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Abstract

The area of approximation algorithms for the Steiner
tree problem in graphs has seen continuous progress
over the last years. Currently the best approximation
algorithm has a performance ratio of 1.550. This is still
far away from 1.0074, the largest known lower bound
on the achievable performance ratio. As all instances
resulting from known lower bound reductions are uni-
formly quasi-bipartite, it is interesting whether this spe-
cial case can be approximated better than the general
case. We present an approximation algorithm with per-
formance ratio 73/60 < 1.217 for the uniformly quasi-
bipartite case. This improves on the previously known
ratio of 1.279 of Robins and Zelikovsky. We use a new
method of analysis that combines ideas from the greedy
algorithm for set cover with a matroid-style exchange
argument to model the connectivity constraint. As a
consequence, we are able to provide a tight instance.

Keywords: Analysis of algorithms, approximation
algorithms, network design, Steiner tree problem in
graphs.

1 Introduction

Given a graph G = (V, E), a length function on its
edges, and a set R C V of terminals, a Steiner tree is
a connected subgraph of G spanning all vertices in R.
The Steiner tree problem in graphs is to find a short-
est Steiner tree. It is a classical NP-hard problem [10]
and relevant to many real-world applications. This mo-
tivates the search for good approximation algorithms.
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It has been known at least since 1968 [6, p. 24] that
the performance ratio of the minimum spanning tree
heuristic is 2. During the last ten years, several authors
published algorithms with decreasing performance ra-
tios [18, 3, 12, 19, 11, 9]. The best value known today
is 1.550 and due to Robins and Zelikovsky [15]. For
more details on these approximation algorithms see [8].

The PCP-Theorem [1] and an approximation preserv-
ing reduction from vertex cover [4] imply that the per-
formance ratio of a polynomial time approximation al-
gorithm for the Steiner tree problem in graphs cannot
get arbitrarily close to 1. There exists a lower bound
on the achievable performance ratio which has been en-
larged in some effort over the last years. Currently the
best value known is 1.0074 and due to Thimm [16].

The gap between lower and upper bounds is still quite
large. As a step towards narrowing this gap, we show in
this article that there is an algorithm with a performance
ratio of 73/60 < 1.217 for the special case of uniformly
quasi-bipartite instances. An instance of the Steiner tree
problem is called uniformly quasi-bipartite, if the set
V \ R is stable and if, for each vertex in that set, all
incident edges have the same length.

As all existing lower bound reductions [10, 4, 16]
produce uniformly quasi-bipartite instances, our result
has two consequences: On the one hand, it implies that
reductions of this type cannot yield inapproximability
results better than 1.217. On the other hand, our method
of analysis differs from those previously applied, so that
it might indicate an alternative approach to the general
case. As a by-product, this method allows for a simple
instance that shows that the performance ratio of 73/60
is tight. Such instances are not yet known for the other
approximation algorithms for the Steiner tree problem
in graphs [18, 3, 19, 11, 9]. Lower bounds for the per-
formance ratio of some of these algorithms are given
in [7].

A slightly more general case are quasi-bipartite
graphs. In these instances, the set V'\ R is stable, but the
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edges incident with a vertex in that set may have differ-
ent lengths. Rajagopalan and Vazirani [13] gavea 3/2+
€ approximation algorithm based on the primal-dual
method for quasi-bipartite instances. Robins and Ze-
likovsky [15] showed that the popular 1-Steiner heuris-
tic has a performance ratio of 3/2 in this case. More-
over, they showed that the performance ratio of their
loss contracting algorithm is 1.279 in quasi-bipartite in-
stances.

2 Algorithm Greedy-MSS

Every Steiner tree can be split into so called full compo-
nents. A full component is a Steiner tree for a subset of
R in which every terminal is a leaf. The length of a full
component is the sum of its edge lengths. A Steiner tree
is a collection of full components which is connected
and covers K. The Steiner tree problem can be formu-
lated as a hypergraph problem as follows: Every full
component is represented by a hyperedge consisting of
its terminals. Let F'C be the set of these hyperedges
and let |t| denote the length of the full component rep-
resented by ¢ € FC. Then the Steiner tree problem is
the minimum spanning subhypergraph problem in the
weighted hypergraph (R, FC, | - |). Since FC is closed
under taking subsets, a minimum spanning subhyper-
graph contains no cycle, i.e., it is a hypertree. In the
following, we will use this formulation of the Steiner
tree problem.

The algorithm that we consider in this paper is shown
in Figure 1. We call it Greedy-MSS. In every iteration
of the While-loop a hyperedge is selected which mini-
mizes the length per connection ratio

Il

Il = o5
where ¢;(t) is defined as the difference between the
numbers of connected components of (R, {t1,...,t;})
and (R, {t, tl, . ,ti}).

Note that in quasi-bipartite graphs, algorithm
Greedy-MSS is identical to Rayward-Smith’s average
distance heuristic [14].

3 Performance Analysis

In general the minimum spanning subhypergraph prob-
lem is even harder than the Steiner tree problem.

Input a weighted hypergraph (R, FC,|-|)
1+ 0
While (R, {t1,...,t;}) is not connected:
Select t;1 € FC that minimizes f;
1 1+1
p+i

Output t1,...,%

Figure 1: Algorithm Greedy-MSS.

Wolsey [17] showed that the greedy algorithm achieves
a performance ratio of H(k — 1) if the size of every hy-
peredge is bounded by k. Here H (k) := Zle 1/i =
In £+ O(1) denotes the k-th harmonic number. This re-
sult is best possible [5] and does not immediately lead
to a good approximation algorithm for the Steiner tree
problem.

Note that in hypergraphs which result from Steiner
tree problems (in contrast to general hypergraphs), all
subhyperedges of a hyperedge exist and have smaller
weights. Therefore we may focus on solutions which
contain no cycles. Our performance analysis is based
on an even stronger property which holds for uniformly
quasi-bipartite instances.

In these instances, the full components are stars in
which all edges have the same length. The weight of a
subhyperedge t' C t is proportional to its size. There-
fore the algorithm is not quite as bad off if it fails to
select a “good” hyperedge in one step. It may later de-
cide to include a subset of it without having to pay the
full price.

Theorem 3.1

Greedy-MSS computes a 73/60 < 1.217 approxima-
tion for the Steiner tree problem in uniformly quasi-
bipartite graphs.

Proof. Let s be a hyperedge of the optimal solution.
We know that when the algorithm decided to select ¢;,
there was a competing minimal subhyperedge s’ C s
with ¢;_1(s') = ¢;—1(s). As s’ represents a star with
¢i—1(8) + 1 edges, we know that

5] = ci-1(s) +1
co(s) +1

5]
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and we get the inequality

i—1(s)+1
It 8] _ et 8l
cic1(ti)  cima(s) ci—1(s)
1 ls
= {1+ !
(@) i O
Let ALG := {t1,...,tp} and let OPT be the set of

hyperedges of an optimal solution. In order to estimate
the length of ALG in terms of the length of OPT, we
introduce artificial edge sets A resp. B for the algorith-
mic and for the optimal solution which stand for the
connections accomplished by the hyperedges of both
solutions. Then we distribute the length of the edges
in A among those in B using a matroid-style exchange
argument.

Let ALG; := {t1,...,t;}. In the following we de-
fine ¢; € N and edges a1,...,a, between terminals
such that A; := {a1,...,ag } has the same connected
components as ALG;. We start with £, := 0 and
Ag :=0andset£; := €;—1 + ci—1(t;) = Li—1 + co(ti).
The new edges ay,_,+1,---,a¢, C t; are chosen to
form an arbitrary spanning tree for the vertices of ¢;.
The length of ¢; is distributed uniformly among the new
edges, i. e., their lengths are |a;| := |¢;]/(¢; — £;—1) for

J=4lia+1,...,4;. Let A:= Ay,. Clearly, £, is the
number of terminals minus one.
Let By := () and Ty := OPT. We successively de-

fine sets B; = {by,...,b;} of edges between termi-
nals and spanning hypertrees T for j = 1,...,¢,. If
we insert a; into T;_1, there are two possibilities. If
aj € Tj_, then we let b; := a; and T; := Tj_;. Oth-
erwise, Tj_1 + a; contains a cycle. As A is a tree,
this cycle must contain a hyperedge s € T;_1 \ A.
We let Tj_,; := Tj 1 — s and choose an edge b; C s
which connects the two connected components of T]f_l
that contain the endpoints of a;. Then we remove one
of the endpoints of b; from s to obtain s’. Finally,
we let T := Tj_; + s' + a;, which is again a span-
ning hypertree. In this way, we have replaced one of
the connections in OPT with an edge from A. Let
B := Byg,. The replacement process defines a bi-
jection ¢: A < B by ¢(a;) := b;. Observe that
{al,. ..,a]-,bj_,_l,.. .,bgp} = AJ' U (B\B]) is a span-
ning tree for all j.

Note that for every edge b € B there is a unique hy-
peredge s € OPT with b C s, because OPT contains
no cycle. For a hyperedge s € OPT we denote the set
of edges from B contained in s and defined during the

replacement steps j = £; + 1,...,¢, by

U,(S) IZ{bGB\Bgi“)gS}.

Let u;(s) := #U;(s). Then the number of edges from

B contained in s which are defined during the replace-

mentsteps j = ;1 + 1,...,€; isu;—1(s) — u;(s).
The above definitions imply that

ALG| = Z|t| = Y lal =Y 7 0)
a€cA beB
=D Dl
s€OPT beB
bCs
p
=3 > X ltol
s€OPT i=1 beBy,\By,_,
bCs
= Z zp:(u. (s)—u~(s))L
_s€OPT =1 o z ci-1(ti)
(2

We can estimate the inner sum using (1) in the following
way.

Z (’Ltifl(s) - u’(s)) cz|?(|tz)
1 S
< Zl (ui-1(s) = ui(s)) (1 - Ci—l(s)) CO(‘l) |+ 1
sa(s) — up(s) N Z:JZI u,_lc(.s) zs;iz(s)
= |8| - =

3

In the numerator we have ug(s) = co(s) and u,(s) = 0.
Note that Ag, U U;(s) C A, U (B \ By;) contains no
cycles and the edges of U;(s) are contained in s. There-
fore, if we add s to ALG;, the number of connected
components decreases by at least u;(s). This implies
u;(s) < c¢i(s). Observing that ug(s),...,uy(s) is a
non-increasing sequence of natural numbers,

14

Z;Uz'—lc(z 1— u;(s < Z Uiy ) 1— u;(s)
< H(uo(s)) —H(up(S)) = H(co(s))-
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‘We have
cols) + Hleo(s)) _ o+ H(z)
Co(s)—|—1 S zeN z+1
_ 4+ H(4) _ E
441 60’

s0 (3) is bounded by £3|s|. Putting things together, we
obtain

P
t;
|ALG| = Z Z(Uil(s)_ui(s))%
scOPT i=1 i—1%
73
< D sl
s€OPT 60
73
= — - |OPT
60 | |7
as desired. O

4 Tightness

Theorem 4.1
The performance ratio 73/60 of Greedy-MSS is tight
even for unweighted quasi-bipartite Graphs.

Proof. The worst case instance is shown in Figure 2.
All edges have length 1. A Steiner tree using the Steiner
vertices for the ellipses has the total length 5 - 12 = 60,
which is in fact optimal. Greedy-MSS will always
choose a full component that connects as many con-
nected components as possible. Therefore, it may end
up with a Steiner tree using the Steiner vertices for the
dashed rectangles from top to bottom. Since the total
length of this Steiner tree is 3-5+4-4+6-3+12-2 = 73,
the theorem follows. O

A worst case instance for Greedy-MSS which is
smaller, but requires edge lengths, is given in[8].

S Running Time

Theorem 5.1
The running time of Greedy-MSS is O(#V #R).

Proof. We need to assume some preprocessing to
achieve the running time as claimed. We first com-
pute minimum spanning trees for the connected com-
ponents of the graph induced by R and remove all other

edges between vertices of R. Clearly, this can be done
in O(#R#R) and does not change the behaviour of
our algorithm. Further, by placing extra vertices on
edges between terminals, we obtain a bipartite graph
(RU S, E) where #S < #V.

Consider the maximal sets C' C R of terminals which
are connected by the current solution in iteration 4. For
v € S let d;(v) be the number of C’s that contain a
neighbor of v. Then f; can be minimized in O(#S)
if the values d;(v) are known for all v € S. As there
are at most # R iterations, the total running time of the
algorithm is O(#S#R) as claimed.

To efficiently compute the values d; (v) we proceed as
follows. For each C' we maintain an ordered list A(C)
of its neighbors in S. The values dy(v) and the initial
lists A(C') can be computed in O(#S#R).

When several C’s are merged in iteration ¢, we suc-
cessively merge two of the corresponding lists and de-
crease the values d;(v) for each v that appears in both
lists. It takes O(#S) time to merge two lists. In total
#R — 1 pairs of lists have to be merged. Therefore, up-
dating the values d;(v) can be done in O(#S#R). O

6 Concluding Remarks

All known lower bound reducions for the Steiner tree
problem in graphs produce uniformly quasi-bipartite in-
stances. Theorem 3.1 shows that reductions of this type
cannot prove lower bounds greater than 73 /60.

Our analysis of Greedy-MSS generalizes the analy-
sis of the greedy algorithm for the set cover problem.
This can be pushed a bit further to give a combinato-
rial proof that the greedy algorithm for the minimum
spanning subset problem in k-polymatroids has a per-
formance ratio of H(k—1) = 1 + § + -+ + 25
[2]. We also used this analogy between the greedy algo-
rithms for the Steiner tree problem and for the set cover
problem to construct the worst-case instance shown in
Figure 2.

It is conceivable that further exploiting this analogy
also yields better approximation algorithms for the gen-
eral case of the Steiner tree problem. Similarly, tight
lower bounds for the set cover problem [5] might be
used to find improved lower bounds for the Steiner tree
problem. Progress in both directions would be very in-
teresting.
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Figure 2: A worst-case instance for Greedy-MSS. Square dots are terminals. Round dots are non-terminals. For
every ellipse and every dashed rectangle there is a non-terminal which is connected to the terminals inside plus
the terminal to the top left.
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