maximum discretization δ
Output: A proof showing that every set of squares with total area 1 can

be packed into a rectangle of area α.

1 GenerateProof (1,0,1)

procedure GenerateProof (k, l, r);

2 xk := l, xk := r ;
3 if MeirMoserFails (k) then
4 if r − l ≤ δ then

5 GenerateProof (k + 1, 0, min(r,

√

1 − ∑k

i=1 x2
i))

else
7 GenerateProof (k, l, (r + l)/2)
8 GenerateProof (k, (r + l)/2, r)

function MeirMoserFails (k): Boolean

9 S := {minimal pairs (a1, a2) with a1/δ, a2/δ ∈ N that satisfy (1)}
10 while S 6= ∅ do
11 remove a pair (a1, a2) from S
12 if squares x1, . . . , xk−1 and a1 × a2-rectangle can be packed into a

rectangle R of area α then
13 output proof case
14 return (false)

15 return (true)

i.e., if (a1, a2) is a pair in S then for all pairs (a1, x) which satisfy equation (1)
we have a2 ≤ x. This guarantees that the set S considered in line 9 is finite.
We try to find a packing of the squares with sides x1, . . . , xk−1 and one of the
a1 × a2 rectangles with (a1, a2) ∈ S into a rectangle R of area α. If we succeed
in finding such a packing we output a proof for this case (line 13). Otherwise
the function MeirMoserFails returns the value true (line 15).

It remains to comment on line 12 of the algorithm. Here we have to decide
whether a set of k fixed rectangles can be packed into a rectangle of area at
most α. This of course is the most time consuming part of the algorithm and
therefore one needs an extremely fast test for this part in order get results for
values of α around 1.4 .

The rectangle packing problem is well known to be strongly NP-hard [11]
and the fastest known exact algorithm for this problem has a worst case running
time of O(n!4n/n1.5) [4]. Even though several algorithms are known that turn
out to be much faster in practice [9, 13, 10, 6], these algorithms were still much
too slow for our application.

7

This paper appeared in: Computational Geometry 44 (2011), 456-463

Our algorithm is based on the work of Moffitt and Pollack [13]. They pre-
sented a fast algorithm to solve the packing problem which has the additional
advantage that it scales, i.e., if one multiplies the widths and heights of all input
rectangles by the same amount then this will not affect its running time. This
property is very important to our application as we have to scale all numbers by
the value 1/δ to make them all integers. The algorithm of Moffitt and Pollack
is on average still much too slow for our application. Therefore we added a
large set of efficient heuristics to find a solution or to prove that no solution
exists. While these heuristics cannot improve the worst case running time they
allowed to reduce the average running time by more than a factor of 100 for the
instances appearing in our proof.

6 Verifying the Proof

If a rectangle packing problem has a positive answer, then a solution can easily
be specified by assuming that the rectangle R has its lower left corner in the
point (0, 0) and its upper right corner at the point (W, H). Then it suffices to
specify for each rectangle ri a position (xi, yi) of its lower left corner. Feasibility
of a solution then is equivalent to the two conditions

xi ≥ 0, xi + wi ≤ W, yi ≥ 0, yi + hi ≤ H ∀1 ≤ i ≤ n (2)

xi + wi ≤ xj or xj + wj ≤ xi or

yi + hi ≤ yj or yj + hj ≤ yi ∀1 ≤ i < j ≤ n (3)

The output of the algorithm described in the previous sections for α = 1.9
and a maximum discretization of 1/16 is shown in Figure 2. To avoid numerical
problems, all numbers in the proof are divided by the maximum discretization
δ, i.e., in the example by 1/16 so that all numbers are integers.

The syntax of the proof is as follows. The first line of the proof contains two
values. The first value is 1 divided by the maximum discretization δ. The second
value is the maximum area of a rectangle that is needed in the proof to pack all
squares into it. As all lengths are divided by the maximum discretization one
has to divide this value by the square of the maximum discretization. In our
case we get 486/162 < 1.9. Thus the proof shows that every set of squares with
total area 1 can be packed into a rectangle of area at most 1.9 .

All lines of the proof that follow contain a single case of the proof. In each
case of the proof the first k squares with sides x1 ≥ x2 ≥ . . . ≥ xk are considered
where xi ≤ xi ≤ xi for i = 1, . . . , k. The line therefore starts with the value of
k followed by the k pairs of numbers xi and xi for i = 1, . . . , k where xi and
xi are separated by a ”-”. The next two numbers, separated by an ”x” denote
the size of a rectangle r that satisfies Theorem 3 applied to the squares of sides
xk ≥ xk+1 ≥

8

This paper appeared in: Computational Geometry 44 (2011), 456-463

16 486

1 0-8 22x22 [22,22] (0,0) ratio 484

2 8-9 0-4 18x17 [18,27] (0,0) (0,10) ratio 486

2 8-9 4-5 18x18 [18,27] (0,0) (0,9) ratio 486

3 8-9 5-6 0-6 18x17 [18,27] (9,0) (0,0) (0,10) ratio 486

3 8-9 6-7 0-7 18x17 [18,27] (9,0) (0,0) (0,10) ratio 486

3 8-9 7-8 0-8 17x17 [17,28] (8,0) (0,0) (0,11) ratio 476

3 8-9 8-9 0-9 16x16 [18,27] (9,0) (0,0) (0,11) ratio 486

2 9-10 0-5 18x17 [18,27] (0,0) (0,10) ratio 486

2 9-10 5-6 20x16 [30,16] (0,0) (10,0) ratio 480

3 9-10 6-7 0-7 17x16 [17,28] (7,0) (0,0) (0,12) ratio 476

3 9-10 7-8 0-8 16x16 [18,27] (8,0) (0,0) (0,11) ratio 486

3 9-10 8-9 0-9 15x15 [19,25] (9,0) (0,0) (0,10) ratio 475

3 9-10 9-10 0-10 14x14 [14,34] (0,10) (0,0) (0,20) ratio 476

2 10-11 0-5 17x16 [17,28] (0,0) (0,12) ratio 476

2 10-11 5-6 17x17 [17,28] (0,0) (0,11) ratio 476

2 10-11 6-7 19x16 [30,16] (0,0) (11,0) ratio 480

3 10-11 7-8 0-8 16x14 [19,25] (8,0) (0,0) (0,11) ratio 475

3 10-11 8-9 0-9 14x14 [14,34] (0,9) (0,0) (0,20) ratio 476

3 10-11 9-10 0-9 13x12 [13,37] (0,14) (0,0) (0,25) ratio 481

3 10-11 10-11 0-8 11x11 [11,44] (0,33) (0,0) (0,22) ratio 484

2 11-12 0-12 17x16 [17,28] (0,0) (0,12) ratio 476

2 12-13 0-11 15x15 [15,32] (0,0) (0,17) ratio 480

2 13-14 0-10 14x13 [14,34] (0,20) (0,0) ratio 476

1 14-16 23x21 [23,21] (0,0) ratio 483

Figure 2: An automatically generated proof that shows that every set of squares
with total area 1 can be packed into a rectangle of area 486/256 < 1.9 .

The sides a and b of a rectangle R that is large enough so that the squares of
sides x1, . . . , xk−1 and the rectangle r can be packed into it follows in the syntax
[a, b]. Then k two-dimensional locations follow in the form ”(x, y)” which denote
the position of the lower left corner of the i-th square for i = 1, . . . , k − 1 and
of the rectangle r. The last two entries in a line are the word ”ratio” and the
area of the rectangle R.

To verify the proof the following four items should be checked:

1. The cases listed in the proof cover the whole range of possible squares.

2. The dimension of the rectangle r satisfies the condition of Theorem 3.

3. The packing given by the lower left corner of the first k − 1 squares and
the rectangle r is correct, i.e., no two rectangles intersect and all lie within
the rectangle R.

4. The area of the rectangle R is as claimed at the end of the line and not
larger than stated in the first line of the proof.

9

This paper appeared in: Computational Geometry 44 (2011), 456-463

In what follows we describe in more detail how to check the four items. A
C++ program that reads a given proof and performs all four tests is available
for download [5].

To check Item 1. we further assume that the cases are ordered lexicograph-
ically. We use a variable NextIndex which tells us, for which xi we expect a
change between the case in the current line and the case in the next line. In the
beginning NextIndex has the value 1 as we expect to see an interval for x1.

We then have to check that the interval for xNextIndex starts with the same
value as it ended in the line before.

For i > NextIndex the value of xi must be zero, as a new interval starts

here. If some value of xi is smaller than
√

1 − ∑i−1
j=1 x2

j and smaller than xi−1

this means that the interval has not been completely checked. Therefore, the

largest index i with xi <
√

1 − ∑i−1
j=1 x2

j and xi < xi−1 is the next value for

NextIndex. For i = 1 only the condition xi <
√

1 − ∑i−1
j=1 x2

j needs to be

satisfied.
Checking the Items 2., 3., and 4. is much easier. For Item 2. we simply apply

Lemma 4. Item 3. can be verified easily by running over all pairs of different
rectangles and verifying that they do not intersect (faster algorithms exist for
doing this, but they are not needed for these small instances). Finally, Item 4.
simply requires multiplication and comparison of two integers.

7 Algorithmic Consequences

Our proof immediately implies the following result.

Theorem 5 Given n squares ordered by size one can find in O(n) a rectangle
R and a packing of these squares into R such that the area of R is at most 1.4
times larger than the total area of the squares.

Proof. First scale the input so that the total area of all squares is exactly
1. Our proof of Theorem 1 consists of a constant number of cases that require
the knowledge of the largest k squares (where k is at most 12). Apply the
corresponding case of the proof of Theorem 1 to these squares. This gives a
packing of these k squares together with a rectangle r that satisfies Theorem 3
into a rectangle R of area smaller than 1.4.

The proof of Theorem 3 given by Moon and Moser [12] is based on a linear
time algorithm to find a packing whose existence is guaranteed by the theorem.
Applying this algorithm to the rectangles k+1, . . . , n and the rectangle r yields
the desired packing of all n squares into R in linear time.

�

The constant involved in the O(n) term is rather small which makes our
algorithm also useful in practice. Bansal et al. [1] present a PTAS for the
related problem of approximating a smallest rectangle into which one can pack

10

This paper appeared in: Computational Geometry 44 (2011), 456-463

area A proven value δ # cases k
1.50 6144/4096 = 1.50000 1/64 31,934 9
1.49 6102/4096 < 1.48975 1/64 40,947 9
1.48 6060/4096 < 1.47950 1/64 54,425 10
1.47 6020/4096 < 1.46973 1/64 71,381 11
1.46 5980/4096 < 1.45997 1/64 96,136 12
1.45 5936/4096 < 1.44922 1/64 127,807 12
1.44 5896/4096 < 1.43946 1/64 173,536 13
1.50 24576/16384 = 1.50000 1/128 143,556 7
1.49 24412/16384 < 1.49000 1/128 212,508 7
1.48 24245/16384 < 1.47980 1/128 311,544 8
1.47 24084/16384 < 1.46998 1/128 435,065 8
1.46 23920/16384 < 1.45997 1/128 614,753 9
1.45 23754/16384 < 1.44983 1/128 861,846 9
1.44 23590/16384 < 1.43982 1/128 1,222,038 9
1.43 23427/16384 < 1.42988 1/128 1,700,408 10
1.42 23265/16384 < 1.41999 1/128 2,437,097 12
1.41 23100/16384 < 1.40992 1/128 3,558,634 12
1.40 22936/16384 < 1.39991 1/128 5,365,339 12

Table 2: Computational results for different values of A and different discretiza-
tions δ.

a given set of squares (or rectangles). However, the constants involved in the
running time of their algorithm are very large and in practice make it useless.

8 Proof Computation

In this section we provide some information on computational issues related to
our proof of Theorem 1. Table 2 provides some information on the number
of cases that were needed in our proof for different values of A and different
maximum discretizations δ. The program that generates the proofs gets as
input the desired value of A which is shown in the first column of the table.
The second column contains the maximum area of a rectangle that is used in
the proof for the given value of A. In most cases this value is slightly smaller
than the input value of A. The last column of Table 2 shows the maximum
number of squares that had to be considered in a single case of the proof.

It can be seen from the table that a value of 1/64 instead of 1/128 decreases
the number of cases generated by a factor of more than 5, but the running time
was longer by more than a factor of 2. Overall the running time was between
2 minutes for A = 1.5 and several weeks for A = 1.4 on a 2GHz single processor
machine.

As mentioned in Section 3 our proof only uses Theorem 3. In addition, by
making use of the results of Kleitman and Krieger [8] or of Novotný [18] one
could simplify our proof. For A = 1.5 we could speed up our algorithm more

11

This paper appeared in: Computational Geometry 44 (2011), 456-463

than by a factor of 100 and the size of the proof decreased by a factor of about
10. However, for smaller values of A this effect dramatically decreases. Thus
for A < 1.4 we observed a decrease of the size of the proof by only a few percent
and the running time also stayed almost the same. We therefore decided that
it is not worth to use the results of Kleitman and Krieger or of Novotný in our
proof.

9 Conclusion

By reducing the proof to a finite number of rectangle packing problems, we
have shown that every set of squares with total area 1 can be packed into a
rectangle with area less than 1.4. We performed this reduction by creating a
complicated computer program that generates the proof. However, the reader
does not need to know any details about this program as in the second part we
provide a simple verification program which confirms the validity of our proof.
Checking the correctness of this verification program can be done by hand in
less than an hour.

There is room for improvement in our work: Our approach is limited only by
the running time of our proof generator and the size of the final proof. Each of
these could be reduced if our rectangle packing algorithm handled non-integer
instances. This would avoid integer rounding of the Meir-Moser rectangle, which
wastes packing space.

We ran our algorithm on eight processors in parallel yielding a speedup of
more than 7.9. Right now it seems that proof size is more of a limit to our
approach than running time.

Very recently Zernisch[19] used a quadratic programming approach that al-
lows the use of dependencies among the intervals of the xis. The proofs gener-
ated by this method are much smaller but the running time is extremely large.
Thus, currently this method only allows to prove values of A around 1.5.

References

[1] Nikhil Bansal, José R. Correa, Claire Kenyon, and Maxim Sviridenko. Bin
packing in multiple dimensions: Inapproximability results and approxima-
tion schemes. Mathematics of Operations Research, 31(1):31–49, 2006.

[2] Peter Brass, William O.J. Moser, and János Pach. Research Problems in
Discrete Geometry. Springer Science+Business Media, Inc., 2005.

[3] Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy. Unsolved
Problems in Geometry. Springer Verlag, New York, 1991.

[4] Pei-Ning Guo, Chung-Kuan Cheng, and Takeshi Yoshimura. An O-tree
representation of non-slicing floorplan and its applications. In Proceedings
of the 36th ACM/IEEE conference on Design automation (DAC 99), pages
268–273, 1999.

12

This paper appeared in: Computational Geometry 44 (2011), 456-463

[5] Stefan Hougardy. On packing squares into a rectangle. http://www.or.

uni-bonn.de/~hougardy/SquarePacking.html, January 2010.

[6] Mitsutoshi Kenmochi, Takashi Imamichi, Koji Nonobe, Mutsunori Yag-
iura, and Hiroshi Nagamochi. Exact algorithms for the two-dimensional
strip packing problem with and without rotations. European Journal of
Operational Research, 198:73–83, 2009.

[7] D. Kleitman and M. Krieger. Packing squares in rectangles I. Annals of
the New York Academy of Sciences, 175:253–262, 1970.

[8] Daniel J. Kleitman and Michael M. Krieger. An optimal bound for two
dimensional bin packing. In 16th Annual Symposium on Foundations of
Computer Science, pages 163–168, 1975.

[9] Richard E. Korf. Optimal rectangle packing: New results. In Proceedings of
the 14th International Conference on Automated Planning and Scheduling
(ICAPS 2004), pages 142–149, 2004.

[10] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. Exhaustive ap-
proaches to 2D rectangular perfect packings. Information Processing Let-
ters, 90:7–14, 2004.

[11] Joseph Y.-T. Leung, Tommy W. Tam, C.S.Wong, Gilbert H. Young, and
Francis Y.L.Chin. Packing squares into a square. Journal of Parallel and
Distributed Computing, 10:271–275, 1990.

[12] A. Meir and L. Moser. On packing of squares and cubes. Journal of
Combinatorial Theory, 5:126–134, 1968.

[13] M.D. Moffitt and M.E. Pollack. Optimal rectangle packing: a meta-csp
approach. In Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee
McCluskey, editors, Proceedings of the Sixteenth International Conference
on Automated Planning and Scheduling (ICAPS 2006), 2006.

[14] J.W. Moon and L. Moser. Some packing and covering theorems. Colloquium
Mathematicum, 17(1):103–110, 1967.

[15] L. Moser. Poorly formulated unsolved problems of combinatorial geometry.
Mimeographed, 1966.

[16] William O. J. Moser. Problems, problems, problems. Discrete Applied
Mathematics, 31:201–225, 1991.

[17] Pavel Novotný. A note on a packing of squares. Stud. Univ. Transp.
Commun. Žilina Math.-Phys. Ser., 10:35–39, 1995.

[18] Pavel Novotný. On packing of squares into a rectangle. Archivum Mathe-
maticum (BRNO), 32:75–83, 1996.

13

This paper appeared in: Computational Geometry 44 (2011), 456-463

[19] Jan Zernisch. Application of quadratic programming to square packing
problems. Master’s thesis, Research Institute for Discrete Mathematics,
University of Bonn, January 2011.

14

This paper appeared in: Computational Geometry 44 (2011), 456-463

