
A Scale Invariant Exact Algorithm for

Dense Rectangle Packing Problems

Stefan Hougardy

Research Institute for Discrete Mathematics

University of Bonn

Lennéstr. 2

53113 Bonn, Germany

hougardy@or.uni-bonn.de

June 19, 2012

Abstract. The Rectangle-Packing problem is as follows: De-
cide whether a given set of rectangles can be orthogonally packed into
a given larger rectangle. This problem is known to be NP-complete.
Over the last decades several exponential time exact algorithms have
been proposed to solve this problem. In this paper we suggest a new
exact algorithm to solve the Rectangle-Packing problem. The
advantage of our algorithm is that its runtime depends on the num-
ber of rectangles in the input only but not on their sizes. Moreover,
our algorithm outperforms existing algorithms on dense infeasible
instances. With our algorithm we are for the first time able to solve
the instances with 28, 32, 33, 34, 47, and 48 squares of a well known
square packing benchmark.

1 Introduction

Given n rectangles r1, . . . , rn with integer widths wi and heights hi for i =
1, . . . , n and a W × H rectangle R the Rectangle-Packing problem is to
decide whether the n rectangles can be orthogonally packed into R. This prob-
lem appears as a subproblem in several applications, e.g., in scheduling prob-
lems [21] or VLSI-design [3]. The Rectangle-Packing problem is known to
be NP-complete already for very special cases, e.g., for the case where all rect-
angles have the same height (this follows easily from the NP-completeness of
Partition[10]).

The currently best provable worst case running time of an exact algorithm

for the Rectangle-Packing problem is O((2n)!
(n+1)!) [12]. Even for instances

1

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 2

with as few as 12 rectangles this worst case running time does not guarantee to
find a solution within an hour on a single processor machine.

Therefore, several different exact algorithms for the Rectangle-Packing

problem have been suggested over the last decades. These algorithms usually
are able to solve instances with up to 30 rectangles within an hour. But for none
of these algorithms it is known whether its worst case running time is better
than the one stated above.

The Perfect-Rectangle-Packing problem is the special case of theRect-

angle-Packing problem where the total area of the given rectangles equals
the area of the rectangle into which these rectangles have to be packed. As
observed in [20] the Perfect-Rectangle-Packing problem can be solved in
O(n! · n2) and thus much faster than the general problem. An algorithm for
the Perfect-Rectangle-Packing problem can be used for the more general
Rectangle-Packing problem by adding a suitable number of 1 × 1 squares.
If the number of squares that need to be added is small, this approach achieves
a better worst case runtime than solving the Rectangle-Packing problem
directly.

Motivated by an application in VLSI-design [3] and by a theoretical ques-
tion about dense square packings [13] we were especially interested in a fast
algorithm that proves the infeasibility of Perfect-Rectangle-Packing in-
stances. Moreover, as the sizes of the rectangles involved in our applications are
large integers, we were interested in algorithms whose runtime depends on the
number of the given rectangles only, but not on their sizes. Unfortunately, the
runtime of most existing algorithms depends on the size of the input rectangles.
Moreover, while in many cases the algorithms can quickly find one solution (of
usually very many) when the instance is feasible, they can take very long time
to prove the infeasibility of a given instance. Thus it has been reported that
feasible instances with up to 200 rectangles have been solved within a few sec-
onds. However, no algorithm so far was able to prove the infeasibility of a well
known Square-Packing instances that contains only 38 squares.

In this paper we will present a new exact algorithm for the Perfect-

Rectangle-Packing problem which outperforms other algorithms on unsolv-
able instances and on instances where the rectangles have large sizes. Using
our algorithm we are able to solve for the first time the instances with 28, 32,
33, 34, 47, and 48 squares of a well known (non-perfect) square packing bench-
mark [9, 18]. This yields four new values to the integer sequence A005842[1].
Moreover, we are able to solve for the first time the partridge instances [11]
partridge-13 and partridge-14 with 91 respectively 105 squares that have to
be packed perfectly into a larger square.

1.1 Related Packing Problems

There exist several generalizations and restricted versions of the Rectangle-

Packing problem. In the Strip-Packing problem [24] the task is to find the
minimum height H of a rectangle R of given width W such that the rectangles
r1, . . . , rn can be packed orthogonally into R. The Min-Area-Rectangle-

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 3

Packing problem asks for a rectangleR of smallest area such that the rectangles
r1, . . . , rn can be packed orthogonally into R. Note that exact algorithms for the
Strip-Packing problem or the Min-Area-Rectangle-Packing problem can
also be used to compute the solution for the Rectangle-Packing problem.

The Perfect-Rectangle-Packing problem is a restricted version of the
Rectangle-Packing problem where the total area of the rectangles r1, . . . , rn
equals the area of R. Finally the Square-Packing problem is the special case
of the Rectangle-Packing problem where the rectangles ri and the rectangle
R are squares. In the Perfect-Square-Packing problem we are given n

squares of total area A and the question is whether they can be orthogonally
packed into a square of area A.

For all these problems, except for the square packing problems, one also can
allow to rotate the rectangles by 90 degrees. Most of the known rectangle pack-
ing algorithms easily can be extended to handle this generalization. However,
in this paper we will consider only the version without rotation.

1.2 Hardness of the Rectangle-Packing Problem

As mentioned above the Rectangle-Packing problem is known to be NP-
complete already for very special cases, e.g., for the case where all rectangles
have the same height. The Rectangle-Packing problem stays NP-complete
for many additional restrictions on the input [25]. It is also known to be strongly
NP-complete [23] and this even holds for the special case of the Square-

Packing problem [22]. As observed in [8] the proof for the latter result also
shows that Perfect-Square-Packing is strongly NP-complete.

1.3 Scale Invariant Rectangle Packing Algorithms

We will call a rectangle packing algorithm scale invariant if its runtime does not
depend on the sizes of the input rectangles. Multiplying all widths and heights of
all rectangles by the same number must not change the runtime of the algorithm.
In our applications mentioned above rectangles with dimensions larger than 105

which are relatively prime often appear. Only scale invariant rectangle packing
algorithms can handle such instances within reasonable runtime. As we will
see in the next section most existing exact rectangle packing algorithms are not
scale invariant and therefore cannot be used in our application.

2 Known Exact Rectangle Packing Algorithms

In 1975 Bitner and Reingold [6, 7] used a simple backtrack approach to solve
the Perfect-Square-Packing problem. Their algorithm uses the idea to find
the smallest valley in a partial solution and to fill it first. They used it to prove
for the first time that a 70× 70 square cannot be tiled with squares of size 1 up
to 24. Their approach easily extends to the Perfect-Rectangle-Packing

problem and allows a scale invariant implementation as described in [7].

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 4

The approach of Bitner and Reingold was extended to a branch-and-bound
algorithm by Lesh, Marks, McMahon, and Mitzenmacher [20] in 2004 for solv-
ing the Perfect-Rectangle-Packing problem. They called the approach
the Smallest-Gap heuristic, as it can also be used as a heuristic for the Strip-

Packing problem. While the branching is exactly the same as suggested by
Bitner and Reingold they add a bounding procedure based on a dynamic pro-
gram that estimates the largest possible valley height that can be filled with
the remaining rectangles. By adding this bounding strategy the algorithm is no
longer scale invariant.

Kenmochi, Imamichi, Nonobe, Yagiura, and Nagamochi [16] extend the
idea of filling gaps by considering simultaneously horizontal and vertical gaps
within a branch-and-bound framework for the Strip-Packing problem. More-
over they add bounds that are obtained by an LP-relaxation of the Perfect-

Rectangle-Packing problem. Both these ways to bound the depth of the
search tree are not scale invariant.

Korf [17, 18] models the rectangle packing problem as a binary constraint-
satisfaction problem. He suggest a branch-and-bound algorithm for the Rect-

angle-Packing problem which uses a bin packing relaxation for the bounding.
Because of the matrix data structure used for this algorithm its runtime highly
depends on the sizes of the rectangles and therefore is not scale invariant.

Several authors used constraint programming formulations to solve theRect-

angle-Packing problem. One of the first such approaches is described by
Aggoun and Beldiceanu in 1993 [2] using the constraint programming system
CHIP. Their formulation has the advantage of covering a wide range of different
rectangle packing problems. An improved formulation for the Rectangle-

Packing problem also using CHIP is given in [4]. Further improvements are
described in [5]. The currently most efficient algorithm using the constraint
programming approach is described by Simonis and O’Sullivan [27]. All these
approaches are not scale invariant.

Moffitt and Pollack [26] presented in 2006 a completely different approach
to the Rectangle-Packing problem. To enumerate the search space they
considered possible relative orderings between pairs of rectangles. This results
in a fairly efficient scale invariant algorithm.

The currently fastest algorithm for the rectangle packing problem is due
to Huang and Korf [14]. It combines ideas from Korf [18] and Simonis and
O’Sullivan [27]. However, the resulting approach is not scale invariant.

3 Definitions and Notations

In this section we present all definitions and notations used throughout this
paper.

For the Rectangle-Packing problem we are given n rectangles with width
wi and height hi each, for i = 1, . . . , n and a rectangle with width W and height
H , where all widths and heights are integers. The task is to decide whether
there exist integer points (x1, y1), . . . , (xn, yn) such that

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 5

Hello2x4
3x3

6x1

5x3

6x4
3x6

2x5

3x5 Hello
8x7

2x9

4x4 3x5

a) b)

Figure 1: A partial placement inside a 20×12 rectangle resulting in three valleys
(hatched areas). Figure b) shows the decomposition of the partial placement
into 5 vertical bars where the fifth bar has height 0.

0 ≤ xi ≤ W − wi ∀1 ≤ i ≤ n (1)

0 ≤ yi ≤ H − hi ∀1 ≤ i ≤ n (2)

xi + wi ≤ xj ∨ xj + wj ≤ xi ∨ yi + hi ≤ yj ∨ yj + hj ≤ yi ∀1 ≤ i < j ≤ n (3)

In this formulation the point (xi, yi) is the lower left corner of the ith rectan-
gle and the W ×H rectangle has its lower left corner in the origin. Inequalities
(1) and (2) state that all rectangles lie inside the W × H rectangle while in-
equality (3) requires that the rectangles are pairwise disjoint.

A set of points (xi, yi) for i = 1, . . . , n satisfying the above inequalities
is called a placement of the rectangles. Given a set I ⊆ {1, . . . , n} a partial
placement of the rectangles ri with i ∈ I is a set of points (xi, yi) with i ∈ I

such that the above inequalities are satisfied and such that whenever a point
(x, y) is covered by some rectangle then this also holds for all points (x, y′) with
0 ≤ y′ ≤ y. See Figure 1 a) for an example of a partial placement.

We decompose the area covered by the rectangles in a partial placement by
vertical bars in such a way that the total width of all bars equals W . For this
to be possible we allow bars of height 0. We always assume to have a decompo-
sition into the minimum possible number of vertical bars. See Figure 1 b) for
an example of the decomposition of a partial placement into vertical bars. A
vertical bar generates a valley if the vertical bars immediately to the left and
to the right of the bar have larger height. For this purpose the vertical edges
of the W ×H rectangle are assumed to be bars of width 0 and height H . The
width of a valley is the width of its defining vertical bar. The height of a valley
is the minimum difference between the height of its defining vertical bar and its
two neighbors. The area of a valley is the product of its width and height. See
Figure 1 for an example of valleys occurring in a partial placement.

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 6

4 The Algorithm

Our algorithm is a branch-and-bound algorithm that uses the same branching
rule as the backtracking algorithm of Bitner and Reingold [6]. In each step we
look for a valley with smallest width in a partial placement. For each unplaced
rectangle that fits into the valley we extend the partial placement by placing
the unplaced rectangle at the far left of the valley. Note that contrary to other
branching rules, e.g., the staircase rule [16], the smallest valley rule cannot
create the same partial placement twice.

In the following we list the pruning rules that we apply before a branch-
ing occurs. If any of these checks fails then we do not have to branch. This
dramatically speeds up the algorithm. Note that all our pruning rules are scale
invariant, i.e., their runtime does not depend on the sizes of the input rectangles
but does only depend on their number.

Rule 1: Valley Area Check

Check that the total area of all unplaced rectangles that fit into the
smallest valley is at least as large as the area of the smallest valley.

This clearly is a necessary condition to be able to completely fill the smallest
valley. In [20] a heuristic based on dynamic programming is used to check this.
However, this approach is not scale invariant as its runtime linearly depends on
the width of the smallest valley.

Rule 2: Symmetry Breaking

Choose some input rectangle in advance and check that its midpoint
lies in the upper right part of the W ×H rectangle.

This rule is justified because of the symmetry group of the W ×H rectangle.
If W = H and all input rectangles are squares one can strengthen this condition
by requiring in addition that the midpoint of the chosen rectangle lies above the
diagonal. Choosing the smallest input rectangle for the symmetry breaking
usually yields the best results as our algorithm fills the smallest valley first.

Rule 3: Inferred Bounding

Assume that branching with a rectangle r yields no solution and all
valleys that have been considered during the recursion are to the left
of r. If the width of r is larger than the widest valley that has been
considered during the recursion one does not have to branch with a
rectangle that is at least as high as r.

We illustrate this rule with the example shown in Figure 2. Suppose we
want to place the squares of size 1, 2, . . . , 24 into a square of size 70 and assume
that we use the square of size 3 for the symmetry breaking. If we have a partial
placement of the squares of size 6 and 5 as shown in Figure 2a) the smallest
valley is to the right of the square of size 5 (the hatched area in Figure 2a)).
Now assume we try to extend this partial placement by placing the square of

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 7

6 5 6 5 10 6 5 101

6 5 101 2

a) b) c) d)

6 5 101
4

6 5 101
42

6 5 101
4

7
6 5 101

4
7 2

e) f) g) h)

6 5 102

6 5 104

6 5 11
i) j) k)

Figure 2: Application of Rule 3: After realizing that the square of size 10 cannot
be placed next to the square of size 5, the same also holds for all squares of size
larger than 10.

size 10 into the smallest valley (Figure 2b)). A new smallest valley of width 5
and height 1 appears. Only the squares of size 1, 2, and 4 can be placed at the
far left of this valley. After placing the squares of size 2 or size 4 we get a new
smallest valley that cannot be filled with the remaining squares (see Figures 2i)
and j)). If we place the square of size 1 into this valley (Figure 2c)) then it
takes 5 steps of recursion (see Figures 2d)-h)) until we conclude that the partial
placement shown in Figure 2b) cannot be extended to a complete solution. All
valleys that have been considered after placing the square of size 10 are to the
left of this square and had width smaller than 10. Therefore, by Rule 3 we know
that we do not have to extend the partial placement shown in Figure 2a)) by
placing the squares of size 11, 12, . . .24 next to the square of size 5.

The correctness of Rule 3 is easily established: If instead of r another rect-
angle of at least the height of r is used in the branching then the algorithm will
perform exactly the same steps as for the rectangle r. Note that the rectangle r
itself is of no use during the recursion as its width is by assumption larger than
the width of the widest valley that has been considered during the recursion.

The fourth rule that we present is a bit more technical. We will split it into
two parts to simplify its description.

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 8

Rule 4a: Unused Rectangle Check

Let r be an unplaced rectangle of height strictly smaller than the
smallest valley height such that at most one other unplaced rectangle
exists that has strictly smaller width than r while all other unplaced
rectangles have strictly larger width than r. If the width of r equals
the width of the smallest valley or no other unplaced rectangle has
smaller width than r and the same height as r then branching with
this rectangle r needs not to be considered.

The correctness of this rule follows from the following lemma:

Lemma 1 Let S be a strip of width w and infinite height. Let r1, r2, . . . be
rectangles of width wi and height hi each for i = 1, 2 . . . such that wi > w1 for
i ≥ 3. Moreover, if w1 = w then we require w2 6= w. If w2 ≤ w1 < w then we
require h1 6= h2. Then there exists no partial placement of r1, r2, . . . into S with
r1 placed at the lower left of S that covers S completely up to a height larger
than h1.

Proof. If w1 = w then besides the rectangle r1 only rectangle r2 may be
placed inside S. But as w2 6= w1 a partial placement of r1 and r2 will completely
cover S at most up to a height of h1.

If w1 < w then w2 < w1 must hold as otherwise no rectangle can be placed
next to r1 within S. As by assumption h1 6= h2 after placing r2 next to r1 this
yields a valley of width at most w1. None of the other rectangles can be placed
into this valley. Thus S can be covered only up to height min{h1, h2}. �

Rule 4b: Unused Rectangle Check

Let r be an unplaced rectangle of width strictly smaller than the
valley width and assume that at most one unplaced rectangle exists
with width and height strictly smaller than r while all other unplaced
rectangles are higher and wider than r. If the left edge of the valley
is higher than r then branching with r needs not to be considered.

Again, we provide a lemma to prove the correctness of this rule:

Lemma 2 Let S be a strip of width w and infinite height. Let r1, r2, . . . be
rectangles of width wi and height hi each for i = 1, 2 . . . such that wi > w1 and
hi > h1 for i ≥ 3. Moreover, assume that w1 < w and either r2 has width and
height larger than r1 or smaller than r1. Then there exists no partial placement
of r1, r2, . . . into S with r1 placed at the lower left of S that covers S completely
up to a height larger than h1.

Proof. As w1 < w there has to be a rectangle placed next to r1. If a
rectangle of height larger than h1 is placed next to r1 then a valley of width w1

is created. By assumption the only rectangle fitting into this valley is w2 but
as w2 6= w1 this valley cannot be filled. If the rectangle r2 has smaller height
than r1 and is placed next to r1 then some rectangle has to be placed on top of
r2 and next to r1. But this results into a valley of width w1 which cannot be
filled. Thus S will be completely covered at most up to a height of h1. �

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 9

a) b) c)

Figure 3: Updating the smallest valley in constant time: If the smallest valley
is as shown in a) and a rectangle is placed into it as in b) or c) then the new
smallest valley can be computed in constant time.

5 Implementation Details

A crucial step to get an efficient implementation of our algorithm is to be able
to perform the branching very efficiently. For the branching step we use an
approach similar to the one suggested by Imahori and Yagiura [15] for an efficient
implementation of the best-fit heuristic. We use a balanced binary tree data
structure to maintain the set of all valleys. This allows us to find a smallest
valley in O(log n) time where n denotes the number of rectangles in the input.
After placing a rectangle at the far left of the smallest valley at most two new
valleys arise. Thus updating the list of all valleys can also be done in O(log n).

In practice the smallest valley often can be found in constant time due to
the following observation: If a rectangle is placed into the smallest valley and
its width is smaller than the width of the smallest valley, then the new smallest
valley will be either immediately to the left or to the right of the placed rectangle
(see Figure 3b)). Thus the new smallest valley can be found in constant time.

The same holds if a rectangle is placed into the smallest valley whose width
equals the width of the smallest valley but has smaller height (see Figure 3c)).
In this case the smallest valley stays the same, only its height decreases. We
observed that in practice in more than 90% of the cases one of the two situations
just described appears.

We now briefly discuss the implementation of the Rules 1 to 4. For Rule 1
we keep a list of all unused rectangles ordered by their width. This allows to
check Rule 1 in time proportional to the number of rectangles fitting into the
smallest valley. We tried to use a more sophisticated data structure that only
needs O(log n) time for checking Rule 1, however this turned out not to be faster
in practice.

The symmetry breaking obviously can be done in constant time. We exper-
imented a bit which rectangle is the best for doing the symmetry breaking. It
turned out that symmetry breaking with the third smallest (by area) rectangle
yields on average the best results. However, choosing the smallest rectangle
instead does not much worsen the average runtime.

Rule 3 also can be checked in constant time. To do so we simply have to keep
track of the largest valley and of the right most valley that has been considered

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 10

during the recursion. Rule 3 suggests that ordering the rectangles by increasing
height should be most useful for the bounding step. We have confirmed this in
practice.

For checking rules 4a and 4b we keep two ordered lists of the unplaced
rectangles, one ordered by width and one ordered by height. Then these rules
can be checked in constant time.

5.1 Ordering the Rectangles

The order in which the rectangles are considered during the branching can
change the runtime of the algorithms dramatically. While the runtime difference
is quite small on infeasible instances it can be huge on feasible instances. This
is easily explained by the fact that for each feasible instance there exists an
ordering of the rectangles such that the optimal solution is found without any
backtracking, i.e., in time linear in the number of rectangles.

We tried six different orderings for all algorithms, namely ordering the rect-
angles by increasing or decreasing width, height, or area. For the algorithm of
Lesh at al. [20] we confirmed — as described by the authors — that the decreas-
ing area ordering yields the best results. For our algorithm and the algorithm
of Bitner and Reingold [6] ordering the rectangles by increasing height gave the
best results.

6 Experimental Results

As mentioned in the introduction our motivation for designing a new exact
algorithm for the Rectangle-Packing problem arose from applications where
instances with very large integer sizes appeared. Moreover, we observed in [13]
that most of the runtime was spent to prove the infeasibility of an instance.
Therefore, we mainly concentrated on a well known square packing benchmark
where proving infeasibility is a challenge.

6.1 The Square Packing Benchmark

Finding the smallest square into which the squares of size 1, 2 . . . , n can be
packed is a well established square packing benchmark [17, 26, 27]. The size
f(n) of the smallest square as a function in n is the integer sequence A005842 [1].
All values of f(n) that are currently known are at most one larger than the trivial
lower bound ⌈

√

∑n

i=1 i
2⌉. To prove for a given n that f(n) equals the trivial

lower bound it suffices to find a packing of the first n squares within a square of
size f(n). In case that f(n) is strictly larger than the trivial lower bound this
is much more difficult to prove. Up to n = 16 a simple direct argument can be
used as Friedman remarked in [1]. The case n = 24 has been proved by Bitner
and Reingold [6] in 1975. Korf [18] supplied the proof for f(18) = 47 while
Simonis and O’Sullivan [27] in 2008 showed and Korf, Moffitt and Pollack [19]
in 2010 confirmed that f(26) = 80 holds. This is the largest value for which one

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 11

was able to prove that f(n) does not equal the trivial lower bound. All other
known values of f(n) (the largest known value reported in [1] is f(94)) are equal
to the trivial lower bound. So far up to n = 50 the function f was not known
for the values 28, 32, 33, 34, 38, 40, 42, 47 and 48. We use our algorithm to prove
that for n = 28, 32, 33, 34, 47 and 48 the value of f(n) is one larger than the
trivial lower bound. To use our algorithm we added a suitable number of 1× 1
squares as shown in the third column of Table 1. The resulting instances are
Perfect-Square-Packing instances with up to 58 squares.

Table 1: Instances of the square packing benchmark that we solved and that
had not been solved before. Runtime is in seconds on a single core 3.3GHz Intel
Xeon processor.

trivial additional instance
n

lower bound 1× 1 squares size
runtime [s] backtrack nodes

28 88 30 58 32,306,387 480,068,709,271,739
32 107 9 41 70,908 1,246,191,654,270
33 112 15 48 3,668,233 61,486,847,102,612
34 117 4 38 12,125 166,106,615,874
47 189 1 48 8,115,666 108,027,727,717,946
48 195 1 49 16,906,977 219,418,598,333,078

We also analyzed which impact our four pruning rules described in Section 4
have on the runtime. For this we ran our algorithm where only a subset of
the four rules was applied. For the 16 possible subsets the results are shown in
Table 2.

Table 2: Number of backtracking nodes (divided by 10000) when applying a
subset of our four rules to a small instance with 24 rectangles.
Rule 1 X - X - X - X - X X - - X - X -
Rule 2 X X X X X X - - X - - X - - - -
Rule 3 X X - - X X X X - - - - X X - -
Rule 4 X X X X - - X X - X X - - - - -

nodes 159 163 223 228 366 432 451 468 607 618 644 736 1197 1545 1932 2529

6.2 The Partridge Benchmark

The equation

n
∑

i=1

i · i2 =

n
∑

i=1

i3 =

(

n
∑

i=1

i

)2

=

(

n(n+ 1)

2

)2

leads to the question whether it is possible to perfectly pack a n(n+1)
2 × n(n+1)

2
square by taking i copies of an i × i square for i = 1, . . . , n. This question

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 12

lex in/out from [11] our algorithm
instance backtracks runtime [s] backtracks runtime [s]
partridge 8 853 3 16,993,615 1
partridge 9 63,429 367 55,416,630 4
partridge 10 1,265,284 9,154 1,908,188,255 149
partridge 11 189,797 1,964 3,769,317,140 289
partridge 12 1,676,827 24,203 38,208,301,369 2,940
partridge 13 — — 766,367,189,640 58,350
partridge 14 — — 15,129,050,082,409 1,153,752

Table 3: Comparison of our algorithm on the partidge instances with the algo-
rithm of Ågren et al. [11]. While we need much more backtracking steps our
runtime is about 10× better.

was posed in 1996 at the Second Gathering for Gardner Conference by Wain-
wright [28]. Solutions for small values of n are presented in [28]. The case
n = 12 was solved by Ågren et al. in 2009 [11]. Using our algorithm we were
able to solve the next two cases n = 13 and n = 14 with 91 respectively 105
squares that have to be packed.

666111112131313 7 11
791312

1188
7712

8 12

1

13

9
8

12

10

9
8 13

77
5111012

10

9
12

10
9 9 13

9131311
13

111111

10
10 12

13
10

10 12
1391212
111188

12
86

10
104 6

137
6555

4
4 9

533
4

322

111111111111

13131313

131313

14131313
98 9

1

714131313 12
910

1212121212

14

12 149
12

10

910128 12 14
10118

14109

1414
8

12810

1111

14
10

1110

6
126

7 149
7 14

14147 14810
766

810
984 6

1177
65555

4
4 9

533
4

322

Figure 4: Solution to the instances partridge-13 and partridge-14.

7 Conclusion

We presented a new exact algorithm for the Perfect-Rectangle-Packing

problem. Contrary to most other existing exact algorithms our algorithm has
the advantage that it is scale invariant, i.e., its runtime does not depend on the

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 13

sizes of the input rectangles. Moreover our algorithm is especially efficient in
proving the infeasibility of an instance.

The crucial idea of our algorithm is to use much simpler pruning steps than
other algorithms. This allows to implement each pruning step very efficiently
at the cost of requiring much more backtracking steps. We have shown that
the overall runtime needed by such an approach can be much smaller than for
existing algorithms.

Using our algorithm we are able to solve several well known benchmark
instances that had not been solved before. This is not only the case for perfect
rectangle packing problems but we are also able to apply our algorithm to dense
non-perfect rectangle packing instances. We found six new values for the well
known (non-perfect) square packing benchmark suggested in 1976 by Gardner
and also have been able to solve for the first time the perfect square packing
instances partridge-13 and partridge-14 which contain 91 respectively 105
squares.

References

[1] The on-line encyclopedia of integer sequences, sequence a005842. published
electronically at http://oeis.org, 2010.

[2] Abderflahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to
solve complex scheduling and placement problems. Mathl. Comput. Mod-
elling, 17(7):57–73, 1993.

[3] Charles J. Alpert, Dinesh P. Mehta, and Sachin S. Sapatnekar, editors.
Handbook of Algorithms for Physical Design Automation. Auerbach Pub-
lications, 2009.

[4] N. Beldiceanu, E. Bourreau, and H. Simonis. A note on perfect square
placement. Technical report, COSYTEC SA, 1999.

[5] Nicolas Beldiceanu, Mats Carlsson, and Emmanuel Poder. New filtering
for the cumulative constraint in the context of non-overlapping rectangles.
In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, volume 5015 of Lecture Notes in
Computer Science, 2008.

[6] James R. Bitner and Edward M. Reingold. Backtrack programming tech-
niques. Communications of the ACM, 18(11):651–656, November 1975.

[7] James Richard Bitner. Use of macros in bachtrack programming. Mas-
ter’s thesis, University of Illinois at Urbana-Champaign, Department of
Computer Science, 1974.

[8] Erik D. Demaine and Martin L. Demaine. Jigsaw puzzles, edge matching,
and polyomino packing: Connections and complexity. Graphs and Combi-
natorics, 23:195–208, 2007.

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 14

[9] Martin Gardner. Mathematical Carnival, chapter 11, pages 139–149.
George Allen & Unwin, 1976.

[10] M.R. Garey and D.S. Johnson. Computers and intractability. A guide to
the theory of NP-completeness. W.H. Freeman and Company, New York,
1979.

[11] Magnus Ågren, Nicolas Beldiceanu, Mats Carlsson, Mohamed Sbihi, Char-
lotte Truchet, and Stéphane Zampelli. Six ways of integrating symmetries
within non-overlapping constraints. In W.-J. van Hoeve and J.N. Hooker,
editors, CPAIOR 2009, volume LNCS 5547, pages 11–25, 2009.

[12] Pei-Ning Guo, Toshihiko Takahashi, Chung-Kuan Cheng, and Takeshi
Yoshimura. Floorplanning using a tree representation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 20(2):281–
289, 2001.

[13] Stefan Hougardy. On packing squares into a rectangle. Computational
Geometry, 44:456–463, 2011.

[14] Eric Huang and Richard E. Korf. New improvements in optimal rectangle
packing. In Proceedings of the 21st international jont conference on Artifical
intelligence, pages 511–516, 2009.

[15] Shinji Imahori and Mutsunori Yagiura. The best-fit heuristic for the rect-
angular strip packing problem: An efficient implementation and the worst-
case approximation ratio. Computers & Operations Research, 37:325–333,
2010.

[16] Mitsutoshi Kenmochi, Takashi Imamichi, Koji Nonobe, Mutsunori Yag-
iura, and Hiroshi Nagamochi. Exact algorithms for the two-dimensional
strip packing problem with and without rotations. European Journal of
Operational Research, 198:73–83, 2009.

[17] Richard E. Korf. Optimal rectangle packing: Initial results. In Proceedings
of the 13th International Conference on Automated Planning and Schedul-
ing (ICAPS 2003), pages 287–295, 2003.

[18] Richard E. Korf. Optimal rectangle packing: New results. In Proceedings of
the 14th International Conference on Automated Planning and Scheduling
(ICAPS 2004), pages 142–149, 2004.

[19] Richard E. Korf, Michael D. Moffitt, and Martha E. Pollack. Optimal
rectangle packing. Annals of Operations Research, 179:261–295, 2010.

[20] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. Exhaustive ap-
proaches to 2D rectangular perfect packings. Information Processing Let-
ters, 90:7–14, 2004.

Hougardy: A Scale Invariant Algorithm for Packing Rectangles Perfectly 15

[21] Joseph Y-T. Leung, editor. Handbook of Scheduling. Algorithms, Mod-
els, and Performance Analysis. Computer and Information Science Series.
Chapman & Hall/CRC, 2004.

[22] Joseph Y.-T. Leung, Tommy W. Tam, C.S.Wong, Gilbert H. Young, and
Francis Y.L.Chin. Packing squares into a square. Journal of Parallel and
Distributed Computing, 10:271–275, 1990.

[23] Keqin Li and Ham Hoi Cheng. Complexity of resource allocation and job
scheduling problems in partitionable mesh connected systems. In First Ann.
IEEE Symp. Parallel and Distributed Processing, pages 358–365, 1989.

[24] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional
packing problems: A survey. European Journal of Operational Research,
141(2):241–252, 2002.

[25] Jens Maßberg and Jan Schneider. Rectangle packing with additional re-
strictions. Theoretical Computer Science, 412:6948–6958, 2011.

[26] M.D. Moffitt and M.E. Pollack. Optimal rectangle packing: a meta-csp
approach. In Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee
McCluskey, editors, Proceedings of the Sixteenth International Conference
on Automated Planning and Scheduling (ICAPS 2006), 2006.

[27] Helmut Simonis and Barry OSullivan. Search strategies for rectangle pack-
ing. In P.J. Stuckey, editor, Constraint Programming 2008, volume 5202 of
Lecture Notes in Computer Science, pages 52–66, 2008.

[28] Robert T. Wainwright. The partridge puzzle.
www.mathpuzzle.com/partridge.html, 1996.

